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Resum

Aquest treball s’emmarca en el camp de l’estudi i simulació del comportament de
sistemes quàntics complexos, les propietats dels quals vénen dictades per les lleis de
la f́ısica quàntica. Aquestes juguen un paper fonamental en una varietat de sistemes
f́ısics, des de matèria condensada, sistemes superfluids i superconductors, ĺıquids
quàntics com l’He a molt baixa temperatura o trampes d’àtoms freds formant con-
densats de Bose - Einstein.

En l’estudi de tots aquests sistemes han adquirit un paper de gran rellevància
les tècniques de Quantum Monte Carlo, que es basen en la simulació directa de les
part́ıcules que componen el sistema, que es regeixen universalment per l’equació de
Schrödinger, que descriu exactament, excepte per efectes relativistes, el comporta-
ment quàntic de la matèria.

En aquest projecte ens dedicarem a crear una eina que apliqui mètodes es-
tocàstics actuals, i permeti comparar-los amb la nostra implementació d’un mètode
molt recent que aconsegueix extreure informació molt precisa del sistema basant-se
en postulats de la mecànica quàntica.
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Resumen

Este trabajo se enmarca en el campo del estudio y simulación del comportamiento
de sistemas cuánticos complejos, cuyas propiedades vienen dictadas por las leyes
de la f́ısica cuántica. Estas juegan un papel fundamental en una variedad de sis-
temas f́ısicos, desde materia condensada, sistemas superfluidos y superconductores,
ĺıquidos cuánticos como Helio a muy baja temperatura o trampas de átomos fŕıos
formando condensados de Bose - Einstein.

En el estudio de todos estos sistemas han adquirido un papel de gran relevancia
las técnicas de Quantum Monte Carlo, que se basan en la simulación directa de las
part́ıculas que componen el sistema, que se rigen universalmente por la ecuación de
Schrödinger, que describe exactamente, excepto por efectos relativistas, el compor-
tamiento cuántico de la materia.

En este proyecto nos dedicaremos a crear una herramienta que aplique métodos
estocásticos actuales, y permita compararlos con nuestra implementación de un
método muy reciente que consigue extraer información muy precisa del sistema
basándose en postulados de la mecánica cuántica.
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Abstract

This work is aimed to a contribution to the study and simulation of the behaviour
of complex quantum systems, whose properties are dictated by laws of quantum
physics. These play a fundamental role in a variety of physical systems, ranging
from condensed matter, superfluid systems and superconductors, quantum liquids
like Helium at very low temperatures, or traps of cold atoms forming Bose - Einstein
condensates.

In the description of all these systems, stochastic methods known as Quantum
Monte Carlo methods have acquired a role of great relevance. They rely on a direct
simulation of the particles that constitute the system, which are universally gov-
erned by the Schrödinger’s equation which, apart from relativistic effects, describes
exactly the behaviour of quantum matter.

In this project we will develop a tool to apply current quantum Monte Carlo
methods and compare them with our implementation of a very recent method which,
based on a direct stochastic modelling of the Schrödinger equation for the evolution
of the quantum state, in accordance to the postulates of quantum mechanics, ex-
tracts precise information from the system.
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Chapter 1

Introduction and Context

This project will be developed in collaboration with people from the Barcelona
Quantum Monte Carlo group, in the Physics department of the Barcelona School of
Informatics (FIB).

The objective of this project is to build a tool, based on Monte Carlo propagation
in imaginary time, that helps to improve the variational description of a quantum
many-body system by direct optimization of its struture. A tool capable of ana-
lyzing the description, behaviour and properties of quantum many-body systems at
very low temperature.

Evaluating their properties requires to deal with the many-body Schrödinger equa-
tion. Finding an analytical exact solution is impossible, and one must rely on
numerical computation techniques such as Quantum Monte Carlo methods in order
to gain some insight into the properties of those systems.

Quantum Monte Carlo methods can be classified in two categories, exact methods
(which rely on huge amounts of computing resources, but do not offer an exact
analytical insight, and can be worked out only in some specific cases), and the Vari-
ational Quantum Monte Carlo method, whose main characteristic is that it requires
from the user the input of an approximate wave function, from which it is able to
produce reliable predictions concerning the properties of the system.

It must be stated that variational methods follow the principle of zero variance for
the energy, meaning that as we approach the ground-state wave function, the local
energy converges to the ground-state energy and hence becomes independent of the
configuration of the particles, ,and therefore it has zero variance. This implies that
a lower bound for variational methods exists and can be reached.

Recently, a new line of progress has been proposed which could provide the best of
both approaches: the Time-dependent variational Monte Carlo method [1] originally
derived in [2, 3],which bears the promise to be able to get arbitrarily close to the
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analytical exact, true ground-state of the system from first principles, for any system
whose Hamiltonian is known (the Hamiltonian is a mathematical function describ-
ing the full characteristics of the physical system, including the atomic interactions).

Steps in that direction are most interesting, but they involve extremely complex and
computationally demanding calculations. Any attempt in this line must provide the
ability to link highly complex symbolic calculations entering in the ground-state
wave function, with hundreds of parameters whose evolution is determined within
the framework of the recently proposed time dependent Variational Quantum Monte
Carlo method.

The project is aimed at continuing this line of research and provide a tool capable of
analyzing the ground-state properties of a many body system and capable of defin-
ing the physical descriptors of the functional form of the wave function used in the
simulation to validate the correctness of the descriptors.

The software would be used in the first place by the research group in many-body
quantum systems at the Physics department, and it could make a significant con-
tribution to the knowledge of the behaviour of quantum matter, which undoubtedly
will transform, in the upcoming decades, the materials and the world we live in.
Furthermore, this project may open new lines of research.
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Chapter 2

Justification

In recent years, in the field of low temperature quantum systems simulation, the
development and refinement of stochastic methods which go beyond the prediction
capacity of the Variational Monte Carlo method has been an active area. These
refinements have allowed to obtain exact (partial) information of the system, based
on a stochastic modelling of the Schrodinger equation.

An even more ambitious idea would be to achieve, from a direct stochastic modeling
of the Schrodinger equation, the improvement of the wave function itself using the
time-dependent Variational Monte Carlo [1], with the aim of extracting the exact
wave function with arbitrary accuracy. This would open up the ability to extract
accurate information of all the properties of the system, in accordance with the pos-
tulates of quantum mechanics.

Although in traditional VMC it is already a common practice to look for, as far
as possible, a good test function, this idea that has recently come out to achieve a
complete description of the exact wave function requires to develop and systematize
all the Variational Monte Carlo procedures for functions of arbitrary complexity.

Even if the conceptual procedure is clearly understood, the manual development
of programs that implement the convergence towards the exact wave-function is
tremendously hard.

Ideally, a perfect solution would be to have a mechanism with the ability to auto-
mate the whole set of tasks required for a such a research program. A tool capable
of implementing this ideas does not exist to date, and the work of designing and im-
plementing it, taking elements from theoretical physics to software development, is
an interdisciplinary task which requires the confluence of knowledge of the two fields.
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Defining the requirements of such automation and building a solution to these re-
quirements is the goal of our project.
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Chapter 3

Scope

3.1 Objectives and Sub-objectives

The project will provide solutions to the different requirements that the group needs
to satisfy:

(1) Create a graphical interface that lets the user define the problem, specifying
the Hamiltonian of the system, as well as:

• The number of atoms used in the simulation.

• The operators used in the Variatonal Time-dependent formalism.

(2) The interface lets the user specify the functional space of the wave functions
to consider:

• One-body functions.

• Two-body functions for each pair of atoms.

(3) From the specified points 1 and 2, develop a Variational program for the
simulation of the system by means of Quantum Monte Carlo.

(1) Analyse values obtained from the simulation: variational energy, local
energy, standard error.

(2) Compute in real time (while performing the simulation) the evolution of
the wave function (the parameters specified at point (2)), given by the
Variatonal Time-dependent formalism.

(3) Compare with the results of an optimization using the method of Simu-
lated Annealing.
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(4) Graphical representation of the energy dependence of the system based
on the descriptor parameters that define the functional space and the
considered wave functions.

(5) Graphical representation of the Simulated annealing performance through-
out a run on Variational Quantum Monte Carlo.

(4) The program has to have a high performance in computing for a given archi-
tecture, given the long compute times it can have for simulations with a large
amount of atoms.

3.2 Identification and definition of potential ob-

stacles and risks

No potential obstacles are likely to appear, other than the fact that the time-
dependent Variational method to be explored could suffer from unexpected pitfalls.
In that case, the product developed in this project would likely be used to charac-
terize them and to point out the root causes.
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Chapter 4

Methodology

4.1 Agile software development

This methodology is based on short iterations that last from one to four weeks with
objectives for each iteration that are achievable in this short frame of time, making
it easier to adapt to possible difficulties or changes of criteria throughout the devel-
opment.

In our case we have weekly or biweekly meetings with Joaquim Casulleras Ambros
and Ferran Mazzanti Castrillejo in the UPC FIB B4 building, these meetings mostly
address doubts related to computational physics and features that are needed for
the graphical interface, followed up by the definition of the next week objectives
based on feedback of the results. Most of the development of the tool is done at
home and meetings days are used to get a thorough analysis of the results of the
simulations.

4.2 Test driven development

This methodology is used to prove the correctness of a software based on its gran-
ularity. Pieces that compose the software are tested (checked for known cases that
their outputs are right) in order to prove the correctness of the hole system.

Although finding an analytical exact solution is impossible for a large amount of
atoms, and one must rely on techniques such as Quantum Monte Carlo methods
that may not give exact solutions, some experiments like the harmonic oscillator or
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the hydrogen atom have known analytical exact solutions, therefore we have we have
a way to prove that or tool follows the anallitically correct and known solutions.

4.3 Development Tools

• Version control: a Github repository has been created to hold the project
and Git is used as the version control tool.

• Diagrams: Gantt project is used in the making of the Gantt diagram for
the project planning.

• Task management: a trello is used to orginize the main tasks of the project.

4.4 Technologies

4.4.1 Python

Given the fast prototyping and needs of change this thesis needs, we have decided
to use tools meant to be used for fast development and testing purposes. For this
reason, our best choice ia Python and the Jupyter Notebook environment. Python
has a strong standard library and all our needs are covered by either the standard
library or the vast amount of third party libraries. Jupyter provides the perfect
balance between code and visualization of data we were searching for, and given all
these tools are open source there are no drawbacks if the tool were to be distributed
or made public.

Jupyter Lab

Like Jupyter Notebook, Jupyter Lab is a web-based interactive enviroment that
is mostly known in the development of python applications although it has other
kernels for languages like Julia, R and Haskell. Jupyter Lab was thought as a tool
that eases the development of scientific applications by giving a fast prototyping
enviroment with great and interactive visualization tools, profiling and debugging
capabilities for a great REPL. Many people think of it as and IDE for python.

