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Abstract17

Markov Chain Monte Carlo (MCMC) methods have become standard in Bayesian in-18

ference and multi-observable inversions in almost every discipline of the Earth sciences.19

In the case of geodynamic and/or coupled geophysical-geodynamic inverse problems,20

however, the computational cost associated with the solution of large-scale 3D Stokes21

forward problems has rendered probabilistic formulations impractical.22

Here we present a novel and extremely efficient method to produce ultra-fast23

solutions of the 3D Stokes problem for MCMC simulations. Our approach combines24

the individual benefits of Reduced Basis techniques, goal-oriented error formulations25

and MCMC algorithms to produce an accurate and computationally efficient surrogate26

for the forward problem. Importantly, the surrogate adapts itself during the MCMC27

simulation according to the history of the chain and the goals of the inversion. This28

maximizes the efficiency of the forward problem and removes the need for pre-inversion29

offline computations to build a surrogate. We demonstrate the benefits and limitations30

of the method with several numerical examples and show that in all cases the compu-31

tational cost is of the order of < 1% compared to a traditional MCMC approach. The32

method is general enough to be applied to a range of problems, including uncertainty33

quantification/propagation, adjoint-based geodynamic inversions, sensitivity analyses34

in mantle convection problems, as well as in the creating surrogate models for complex35

forward problems (e.g. heat transfer, seismic tomography, Magnetotellurics).36

1 Introduction37

The last 20 years have witnessed an outstanding increase in computing power, data-38

fusion techniques, and geophysical data acquisition programs worldwide; a trend that39

is likely to accelerate in the next few decades. These advances now allow the Solid40

Earth community to pursue massive data-driven simulations and probabilistic joint41

inversions for the physical state and geodynamic evolution of the Earth’s interior with42

unprecedented complexity and resolution. In fact, the current state of affairs is such43

that the boundaries between the fields of geodynamics and inverse geophysical theory,44

traditionally viewed as separate disciplines, are becoming increasingly blurred and45

symbiotic (e.g., Boschetti & Moresi, 2001; Bunge et al., 2003; Simmons et al., 2009,46

2010; Afonso, Rawlinson, et al., 2016; Baumann et al., 2014; van Dinther et al., 2013;47

Baumann & Kaus, 2015; Li et al., 2017; Colli et al., 2018). The fact that these48

disciplines have evolved in isolation from each other is easily understood when we49

consider the fundamentally different timescales τ involved in the propagation and50

measurement of the signals relevant to each discipline (e.g. 100 ≤ τ . 103 sec for51

seismic waves and gravity anomalies; 1010 ≤ τ . 1016 sec for postglacial rebound52

and mantle convection). Consequently, geophysical inversions have focused on the53

“static” or present-day structure of the planet (as seen today), ignoring time-dependent54

“dynamic” contributions associated e.g. with motion in the mantle. Geodynamic55

studies, on the other hand, are typically aimed at unravelling slow time-dependent56

(or evolutionary) processes such as subduction dynamics, mantle convection and the57

long-term evolution of surface topography.58

For many purposes, the separation of these problems is an appropriate and prac-59

tical working scheme. For instance, there is no need for considering strain rates or60

density distributions inside the mantle when inverting teleseismic traveltimes for seis-61

mic velocity anomalies beneath an array. However, it is well known that models62

constrained by single datasets typically fail at providing satisfactory fits to other ob-63

servables (Forte, 2007; Afonso, Fullea, Yang, et al., 2013; Afonso, Rawlinson, et al.,64

2016). Clearly, Earth models that are simultaneously constrained by multiple and65

complementary observables are necessary to bring a step-change in our understanding66

of e.g. the nature (i.e. temperature, composition, architecture) and evolution of the67
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lithosphere, its interaction with the sub-lithospheric mantle, and the forces driving68

tectonism and plate motion. Aligned with this, the current trend of 1) working with69

multiple datasets in joint inversions, 2) increasing the complexity (i.e. realism) of70

Earth models, and 3) making these models more comprehensive, explicative and pre-71

dictive, forces us to consider a variety of physiochemical processes and their couplings72

at a range of temporal and spatial scales. Joint inversions of long-wavelength gravity73

and seismic data at global scale represents a classic example pioneered by Forte et al.74

(1994) and more recently expanded in Simmons et al. (2010). Despite being one of75

the most advanced approaches to date, these global studies were necessarily based on76

linearized deterministic inversions, and therefore not well suited for quantifying the77

associated uncertainties, non-linearities, and/or rigorously considering the stochastic78

nature of the data noise.79

Probabilistic formulations of the inverse problem (Tarantola, 2005; Mosegaard80

& Tarantola, 2002; Gregory, 2005; Kaipio & Somersalo, 2007) represent an attractive81

option that can overcome some or all of these difficulties. However, they typically rely82

on sampling techniques that require solving the forward problem many times, thus83

posing a real challenge when the forward problem is computationally expensive (as in84

the case of 3D Stokes flow with varying viscosity). Recently, Baumann et al. (2014) and85

Baumann and Kaus (2015) demonstrated the viability of a probabilistic formulation for86

the geodynamic inverse problem incorporating realistic assumptions about the mechan-87

ical behaviour of the lithosphere and upper mantle. These authors used this approach88

to constrain rheological parameters and subsurface density at lithospheric scales. As89

in most probabilistic formulations of complex inverse problems, these authors relied on90

sampling techniques to characterize the posterior distribution (solution to the inverse91

problem) of the unknown parameters. Since the forward problem is computationally92

expensive and needs to be solved many times during a simulation, the numerical do-93

main had to be kept relatively small and access to massive computing clusters was94

necessary. Moreover, their present implementation relies heavily on a priori knowl-95

edge of the temperature and compositional structure of the model; something that is96

hard to come by in most regions of the world. As Baumann and Kaus (2015) pointed97

out, integrated approaches that jointly invert or model a number of datsets sensitive98

to the thermochemical structure of the Earth (e.g., Khan et al., 2008, 2011; Afonso,99

Fullea, Griffin, et al., 2013; Afonso, Fullea, Yang, et al., 2013; Afonso, Moorkamp, &100

Fullea, 2016) would constitute a more appropriate and generally applicable approach.101

In this context, the recent work of Afonso, Fullea, Griffin, et al. (2013),Afonso, Fullea,102

Yang, et al. (2013), and Afonso, Rawlinson, et al. (2016) has made significant progress103

towards such goal by presenting a multi-observable probabilistic inversion method that104

simultaneously invert the most appropriate datasets (with the necessary complemen-105

tary sensitivities) for the temperature and compositional structure of the lithosphere106

and upper mantle: Rayleigh wave dispersion data, teleseismic P and S traveltimes,107

gravity anomalies, geoid height, satellite-derived gravity gradients, surface heat flow,108

and absolute elevation; P-wave receiver functions have also been implemented recently109

(Tork Qashqai et al., 2016, 2018). Although Afonso, Rawlinson, et al. (2016) included110

dynamic contributions to absolute elevation and gravity observables from the instan-111

taneous sublithospheric flow, their implementation of the Stokes forward problem was112

inefficient and based on a number of simplifying assumptions to make the problem113

tractable in the probabilistic framework. In order to exploit the full capabilities of114

joint geophysical-geodynamic probabilistic inversions, a more efficient implementation115

of the Stokes flow problem for large-scale models is required.116

The main goal of this work is to formulate an efficient methodology within the117

framework of the Reduced Basis (RB) method (Quarteroni et al., 2016; Chinesta &118

Ladevèze, 2014; Hesthaven et al., 2016). The main idea is to employ a RB approach119

to construct an accurate approximation or ”surrogate” of the true forward problem120

(i.e. 3D Stokes flow problem). This surrogate is then used to generate samples of121
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the posterior distribution (i.e. the solution to the inverse problem) at a much lower122

computational cost. To guarantee an accurate surrogate, a formal estimation of the123

error introduced by the RB approximation is defined and used to decide whether the124

RB needs to be enriched/updated with additional high-fidelity forward problems. In125

contrast to traditional RB implementations, where the problem is split into offline126

(creation of the Basis) and online (compute the low-cost solution) stages, here the RB127

is created online, guided by the inversion itself. Taking advantage of the ergodicity128

and stationarity properties of Markov chains, we create, use and enrich/update the129

surrogate during the actual inversion (i.e. the sampling of the posterior distribution).130

We refer to Peherstorfer et al. (2018) for a recent review on the use of surrogates in131

probabilistic inversion and optimization problems. We emphasize here that although132

our focus is on the application of RB to the solution of Stokes flow in the context133

of multi-observable probabilistic inversions, our strategy is also relevant to problems134

dealing with uncertainty quantification/propagation, adjoint-based geodynamic inver-135

sions and sensitivity analyses in mantle convection problems. Perhaps more impor-136

tantly, the same RB strategy can be used to create and use surrogate models for137

other complex forward problems of interest (e.g. heat transfer, seismic tomography,138

Magnetotellurics).139

In the following, we first review the formulation of the probabilistic inverse prob-140

lem in Section 2. Next, the forward problem and the general RB approach to produce141

a fast and accurate surrogate approximation are described in Section 3. Several nu-142

merical examples to illustrate the benefits and limitations of the method are presented143

in Sections 4 and 5. Finally, we conclude the paper with a brief discussion of some144

practical aspects of our approach relevant to real inversions in Sections 6 and 7.145

2 Inverse problem146

2.1 General background147

Inverse problem theory provides the formalism to obtain information on unobservable148

properties of a system from observational data and prior information. The probabilis-149

tic approach to an inverse problem is based on the idea of recasting the inverse problem150

in the form of a statistical inference problem (cf. Kaipio & Somersalo, 2005; Tarantola,151

2005; Mosegaard & Tarantola, 2002; Gregory, 2005). In doing so, all available informa-152

tion (both observational and prior) is combined with physical theories describing the153

relationships between model parameters and observations to obtain complete proba-154

bility distributions over the (unobservable) parameters of interest rather than single155

”best-fitting” models. These probability distributions represent the most general so-156

lution to the inverse problem (i.e. they embody all we know about the system) and157

can be used to make statistical inferences about the system’s constitutive parameters158

and their associated uncertainties.159

In this context, Bayesian statistical inference is widely used these days to solve
probabilistic inverse problems with the help of Markov Chain Monte Carlo (MCMC)
methods (Tarantola, 2005; Mosegaard & Tarantola, 2002; Gregory, 2005; Gilks et al.,
1996; Afonso, Fullea, Griffin, et al., 2013; Afonso, Fullea, Yang, et al., 2013; Afonso,
Rawlinson, et al., 2016). In this approach, the solution to a parameter inference
problem (i.e. inversion for model’s parameters) is represented by a Probability Density
Function (PDF) in the model’s parameter space known as the posterior PDF, which
can be represented as

σ(m) ∝ ρ(m)L(m) (1)

where ρ(m) is the prior PDF describing our prior knowledge about the model param-160

eters independent of the observed data and L(m) is the so-called likelihood function,161
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which measures how well a specific set of model parameters m fits the observed data162

d (Tarantola, 2005; Mosegaard & Tarantola, 2002).163

One of the advantages of probabilistic formulations is that they represent a nat-
ural platform to include uncertainties in both input data and modelling approach. In
the simple case where Gaussian errors contaminate both predicted and observed data,
L(m) can be expressed as (e.g., Tarantola, 2005)

L(m) ∝ exp (−e(m)) (2)

where e(m) is the sum-of-squares function, which can be interpreted as a misfit func-
tion between observed and predicted data,

e(m) =
1

2
(g(m)− dobs)TC−1

D (g(m)− dobs) (3)

where CD = Cd + CT (i.e. the total covariance matrix is the sum of the covariance
matrices describing observation Cd and modelling CT uncertainties) and g(m) is gen-
erally a nonlinear operator that solves the mapping from model to data space (also
known as the forward problem). In the case of independent uncertainties, this leads to

e(m) =
1

2

nd∑
i=1

(
gi(m)− d obs

i

σDi

)2

(4)

where σDi
for i = 1, ..., nd are the diagonal entries of CD.164

The prior PDF encodes everything we know about the parameter space (i.e.165

the probabilities of m) prior to considering dobs and it represents an important part166

of any Bayesian inference problem. If the prior information is vague then the prior167

distribution is a very broad/flat distribution. Conversely, narrow distributions indicate168

that prior knowledge on the respective parameters is accurate. Gaussian, Laplacian,169

Poisson, uniform and Jeffreys’ priors are the most common options in the literature170

(cf. Mosegaard & Tarantola, 2002; Kaipio & Somersalo, 2005). Assuming that priors171

for all parameters are Gaussian distributions, mi ∼ N(νi, σ
2
mi

), it follows that172

ρ(m) ∝ exp (−s(m)) (5)

with

s(m) =
1

2
(m− ν)TC−1

M (m− ν) (6)

where ν is the vector of mean values for the parameters and CM the covariance matrix
describing prior uncertainties. For uncorrelated prior uncertainties, Eq. (6) reads

s(m) =
1

2

nm∑
i=1

(
mi − νi
σmi

)2

(7)

where nm is the number of parameters and νi and σmi
the prior’s mean and standard173

deviation for parameter mi, respectively.174

We can now insert equations (2) and (5) into equation (1) to obtain an expression
for the posterior PDF,

σ(m) ∝ exp

(
−1

2

[
nm∑
i=1

(
mi − νi
σmi

)2

+

nd∑
i=1

(
gi(m)− d obs

i

σDi

)2
])

(8)
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assuming independence of prior and observations.175

For linear (or linearizable) forward problems and Gaussian uncertainties in both176

model and data spaces, equation (8) is itself a multivariate Gaussian and very effi-177

cient optimization algorithms can be used to obtain its mathematical expectations or178

representative statistics (e.g. maximum likelihood). Here we are interested in large-179

dimensional nonlinear problems, which can result in complex posteriors with no single180

minimum/maximum. In these cases, stochastic sampling techniques based on MCMC181

algorithms are general and powerful options to obtain accurate representations of the182

full posterior (cf. Tarantola, 2005; Mosegaard & Tarantola, 2002; Gregory, 2005; Gilks183

et al., 1996; Afonso, Fullea, Griffin, et al., 2013; Afonso, Fullea, Yang, et al., 2013;184

Afonso, Rawlinson, et al., 2016).185

2.2 MCMC and the Metropolis algorithm186

In this work we estimate the posterior PDF σ(m) of a set of model parameters m
using a MCMC approach based on the Metropolis-Hastings algorithm (Metropolis et
al., 1953; Hastings, 1970). The main idea is to generate a (guided) random walk in
the parameter space {m1,m2, . . . ,mn} such that, when long enough, histograms of
the relative frequencies of the parameters approximate σ(m). To do this, random
samples of m are generated either directly from its prior distribution ρ(m) or using
a proposal distribution that is easy to sample. In this case, the random walk would
simply approximate the prior ρ(m). To sample σ(m) instead, each proposed model is
combined with its respective likelihood L(m) and subject to an acceptance test based
on the value of the so-called Metropolis ratio α,

α(mold,mnew) =
σ(mnew)

σ(mold)
(9)

where mold and mnew refer to the current state in chain and the proposed state,187

respectively. The Metropolis ratio compares their corresponding posteriors: if α > 1,188

the proposed model is accepted; otherwise, it is accepted with probability α. If a189

proposed model is not accepted, the random walk remains at the current value and190

a new proposed model is generated. When this process is repeated many times (i.e.191

the number of samples is large enough), the Metropolis algorithm guarantees that192

the relative occurrence of a parameter m in the random walk is proportional to its193

posterior density. In other words, a histogram of relative occurrence of a parameter m194

represents the marginal probability distribution of that parameter.195

Despite its many advantages relative to traditional matrix-based inversions (e.g.,196

Tarantola, 2005; Afonso, Fullea, Griffin, et al., 2013; Afonso, Moorkamp, & Fullea,197

2016), the use of MCMC methods to solve inverse problems has the drawback of having198

to evaluate L(m) at each inversion step, which involves computing a full forward199

problem, thousands to millions of times. Consequently, the possibility of using a200

probabilistic approach to solve an inverse problem relies entirely on having efficient201

and accurate solvers for the forward problems (Section 3.2).202

3 Forward problem203

3.1 Problem statement204

A first-order description of the dynamic behaviour of the mantle and its effect on
elevation starts with the formal statement of a Stokes problem (cf. Schubert et al.,
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2004), 
−∇ · (µ∇su) + ∇p = ρg in Ω

∇ · u = 0 in Ω

u = uD on ΓD

−pn+ µn ·∇su = t on ∂Ω \ ΓD

(10)

where u and p are velocity and pressure, respectively, Ω ⊂ R3 is the computational205

domain and ∂Ω is its boundary. The latter is partitioned into Dirichlet, ΓD, and206

Neumann boundary types. Body forces are given by ρg, being ρ the density and g207

the gravity vector. Dirichlet and Neumann boundary conditions are set by uD and t.208

Dynamic viscosity µ is also considered part of input data. The symmetrized gradient209

is defined as ∇s = 1
2 (∇ + ∇T). In what follows, as in (10), we indicate vectors with210

lowercase bold letters.211

The weak form for problem (10) reads: find (u, p) in the suitable spaces V and
Q, such that, {

a
(
w,u

)
+ b
(
w, p

)
= l
(
w
)
∀w ∈ V ,

b
(
u, q

)
= 0 ∀q ∈ Q,

(11)

with the operators defined as,

a
(
w,u

)
=

∫
Ω

2µ∇sw : ∇su dΩ ,

b
(
u, q

)
= −

∫
Ω

q∇ · u dΩ and

`
(
w
)

=

∫
Ω

s ·w dΩ +

∫
∂Ω\ΓD

v · t dΓ.