Voila

One of the problem Jupyter notebooks have is that code is always present so unless
you want to release a tool with visible code, the normally notebook code gets ported
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to a more presentable format. Voila solves this by rendering the same notebook
without code and better and enhanced visuals for the purpose wanted.

Bqplot and Plotly

There are many tools for making plots and interactive widgets in python but Bqplot
has a clean, easy and enhanced features to be used in Jupyter Notebooks that other
alternatives do not have. Plotly has more of the same, the only difference is that
Plotly has a bigger feaute set for customizing interactive plots, bqplot instead is
more focused on interaction of other features like tab

For this thesis Bqplot is used for all the interface with the user, the widget for the user
input, the widget for defining the hamiltonian, have function terms and variables and
the widget for running both the simulated annealing and time-depentent simulations
are made with Bqplot. Plotly is used on the interactive plots used to observe values
while the simulations are running.

Numba

Numba is an open-source JIT compiler for python that translates a subset of python
code into high performance code using llvm. Numba has many features to make code
faster like multithreading, vectorization, making ufuncs, GPU-accelerated code or
C callbacks.

Performance is key for this thesis, therefore, we need a way to reduce our bottleneck
of running everything on the python interpreter, Numba gives us the possibility of
still be running python while boosting the performance of the simulation we want
to run, to the point it is nearly as fast or faster than a specific Fortran code to be
run for that purpose.

Sympy

Sympy is a computer algebra tool that has a huge feature set of expression manip-
ulation, it has everything a normal computer algebra tool would have and more,
but one of the main features we are interested in is the set of tools to manipulate
expressions and convert the expressions into code from different languages like C,
Fortran, Matlab or Julia. This makes Sympy even more appealing as a tool to gen-
erate optimal runnable functions independent of the platform where we could run
whatever simplification and common sub-expression algorithm we wanted to find the
runnable function going our of the standard optimizations a compiler would make
to a mathematical expression.
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Chapter 5

Project Planning

5.1 Introduction

Given the university premises, this project has a management time of 136h and an
estimate development and testing time of 330h. This project starts at 27/01/2020
and its planned to end at 23/05/2020 given that the lecture turns are on 02/06/2020.
There is no requirement made by the Barcelona Quantum Simulation group given
that we have no client and this project is a proof of concept.

5.2 Task division

The tasks are divided in three groups, management tasks, development tasks and
testing tasks.

5.2.1 Project Management

Management tasks are a must to deliver great quality results by means of a good
organization. The following task are the tasks we plan to follow for the development
of this thesis.

• MT - weekly or biweekly meetings: Given the agile methodology we have
chosen for this project, weekly or bi-weekly meetings are done to summarize
previous work, analyze pitfalls, check correctness of the work and establish
future tasks for the next meeting. We also have to take into account the
monitoring of the development of the memory for the project. These meetings
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take around one or two hours per week, therefore this takes 24 hours given the
12 weeks of this thesis.

• SD - scope definition: The scope of the project was defined within the
first 3 weeks, during these weeks we defined the domain of these problems,
primary goals, possible paths to take once the primary goals are functional,
the feasibility of this project for an undergrad without physics background.
This has taken 30h.

• PD - Plan definition: Once the scope was given, we spent around 10h to
organize the resources needed for each of the development tasks, prerequisites
of the tasks and the approximate sprint where this task will be developed.

• DOC - Documentation: Documentations is intended to be done concur-
rently throughout the development of the project, based on the new require-
ments, problems we have to overcome and the findings we do for the proof
of concept. There are no requirements other than having a computer and the
estimated time, given previous experience on similar documentation, is around
50h.

• SR - Sustainability Report: This document determines the consequences
our project has for the environment and ,if possible, what is possible four us
to reduce the footprint it gives. Our project is mainly based on simulations
therefore other than running our program in a cluster, our footprint is near
zero. Therefore, the estimate time is around 5h for the Sustainability Report.

• BG - Budget: Given this is a research project for a non benefit purpose,
without grants and its purpose is a proof of concept of a simulation that doesn’t
require any non ordinary resources other than a computer and workforce, the
estimated time for this task is 5h.

5.2.2 Development phase

The development has been estimated to be done in three sprints with Design and
Evaluation phase. From the first sprint we can estimate that the time from both
Design and Evaluation phases will be 10 hours. The overall tasks needed to be
completed for the development phase are the following:

• OBOE - One-Body Oscillator Experiment: design the simulation of
the one-body oscillator for the computation of the variational energy for a
certain parametrization of the one-body wave function by means of variational
quantum montecarlo. Resources needed are scientific research articles and a
computer for the simulations. This has taken 20h.

• MBOE - Many-Body Oscillator Experiment: extend the previous OBOE
point to the many-body case.Resources needed are scientific research articles
and a computer for the simulations. Given the time spent on OBOE this
should take 30h.
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• GMBE - General Many-Body Experiments: extend the MBOE to the
general case of different interesting many-body interactions. The resources
needed are scientific research articles and a computer for the simulations.
Given the complexity of this problem we estimate 60h to finish this task.

• GUIP - Interface for User Input: design a user interface that lets the user
specify the parameters of the simulation like the Hamiltonian of the system or
the functional space to which the wave function belongs. The resources needed
are a computer. This takes around 10h given the low complexity of this task.

• VIZ - Visualization search space Tool: this tool provides real time feed-
back to the user about the simulation. This helps the user decide whether
the simulation is doing well or not, so that the user can stop the execution
if needed to start all over again from a different set of parameters. This is
intended to run while the simulation is executing so it is not intended to be
resource intensive. The resources needed are a computer. This takes around
20h the different models this could be tested on.

• HYPO - Hyper Parameter Optimization: Analyse the performance and
accuracy of several space search methods for finding the ground-state. Re-
quirements are a computer and scientific research articles about the topic.
The expected time 50h given the complexity and different methods we can
follow to do this task.

5.2.3 Testing phase

The testing phase will be critical for the analysis of the performance and the sim-
ulation to evaluate the end result of the simulation tool. The tasks to be done are
the following:

• DAT - Define Analytical Tests: To prove the correctness of our simula-
tion tool we have to build tests based on simulations with known analytical
solutions. The resources used are scientific books and articles where known ex-
periments are described, and a computer to run the simulations. This should
take around 20h.

• PACS - Performance Analysis and Cluster Support: We must check
whether our simulation tool is using efficiently the available CPU power given
the possible complexity of the simulations. The resources used are the Physics
department’s cluster and GPU, and a laptop. The expected time is around
30h given the multiple methods we will have to analyze and optimize.

• TM - Test Meetings: some of the meetings will be devoted to check the cor-
rectness of the simulation. For this meetings the presence of both supervisors
will be required, as well as a computer for running the simulations. Taking
into account we spend weekly 2.5h on meetings for test, the estimated total
for all these meetings is 30h.
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Figure 5.1: Workflow dependencies
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5.3 Risk management

Given the purpose of this program, a tool used for simulations inside the physics
department that is not intended to put any lives at stake and has no affiliates whose
investments could be at risk. There are no social, economic or environmental risks,
the only risk possible is the failure of this proof of concept. There are different parts
where this experiment could lead to failure, either:

• Numerical methods used do not give enough precision to be able to find the
ground truth of the system

• We can’t find a method of search space for the parametrization of the wave
function that is reliable at giving the ground-state and is feasible to run in
nowadays hardware in a short span of time.

• The method of searchspace is realiable but does not generalize for general
Many-Body experiments.

• The tool is not expressive enough for the purposes of the user.

• The tool cannot reach the generalized model given the short life span of this
project and the complexity of finding the ground-state in the generalized
Many-Body experiment has.

In case of failure by some of the previously mentioned pitfalls, the contingency plan
is investing more time of research in scientific articles to find feasible alternatives
that can adapt to the purpose of this thesis, since most of the pitfalls are related to
applying some knowledge from a scientific article to our thesis. The only exception
is if we have have a tool that is not expressive enough, this would lead to major
changes of the tool structure and design that would take longer than just doing more
research.

In case of failure we can always document the current state of the thesis given the
importance of such research in this field has, for future lines of research know where
the pitfalls are and where should they look at given the results of this thesis.

5.4 Deviations of the Project development sched-

ule

The following are the resulting shedule we have followed compared to the one esti-
mated.
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Figure 5.2: Gantt Diagram

Figure 5.3: Gantt Diagram Text
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Phase Expected starting date Current starting date Expected finishing date Current finishing date

Sprint 1 17/02/20 17/02/20 6/03/20 6/03/20
Sprint 2 9/03/20 9/03/20 3/04/20 17/04/20
Sprint 3 3/04/20 17/04/20 17/04/20 8/05/20

Table 5.2: Summary of the tasks

From a thorough analysis of the resulting schedule we can make the following con-
clusions:

• Spints 2 and 3 have been delayed given the current context of covid-19, where
we had a lack of meetings for almost 3 weeks, making it harder to follow the
tasks given that we had to validate the current state of the general many-body
simulation.

• Sprint 1 was taken without delays and given the fast progress we had, we added
a symbolic expression preprocessing to be able to specify the exact equations
used on the simulation.

We can clearly see that our work has been delayed starting from the second sprint.
This has happened given current context of covid-19, there has been a gap of almost
three weeks were we had no meetings
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Chapter 6

Project Budget

6.1 Considerations

The expenses of this thesis is based on the current hardware’s powerhouse, the cost
of projects of this caliber may change given the development of computer architec-
tures that outperforms current ones. It may even be possible for future hardware’s
capabilities to run these simulations without the need of a cluster, making the costs
significantly drop. Doing the thesis inside the a university department and without
a budget given, meant for us that the project had the be the most affordable. There-
fore, we have searched for resources that were free of use meaning that, if possible,
the software used would be free of use and the facilities should be provided by the
university.

6.2 Identification of costs

For the development of this thesis there is a need for both human and material
resources. The material resources are hardware (laptop and computers), facilities
(University facilities and Cluster) and the software used for the development.

The human resources are those that carry each of the defined tasks of the thesis.
Each role has a specific responsibility and tasks to do. The following are the specific
roles that are needed for this thesis.

• Test Engineer: person responsible of designing and checking the tests so that
the platform has the required robustness and precision wanted. Specifically,
the robustness and precision of the simulation and the results taken from it.
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Role Annual Salary Total including SS Price hour Total hours project Role total cost

Back-end Engineer [6] 36.790,00 e 49.666,5 27,9 e 50 1.395,00e

Front-end Engineer [8] 30.000,00 e 40.500 e 22,75 e 30 682,50e

System Engineer [11] 32.493,00 e 43.865,55 e 22,75 e 30 682,50e

Physicist [7] 33.000,00e 44.550,00 e 25,00 e 134 3.350,00e

Programmer [10] 26.198,00 e 35.367,30 e 19,87 e 274 5.444,38e

Tests Engineer [13] 29.498,00 e 39.822,30 e 22,37 e 74 1.655,38e

Machine Learning Engineer [9] 27.306,00 e 36.864,10 e 20.70 e 50 1.035,00e

Technical Writer[12] 26.263,00 e 35.355,05 e 19,92 e 112 2.231,04e

Table 6.1: Annual Salary roles thesis

Product Price Units Useful life Total estimated amortization

XPS 13 7390 2-in-1 1.299,00 e 1 5 years 86,60 e

OnePlus 7 559,00 e 1 3 years 62,11 e

1.858,00 e 148,71e

Table 6.2: Hardware budget

• Physicist: person responsible of defining the basis of the simulation, the
domain and the particle interaction.