The solution u is then replaced by a discrete version constructed using a large
number of local Finite Element (FE) basis functions (aka shape functions) Ni(x), for
i = 1, . . . , nu, that generates the discrete sub-space Vh ∈ V ,

Vh = span{N1, N2, . . . , Nnu
}. (12)

The vector field u(x) is approximated by uh(x) ∈ [Vh]
3

and represented by the212

vector of nodal values u ∈ R3nu
213

u(x) ≈ uh(x) =

nu∑
i=1

Ni(x)

[u]3(i−1)+1

[u]3(i−1)+2

[u]3(i−1)+3

 (13)

where [u]j , for j = 1, . . . , 3nu, are the nodal velocities.214

The scalar field p(x) is approximated by ph(x) ∈ Qh and represented by the215

vector of nodal values p ∈ Rnp
216

p(x) ≈ ph(x) =

np∑
i=1

Ñi(x)[p]i (14)

where [p]i are the nodal pressures and Ñi(x) the corresponding FE basis functions.217

Once the discrete subspaces are chosen, system (11) is converted into a linear
system of algebraic equations. The matrix associated with this system in the Stokes
model is symmetric, with 2× 2 blocks and a null submatrix on the diagonal,[

K G
GT 0

] [
u
p

]
=

[
f
0

]
(15)
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The so-called mixed FE problem (15), with velocity and pressure as separate218

unknowns, is computationally expensive in large 3-dimensional domains, nFE = 3nu +219

np unknowns. Several numerical schemes and preconditioners have been proposed to220

solve it efficiently. However, the current efficiency of such solvers is still insufficient221

for large-scale probabilistic inversions. The Reduced Basis technique described next222

attempts to overcome this problem and is independent of the numerical technique223

chosen to solve the forward problem.224

3.2 Reduced Basis225

Reduced order techniques, aka Model Order Reduction (MOR), are a family of ap-226

proximation methodologies based on the common idea of expressing the solution of a227

problem in terms of a basis of reduced size (Chinesta & Ladevèze, 2014; Quarteroni228

et al., 2016; Hesthaven et al., 2016; Ito & Ravindran, 1998; Ravindran, 2000). “Re-229

duced” in this context refers to a basis (i.e. a family of basis functions) with a cardinal230

smaller than that resulting from a traditional FE discretization. Of all the available231

MOR techniques, the so-called Reduced Basis (RB) method (cf. Florentin & Dı́ez,232

2012; Quarteroni et al., 2016; Rozza et al., 2007, 2013), is particularly attractive for233

our purposes as it is easy to implement and well-suited for situations where physical234

problems with similar characteristics need to be solved many times for different in-235

put parameters. This is the case, for example, in the context of probabilistic inverse236

problems, where a large number of evaluations of the forward problem (typically solu-237

tions to PDEs) are required to approximate the full posterior PDF (Tarantola, 2005;238

Gregory, 2005; Gilks et al., 1996; Afonso, Fullea, Griffin, et al., 2013; Afonso, Fullea,239

Yang, et al., 2013). While at the beginning of the MCMC simulation the parameter240

space may be large, a well-formulated MCMC algorithm will converge quickly to a241

reduced region of the parameter space where all the forward problems become ”simi-242

lar” (similar in the sense of having similar input parameters and predictions). At this243

stage, it is wasteful to solve forward problems at each iteration disregarding the fact244

that some other similar forward problems have been solved before. It is here where245

a well-trained surrogate model performs the best and makes the MCMC simulation246

much more efficient.247

The basis of a FE procedure is the set of all Ni(x) functions used to construct the248

solution uh(x) as shown in (13) (and equivalently for pressure (14)). Note that each249

function Ni(x) is associated with a node of the FE mesh and therefore the number of250

functions is usually very large. One key aspect of the functions Ni(x) is their local251

character. This means that although the resulting matrices after discretization may252

be large, they are also sparse; a useful feature exploited by FE solvers.253

The main idea of MOR techniques, and in particular of the RB approach, is
to approximate the solution u (and that for p in mixed formulations) in terms of a
smaller set of functions bm as

u ≈ uRB =

n
RB∑

m=1

αmbm (16)

where the basis {b1, . . .bn
RB
} is no longer associated with mesh nodes and thus no254

longer local and αm are the unknowns. Therefore, for any new parameter (e.g. viscos-255

ity) input into (10), we seek a solution to (15) in a lower-dimension space n
RB
� n

FE
.256

While simple in principle, this idea rises three important questions. First, how257

accurate is the reduced solution u
RB

compared to the high-fidelity FE solution u?258

Second, how are the basis vectors bm actually obtained? Third, given a set of basis259

vectors bm, how is the solution uRB computed? We answer these three questions260

below. For clarity, however, we will first describe the simpler problem of obtaining261

reduced solutions u
RB

assuming that we have an available set of basis vectors bm.262
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3.2.1 Computing the reduced solution263

The key idea behind the RB strategy is to create a basis of n
RB

independent FE
solutions (um,pm) of different realizations of the same problem (e.g. by varying the
material properties). This group of solutions (sometimes called ”snapshots”) will be
used as a basis. For the velocity, bm = um, represents a subset of R3nu ,

span{u1,u2, . . . ,un
RB
} ⊂ R3nu . (17)

Similarly for pressure, the group of solutions pm represents a subset of Rnp

span{p1,p2, . . . ,pn
RB
} ⊂ Rnp (18)

Every time a new problem has to be solved, its solution α = [α1, . . . , αn
RB

]T, is sought

in R
n
RB instead of in R

n
FE thus reducing dramatically the computational cost since

n
RB
� n

FE
. The reduced solution is found as a linear combination of the elements of

the basis [
u
p

]
≈
[
uRB

p
RB

]
=

n
RB∑

m=1

αm

[
um

pm

]
=

[
Bu

Bp

]
α (19)

where α is the vector of unknowns and Bu = [u1, . . . ,un
RB

] and Bp = [p1, . . . ,pn
RB

]264

are matrices representing the reduced basis for velocity and pressure respectively in265

which each column corresponds to an FE solution. Note that in our implementation,266

two separated basis have been defined for velocity and pressure, but both share the267

same number of functions n
RB

.268

The solution to the Stokes problem is obtained by replacing u and p with their
reduced approximations from (19) into (15) and multiplying both sides by the basis
to obtain, [

Bu

Bp

]T [
K G
GT 0

] [
Bu

Bp

]
α =

[
Bu

Bp

]T [
f
0

]
. (20)

Performing the multiplications, the system above is written as[
BT

uKBu + BT
uGBp + BT

pGTBu

]
α = BT

uf . (21)

Since all elements in Bu are FE solutions, they all satisfy the incompressibility condi-
tion, namely GTum = 0, for m = 1, ..., n

RB
. Therefore,

GTBu = 0 (22)

is always satisfied (independently of α) and the second and third terms in the left-hand
side of equation (21) vanish. Therefore, the final reduced system of equations reads,

K
RB
α = f

RB
(23)

where the reduced stiffness matrix and reduced force vector are KRB = BT
uKBu and269

fRB = BT
uf , respectively. Note that K has the size of the reduced basis, nRB × nRB ,270

which is significantly smaller than the traditional FE nodal basis. For example, in the271

numerical examples presented below, n
RB

is of the order of a few hundreds while the272

full FE basis is > 3× 104, even for the smallest example.273

When using iterative methods to solve the system XX, equation (22) is no longer274

satisfied. In this case, the terms including G in equation (21) do not strictly vanish275

and should be explicitly considered. However, the additional computational cost is276

insignificant, as G is much smaller than K and the terms including G change only277

when the bases are updated.278
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3.2.2 Error estimation279

The discrete space described by the reduced basis R
n
RB is an approximation of the280

FE discrete space R
n
FE , and as such, the RB solution u

RB
has an associated error281

with respect to the high-fidelity FE solution u. In reality, the FE solution is also282

an approximation of the real forward problem, albeit a better one. The estimation283

of the errors associated with FE solutions is a well-known procedure and it has been284

described in detail elsewhere (Zienkiewicz et al., 2005; Hughes, 1987). Here we will285

therefore focus on the estimation of the reduced basis solution with respect to the high-286

fidelity FE one (instead of measuring the error with respect to the analytic solution).287

Specifically, we would like to measure how well the reduced basis performs, assuming288

that the best possible solution is that given by the FE solver.289

Within this context, we define

eu := u− uRB , ep := p− pRB . (24)

where eu and ep are the errors introduced by the RB solution with respect to the FE
solution. The error equation associated with the RB solution is[

K G
GT 0

] [
eu

ep

]
=

[
f
0

]
−
[

K G
GT 0

] [
u

RB

p
RB

]
. (25)

Therefore, the residual associated with the RB solution reads,

r = f −Ku
RB
−Gp

RB
, (26)

since due to the incompressibility condition in (22), the part of the residual correspond-290

ing to the pressure vanishes identically, −GTu
RB

= 0. Note, however, that both the291

velocity and the pressure RB solutions contribute to the velocity part of the residual.292

It is usually a good estimator of the energy norm of the error (Quarteroni et al., 2016;293

Hesthaven et al., 2016). If the solution uRB and pRB were exact (i.e. equal to the FE294

solution), the residual would be zero, and so would the error. It follows that a large295

residual implies a large error in the RB approximation.296

3.2.3 Quantity of interest297

Instead of using the full residual in equation (26) as a measure of the error introduced298

by the RB approximation, here we introduce a more suitable goal−oriented criterion.299

The key idea is that such a criterion allows us to assign different weights to the error300

in different regions of the domain (regions of interest), and to control the maximum301

admissible error on any particular Quantity of Interest (QoI). The latter is typically an302

”important” model prediction that can be compared against data or that controls an303

important output of the model (Florentin & Dı́ez, 2012). Therefore, we do not seek to304

obtain accurate solutions for the entire numerical domain or for all model predictions,305

but rather to guarantee accurate RB solutions to the quantity or quantities that are306

of interest for the particular purpose of the inversion. This way of measuring the error307

of the RB approximation is key to maintaining the overall size of the RB small, as308

the basis is trained specifically to represent well (within admissible errors) only the309

relevant part of the solution, that is, the QoI.310

There are two important points to clarify here. First, the RB approach discussed311

in this paper is independent of how the QoI is defined and it can accept other error312

measures. Second, that the accuracy of a global solution is not pursued does not313

mean that the approximation of the QoI will be of poor quality. On the contrary, we314

emphasize again that accurate solutions to the QoI are enforced and guaranteed by315

design. In the limiting case where the QoI is of ”global” character (e.g. if the residual316

is used to estimate the error), the error will be a measure of accuracy for the entire317
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domain and the resulting RB approximation will be trained to reproduce the solution318

in any region of the domain with the same accuracy.319

The QoI is a scalar quantity Q, computed as a linear function, lo, that extracts
the relevant information from the global solution u,

Q = lo(u). (27)

The discrete version of the linear QoI can be expressed as a product of one vector fo

describing the function and the solution u as,

Q
FE

= foTu. (28)

In order to obtain an error representation based on the QoI, a dual (or adjoint) problem320

is typically defined (e.g. Florentin & Dı́ez, 2012). The weak form of the dual problem321

reads: find (v, d) ∈ V × L2(Ω) such that,322

{
a
(
w,v

)
+ b
(
w, d

)
= lo

(
w
)
∀w ∈ V ,

b
(
v, q
)

= 0 ∀q ∈ L2(Ω),
(29)

This dual problem is discretized in the same FE spaces as the direct problem (15),
which gives [

K G
GT 0

]T [
v
d

]
=

[
fo

0

]
(30)

For the Stokes problem discussed here, the stiffness matrix is symmetric and therefore323

the dual problem differs from the direct one only in the source term, which corresponds324

to the discretized linear operator representing the QoI.325

Finally, using equations (15), (28) and (30), a representation of the error in the326

QoI associated with the RB approximation can be defined as,327

EQ = QFE −QRB = foT(u− uRB)

= [Kv + Gd]T(u− u
RB

)

= vTK(u− u
RB

) + dTGT(u− u
RB

)

= vT(f −Ku
RB

)

(31)

where the incompressibility condition in (22) is used and vTKu = f because vTGp = 0
(incompressibility of the dual problem). A residual-like vector is defined as,

r∗ := f −KuRB (32)

and although different from the residual r in (26), vTr∗ = vTr holds because vTGp
RB

=328

0.329

According to equation (31), the two ingredients needed to obtain a representa-
tion of the error are: i) the solution to the dual problem v, and ii) the residual-like
vector r∗. A critical point here is that if the solution of the dual problem requires as
much computational effort as the solution of the primal problem (the original Stokes
problem), then the method becomes impractical. We can therefore replace the ex-
act solution of the adjoint problem with an approximate (and much more efficient)
solution, v̂, and define an error estimator for EQ as

EQ ≈ ÊQ = v̂Tr∗ (33)

–11–



manuscript submitted to Journal of Geophysical Research

We have tested two different approaches for computing v̂ and avoiding the explicit330

computation of the solution of the adjoint problem. The first and more computation-331

ally expensive option is to build a Reduced Basis for the adjoint problem. Instead of332

using a full FE solver, we build a basis for the adjoint using the same procedure we333

use for the primal problem. The error estimator of the solution of the adjoint is com-334

puted using the norm of the residual. The second and more efficient option is based335

on one important property of the adjoint problem: adjoints are typically less sensi-336

tive to parameters than the primal problem (Florentin & Dı́ez, 2012; Garćıa-Blanco337

et al., 2017; Serafin et al., 2017) and therefore the same adjoint solution can be used338

to estimate the error of many similar primal solutions. In the latter case, a single339

solution of the adjoint problem is required and then used to estimate the errors of340

all subsequent primal problems. An interesting variant of this case is to recompute341

the adjoint every n number of primal solutions to guarantee that its solution remains342

relevant for the values that are being tested. Numerous tests demonstrated that the343

second option without recomputing the adjoint is the optimal one from a cost-accuracy344

point of view. We do not claim, however, that this strategy applies to other forward345

problems; verification tests should be performed for different problems.346

3.2.4 Building the reduced basis Bu347

Typical MOR implementations consist of two stages: 1) the offline stage, where all348

costly computations (involving a high-fidelity solver) dependent on Vh are performed;349

and 2) the online stage, where the reduced order solver or “surrogate” is used to350

obtain fast and computationally inexpensive solutions independent of Vh (Quarteroni351

et al., 2016; Hesthaven et al., 2016; Ito & Ravindran, 1998; Prud’homme et al., 2002).352

While in principle a similar splitting can be used in the context of a probabilistic353

inverse problem (Galbally et al., 2009; Wang & Zabaras, 2005; Lieberman et al.,354

2010), it is not always straightforward to predict which FE solutions (or snapshots)355

should be computed a priori during the offline stage, as there is no way of knowing in356

advance which solutions are most relevant as the MCMC converges towards a reduced357

parameter space (i.e. the high probability regions). As the number of parameters358

increases, predicting the relevant high probability regions becomes more difficult. For359

this reason, here we prefer to combine the offline and online stages into a single stage360

where the reduced basis is created on the fly and as needed during the inversion361

processes.362

In this greedy approach, the basis Bu is initially empty (but not necessarily) and363

is subsequently enriched with FE (high-fidelity) solutions as the inversion progresses.364

The first forward problem required by the inversion is solved with the high-fidelity FE365

solver and its solution is added to the basis. From then on, every time a new forward366

problem needs to be solved, the solution is sought in the RB space R
n
RB and the error367

of the RB approximation is assessed. If the error is larger than a predefined tolerance,368

eRB , the problem is solved using FE and the new high-fidelity solution is added to Bu369

(i.e. the basis is enriched). Therefore, the basis is only enriched when the accuracy of370

the RB solution is below the specified tolerance. It minimizes the possibility of having371

a basis with strong internal correlations (nearly linear dependant, see below).372

Since a MCMC-based inversion gradually converges to an equilibrium distribu-373

tion that typically spans only a limited region of the initial parameter space, it is374

expected that the basis will initially grow until it becomes rich enough to provide ac-375

curate approximations (within a tolerance) to any subsequent forward evaluation. In376

this way, the basis does not need to provide accurate solutions for the entire param-377

eter space, but it is automatically tailored to provide accurate solutions within the378

region of high probability as sampled by the MCMC. In all the numerical examples379

presented below, the number of FE evaluations needed to ”saturate” the basis is a very380

small fraction of the total number of forward evaluations, making the RB approach381
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extremely efficient. In other words, the converging nature of a MCMC-based inversion382

makes the option of RB solvers extremely attractive, as it is a situation where RB383

performs at its best.384

The following flowchart (Figure 1) shows the building process of a reduced basis385

coupled simultaneously within an inversion framework.

Figure 1. Flowchart of the greedy approach to build a Reduced Basis within an outer loop

application (inversion problem)

386

Moreover, as the Markov chain moves to a more restricted parameter space, the387

space R
n
RB can be inspected at regular intervals and processed to remove bases that388

are not contributing significant information. The result is a more compact and data-389

driven basis tailored for the specific problem at hand. A somewhat similar strategy was390

used in Bui-Thanh et al. (2008), Florentin and Dı́ez (2012), Lieberman et al. (2010),391

and Cui et al. (2014). The slight drawback of this approach is that instead of relaying392

on fast RB solutions since the beginning of the inversion, some computational cost393

must be spent in creating the basis on the fly. In most practical cases, however, this is394

not a problem. The overall cost involved in computing the basis during the inversion395

process is significantly less than that invested in creating sufficiently accurate basis in396

an offline stage, except when the parameter space is relatively small (an uncommon397

case in geophysical inversions). In addition, the basis created in one inversion can398

always be reused in subsequent inversions of similar characteristics.399

Finally, the proposed greedy approach to build the RB does not guarantee or-400

thogonality between the members of the basis. Redundant (linearly dependent) basis401

elements may still be included in the basis, which would result in an ill-conditioned402

linear system to be solved (23). In practice, however, we have not observed this be-403

haviour. The condition number of the reduced system in our problems remains almost404

constant as the basis grows, indicating that the basis is not deteriorated by the greedy405

character of the algorithm. In fact, by construction, solutions which are linearly de-406

pendent (according to a predefined tolerance) should not have been added to the basis.407

Nevertheless, in the case of having redundant information in the basis, a Singular Value408

Decomposition procedure (Afonso et al., 2015) can be applied on-the-fly to obtain an409

orthogonal basis. Other possibilities include orthogonalizing the reduced basis every410

time a new snapshot is added, as in Lieberman et al. (2010), Cui et al. (2014), and411

Bui-Thanh et al. (2008).412
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4 Preliminary numerical considerations413

Before presenting a series of illustrative examples, we will first outline their basic414

setup and briefly discuss several modelling decisions and assumptions relevant for the415

application of the proposed method.416

4.1 Model discretization and parameterization417

We start by noting that the proposed methodology is independent of the chosen418

discretization/element type. In this work, all problems are discretized with Taylor-419

Hood hexahedral elements of order two for velocity and order one for pressure (Q2-420

P1). Free slip boundary conditions are applied on the boundaries of the domain,421

i.e. the normal velocity is zero and the two tangential components do not change422

across the boundary (zero shear strain rates and stresses along the boundary). This423

discretization generates a numerical domain that can be seen as a collection of non-424

overlapping adjacent rectangular columns (Figure 2).425

We assign a unique model parameter to each of these columns, viz. lithospheric426

thickness, or equivalently, depth to the Lithosphere-Asthenosphere Boundary (LAB).427

Therefore, our vector of model parameters (to be retrieved by the inversion) is com-428

posed of the LAB depths for all columns in the numerical domain.429

Figure 2. Idea of the inversion problem. Black arrows showing direction and magnitude of

velocity field (observables). LAB depth discretized in 100 parameters (unknowns).