• Programmer: person responsible of implementing the overall architecture of
software. This includes the development of the simulations of the Single-body
and Many-body systems.

• System Engineer: person responsible of orchestrating the software on a
remote system. In this case, the system to be orchestrated is the applied
physics department’s cluster.

• Machine Learning Engineer: person responsible of models based on artifi-
cial intelligence techniques. In our case, the person will be responsible of the
development of the parameter space search using artificial intelligence tech-
niques like hill climbing.

• Back-End Engineer: person responsible of the development of the commu-
nication of the values given by the simulation with the front-end by means of
basic databases and communication protocols.

• Front-End Engineer: person responsible of the design and development
of the graphical user interface that will be used for the selection of domain
of the simulation, selection of the particles interaction and selection of the
experiments simulation.

• Technical Writer: person responsible of writing the overall documentation of
this project. Mostly documentation that comes form the project management.
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Facility Time Total price

Applied physics cluster 300h free

FIB B5 meetings room 28h free

30 m2 flat in barcelona (les corts) [5] 4 months 1.780,80e

1.780,8e

Table 6.3: Facilities budget

Name Price

Overleaf free

VS studio code free

Github free

GantProject free

Draw.io free

LibreOffice free

Anaconda Distribution free

0,00e

Table 6.4: Software budget
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Activity Import Roles Hours

MT - Weekly or Biweekly Meetings 1.614,47e Programmer, Physicist, Test Engineer 24
SD - Scope Definition 597,60e Technical Writter 30
PD - Plan Definition 139,44e Technical Writter 7
DOC - Documentation 1.294,80e Technical Writter 65
SR - Sustainability Report 99,60e Technical Writter 5
BG - Budget 99,60e Technical Writter 5
DS - Design 1.346,10e Programmer, Physicist 30
EV - Evaluation 1.346,10e Programmer, Physicist 30
OBOE - One-Body Oscillator Experiment 955,40e Programmer, Back-End Engineer 20
MBOE - Many-Body Oscillator Experiment 1.433,10e Programmer, Back-End Engineer 30
GMBE - General Many-Body Experiments 1.192,20e Programmer 60
GUIP - Interface for User Input 227,5e Front-End Engineer 10
VIZ - Visualization Search Space Tool 455,00e Front-End Engineer 20
HYPO - Hyper Parameter Optimization 2.028,8e Programmer, Machine Learning Engineer 50
DAT - Define Analytical Tests 947,4e Physicist, Tests Engineer 20
PACS - Performance Analysis and Cluster Support 1.278,60e Programmer, System Engineer 30
TM - Test Meetings 1.421,10e Tests Engineer, Physicist 30

16.476,81e 367

Table 6.5: Human resources budget relative to Gantt tasks

6.3 Cost Estimates

The estimated costs for each of the roles of the tasks are taken from the website
glassdoor [4] that has real world data taken daily in the fields of each of the roles
used for this project. The annual intake for each job role taken from glassdoor has
no consideration for social security therefore to calculate the cost per hour we take
into account the social security and a 1780h of estimated work per year. From here
we can calculate the labor agreement costs each role would have.

The estimated costs of hardware are low given that the only need for hardware is a
laptop to develop the software of the simulation and the phone to test the graphical
user interface in different size of displays.

The estimated cost of software, given the open-source approach that we have taken,
will end up being zero.

Given that this thesis is made in the applied physics department most of the facilities
are amortized by the university. Therefore, the costs of accessing to a cluster and
university buildings is amortized, so the only cost accounted is a 30 m2 flat rent in
les corts.

Taking into account possible unexpected events, the resulting budget has a con-
tingency of 15% making the resulting budget (SB + FB + HB + HRB) · 1.15 =
(0, 00 + 1.780, 80 + 148, 71 + 16.476, 81) · 1.15 = 21.167, 27e.

A contingency plan of 15% has been taken because most of the resourses of this
project are human resources and most probably in case of failure in some of the
tasks and average of 50h extra has been estimated to be added in human resources
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so budged would round up to a 15% increase in case of failure.
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Chapter 7

Sustainability Report

When talking about the sustainability of a thesis there are many ways we can tackle
this problem. For example, in computer science one of the main aspects is the ef-
ficiency of the computation, a less efficient computation will lead to more energy
consumption of the system that holds that program, and a more efficient computa-
tion will consume less and have more free resources for other programs.

Another aspect we can take into account is the social aspect. Many software nowa-
days is used to enhance and improve our social lives by easing daily activities like
communication, transport and information gain.

The economic aspect is also important, programs are know for replacing, making
easier and faster tasks we do. This can lead to major economic benefits that we all
know and thrive from them.

7.1 Economic Dimension

Regarding PPP: Reflection on the cost you have estimated for the com-
pletion of the project:

Budget reflected in this thesis is precise and transparent, there has been no intention
on overloading the budget with meaningless resources or underloading the budget
to make it harder to follow.

Regarding Useful Life: How are currently solved economic issues (costs...)
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related to the problem that you want to address (state of the art)?

This project has no cost other than human resources, also this was intended just for
internal purposes, meaning it has no external costs.

How will your solution improve economic issues (costs ...) with respect
other existing solutions?

There are no other existing solutions that do give accurate static and dynamic de-
scriptions of the many-body simulation, this is a proof of concept and it is not
comparable to other solutions because none exceed in both describing the static and
dynamic properties and dynamic properties accurately. Therefore, there is no eco-
nomic improvement, also this tool is an internal tool with a use meant for research,
no economic purposes are related to this thesis.

7.2 Environmental Dimension

Regarding PPP: Have you estimated the environmental impact of the
project?

The only negative impact this project may have is the energy consumption on the
hardware where the simulation is run. This can be reduced by doing more efficient
and performant computations of the simulation, nevertheless the results outweigh
the electrical consequences.

If we suppose that this tool will also be used outside the applied physics department
then, if the simulations results are not correct and are used in an industry with risks
like a pharma or food industry. Then this tool could lead to major threats.

Regarding PPP: Did you plan to minimise its impact, for example, by
reusing resources?

The only resources that can be reused are physical resources like computers, lap-
tops and the cluster. And for sure, these will be reused because of the much longer
lifespan these have compared to this thesis.

Regarding Useful Life: How is currently solved the problem that you
want to address (state of the art)?, and how will your solution improve
the environment with respect other existing solutions?
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The simulation contains both the precision of the static and dynamic simulations
of the many-body simulation. This is a ground no other paper has tried and done
correctly, if done correctly this could lead to more precise and performant solutions,
related to the environment, this could lead to less costs in energy consumption.

7.3 Social Dimension

Regarding PPP: What do you think you will achieve -in terms of personal
growth- from doing this project?

This is a major challenge for me. I wanted to learn from other fields of study
that could be applied to my degree and one was physics. This project contains
quantum physics, calculus and artificial intelligence and all of these will be achieved
proficiently by the end of this thesis.

Regarding Useful Life: How is currently solved the problem that you
want to address (state of the art)?, and how will your solution improve
the quality of life (social dimension) with respect other existing solutions?

As mentioned above, the simulation contains both the precision of the static and
dynamic simulations of the many-body simulation. This is a ground no other paper
has tried and done correctly, if done correctly this could lead to more precise and
performant solutions.

This tool will ease the research process in studying the interaction of bosonic parti-
cles, by giving faster and equally or more precise simulation and an easier interface
for physicists, that will let them fully express the physical constraints they want on
the domain and particles interaction, without the burden of developing a tool for
that specific experiment case.

Regarding Useful Life: Is there a real need for the project?

The Barcelona Quantum Simulation group needs a proof of concept of a the theo-
retical proposal they had on how to solve both the dynamic and static properties
accurately of the particle simulation. If this thesis gives feasible results, then the
simulations they already had could be improved and/or get faster than previous
ones. And there is always a need for more precise and faster simulations given the
time these simulations can take.
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PPP Exploitation Risks
Environmental Reduce impact by

making more efficient
and cost effective
algorithms that pro-
duce same results
with less consumption
of resources.

No existing state of
the art is known and
analytical solutions
are too expensive, our
solution would be way
more efficient com-
pared to analytical
solutions.

If the solution is found
no environmental risks
can be made, just en-
vironmental benefits.

Economic Given the research
purpose of this project
reducing expenses in
human resources
would lead to poor
results and mate-
rial resources are
amortized by the
university, therefore,
we find ourselves with
an already optimal
solution.

Our approach could
lead to more precise
and performant so-
lutions therefore less
expenses in compute
would be taken.

Only if money is at
steak and simulation
results do not give the
expected results.

Economic Given my non existing
background in physics
this project is a ma-
jor challenge for im-
proving calculus and
physics knowledge.

By giving faster and
more precise simula-
tion and an easier in-
terface for physicists,
this tool would ease
the work for physicists

The tool may not
adapt to the physicists
purposes making the
main purpose of this
tool meaningless.

Table 7.1: Sustainability Matrix Summary
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Chapter 8

Prior Knowledge

In this chapter we will make an insight in on the foundations needed to understand
how our tool works, this thesis has no intention on going in depth on the physi-
cal properties of the systems we want to study, but still, we must understand the
foundations of them.

8.1 Hamiltonian

In quantum mechanics the Hamiltonian is an operator that defines the possible
measurable total energies of a system. Similar to classical mechanics, the expression
corresponds to the sum of the kinetic T̂ and potential V̂ energies in the system. In
the case of one particle we have:

Ĥ = T̂ + V̂ (8.1)

or more explicitely

Ĥ = − h2

2m
∇2 + V̂ (8.2)

Where T̂ = − h2

2m
∇2, when extended to many particles we have

Ĥ = − h2

2m

n∑
i

∇2
i + V̂ (8.3)

For our intended purposes we want a highly flexible formulation for the Hamiltonian
so the expression we want to manipulate is

Ĥ = − h2

2m

n∑
i

∇2
i +

n∑
i

V (ri) +
n∑
i<j

V (rij) (8.4)

having one body kinetic energy terms, one and two body potential energy interac-

tions, where ∇2
i =

(
∂2

∂xi
+
∂2

yi
+
∂2

∂zi

)
is the Laplace operator for the i body.
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The Hamiltonian will be important to compute Ev(a) =
〈Ψ(a)|Ĥ|Ψ(a)〉
〈Ψ(a)|Ψ(a)〉

, i.e, the

expected value of the sum of the kinetic and potential energy. This is important for
finding the ground-state of a trial wave function.

8.2 Wave Function

The wave function is an expression that represents the whole state of a quantum
system. The wave function looks like the following

Ψ = Ψ0Ψ1Ψ2Ψ3... (8.5)

where

Ψ0 = f0

Ψ1 =

Np∏
i

f1(ri)

Ψ2 =

Np∏
i

Np∏
j=i+1

f2(rij)

. . .

(8.6)

An example of wave function would be trial wave function of the helium atom. The
potential energy of the helium atom is defined by the attraction from the nucleus of

both electrons r1, r2 given by V (r1, r2) = −2ke2

r1

− 2ke2

r2

+
ke2

r12

where r12 = |r1 − r2|

and the repulsion of both electrons
ke2

r12

, from here we can extract a trial wave

function composed by f1(ri) = e−α(ri) and f2(rij) = eβ(rij).

8.2.1 Laplacian of the wave function

For the stochastic optimization methods we need a clear understanding on how to
apply the Laplacian to the wave function and how the resulting function looks as a
composite of derivatives of functions f1, f2. Let Ψ = Ψ1Ψ2 where Ψ(α, i) is

α ∈ 0, 1, ..., Np : Ψ(α, i) ≡
{
f1(ri) i = j
f2(rij) i 6= j

(8.7)

Let ∇0
i =

∂

∂xi
, ∇1

i =
∂

∂yi
and ∇2

i =
∂

∂zi
. We have to find a reduced form of

∆Ψ

Ψ
for

the compute of T̂Ψ. Let
∇a
i∇a

iΨ

Ψ
= ∇a

i

(
∇a
iΨ

Ψ

)
+

(
∇a
iΨ

Ψ

)2

, if we work with the

right expression we can work with

(
∇a
iΨ

Ψ

)
and then ∇a

i

(
∇a
iΨ

Ψ

)
. To reduce the

size of the expression, given by
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∇a
iΨ

Ψ
=
∇a
iΨ(i)

Ψ(i)
=

Nα∑
α

(
∇a
iΨ(α, i)

Ψ(α, i)

)
=

Nα∑
α


∇a
i f1(i)

f1(i)
i = α

∇a
i f2(α, i)

f2(α, i)
i 6= α

(8.8)

∇a
i

(
∇a
iΨ

Ψ

)
= ∇a

i

Nα∑
α

(
∇a
iΨ(α, i)

Ψ(α, i)

)
=

Nα∑
α


∇a
i

[
∇a
i f1(i)

f1(i)

]
i = α

∇a
i

[
∇a
i f2(α, i)

f2(α, i)

]
i 6= α

(8.9)

from wich we can compute TOneBody(i, α, a, 1) ≡ ∇
a
i f1(i)

f1(i)
, TOneBody(i, α, a, 2) ≡

∇a
i

[
∇a
i f1(i)

f1(i)

]
, TTwoBodies(i, α, a, 1) ≡ ∇a

i f2(α, i)

f2(α, i)
and TTwoBodies(i, α, a, 2) ≡

∇a
i

[
∇a
i f2(α, i)

f2(α, i)

]
from which we have that

TDer(i, α, a, k) ≡
{
TOneBody(i, α, a, k) i = j
TTwoBodies(i, α, a, k) i 6= j

(8.10)

where we have that TDer(i, α, a, 2) = ∇a
i TDer(i, α, a, 1), from here we can clearly see

that

∇a
i∇a

iΨ

Ψ
=

Nα∑
α

TDer(i, α, a, 2) +

(
Nα∑
α

TDer(i, α, a, 1)

)2

(8.11)

In other words

T̂Ψ = − h2

2m

3∑
a=1

Np∑
i=1

( Nα∑
α

TDer(i, α, a, 2)

)
+

(
Nα∑
α

TDer(i, α, a, 1)

)2
 (8.12)

8.3 Monte Carlo Integration

The idea behind Monte Carlo Integration is to compute the definite integral I =∫ b

a

h(x)dx by randomly sampling from the function h(x). Monte Carlo integration is

well known as a consistent and unbiased method. Given its simplicity it adapts well
to multidimensional integration, with a signal-to-noise ration converging as

√
N ,

that does not depend on the number of dimensions, makes it a clear competitor
to other approximation methods like Riemann sum or Simpson’s rule that fall into
the curse of dimensionality where they require Nd samples, making a much slower
convergence as dimensions grow.

8.3.1 Naive Monte Carlo Quadrature

This is the simplest possible way of computing the definite integral:
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I =

∫ b

a

h(x)dx (8.13)

where h(x) is an arbitrary function, and provided the integral is defined. Let
(x1, x2, . . . , xn) be a set of random numbers uniformly distributed over the interval
(a, b). Because of the central limit theorem we know that.

I = lim
n→∞

1

n

n∑
i=1

h(xi) (8.14)

The variance

σ2 =

∫ b

a

(h(x)− I)2dx (8.15)

can also be determined with the following

σ2 = lim
n→∞

1

n

∑
i

= 1nh2(xi)− I2 (8.16)

For a limited sampling n we can write the result of the integral as the following:

I ± (σ2/N)1/2 (8.17)

with a confidence interval of 68%
The problem with the crude technique is lack of efficiency to get a good estimate.
Several techniques have been developed to mitigate the problems of the crude Monte
Carlo but for the many body problem we will be using importance sampling.
Importance sampling Importance sampling handles both the sampled function h
and the sampling algorithm, in order to is to significantly decrease the variance of
the resulting function. Given a probability distribution function f(x) within the
interval (a, b), equation 8.13 can be rewritten as

I =

∫ b

a

(h(x)/f(x))f(x)dx (8.18)

Let (x1, x2, . . . , xn) be a set of random numbers drawn from the probability distri-
bution function f(x) the estimate integral is:

I = lim
n→∞

1

n

n∑
i=1

h(xi)/f(xi) (8.19)

And the variance is:

I =

∫ b

a

(h(x)/f(x))2f(x)dx− I2 (8.20)

A good choice of f(x) can lead to a smaller variance while the value of the integral
remains the same.
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8.3.2 Markov Chains

The problem with importance sampling is the determination of the importance
sampling function such that it minimizes the variance of I. Best cases would be
functions that mimic the function h(x) that we want to integrate. Either way,
there is no aid in choosing the wanted distribution function. Also, we have the
problem of carrying the sampling with this function. Both of these problems have
intimidating multivariate integrals. In our case the importance sampling function
is already defined in the problem we want to solve, the importance sampling is
the trial wave function squared.However, it still remains the problem of sampling
from a very complicated distribution function. Metropolis–Hastings is a stochastic
algorithm that produces a random walk that follows this complicated distribution
function.

This random walk is of the type known as Markov Chain or Markov Process. Given
a system with states S1, S2, ..., SN .At each step of the evolution of the system, each
state can jump to any other state of the set, itself included. This jump is charac-
terized by a transition probability matrix pij, which represents the probability of
jumping from the state i to any other state j. Note that pii is also included, and
that these matrix elements must fulfill the following conditions:

0 ≤ pij ≤ 1 (8.21)∑
j

pij = 1 (8.22)

In addition, it is required that the transition from i to j is independent on the
previous occupied states during the evolution.

A matrix that satisfies both (8.21) and (8.22 is called a stochastic matrix, and the
process related to it is called Markov Chain.

The generalization to the case of the continuum is called Markov process. We
should use now x to label the states, and define a transition density p(x, x′) with
the properties

p(x, x′) ≥ 0 (8.23)∫
p(x, x′)dx′ = 1 (8.24)

We want to know Which is the probability Pk of having passed on some state Sk.
More precisely. Assume we carry on N jumps, and let Nk bet the number of stops

at Sk. The searched probability is Pk = limN→∞
Nk

N

The stochastic matrix has to fulfill the fillowing conditions to be able to know the
probability Pk.

1. The random walk must be endless, i.e., there is none state with pii = 1. If
that state would exist, then our walker would be trapped at it. This kind of
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state is called an absorbing wall.

2. The chain is irreducible. Probably the opposite concept is easier to un-
derstand: if we can classify the states in two subsets so that there cannot
be a transition from one subset to the other, then the chain is termed reducible.

3. The chain must be aperiodic, let pnii be the probability of returning to the state
i at an n step and let t ∈ 2, 3, ..., chain is periodic if pnii = 0 for n 6= t, 2t, ...
and pnii 6= 0 for n = t, 2t, ..., otherwhise it is aperiodic.

8.3.3 Solution of the direct problem

The algebraic determination of the probabilities Pk is quite simple. The probability
of arriving to a state Si is the product of the probability of being previously in
another state Sk times the transition probability, i.e.

Pi =
∑
k

PkPki (8.25)

This is a set of homogeneous linear equations, which as expected are not indepen-
dent. as it can be checked by summing up over the free index i. It should be
supplemented by the normalization condition

∑
i

Pi = 1 (8.26)

and the system can now be solved.
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Algorithm 1 Compute Probability Distribution Function

input : A transition matrix Tij, a set of states S and an integer n

output: A probability distribution function Pri from n samples

∀i: Pri = 0 si = s0 ∈ S for step ∈ 1, 2, ..., n do

z = U(0, 1) for sj ∈ S \ {si} do

if z < Tij then
break;

else
z = z − Tij

end

Prj = Prj + 1 si = sj

end

for si ∈ S do

Pri ← Pri/n

end

return Pr

8.3.4 Metropolis-Hastings

The Markov Chains algorithm let us determine the probability distribution given a
random walk. The analog of this problem is given a known probability distribution,
find a random walk that follows the probability distribution. In other words, given
Pi we want to find the stochastic matrix Pij. As we may know, this problem is not
unique.

Given a symmetric and stochastic matrix qij the random walk is given by the
following.

pij =


qij i 6= j ∧ Pi < Pj

qij
Pj
Pi

i 6= j ∧ Pi ≥ Pj

qii +
∑
k

qik(1− Pk/Pi) 100 ≤ x

(8.27)

So given a state Si, we pick a trial state Sj with probability qij. If Pi ¡ Pj then the

move is accepted. Otherwise, the move is accepted with probability
Pj
Pi

< 1 if the

new state is not accepted we go back to the old state Si.

The algorithm holds for continuous probability functions
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Algorithm 2 Metropolis Hastings

input : A probability distribution p an integer n

output: A random walk RandWalk of length n

RandWalk← EmptyQueue RandWalk = Queue () x = pick a random starting state

while n > 0 do

x′ = x+ U(−D,D) if p(x′) < p(x) then

z = U(0, 1) if p(x′)/p(x) < z then

/* Move is not accepted */

x′ = x

end

end

RandWalk.push(x′)

end

return RandWalk

Which can be simplified to the following

Algorithm 3 Metropolis Hastings Shorter

input : A probability distribution p an integer n

output: A random walk RandWalk of length n

RandWalk← EmptyQueue RandWalk = Queue () x = pick a random starting state

while n > 0 do

x′ = x+ U(−D,D) z = U(0, 1)

if p(x′)/p(x) < z then

/* Move is not accepted */

x′ = x

end

RandWalk.push(x′)

end

return RandWalk

The value of D has a direct effect on the ratio of acceptance and rejection, an
appropiate value would be one that has an acceptance rate around 50% and 70%.