The LAB depth is the main parameter controlling the flow pattern inside the nu-430

merical box as it defines the internal temperature distribution, which in turn controls431

the viscosity and internal buoyancy forces. For illustrative purposes, the temperature432

inside each column is assumed to follow a linear profile defined by the temperature at433

the surface (T0 = 293 K) and that at the LAB depth (TLAB = 1523 K). In the astheno-434

sphere, we also assume a constant linear gradient between TLAB and a fixed bottom435

temperature (T660 = 1873 K). Absolute pressure is assumed to follow a lithostatic436

profile, p = ρ0 g z, where g and z are gravity and depth, respectively.437

Density is computed as

ρ = ρ0(1− α(T − T0) + β(p− p0)) (34)

where ρ0 is the reference density at T0 and p0 and α and β are the coefficients of438

thermal expansion and compressibility, respectively.439
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Viscosity follows a power-law of the form,

µ = A
−1/n
D ė

(1/n)−1
II exp

(
E + pV

nRT

)
(35)

where E is the activation energy, V the activation volume, R the universal gas con-440

stant, n the flow law exponent, ėII the second invariant of the strain rate and AD a441

constant depending on the material. As usual in geodynamic simulations, a threshold442

(maximum) viscosity, µmax, is imposed. All values used are listed in Table 1. Because443

the methodology presented here is suited for linear problems we linearize the Stokes444

equations by assuming a constant strain rate ėII = 10−15 s−1. We note, however, that445

the methodology can be adapted to nonlinear problems and it is independent of the446

specific parametrization used here.447

Table 1. Values of the parameters used to compute material properties

Parameter Value Units

ρ0 3300 kg·m−3

p0 0 MPa
T0 293 K
TLAB 1523 K
T660 1873 K
α 10−5 K−1

β 10−5 MPa−1

µmax 1024 Pa·s
AD 1.1 · 105 MPa−n·s−1

ėII 10−15 s−1

E 5.3 · 105 J·mol−1

V 14 J·MPa−1·mol−1

R 8.314 J·mol−1·K−1

n 3.5

4.2 Synthetic observables448

The synthetic measurements or observations used in our examples are vertical mantle449

velocities at specific points within a predefined observation region. In reality, mantle450

velocities cannot be directly observed and other indirect observables such as time-451

dependent topography (e.g. from GPS measurements) or plate motions need to be452

used. However, a number of additional assumptions and secondary quantities need to453

be considered in order to obtain these observables from the forward problem. Given454

the purpose of this work, we prefer to avoid this additional complexity and focus on455

the intrinsic features and performance of the presented method by using direct outputs456

of the forward problem only (i.e. velocities). In doing so, we can better isolate and457

analyse the main RB effects within the MCMC simulation in these numerical examples.458

We create a dataset of synthetic observables to be used in our MCMC simula-
tions from a high-resolution reference or ”true” model (see Figure 3a in Section 5.1).
The vertical components of the velocity field are computed at nd points and define
the dataset of synthetic observables, dobs. Gaussian noise, r ∼ N(0, σd), is used to
introduce some controlled error in the synthetic observables. The standard deviation
of the data errors, σd, is chosen to be a percentage of the maximum absolute value in
the dataset dobs,

σd = σe max |dobs|. (36)
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Since here we are interested in studying the performance of the RB+MCMC method459

rather than the actual solution to the inverse problem, the following examples include460

the error in the data only in the likelihood function; i.e. no noise is actually added to461

the synthetic data. The reason for this choice is that when perturbations are added to462

the synthetic data, the posterior PDFs will not necessarily converge to the reference463

model, but to a ”perturbed” model that best fits the contaminated observables, thus464

complicating the performance analysis of the method. However, in order to show that465

the MCMC+RB also works in the case of contaminated data, a second version of the466

first example of Section 5.1, including perturbations to the observables, is shown in467

the supplementary material.468

The observation region Γ is defined in accordance with the a priori information469

on the parameters used in the MCMC simulation (Section 4.3). This implies that470

parameters are sampled within Γ, and therefore the largest changes in the velocity field471

are observed in this region. Moreover, we want the vertical components of velocity472

to be accurately computed in this region, so we make Γ coincide with the region of473

interest used to compute the QoI, which controls the accuracy of the RB solution (See474

Sections 3.2.3 and 4.4). The number of data points will be specified for each example475

and will vary depending on the number of unknown parameters in the inversion.476

4.3 Sampling strategy and Likelihood function477

In order to test the MCMC+RB method in adverse conditions, a relatively uninfor-478

mative initial scenario is defined. The prior PDF for all parameters in each column479

are set as uniform within a range of 100km (i.e. ±50 km from the reference LAB480

value). With these priors, all gain of information, as contained in the posterior PDF,481

will be controlled exclusively by the likelihood. This allows a readily interpretation of482

the results.483

The prior PDF is sampled using a multivariate Gaussian proposal distribution
centered at the current state of the chain mold,

mnew ∼ N(mold, σ
2
p). (37)

For each proposed move mnew, only one parameter mi, i ∈ [1, nm], is modified with484

respect to mold. In other words, we modify the LAB structure by changing only one485

column per iteration according to equation (37). The chosen value for σp will be486

specified for each example.487

For the likelihood function (see equation (4)), we choose a standard Gaussian
(L-2 norm) form

L(m) =
1

2σd2

∑
i∈Γ

(
uzi(m)− dobs

i

)2
(38)

where i ranges from 1 to the number of points nd in the region of interest Γ and dobs
i488

and uzi(m) are the “observed” (synthetic) and predicted vertical velocities at point i,489

respectively. The standard deviation σd is related to the error in the measurements and490

is defined in equation (36). We also apply a multiplicative factor to σd to account, as491

a first-order correction, for modelling/theoretical uncertainties. In doing so, we always492

keep the error of the RB one order of magnitude smaller than the above uncertainty493

(more details in Section 5.1.2). We acknowledge that other strategies to account for494

modelling uncertainties in Bayesian inversions could also be considered (see Linde et495

al. (2017) for a review), for instance, via a full covariance matrix defining model errors496

(see also a discussion in Afonso et al., 2013a,b). Another option could be to assign497

priors to these errors and let them be modelled as part of a hierarchical Bayesian498

inversion (Titus et al., 2017; Malinverno & Briggs, 2004).499
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4.4 Reduced Basis solver500

As detailed in Section 3.2.3, we define a goal-oriented measure of the RB error, that is,501

we quantify the errors in some particular region of interest and for some particular QoI502

(27). We recall that this approach helps in keeping the overall size of the basis small.503

In the following examples, we define a region of interest Γ as the volume enclosed by504

the a priori information on the model parameters: the 100km thick ”layer” centered505

along the reference LAB. This volume naturally coincides with the information given506

to the MCMC solver; i.e. we want to reproduce the results accurately in a region507

where the model parameters will have the largest influence.508

With the region Γ defined, we proceed to define a QoI. This parameter summa-
rizes the important part of the solution into one scalar number, so it is typically an
integrated quantity. A possible definition of QoI is the integral of the vertical velocity
within the region of interest Γ. However, for the incompressible Stokes problem, this
integral vanishes identically for some configurations (e.g. a horizontal LAB). This is an
undesired property, as the estimated error might be zero independently of the solution
provided by the basis. Therefore, considering future (real) inversions where surface
elevation and GPS velocities will be used as observables, it is more appropriate to
define an error estimator that measures the gradient of the vertical velocity along the
vertical direction (as this is a quantity from which dynamic topography effects can be
estimated). The approach implicitly assumed is based on the rationale presented in
(Afonso, Rawlinson, et al., 2016), among others, who decoupled lithospheric and sub-
lithospheric (truly dynamic effect) contributions to surface elevation. In this approach,
the region above the LAB is assumed to be cold enough to be considered essentially
rigid and therefore its “static” contribution to surface elevation is accounted for by a
simple lithospheric isostatic balance. Superimposed on this static contribution is the
dynamic contribution from sublithospheric convection, which affects elevation via nor-
mal stresses associated with viscous flow and transferred to the lithosphere via viscous
coupling in the lower regions of the lithosphere. With this in mind, we define the QoI
as,

Q =

∫
Γ

∂uz
∂z

dΩ (39)