8.4 Variational Montecarlo

Given a many body hamiltonian
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Ĥ = − h2

2m

∑
i

∇2
i +

∑
i

V (i) +
∑
i<j

V (i, j) (8.28)

We want to compute the exact solution of the ground-state energy. One of the
features which makes the many body problem so complex is the fact that not all
stochastic methods can be applied the two body potential has a strong repulsion
when the particles are near. Perturbative methods could be a way to solve this
problem but these are hard given the strong repulsion at short distances given by
the potential.

A simple alternative to the exact solution is to compute a variational upper bound to
the ground-state energy using a trial function wich takes into account appropiately
the repulsive core of the two body interaction. The simplest form is known with the
name of Jastrow and is made up of a single particle orbitals and a correlation factor
which is the product of all pairs of two body correlation.
A general form for the trial wave function to represent bosons is

ΨT = f0

∏
i

f1(ri)
∏
i<j

f2(rij) (8.29)

Other general forms for the trial wave function may include three body correlation,
spin or isospin dependence, but this is not our case.
The upper bound to the ground-state energy for a parametrization a is

Ev(a) =
〈Ψ(a)|Ĥ|Ψ(a)〉
〈Ψ(a)|ΨT (a)〉

=

∫
Ψ†(R, a)HΨ(R, a)dR∫
Ψ†(R, a)Ψ(R, a)dR

(8.30)

Which can be rewritten as the following

Ev(a) =

∫
|Ψ(X, a)|2HΨ(X,a)

Ψ(X,a)
dX∫

|Ψ(X, a)|2dX
(8.31)

if we enterpret
|Ψ(X, a)|2∫
|Ψ(X, a)|2dX

as a probability distribution p(X, a) and EL(X) =

HΨ(X, a)

Ψ(X, a)
then

Ev =

∫
p(X, a)EL(X, a)dX (8.32)

This integral is written as the Monte Carlo Quadrature with p(X, a) as the impor-
tance sampling function. Givent a set of random variables X1, X2, ..., XN we can
estimate Ev using metropolis hasting as

EV =
1

N

∑
i

EL(Xi, a) (8.33)

And given the local energy EL(R)

EL(R) =
1

ΨT (R)
ĤΨT (R) (8.34)
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let p(R) be a pdf

p(R) =
|ΨT (R)|2∫
|ΨT (R)|2dR

(8.35)

where

∫
|ΨT (R)|2dR is the normalization constant. So given a positive, normalized

probability distribution function p(R), the variational energy is

EV =

∫
p(R)EL(R)dR (8.36)

As we can see in 8.36, we have the Monte Carlo quadrature having p(R) as the
importance sampling function and EL(R) as the function to be sampled.
So given a random walk R1, R2, ..., RN that follows the probability function p(R)
we can obtain the estimate

EV =
1

N

∑
i

EL(Ri) (8.37)

with a statistical error

σ =

√
1
N

∑
iE

2
L(Ri)− E2

v
√
N

(8.38)

8.5 Ground-state search

The main purpose of this thesis is that given a trial Wave Function ΨT (a)
parametrized by a and some defined potential of the hamiltonian, develop a tool
capable of finding the groundstate E0 = min{Ev(a) : a ∈ A} where A is the set of
all possible parametrizations of ΨT (a). The finding of the ground-state is important
for topics that may go out of this project like the study of superfluids.

8.6 Simulated Annealing

Simulated Annealing is one of the most known techniques of stochastic optimiza-
tion, the main idea comes from, given a starting state s, a possible new s′ and a
temperature T , whether or not accept a move from s to s′, based on the transition
function P (e, e′, T ). The transition function P (e, e′, T ) that depends on the energies
e and e′ of the states s and s′ respectively and a temperature T . States with smaller
energy are better than those with grater energy. This means that going downhill
is promoted but small steps going uphill may also bee accepted. The condition of
accepting uphill moves gets harsher as T decreases.

Our objective in the ground-state search is finding the configuration a that is
minimal on Ev(a). We can model this objective function as the energy E(s) of
state s where each state will represent a configuration of the trial wave function.
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The following is a basic algorithm of the simulated Annealing:

Algorithm 4 Basic simulated annealing

input : A number of maximum steps max(k)

output: A state s that is an approximate to the optimal solution

s = pick a starting state s0

for k ∈ 1, 2, ...,max(k) do

t = temperature(k+1 / max(k))

s′ = neighbor(s)

z = U(0, 1)

if P (E(s), E(s′) ≥ z then

/* accept move */

s = s′

end

end

return s

8.7 Time-dependent Variational Monte Carlo

Based on the fundamental priciple of quantum phisics, we know that the evolition
of a phisical state along time is the following

dΨ

dt
= −iHΨ (8.39)

and we are particularly interested in both the eigenstates and eigenvalues that define
the energy, particularly the one that is the lowest, i.e., the ground-state. The eigen
states of the energy are the foundation of the mathematical space that belong to
the physical states, known as Hilbert space. This means the wave functions we use,
can formally be written as a linear combination with some weights λk of the eigen
states of the energy.

Ψ(c) =∞k=0 λk(c)Ψ(Ek) (8.40)

For each set of paràmeters c exists a linear combination of eigen states that recon-
structs the wave function. Our objective is finding the parametrization c such that
it produces a combination of weights λk where the ground-state is the most impor-
tant, ideally λ0 = 1, λk>0 = 0. The method we want to evaluate has the parameters
evolving over time c(t+ ε) = cα(t) + ċα(t)εt.
Following a mathematical principle that states the evolution over time can be made
using real time, as stated in 8.39 that would have the evolution Ψ(t) = Ψ(cα(t)),
and complex time Ψ(t = − Im τ). Defining Ψ(t = 0) ≡ Ψ(cα), 8.39 can compute
Ψ(t) where t ∈ C, the way we compute Ψ(t = − Im τ) is the following

4.1. when τ is real, computing Ψ(t = − Im τ) is easier that Ψ(t = τ).
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2. when τ is complex,

2.1. Ψ(τ) satisfies

dΨ(τ)

dt
= −HΨ(τ) that we will rewrite as

dΨ(τ)

dt
+HΨ(τ) = 0 (8.41)

2.2. when τ increases, Ψ(τ) gets closer to the ground-state, i.e, we have

limτ→∞Ψ(τ) = Ψ0 (where Ψ0 is the Wave Function of the ground-state)
(8.42)

Following the scheme of evolving the wave function Ψ(c) using parameters c→ c(t)
that change over time, this wave function will be called Ψ(τ), so we have

dΨ(τ)

dτ
+HΨ(τ) = 0 (8.43)

From now on we will use t as τ . Therefore, we have

∂Ψ

∂t
+HΨ = (Ψ̇ +HΨ) = 0 (8.44)

where the time dependence is given by c→ c(t):

Ψ̇ =
N∑
α=1

ċα(t)
∂Ψ

∂cα
(8.45)

Now given a finite set of operators Ok(R) k ∈ 0, 1, ... for exmaple:

O0(R) = 1

O1(R) =
n∑
i=1

xi + yi + zi

O2(R) = (
n∑
i=1

xi + yi + zi)
2

...

(8.46)

let Ψ = Ψ(c(t)) and 8.41 we want to satisfy∫
Ψ†Ok(R)(Ψ̇ +HΨ)dR = 0 (8.47)

knowing 8.45 we have that

n∑
i=1

c(t)

∫
Ψ†Ok(R)

∂Ψ

∂c
dR = −

∫
Ψ†Ok(R)HΨdR (8.48)

In the stationary state where ċα>0 = 0 we have

Ψ(t) = ec0(t)Ψ0 = e−E0tΨ0 ,i.e. , c0(t) = −E0t (8.49)
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ċ0(t)

∫
Ψ†Ok(R)

∂Ψ

∂c0

dR = −E0

∫
Ψ†Ok(R)ΨdR = −

∫
Ψ†Ok(R)HΨdR (8.50)

Given a montecarlo run we can acumulate the estimates of the following equations

Vk = −
∫

Ψ†Ok(R)HΨdR (8.51)

Mkα =

∫
Ψ†Ok(R)

∂Ψ

∂cα
dR (8.52)

From (8.48) we see that

Nα∑
α=0

Mkαċα(t) = Vα (8.53)

if we think of Vk k ∈ 0, 1, ..., NK as the matricial form V , Mkα α ∈ 0, 1, ..., Nα k ∈
0, 1, ..., Nk as the matricial form M and ċα(t) α ∈ 0, 1, ..., Nα as the matricial form
c(t), we have that

M · ċ(t) = V (8.54)

knowing that 〈Ψ|f(R)|Ψ〉 =

∫
Ψ†f(R)ΨdR solving

∫
Ψ†OkHΨdR or∫

Ψ†Ok(R)
∂Ψ

∂cα
dR involves sampling the following:

Ok(R)EL(R) or Ok(R)
∂Ψ(R)

∂cα(t)
(Ψ(R))−1 (8.55)

So given ċα(t) = (M)TBV where B is a square matrix of Nk rows and columns given
8.54 we need that

M · (M)T ·B · V = V (8.56)

and it hapens only if

B = (M · (M)T )−1 (8.57)

so given a Monte Carlo run, with the estimates from 8.55 M and V we know the
following:

ċα(t) = (M)T · (M · (M)T )−1 · V (8.58)

this means at each step ∆t we know that

cα(t+ ∆t) = cα(t) + ċα(t)∆t (8.59)

Therefore, we have a method that always reaches ground-state Ψ0 = Ψ( lim
t→∞

cα(t)),

this method converges exponentially as t approaches infinity.

46



8.8 Computer Algebra System

Computer algebra systems are tools that let to the manipulation of mathematical
expressions. These tools have a large set of methods to perform operations like,
Taylor series, derivation, indefinite integrals, or simplification rules like factoring,
canceling terms, collecting terms or even term rewriting like expanding terms or
finding common sub-expressions. These tools are used when perfect analytical
solutions are needed, another benefit is having the change to get mathematical ex-
pressions that are less computationally expensive once they are simplified. But there
are some trade-offs when using these tools, the main concern is related to the size of
the expression you’re manipulating, common known term rewriting algorithms ??
are know to be of polynomial complexity and normally rule-sets size although be-
ing a constant factor to the cost, tend to have a high influence given the size of these.

The need for mathematical manipulation tools comes from the need to solve expres-

sion involved in the simulation like the following: ċα(t),
∇2
iΨ

Ψ

8.9 Parser

A parser is a tool that checks that the following input follows the syntactic and
semantic rules defined. From here it builds an abstract syntax tree (AST), a
data-structure that stores all the structural details and does not represent any
unnecessary information.