The QoI allows us to define the adjoint problem to get a representation of the error509

via equation (31). According to the discussion in Section 3.2.3, we solve the adjoint510

problem once at the beginning of the MCMC simulation and reuse its solution for511

assessing the error in all subsequent iterations.512

At each inversion step, the matrix K
RB

(and f
RB

) needs to be evaluated, since513

values of viscosity (and density) change. Performing the multiplication BT
uKBu at514

each step can be time-consuming for very large bases. Our strategy takes advantage515

of the chosen LAB discretization and sampling strategy, i.e. not all columns of finite516

elements change their viscosities between successive inversion steps, but only a few.517

Taking this into account, we update K
RB

by just updating the contribution of the518

finite elements that have been modified at the current step. When the basis needs to519

be enriched, either the whole multiplication is performed or a new row and column520

are added to KRB to include the information of the new basis element. When the basis521

is rich enough and FE solutions are no longer required, the matrix K
RB

can be reused522

and updated at a very low cost for the rest of the MCMC inversion.523

Not only this strategy is much faster, but it also allows us to avoid evaluating524

K at each inversion step. When needed, matrix K is also assembled following the525

same idea. The first time it is assembled accounting for the contribution of all finite526

elements in the mesh, whereas in the successive inversion steps, it is efficiently updated527

with just the contribution of the elements that changed.528
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5 Numerical examples529

In this section we present several inversion examples with the main goal of ana-530

lyzing the interaction between MCMC and RB methods and their joint performance.531

We will show that MCMC together with RB reduces dramatically the cost of solving532

the inverse (geodynamic) problem. In all tested cases, the computational gain is an533

outstanding ∼ 99%. In other words, our combined MCMC+RB strategy requires only534

1% of the computational cost that would be needed in a standard MCMC inversion.535

We also note here that none of the examples below have used any parallelization tech-536

nique to improve the efficiency of the forward problem; all were run in single CPU537

machines.538

Two different types of illustrative examples are presented next. First, a set539

of simple examples of small size will be used to compare solutions obtained with our540

MCMC+RB method versus those given by a standard MCMC+FE approach as well as541

to analyze MCMC convergence, RB solver efficiency, and basis-size behavior. Second,542

a larger and more realistic example is used to illustrate the scalability and efficiency543

of the method.544

5.1 Simple 3D Cartesian model545

A 3D Cartesian domain representing a portion of the Earth from the surface546

down to 660 km depth is defined and discretized with 10×10×20 finite elements. The547

LAB shape to be recovered (Figure 3a) is described along the examples with both 25548

and 100 parameters. This setup is common to all the examples in this section unless549

stated otherwise. Regarding the number of synthetic observables, we fixed 675 points550

whitin the observation region (±50 km from the reference LAB value).551

The initial model (starting point of the Markov chain) has a constant LAB at552

130 km depth, except in one column, where the LAB is at 100 km depth (Figure 3b).553

This is simply to avoid an initial problem with zero velocity field.554

Figure 3. 3D cartesian domain discretized in 10x10x20 mixed elements representing a por-

tion of Earth of 660km depth and 400km in the two directions along the surface. (a) Synthetic

reference LAB and (b) initial model configuration.
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5.1.1 MCMC convergence555

We run a total of 2 × 105 steps in the MCMC simulation. The first 104 values556

considered burn-in and thus discarded for later analyses. The standard deviation of the557

proposal distribution in (37) is set at σp = 5 km and the percentage of the introduced558

noise in (36) is σe = 10−1. Regarding the Reduced Basis, a threshold e
RB

= 10−2 is set559

for the relative version of the error estimator in (33), which will control the accuracy560

of the RB solution.561

The results of this inversion are summarized in Figures 4 and 5. Despite the un-562

informative initial scenario (uniform priors and flat initial state), these results demon-563

strate that the MCMC+RB inversion algorithm succeeded in obtaining an accurate564

representation of the true PDF for all parameters. The trace plots in Figure 4 also565

show that the inversion converged quickly to the true posterior PDF (LAB values +566

their associated uncertainties). The posterior distributions for each parameter (Figure567

5) exhibit mean values which coincide well with the reference synthetic LAB depths; all568

within one standard deviation (additional results can be found in the supplementary569

material).570

Given the knowledge that we have over the true parameter space and uncer-571

tainties in these synthetic examples, both the burn-in period and the length of the572

simulations (as a convergence criteria) are chosen by visual inspection of the chains573

during the simulation.574

Figure 4. Random walk for each of the 25 parameters. In each plot: prior distribution (black

dashed line), initial value (red dot), synthetic LAB value used to generate the perturbed velocity

field (solid black line) and random walk of values of the posterior distribution (green). No burn-

in period has been discarded in this figure, so the initial value for each of the model parameters

can be seen.

–19–



manuscript submitted to Journal of Geophysical Research

Figure 5. Posterior PDF for each of the 25 parameters. In each plot: prior distribution (black

dashed line), synthetic LAB value used to generate the perturbed velocity field (solid black line)

and PDF of the posterior distribution (green). A burn-in period has been discarded in the esti-

mation of the posterior PDF for each of the model parameters.

5.1.2 Reduced Basis solver efficiency575

For the present example, our algorithm required the solution of only 118 FE576

problems to complete 2 × 105 MCMC inversion steps, i.e. a 0.06%. A FE solution577

takes around 6.3 seconds whereas the time for a RB solution with a basis of around 120578

elements and updating between 80 and 160 finite elements (4 to 8 columns) at a time579

is on average 0.09 seconds. This constitutes a staggering gain in efficiency, since the580

CPU time of using the MCMC+RB strategy is only 1.5% of the (prohibitively large)581

time that would be required for the full MCMC+FE option (i.e. one FE solution per582

MCMC step). Although the metric in this figure is not actually comparing CPU time,583

and it may give the impression that the RB solution is obtained at zero cost, the small584

RB times show that the real cost is little significant compared to the FE and, therefore,585

the metric used can be trusted.586

The evolution of the basis size as a function of the first 105 inversion steps is587

shown in Figure 6 (left axis). The red dashed line represents the cost of an inversion588

using FE only (no reduced basis). In the same figure we include the trace plot (right589

axis) for a representative parameter, showing rapid convergence and clear stationarity590

of the chain.591

The behaviour shown in Figure 6 illustrates the key benefit of the coupled592

MCMC+RB scheme, viz. the flattening of the basis size curve means that most inver-593

sion steps are RB solutions rather than full FE solutions. Once the basis is rich enough594

to approximate well forward problems within the high-probability space, its size stops595

increasing. Moreover, the longer the MCMC simulation the most favourable/efficient596

the RB strategy becomes, since all solutions will be required with RB.597
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Figure 6. Differences between the number of full FE problems solved during the inversion

using the RB approach (green solid line) and using standard FE (red dashed line). Random walk

for a parameter (gray). The flattening of the basis size curve shows that most inversion steps are

being solved without the need to solve the full FE problem. Once the basis is rich enough to rep-

resent the space tested by the inverse solver, its size stops increasing as any solution is properly

addressed by the RB and no new full FE solver are required.

During the initial steps of the inversion, the high probability regions of the param-598

eter space are still poorly known and large changes in the parameter space exploration599

are expected. This, together with the fact that the basis is very small, makes that the600

initial number of FE solves required is relatively large. As the random walk converges,601

the size of the basis stabilizes.602

The use of RB instead of FE introduces an error in the solution of each forward603

problem. This error is controlled by the predefined tolerance for the RB. To test that604

the behaviour of the MCMC simulation is not affected by this error to any significant605

extent, we run three identical MCMC inversions: two of them using a MCMC+RB606

approach with different errors eRB = 10−3 and 10−2, and one using full FE solutions at607

every step of the chain. Since the previous example showed that the chain converges608

quickly, the number of inversion steps performed for this test was reduced to 105, as609

otherwise the cost of the FE strategy would render the inversion impractical.610

Figure 7 compares the results from these 3 strategies for the same model param-611

eter (all other parameters behave in a similar way and therefore we do not plot them612

here). These results clearly demonstrate that all MCMC simulations are in excellent613

agreement. The MCMC+RB strategy is not affected by the RB error and performs614

properly as a surrogate of a FE forward model both in terms of accuracy, and partic-615

ularly, in efficiency. The basis size strongly depends on the error assigned to the RB,616

e
RB

. In the examples shown here, the basis sizes are ∼374FE and ∼109FE for errors of617

10−3 and 10−2, respectively. According to these values, and with the idea of keeping618

the basis as small as possible (within the limits of the observables error), we decided619

to use e
RB

= 10−2 for the remaining examples.620

Another important point to remark about the efficiency of the MCMC-RB strat-621

egy is that the number of elements in the basis does not depend on the discretization622

of the forward solver. In other words, for a fixed number of parameters and guaran-623

teeing a minimum accuracy according to the problem at hand, a higher discretization624

of the mesh does not affect the number of elements in the basis. To illustrate this,625

the same inversion was run five times for the same number of parameters, but varying626
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Figure 7. Differences between RB approach (green) and standard FE (red) in the random

walk and posterior PDF for one parameter. In each plot: prior distribution (black dashed line),

initial value (red dot) and reference synthetic LAB depth (black solid line).

the discretization of the mesh of the forward problem. The FE direct solver used here627

and the available computational resources allowed us to solve the Stokes problem with628

meshes up to 32000 FE (Q2-P1). Table 2 shows the corresponding final basis sizes. In629

all cases, the final basis sizes are comparable, showing no correlation with mesh size.630

Table 2. Final basis size obtained during the inversion of 25 parameters and 2 × 105 inversion

steps using different mesh sizes for the solution of the forward problem

Mesh size Basis size

2000 118
4500 115
8000 119
18000 104
32000 108

Although the number of elements in the basis does not change, it is important631

to clarify that each element of the basis has the length of the solution of the for-632

ward problem. Therefore, a very fine discretization certainly contributes to increase633

the overall size of the basis. However, as disscused in Section 4.4 the multiplication634

BT
uKBu is not actually performed and, therefore, the length of the basis elements is635

not a problem for the MCMC-RB strategy.636

These results show that both the number of elements in the basis and the strategy637

to update KRB do not depend on the discretization of the forward problem, and there-638

fore, the limiting factor determining the efficiency of the method is not the MCMC+RB639

method but the actual FE solver itself.640

5.1.3 A larger parameter space641

The following example illustrates the effect that a larger number of model parameters642

has in the size of the generated basis. Intuitively, it is expected that the size of the643
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basis would be proportional to the size of the parameter space. This is because more644

parameters allow to describe a richer family of solutions and, therefore, the amount645

of information required to span all possible solutions grows as well. In the present646

example, we show that although the the size of the basis grows with the number647

of parameters, the method remains practical. The LAB structure is now discretized648

with 100 parameters and the number of synthetic observables is increased to 2700 to649

make the overall sensitivity comparable to that in the previous example. The setup of650

the MCMC simulation is identical to that of the previous example (same priors and651

starting configuration, 106 steps, σp = 5 km, e
RB

= 10−2).652

The basis needed about 262 elements (0.03% of the total) to create an accurate653

surrogate for all simulation steps, which again represents a drastic reduction, an ap-654

proximately 0.8% of the overall CPU time if only using FE. In this example the time655

of a RB solution is around 0.05 seconds since the number of columns modified per656

inversion step is smaller (one FE column per parameter). Figure 8 summarizes the657

posterior PDF for LAB structure as the mean of each of the parameters.658

Figure 8. Mean values of the posterior PDFs for each of the unknown parameters obtained

from solving the inverse problem. Unknown LAB discretized 100 parameters.

The algorithm clearly succeeded in obtaining an accurate representation of the659

solution. Differences between mean values of the posterior PDF and the reference660

synthetic LAB are again within one standard deviation. Plots of the random walks and661

posteriors for each of the 100 parameters and values of means and standard deviations662

can be found in the supplementary material. The standard deviations of the posteriors663

range approximately between 2km and 6km. These values are very close to the ones664

obtained in the previous example. This is to be expected, since we increased the665

number of observables to make the overall sensitivity comparable in both examples. If666

the number of data points is kept fixed, the posterior distributions become wider as the667

number of parameters increase (i.e. as the discretization is made finer). This suggests668

that the sensitivity of the velocity field to perturbations of a single parameter is reduced669

as the number of parameters increases (i.e. finer discretization). This behaviour is well-670

known in inverse problems, where a parsimonious trade-off always exists between the671

number of parameters needed to represent a model versus the number that can be672

well-constrained by the data. Less sensitivity to model parameters requires exploring673

larger areas of the parameter space, which typically results in longer chains with wider674

posteriors.675
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This example also illustrates the scalability of the method. Figure 9 shows the676

evolution of the basis for different number of parameters: 25, 100 and 225. The677

number of synthetic observables is increased proportionally so that sensitivity is not678

a controlling factor: 675, 2700 and 6075 data points respectively. In all cases, the679

growth of the basis (i.e. the number of full FE problems) reaches a “plateau” or a680

“saturation” level after which all MCMC steps are computed with the RB surrogate.681

This behaviour can be exploited to create even more efficient algorithms (see next682

section).683

Figure 9. Number of FE problems solved during an inversion using RB strategy. Inversion for

different number of parameters: 25 (solid line), 100 (dashed line) and 225 (dotted line).

5.1.4 Other factors controlling basis size684

The smaller the basis, the smaller the computational cost involved in an inversion.685

Hence, the actual challenge is to create a basis which is small but still comprises686

all possible solutions we are interested in. The basis size is mainly determined by687

the region of the parameters space that is to be explored, therefore, all variables688

determining how the exploration takes place will influence the dimension of the basis.689

Besides the number of parameters (studied above), other variables that affect the basis690

size are: the error in the data (36) and the form of the proposal distribution (37).691

If the error in the observables/data is large, the number of plausible models692

increases and so it does the parameter space for which accurate solutions are required693

from the surrogate. Consequently, the basis size will increase in order to include a694

larger number of possible solutions. Figure 10 shows the effect of different data error695

levels in (a) the random walk, (b) the posterior distribution and (c) the evolution of696

the basis size for three different σe values: 1, 3 and 5%. As expected, the range of697

variability of trial models increases with σe (Fig. 10a) and the posterior PDF becomes698

wider (Fig. 10b), reflecting a poorer constraint on the parameter from the (bad quality)699

data.700

The proposal distribution determines the way the parameter space is explored. If701

jumps between trial models are small (i.e. small σp), the parameter space is explored702

slowly (requiring long chains), but the acceptance rate is high (Tarantola, 2005; Gre-703

gory, 2005). Likewise, if the moves are large, the exploration of the parameter space704

is more efficient, but the acceptance rate decreases accordingly. The design of efficient705

proposals is thus crucial for the success of any MCMC algorithm and an important706
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Figure 10. Implications of noise size in (a) random walk, (b) posterior distribution and (c)

basis evolution size for three different noise levels: σe = 0.01 (solid green), σe = 0.03 (dashed red)

and σe = 0.05 (dotted grey).

research topic in the MCMC literature (Roberts et al., 1997; Roberts & Rosenthal,707

2001). Unsurprisingly, we also see a significant influence in terms of basis size. In708

Figure 11 the same simulation has been run for three different σp values: (a) 5 km709

(b) 10 km and (c) 20 km. The values of the samples that are accepted as part of the710

chain according to the Metropolis ratio Γ are shown in grey, whereas all the samples711

proposed during the inversion are indicated in colors. Similar to the effect of increasing712

σe, larger values of σp (i.e. large proposed moves) result in a larger domain for which713

accurate solutions are required from the surrogate, which in turn requires larger basis714

sizes. The size of the basis for each σp case is also shown in Fig. 11 (bottom). The key715

point is that, even if a sample is not accepted, its forward problem has to be solved716

and, therefore, it may contribute to increase the basis size.717

However, as in traditional MCMC approaches, there are alternatives to minimize718

the growth of the RB. Although beyond the scope of this paper, some options are719

adaptivity of the proposal (Haario et al., 1999, 2001), adaptivity of the RB tolerance720

(i.e. larger tolerance at the beginning and smaller tolerance when the chain starts721

converging) or a combination of both. Also, the use of multiple surrogates of different722

accuracy could in principle increase efficiency and reduce the overall size of the basis.723

For instance, a cheap surrogate could be used to evaluate whether or not the sample724

is accepted, and only those which are accepted (and then representative of the high725

probability region) will be recomputed with FE and used to enrich the basis (which726

keeps being improved for those models in the high probability regions). A similar727

approach has been used in Cui et al. (2014) and Lieberman et al. (2010).728
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Figure 11. Implications of the proposal distribution in the posterior PDF (up) and in the

basis evolution size (bottom) for three different proposals: (a) σp = 5km, (b) σp = 10km and (c)

σp = 20km . All proposed samples during the inversion (yellow, orange, red) and samples which

are accepted (grey).

5.2 Lithospheric structure beneath Africa729

In this section we apply our method to a larger, more realistic, example to deter-730

mine the lithospheric structure and sublithospheric upper mantle flow pattern beneath731

the African continent and surroundings. While realistic in nature, we emphasize that732

this example is for illustrative purposes only.733

The numerical domain is now spherical and discretized with 30x30x20 finite el-734

ements from the surface down to a depth of 1000km depth. The vector of model735

parameters (LAB depths) contains 225 elements (i.e. the FE discretization is twice as736

fine as the LAB one). The input data are again the vertical velocities within the region737

of interest Γ which for this example is larger, ±100 km from the reference LAB value.738

The lithospheric structure (LAB depth and temperatures) of the reference model is739

based on the global lithospheric model by Afonso et al. (2019). Sublithospheric temper-740

atures are computed based on the work of Stixrude and Lithgow-Bertelloni (2012) for741

a reference adiabatic gradient, with anomalies with respect to that gradient from the742

work of Steinberger and Becker (2018). Using this model as a reference, we compute743

the synthetic observables and contaminate them with Gaussian noise with a standard744

deviation of 15%. Density and viscosity are computed as a function of temperature745

and pressure using equations (34) and (35), respectively.746

We run the inversion algorithm for 106 steps, from which the first 104 samples747

were discarded as burn-in. The standard deviation of the proposal distribution was748

set at σp = 5 km and the threshold for the error estimator of the RB was set at749

eRB = 10−2. Mean values and standard deviations of the posterior PDF resulting from750

the inversion are shown in Figure 13. The corresponding numerical values as well as751

the plots of the random walks can be found in the Supplementary Material.752
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Figure 12. (a) Reference LAB discretized with 225 parameters. (b) Two vertical profiles

showing the flow (velocity) structure.