Given a trial expression

f(x, y, z, w) = αy2 − β ln(z + w) + γ
∑
i

xi (8.60)

The AST is

equation

plus

times

sum

iindexed

ix

γ

times

times

ln

plus

wz

β

-1

times

power

2y

α

function

arguments

wzyx

f

(8.61)
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\[ Alpha] * y^2 + \[Beta]*log[E, z + w] + \[ Gamma] * Sum[x[i],

i]

Listing 8.1: Sample Mathematica expression

In our case the parser is necessary to check that the structure of the equations
is written properly and follows all the syntactic and semantic rules of the formal
systems in mathematics, our users are highly experienced in the use of Mathematica
so in our case we will have to parse Mathematica expression like the following.

That would produce the following AST

plus

times

sum

iindexed

ix

γ

times

times

ln

plus

wz

β

-1

times

power

2y

α

(8.62)

From the ast given by the parser we can easily construct any symbolic expression
we want in our desired tooling for manipulating mathematical expressions.

Parsers are also capable of pointing out where possible mistakes could be made,
giving easy and trackable response to the user.
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Chapter 9

Development

9.1 Frontend-Backend

Our project has two main structures, the frontend where all the user input will be
caught and used for the specific needs the user has defined, like defining the wave
function or hamiltonian to be used in the simulation, searching for the grount state
using the time-dependent variational montecarlo or using simulated annealing. The
backend will be responsible of running both simulation methods, storing all neces-
sary information of the simulation, converting the defined equations into simplified
and high performant code, checking that the user input is correct and that the
expressions pass the defined integrity tests.

9.1.1 Frontend

At first, when we thought of having the frontend and the backend separated we
wanted to have something easy to modify, flexible and with libraries for visualization
that could adapt to our needs without much effort. We thought that electron was
a good choice because we could make a shippable application that could run in any
device. It was a good idea but the problem we had was the communication between
frontend and backend, we wanted to see the data of the simulation at realtime
and doing that wasn’t as trivial as we expected. Our work was always sketched in a
jupyter notebook and once we found everything correct the process would be moving
the visualizations from the jupyter notebook to the electron frontend and write the
comunication with the backend of the parameters wanted from the simulations.
Then we found Voila, it was an alternative that merged both frontend and backend
and let us preserve all of our previous work, another benefit we had was that we
already knew how it looked in the notebook so the effort of trying to make it to
resemble to what it looked like in the notebook wasn’t neccessary. So we ended
up choosing Voila which led us to not even making the communication process and
rewriting the visualization because voila makes this job for us. So we ended up with
an even more simple cycle that lend us more time for the more important parts of
the project.
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Simulation Data

While we were making the first experiments with the One-body Oscillator and the
Many-body oscillator we wanted to check how the progression of the local energy
sampled by the variational montecarlo and also see the standard error, given that
our random walk started at a random point our values could be biased at the start
of the simulation we wanted to have the possibility to discard blocks of sampled
values, so we did the following tool.

Figure 9.1: Metrics simulation many-body random walk with groundstate

parametrization

In 9.1 we have a run of a many-body harmonic oscillator of 5 bodies with the
parametrization of the ground state, the selected region is the region from wich we
compute de Ev and also we can see the standard error of the selected region above.
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Figure 9.2: Metrics simulation many-body random walk with parametrization far

from ground state

In (9.2) we have a run of a many-body harmonic oscillator of 5 bodies with a
parametrization far from the groundstate, here we can clearly see a high standard
error at the first batch that shoud be discarted.

Figure 9.3: Metrics simulation many-body random walk with parametrization far

from ground state discarting first batch

Equations input

To make it possible for the user to run the wanted simulation, the user has to
define the Jastrow functions, the operators in case of wanting a Time-Dependent
Variational Monte Carlo run and the potential terms of the hamiltonian.
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Functions Example Expression

Jastrow terms

f0(R) ec0

fi(R, i) e−γ(x2i+y
2
i+z2i )

fij(R, i, j) e−α((xi−xj)2+(yi−yj)2+(zi−zj)2))

Operators terms

O0(R) 1

O1(R)
n∑
i=1

x2
i + y2

i + z2
i

O2(R)
n∑
i=1

n∑
j=i+1

(xi − xj)2 + (yi − yj)2 + (zi − zj)2

Hamiltonian potential terms

Vi(R, i) k(x2
i + y2

i + z2
i )

Vij(R, i, j) w((xi − xj)2 + (yi − yj)2 + (zi − zj)2)

Table 9.1: Terms to be defined by the user in the UI

In 9.1 we have all the possible terms of that can be defined by de user that will be
used by the resulting sumulation.
The following are some examples of how the UI looks once the equations in mathe-
matica are written.

Figure 9.4: UI defining potential of the hamiltonian

Figure 9.5: UI defining Operators
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Figure 9.6: UI Wavefunction φ terms

9.2 Parser

The user has to be able to write wathever expresion that defines the jastrow of the
wave function and the expressions that define the interactions from the potential of
the hamiltonian.
We first thought of using plain latex notation to write the mathematical equations
but as we developed more this first approach we found that many operations could
have an ambiguous meaning. Like the following

LATEX Possible meanings

A \times B
Cross Product of A and B

Product of A and B

X^T
Transpose X

X to the power of T

xyz
Product of x, y, z

Variable called xyz

\sum _i x_i \sum _j y_j

∑
i

(xi
∑
j

yj)

(
∑
i

xi)(
∑
j

yj)

So removing the ambiguity meant doing a subset of the latex notation that could
clearly differentiate between these cases. We didn’t like this because it meant that
the user had to study a specific LATEX notation different than the original which
could lead to missleading equations if the user didn’t know about all of them and
also that we had to write a specification that didn’t have much meaning for the
purposes of this project.

In the end we had to scrape out LATEX and take a notation that could be easily
readable and already tested and know to not be ambiguous. Our team arelady
knew lots of Mathematica and the syntax was thought to be used for a computer
algebra system so we didn’t have better options than following Mathematica.
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Our grammar accepts any Mathematica expression that is either an asignment to a
variable or a mathematical expression.

The context free grammar ends up being the following:

?start: expr

| NAME "=" expr -> assig

?expr: plus_substract

?plus_substract: times_divide

| plus_substract "+" times_divide -> plus

| plus_substract "-" times_divide -> substract

?times_divide: power

| times_divide "*" power -> times

| times_divide "/" power -> divide

?power: atom

| power "^" atom -> power

?atom: NUMBER -> number

| call

| list

| indexed_symbol

| symbol

| "+" atom

| "-" atom -> neg

| atom "//" NAME -> simplification

| "(" expr ")"

?call: "Sum" "[" expr ("," expr )* "]" -> sum

| "Product" "[" expr ("," expr )* "]" -> product

| "Power" "[" expr "," expr "]" -> power

| "Times" "[" expr ("," expr )* "]" -> times

| "Plus" "[" expr ("," expr )* "]" -> plus

| "Substract" "[" expr "," expr "]" -> substract
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| "Divide" "[" expr "," expr "]" -> divide

| "Function" "[" expr "," expr "]" -> function

?list: "{" ((expr ",")* expr)? "}" -> tuple

?symbol: "E" -> e

| "\\[" NAME "]" -> symbol

| NAME -> symbol

?indexed_symbol: NAME "[" (expr ",")* expr "]" ->

indexed_symbol

%import common.CNAME -> NAME

%import common.NUMBER

%import common.WS_INLINE

%ignore WS_INLINE

Listing 9.1: CFG mathematica parser

The parsing tool used to parse the mathematica expressions is lark, this choice was
made because its fast, easy to debug if the grammar has errors, and was completely
made in python.

9.3 Transforming AST to computational alge-

braic expressions

Given the AST of each expression that defines the system wanted for the simulation,
we have to convert them into symbolic expression from which we can extract every
term that defines the EL. The conversion is quite straight forward given that we
already have the AST, an easy to traverse datastructure. The only caveats are that
we have to convert mathematica expressions to expressions of our symbolic engine
of desire, in our case sympy, and it happens that not all expressions are evaluated
the same.
One of the main differences between mathematica and sympy is when they evaluate
the expressions. For example:

>>> D[Sum[(x[i] - x[j])^2, {j, i + 1, n}], x[i]]

Sum [2*x[i] - 2* KroneckerDelta[i, j]*x[i] - 2*x[j] + 2*

55



KroneckerDelta[i, j]*x[j], {j, 1 + i, n}]

Listing 9.2: Mathematica expression without constants

>>> Sum((x[i]-x[j])**2, (j,i+1,n))

Sum((x[i] - x[j])**2, (j, i + 1, n))

Listing 9.3: Sympy expression without constants

Both of them are quite similar but when we replace the variables by constants they
don’t operate in the same way

>>> D[Sum[(x[i] - x[j])^2, {j, i + 1, n}], x[i]] /. {i -> 1,

n -> 3}

4*x[1] - 2*x[2] - 2*x[3]

Listing 9.4: Mathematica expression with constants

>>> Sum((x[i]-x[j])**2, (j,i+1,n)).diff(x[i]).subs (((i,1) ,(n

,3)))

Sum ((2 - 2* KroneckerDelta (1, j))*(x[1] - x[j]), (j, 2, 3))

Listing 9.5: Sympy expression with constants

Mainly, Mathematica tries to evaluate expressions that have constant values when
possible, sympy does not. A way to solve this is doing:

>>> Sum((x[i]-x[j])**2, (j,i+1,n)).diff(x[i]).subs (((i,1) ,(n

,3))).doit()

4*x[1] - 2*x[2] - 2*x[3]

Listing 9.6: Sympy expression with constants and evaluated

What doit() does is to evaluate the expression recursively by applying all the context
from the parent expression, this leads to a higher cost to solve an expression because
Mathematica does it preemptively. A way to solve this is applying doit() to any
concrete expression like Sum, Product not always this operation is necessary and
applying doit() to a long expression or with long ranges of summation or product
will lead to unnecessary and expensive costs.
In the end we decided to apply doit() to each expression with Sum, Product because
we couldn’t find any better way.
Apart from this, sympy expressions were as expressive as Mathematica ones.

9.4 Computing Shortest terms of the expression

We have got to a spot where we have the symbolic expressions that compose the
wave function, the potential and the operators, but we have not solved any of the
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equations neccessary to be able to compute EV knor α̇(t). In these section we will
be talking about how to solve these and convert the simplified minimal expressions
that are needed to compute those into python code.

9.4.1 Variational Monte Carlo

When solving the Variational Monte Carlo we want to solve the following expression

EV =

∫
p(R, a)EL(R, a)dR (9.1)

By constructing a random walk R1, R2, ..., RN form p, sampling EL given the random
walk and estimate EV with the following

EV =
1

N

N∑
i=1

EL(Ri, a) (9.2)

As defined in (9.39) EL(R) =
1

ΨT (R, a)
ĤΨT (R, a), from (9.15) we know that

T̂ΨT = − h2

2m

3∑
a=1

Np∑
i=1

[(
Nα∑
α

TDer(i, α, a, 2)

)
+ (TDer(i, α, a, 1))2

]
. As seen previ-

ously, to compute the kinetical energy T̂ΨT we need to compute the expression
TDer(i, α, a, k), by definition (9.13) we know that

TDer(i, α, a, k) ≡
{
TOneBody(i, α, a, k) i = j
TTwoBodies(i, α, a, k) i 6= j

(9.3)

where TOneBody(i, α, a, 1) ≡ ∇a
i f1(i)

f1(i)
, TOneBody(i, α, a, 2) ≡ ∇a

i

[
∇a
i f1(i)

f1(i)

]
,

TTwoBodies(i, α, a, 1) ≡ ∇
a
i f2(α, i)

f2(α, i)
and TTwoBodies(i, α, a, 2) ≡ ∇a

i

[
∇a
i f2(α, i)

f2(α, i)

]
, so as

we can see to compute the expression TOneBody(i, α, a, k) and TTwoBodies(i, α, a, k)

we need to compute the expressions
∇a
i f1(i)

f1(i)
,
∇a
i f2(i, j)

f2(i, j)
,∇a

i

[
∇a
i f1(i)

f1(i)

]
and

∇a
i

[
∇a
i f2(α, i)

f2(α, i)

]
, as we can see these depend directly from the user input and are

the shortest possible terms to be solved that compose the Variational Monte Carlo.
Here is where the computer algebra system kicks in. We have to solve the ∇’s to
be able to compute the kinetic energy of i or the kinetic energy of the interaction
between i and other α’s, a possible way to compute all these terms of the kinetic

energy would be to solve
∇a
i f1(i)

f1(i)
,
∇a
i f2(i, j)

f2(i, j)
,∇a

i

[
∇a
i f1(i)

f1(i)

]
and ∇a

i

[
∇a
i f2(α, i)

f2(α, i)

]
for all possible values of α and i, then whenever we want to compute one of those
simply acces to the right row and colum of the matrix that stores all these computed
terms, the problem with this is that the cost of computing the shortest terms would
be O(N2

p ) but we can do better without additional costs, we can do the following

• compute
∇a
i f2(i, α)

f2(i, α)
assuming i 6= α
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• compute ∇a
i

[
∇a
i f2(i, α)

f2(i, α)

]
assuming i 6= α

• compute
∇a
i f1(i)

f1(i)
assuming i = α

• compute ∇a
i

[
∇a
i f1(i)

f1(i)

]
assuming i = α

These assumptions must be specified to the algebra system not to get any Kro-
necker Delta δiα, without the assumptions the terms would still be correct but the
expressions generated would be sub-optimal, once the expressions are generated, we
simplify the expressions and compute the common sub-expression from which we
will produce the runnable optimal python code. Once the python code from the
lower expressions is made, converting the remaining expressions into python code
until reaching EL is quite trivial.Once EL is computed, to get EV we would need to
sample EL with a random path made from p.
We have the code to compute EL but we are missing out on how to produce
the random walk that follows the distribution p, to compute it we have to solve

p(R, a) =
|Ψ(R, a)|2∫
|Ψ(R, a)|2dR

which means we should solve the integral, but if we look

more in depth in the metropolis algorithm ?? we can see that in reality what we

need to compute is
p(X ′, a)

p(X, a)
=
|Ψ(R′, a)|2/

∫
|Ψ(R, a)|2dR

|Ψ(R, a)|2/
∫
|Ψ(R, a)|2dR

=
|Ψ(R′, a)|2

|Ψ(R, a)|2
, so there

is no need to compute the integral, now the other problem is the order we solve
the products and divisions of exponentials, if we did all the products and then di-
vided both terms this would lead to possible numerical errors given the nature of
this problem, away to mitigate the numerical error would be expanding it as follow-

ing
p(X ′, a)

p(X, a)
=

Np∏
i=1

f1(X, a, i)

f1(X, a, i)

Np∏
i=1

Np∏
α=i+1

f2(X, a, i, α)

f2(X, a, i, α)
but knowing Jastrow terms are

made of exponentials an even better solution would be using the natural logarithm so

ln

(
p(X ′, a)

p(X, a)

)
=

Np∑
i=1

ln(f1(X, a, i)) − ln(f1(X ′, a, i))
∑
i=1

Np

Np∑
α=i+1

ln(f2(X, a, i, α)) −

ln(f2(X ′, a, i, α)), so what we need is to compute the natural logarithms from the
Jastrow functions, simplify the resulting expressions, compute the common sub ex-
pression and generate the python code from it. Once we have these functions,

generating code until reaching
p(X ′, a)

p(X, a)
is trivial.

Now we have the tools to make it possible to compute EV by generating a random
walk from p and sampling EL.

9.4.2 Time-Dependent Variational Monte Carlo

When searching for the ground state using Time-Dependent Variational Monte Carlo
we have to solve ˙c(t) and EV , we have already solved Ev, so the reamining part to
solve comes from (8.58) where ċα(t) = (M)T · (M · (M)T )−1 · V , i.e., computing the
pseudo inverse of M and V . Let M and V be the matrices
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M =


M11 M12 · · · M1N

M21 M22 · · · M2n
...

...
. . .

...
MNk1 aN2 · · · MNkNα

V =


V1

V2
...

VNα


and given (8.52) and (8.51) we have that

Vk = −
∫

Ψ†Ok(R)HΨdR = −
∫
Ok(R)EL(R)dR (9.4)

Mkα =

∫
Ψ†Ok(R)

∂Ψ

∂cα
dR (9.5)

From here we can see that we have to follow the same procedure as before for han-

dling these integrals, we have to compute the expressions ofOk and
∂Ψ(R)

∂cα(t)
(Ψ(R))−1.

Getting the expressions from Ok is trivial because we’ve already have them from
the user input so the only thing needed is to simplify the expressions and compute
the common sub-expression to generate the python code.

For
∂Ψ(R)

∂cα(t)
(Ψ(R))−1 it gets a little harder, its simmilar to what we did with the

Variational Monte Carlo, given

∂Ψ(R)

∂cα(t)
(Ψ(R))−1 =

Np∑
i=1

Nα∑
α=1

∂Ψ(α, i)

∂cα(t)
(Ψ(α, i))−1 (9.6)

When reaching the expression
∂Ψ(α, i)

∂cα(t)
(Ψ(α, i))−1 given the nature of this exponen-

tial function the fraction lets us cancel terms giving a more robust expression. So

what we really need to compute is simply
∂Ψ(α, i)

∂cα(t)
(Ψ(α, i))−1 from the expression

with all the canceled terms, simplify it and compute the common sub expression,
from here generate the python function that will handle this compute and then
∂Ψ(R)

∂cα(t)
(Ψ(R))−1.

From here we have the tools to compute both M and V , i.e. , we have a way to
solve ċ(t).

9.5 Generate higher level code

From the previous section we have seen a way to compute all the necessary functions
that compose the expressions Ev and α̇(t) that are needed to solve the problems from
both the Variational Monte Carlo and the time-dependent Variational Montecarlo.
Yet, we haven’t talked about how to get Ev and α̇(t) from the previous steps. In
this section we will be going more in depth on how to solve both problems given
what we have already computed.
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9.5.1 Variational Quantum Montecarlo

As previously mentioned in ?? Variational Quantum Montecarlo works as following,

compute a random walk from p(R, cα) =
Ψ(R, cα)∫
|Ψ(R, cα)|2dR

, from this random walk

Rwalk = R1, R2, ..., RN we will be using it to solve the following quadrature Ev =∫
p(R, cα)El(R, cα) and by the principle of importance sampling (??) we know that

Ev =
1

N

∑
Ri∈Rwalk

EL(Ri, cα). So in the end we would have an algorithm that would

look like the following, given ( ??)

Algorithm 5 Computing variational energy

input : The number of particles Np and number of iterations Nit

output: returns Ev with a standard error σ

s2 = 0 s = 0 R = pick a random stating state

while Nit > 0 do

for i ∈ 1, 2, ..., Np do

z = U(0, 1)

R′i = Ri +N(O3,∆I3)

if |Ψ(R′, c)|2/|Ψ(R, c)|2 < z then

R′i = Ri

s2 = s2 + El(R
′, c)2

s = s+ El(R
′, c)

end

Nit = Nit − 1

end

Ev =
s

3Np

σ =

√
s2− s2

NpNit

return Ev

This is the simplest and fastest implementation of all, but the main problem it has
is that the order we the state is always fixed, an alternative that does not have any
bias would be the following
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Algorithm 6 Computing variational energy with no particle order bias

input : The number of particles Np and number of iterations Nit

output: returns Ev with a standard error σ

s2 = 0 s = 0 R = pick a random stating state

while Nit > 0 do

for i ∈ Permutation(1, 2, ..., Np) do

z = U(0, 1)

R′i = Ri +N(O3,∆I3)

if |Ψ(R′, c)|2/|Ψ(R, c)|2 < z then

R′i = Ri

end

s2 = s2 + El(R
′, c)2

s = s+ El(R
′, c)

Nit = Nit − 1

end

Ev =
s

3Np

σ =

√
s2− s2

NpNit

return Ev, σα

By not having a strict order on the choice of the next state the chances of having
a biased result are much lower but we are doing it at the expense of accessing to
the particles randomly which will lead to worse performance once we have a high
number of particles.

For the Time-Dependent Variational Monte Carlo we need to also compute ċα(t), a
way to do it would be to sample the previously mentioned matrices M and V using
the same algorithm as for the Variational Monte Carlo. A possible algorithm would
look like the following.
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Algorithm 7 Computing ċ

input : The number of particles Np and number of iterations Nit

output: returns ċ

S(El) = 0

S(E2
l ) = 0

∀k : S(Ok) = 0

∀α : S(
∂Ψ

∂cα
(Ψ)−1) = 0

R = pick a random stating state

while Nit > 0 do

for i ∈ 1, 2, ..., Np do

z = U(0, 1)

R′i = Ri +N(03,∆I3)

if |Ψ(R′, c)|2/|Ψ(R, c)|2 < z then

R′i = Ri

∀α : S(
∂Ψ

∂cα
(Ψ)−1) = S(

∂Ψ

∂cα
(Ψ)−1) +

∂Ψ(R′, c)

∂cα
(Ψ(R′, c))−1

∀k : S(Ok) = S(Ok) +Ok(R′, c)

S(E2
l ) = S(E2

l ) + El(R
′, c)2

S(El) = S(El) + El(R
′, c)

end

Nit = Nit − 1

end

Ev =
S(El)

NitNp

∀k, α : Mkα = (S(Ok))(
∂Ψ

∂cα
(Ψ)−1)/(NitNp)

∀k, α : Mkα = (S(OkSEl))/(NitNp)

∀k : Vk = (S(Ok)SEl)/(NitNp)

ċ = (M)T · (M · (M)T )−1 · V

return ċ

9.6 Integration Tests

Once the previous ensemble of complex methods was made had no idea if the
simulations we run were giving the expected values we wanted. A way to solve
this would be by comparing our results with anallytically correct known ones, the
main problem is that once we crank up the number of particles the problem gets so
complex that no analytical solution is known.
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9.6.1 Many-Body Harmonic Oscillator

We already knew the analytical solution of a well known and defined problem,
the quantum harmonic oscillator. For an harmonic oscillator with the following
structure:

V = w

Np∑
i=1

x2
i + y2

i + z2
i + k

Np∑
i=1

Np∑
j=i+1

(xi − xj)2 + (yi − yj)2 + (zi − zj)2 (9.7)

Ψ = expc0 exp

{
−γ

Np∑
i=1

x2
i + y2

i + z2
i − α

Np∑
i=1

Np∑
j=i+1

(xi − xj)2 + (yi − yj)2 + (zi − zj)2

}
(9.8)

El = −Dh(

Np∑
i=1

(
∂Ψ

∂xi
+
∂Ψ

∂yi
+
∂Ψ

∂zi
)(Ψ)−1 + V (9.9)

When Np = 2, Dh =
1

2
, w = 2, k = 1 we know the exact analytical solution of

lim
t→∞

γ(t) = 1, lim
t→∞

α(t) =
1√
2
− 1

2
and lim

t→∞
c0(t) = −E0 = 3(1 +

√
2) for wich we

can check the correctness of our method.
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Figure 9.7: α(t) for different ∆t values when Np = 2

Figure 9.8: γ(t) for different ∆t values when Np = 2

As it can be seen in (9.8) and (9.7) our method reaches the configuration of the
ground state. We have also got average of Ev = 7.24263 with a standard error of
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3.1736e−16, therefore, our method follows an analytically correct solution.

When Np = 5, Dh =
1

2
, w = 2, k = 1 we know of an analytical solution to 〈El〉 =

3

2
(20α +

1

γ
+ 5γ +

14

5α + γ
) and min{3

2
(20α +

1

γ
+ 5γ +

14

5α + γ
) : α ∈ R, γ ∈ R}

happens when γ = 1 and α =

√
7
2

5
− 1

5
. with the exact solution E0 = 3 + 6

√
14.

Figure 9.9: α(t) for different ∆t values when Np = 5

65



Figure 9.10: γ(t) for different ∆t values when Np = 5

As it can be seen in (9.10) and (9.9) both results follow the analytical solution
given. The results are pretty similar to when we just had 2 particles. Our average
E0 when doing random walks of 10000 steps is 25.6125 with a standard error of
3.57061e−16.

For the Simulated Annealing we reach a suboptimal solution where E0 = 30.26 and
the progression of Ev looks as following

66



Figure 9.11: Progression of objective function Ev on Simulated Annealing when

Np = 5

It must be stated that we tried several runs trying to find the best configuration
of neighbor function and temperature function and still we couldn’t find anything
that could get closed than E0 = 30.03 and on average the runs lasted for 2 minutes.
Compared to the previous run that only lasted 10.2381 seconds this is definitely an
order of magnitude difference. All runs using the Variational Monte Carlo to sample
Ev had the same configuration, therefore this speed improvement is just from the
search of the parameters. We can state that simulated annealing might give nearby
values but it is extremely complicated to give exact values.

9.7 Generating llvm code

The python code previously generated if run on the back-end would lead to poor
performance given its all made in python, the python code is great for testing we
are in need of fast code given that simulations may last for a long time so minor
speedups can have a major influence on the experience of the user. The only reason
our we are bounded to slow runs is that our efficiently structured code runs on
python, an interpreted language that has lots of overhead for our intended purposes.

Nevertheless, python has a tool called numba that transaltes python code to llvm
code, a lower level inter-machine code that is capable of performing high order of
magnitude optimizations that will lead to faster runtimes. Numba is also capable of
multithreading, vectorizing functions, and even converting code into runnable GPU
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cuda code. Numba works on the base of jit optimizations so we are abled to inline
the smaller expressions computed and also parametrize them at the same time
which makes that our tool can produce an even faster code that non jit compilers
could do. The only caveat jit has is that the first time you call a function will not
be as fast as later runs but still given we will be calling the same functions of orders
of O(n), O(n2) or even O(n3). The jit compilations and optimizations during
run-time shouldn’t be noticeable compared to the time spend on the simulation.

We wanted to proof if this non ordinary methodology would be up to the performance
standards of the tools dictated by the research team, fortran is one of the main
choices when making a tool for scientific of the research team so we decided to make
a comparison of a simple Monte Carlo algorithm to compute π comparing numba,
pure python and fortran. The code used is the following:

import random

def monte_carlo_pi(nsamples):

acc = 0

for i in range(nsamples):

x = random.random ()

y = random.random ()

if (x ** 2 + y ** 2) < 1.0:

acc += 1

return 4.0 * acc / nsamples

Listing 9.7: Pure Python code of a Monte Carlo algorithm to compute π

from numba import jit

import random

@jit(nopython=True)

def monte_carlo_pi_numba(nsamples):

acc = 0

for i in range(nsamples):

x = random.random ()

y = random.random ()

if (x ** 2 + y ** 2) < 1.0:

acc += 1

return 4.0 * acc / nsamples
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Listing 9.8: Python code wrapped in numba of a Monte Carlo algorithm to compute

π

subroutine monte_carlo_pi_fortran(n, pi)

integer , intent(in) :: n

real , intent(out):: pi

integer :: k, count

real :: x, y

count = 0

do k = 1, n

call random_number(x)

call random_number(y)

if (x*x + y*y < 1.0) count = count + 1

end do

pi = 4 * real(count) / n

end subroutine monte_carlo_pi_fortran

Listing 9.9: Fortran code of a Monte Carlo algorithm to compute π

Figure 9.12: Comparison of a montecarlo run: pure python, numba, fortran
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Fortran code has been compiled with -O2. As it can bee seen in (9.12) we have
nearly a 30 fold speed up compared to pure python when using numba, we can also
see that numba is as fast or slightly faster than fortran code. We have even found
cases in our algorithms where the code made by numba was 100 times faster that
pure python code.

Therefore, numba is a great option for stochastic algorithms compared to our stan-
dards of running the stochastic algorithms in fortran.
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Chapter 10

Conclusions

We have completed the design, development and implementation of a tool that allows
the Barcelona Quantum Monte Carlo group to execute Variational Monte Carlo
simulations for quantum many body systems. We have implemented a method
of accurately finding the ground state of a given system of bosonic particles by
optimizing the parametrization of a given trial wave function having as objective
function the energy of the system, thus obtaining information about the quality
of the functional space specified by the user for the physical system. Our main
objectives that we have accomplished are the following:

1. Allowing the users to fully specify the model of interaction between particles.

2. Being abled to handle large ammounts of particles with ease.

3. Being able to specify at user level the set of relevant operators (equivalent in
quantum mechanics to the corresponding property in a classical system) for
which we are interested in obtaining information.

4. Executing Monte Carlo Variational simulations, for any value of the parame-
ters withing the defined functional space defined by the user.

5. Extracting statistical information obtained from the simulation.

6. Visualization of the statistical information obtained from the simulation.

7. Develop several methods of Stochastic optimization to optimize the
parametrization of the wave function.

(a) Optimizing the wave function by means of the Time Dependent Varia-
tional Monte Carlo.

(b) Optimizing the wave function by means of Simulated Annealing.

8. Being able to compare the new method, the time-dependent VMC optimiza-
tion, with other stochastic methods.

9. Developed high performance code for the compute of the VMC and the
stochastic methods.
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10. Develop an interface for the user to define all possible configurations needed
for the previous objectives

11. Develop tools for the visualization and representation of the statistical in-
formation collected by the implemented methods, both in the optimization
process and in the final ground state.

From here we have reached several conclusions, we have obtained evidence that the
new method shows a high improvement in both performance and precision (for the
problem considered) compared to Simulated Annealing.

We have produced a tool that provides high performance code generation from the
given expressions by the used. We have applied non ordinary optimizations done at
a symbolic level like canceling of terms, simplification, extracting common factors,
applying assumptions to the engine and extracting common sub expressions to
produce code that minimizes the numeric computational cost, as well as ordinary
optimizations such as multi-threading and SIMD vectorization.

10.1 Technical competences

CCO1.1: Evaluate the computational complexity of a problem, know
algorithmic strategies that can lead to its resolution, and recommend,
develop and implement the one that guarantees the best performance in
accordance with the established requirements. [In depth]

Although there has not been a thorough analysis on the computational complexity,
it has been shown the possible alternatives to metropolis-hastings and why
metropolis-hastings is the most efficient feasible solution for high dimensional data.

CCO2.1: Demonstrate knowledge of the fundamentals, paradigms and
techniques of intelligent systems, and analyze, design and build computer
systems, services and applications that use these techniques in any field
of application. [Little bit]

We have developed stochastic optimization methods to optimize the wave function
to find the ground-state of the system.

CCO2.3: Develop and evaluate interactive and presentation systems
complex information, and its application to problem-solving computer-
person interaction design. [In depth]

Our user interface is capable of handling complex mathematical equations, represent
them, let the user select the parameters of the ground-state search for both methods
and see in real time the complex information of the simulation.
CO2.4: Demonstrate knowledge and develop computer learning tech-
niques; design and implement applications and systems that use them,
including those dedicated to the automatic extraction of information
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and knowledge from large volumes of data. [Quite]

Many body problems tend to work with high dimensional spaces which leads to
interacting with a huge amount of data, it must be stated that this data is neither
given know returned, the data is generated from the knowledge of the probability
distribution of the wave-function and used for the stochastic optimization, i.e, from
the knowledge of the wave function we can compute a random walk used for the
stochastic methods.

CCO3.1: Implement critical code following execution time, efficiency
and security criteria. [In depth]

This was one of our main objectives when designing the tool, it is a must to have
code that is highly efficient given that the simulations may even run for spans of a
month. Even minor speedups may mean a week less of compute. That is why part
of the development was focused on the generation of optimal code from the given
expressions by the user.

10.2 Future Work

Extend the current method to handle periodic boundary conditions
When dealing with an infinite number of particles, we have to use a different
method that the actual, the way to approximate this case is to represent a finite
set of particles in a cell and then have images of these in the nearby cells following
a periodic condition. The interaction of two particles would be defined by the
interaction of one particle with the nearest image of the other.

Extend the current method of Wave-Function optimization to spin
models
Right now our equations follow the structure of a bosonic particles, to take into
account fermion systems we need a way to represent the spin and isospin degrees of
freedom, this would mean much more compute and having also a Slater determinant
at each step of the metropolis algorithm.

Generate code different from llvm
We are using llvm code for the simulations but no clear comparison has been
done on the performance we get from Numba generating llvm compared to the
performance we could get it we generated Fortran code given the tools Sympy gives
us.
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