Figure 13. (a) Mean and (b) standard deviation of the posterior PDF for each of the 225

parameters representing the LAB depth recovered during the inversion.

–27–



manuscript submitted to Journal of Geophysical Research

The results in Fig. 13 and 12 demonstrate that the inversion succeeded in recov-753

ering the mean values of the true parameters. Wider posteriors are obtained in areas754

where the lithosphere is thicker, indicating that the observables are less sensitive to755

perturbations beneath these columns. This is not surprising, as these regions coincide756

with broad slow downwellings and small local perturbations of the LAB do not change757

the main velocity pattern or magnitude in any significant way. The narrowest dis-758

tributions have standard deviations of around 5km whereas the widest depict values759

of 46km. Detailed plots of each of the posteriors are shown in the Supplementary760

Material.761

The efficiency of the method is again outstanding; to perform 106 inversion steps,762

only 2360 FE solves where required (0.24% of the total number of steps), or equiva-763

lently, one FE solve for every 400 inversions. It is worth emphasizing that in a real764

inversion context, more than 106 would be typically run, which will increase even765

further the efficiency of the method.766

6 Some final remarks767

The efficiency gain provided by the implementation of a Reduced Basis approach768

into MCMC algorithms makes it practical to explore 3D full probabilistic inversions769

for the dynamic state of the Earth’s interior. In particular, it opens up the possibility770

of combining multiple geodynamic and geophysical observables into a single inversion771

with global charaterization of uncertainties and account of non-linearities (e.g., Khan772

et al., 2008, 2011; Afonso, Fullea, Griffin, et al., 2013; Afonso, Fullea, Yang, et al.,773

2013; Afonso, Moorkamp, & Fullea, 2016). It also facilitates the exploration of true774

“simulation-based inversions”. By simulation-based we mean that complex forward775

problems (e.g. multi-phase thermomechanical simulations, full-waveform simulations),776

traditionally the realm of numerical modellers, can become the drivers of probabilistic777

inverse problems with no stringent requirements about simplifications of the physics778

(see e.g. Baumann et al., 2014; Baumann & Kaus, 2015; Gebraad & Fichtner, 2018).779

We consider this trend the future of inverse approaches in geoscience.780

The proposed coupling of MCMC+RB has one key advantage with respect to781

traditional methods in the construction of the reduced basis or surrogate: the basis is782

automatically “trained” on-the-fly to provide accurate solutions in the region (of the783

parameter space) that is most critical for the inversion scheme. This removes the need784

to perform “blind” offline experiments to construct a surrogate, which becomes harder785

and harder as the number of model parameters increases. The price to pay by merging786

the online and offline stages is that since the RB is built and updated during the787

inversion, the time to compute one particular inversion cannot be predicted in advance.788

It also introduces some subtle theoretical and practical difficulties. From a theoretical789

standpoint, since the surrogate effectively changes every time it is updated (i.e. the790

forward model changes), standard convergence analyses and proofs of ergodicity and791

detailed balance found in the literature (e.g. Yan & Zhang, 2017) cannot be easily792

adopted. Given the numerical character of this work, here we do not attempt such793

analyses and/or proofs, but acknowledge that a general description and validation of794

the method will require an in-depth study of these properties; we reserve this for a795

future study.796

From the practical point of view, the RB method provides a solution with a797

computational cost that depends on the size of the basis. Therefore, any efficient798

implementation of the method requires keeping the size of the basis small. In this799

paper we introduced two concepts that aid in keeping the size of the basis small: i)800

exploiting the convergent nature of MCMC algorithms and ii) the use of a goal-oriented801

error estimator to detect when the basis needs to be enriched. The first concept is802

intrinsic to the coupling of RB and MCMC and it can become very efficient in cases803
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where information redundancy in the basis is monitored closely. For instance, certain804

solutions added to the basis during the initial stags of the inversion may become805

completely obsolete once the inversion has located the areas of high probability. This806

is because we are moving to a different region in the parameter space where previous807

solutions may be irrelevant. Additional tests (not shown here) demonstrated that808

even a simple SVD decomposition of the RB at specific intervals during the inversion809

is a very effective way of keeping the size of the basis small and removing redundant810

information in the basis. This become particularly important if the error estimator for811

updating the basis is not of the goal-oriented type.812

The use of a tailored goal-oriented error (see Section 3.2.4) is a key ingredient813

of the present method and is applicable to a large number (but certainly not all) of814

inversion problems. For example, in the case of an inversion where dynamic topography815

needs to be computed, vertical strain rates at either the surface of the model or at816

the base of the mechanical lithosphere need to be predicted accurately (unless a free817

surface formulation is used). So the basis may be trained to describe properly that818

particular quantity and not the complete velocity field of the model. In other words,819

velocities outside the region of interest are allowed to be less accurate, only if their820

values do not influence the quantity of interest within the prescribed threshold error.821

This generally results in a basis significantly smaller than that which would be required822

to reproduce well the solution in the entire domain.823

Finally, the current examples used a Newtonian formulation of the Stokes prob-824

lem. However, if non-linear rheologies (e.g. diffusion and dislocation creep laws) are825

adopted, the RB approximation remains the same as that of the Newtonian case and826

no modification are required to the method presented here. The main difference is that827

the error estimation strategy should be set accordingly to account for the non-linear828

character of the problem (e.g., Huerta & Dı́ez, 2000).829

7 Conclusions830

We present an efficient implementation of a Reduced Basis (RB) solver for the831

solution of the Stokes flow within a probabilistic inversion framework. The proposed832

approach combines the efficiency of a RB-based surrogate solver for the Stokes problem833

with the generality of Markov Chain Monte Carlo methods for complex geophysical-834

geodynamic inverse problems. In contrast to traditional implementations of RB, where835

the problem is split into two stages (i.e. offline and online), our approach takes ad-836

vantage of the ergodicity and stationarity properties of MCMC formulations to create837

and update the surrogate on a single stage, during the inversion process.838

The feasibility and efficiency of the combined RB+MCMC method are demon-839

strated using synthetic examples aimed at recovering the lithospheric structure in840

both illustrative and realistic scenarios. In all cases, the proposed method is able to841

successfully solve the probabilistic inverse problem using less than 1% of the compu-842

tational cost needed in a standard MCMC approach. In other words, the combined843

RB+MCMC method offers a staggering gain in computational cost of more than 99%844

compared to its standard MCMC counterpart. Moreover, these estimates are lower845

bounds and higher efficiency can be achieved in longer MCMC simulations due to the846

converging nature of the basis. The effect of a number of key parameters (e.g. di-847

mension of the parameter space, data errors, tolerances used for the surrogate) on the848

performance of the method are also assessed.849

The proposed method overcomes some important limitations of determinisitc850

geodynamic-geophysical inversions and makes possible the use simulation-based prob-851

abilistic inversion approaches for the physical and dynamic state of planetary interiors.852

Although our focus was on applications within the context of multi-observable prob-853
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abilistic inversions (e.g., Afonso, Fullea, Yang, et al., 2013; Afonso, Rawlinson, et al.,854

2016), our method is general enough to find applications in problems such as un-855

certainty quantification/propagation, adjoint-based geodynamic inversions, sensitivity856

analyses in mantle convection problems as well as in other complex forward problems857

of geophysical interest (e.g. magnetotellurics, heat transfer, seismic tomography). We858

are currently working on some of them.859

Appendix A Extra FE solutions860

The criterion (9) used to accept or reject a proposed model (i.e. a new state in861

the chain) is based on comparing the value of the posterior for the proposed model,862

σ(mnew), with the posterior for the current state of the chain. The evaluation of the863

posterior requires the solution of a forward problem, which associated a specific er-864

ror/accuracy. Since our RB approach builds and adapts the basis on the fly using865

error estimators, this accuracy may vary among successive forward problems. Con-866

sider the case when the error of the RB solution for a proposed model is above the867

predefined threshold and thus a high-fidelity FE solution is required. If the forward868

problem of the current state in the chain was accurately solved in a previous step869

with the RB surrogate, the comparison in (9) is now performed between a RB ap-870

proximation (current) and a high-fidelity FE solution (new proposal). Since both of871

these solutions have different intrinsic accuracies/errors and misfits, the comparison is872

no longer objective and the Metropolis criterion is corrupted. In practice, significant873

differences in their respective errors is not uncommon and may result in a divergent874

chain and/or an inaccurate representation of the posterior. When this is the case,875

the random walk typically becomes “stuck” at some “good” model computed with876

the surrogate as new proposed models based on high-fidelity solutions tend to have877

higher misfits and therefore they are rejected. This difficulty does not exist in simpler878

approaches where a single surrogate is created offline and used unmodified during the879

inversion (e.g., Galbally et al., 2009; Wang & Zabaras, 2005; Lieberman et al., 2010).880

Now consider the opposite case, where the proposed model is accurately solved881

with the RB surrogate and the current model was solved with a high-fidelity FE solver.882

The comparison in (9) remains non-objective. However, unlike the previous case, the883

random walk generally does not get stuck here since the current model is the most884

accurate one (i.e. solved with the high-fidelity solver).885

The problem described above can be avoided with a small modification to the886

original algorithm. Given the Markovian property of the chain (i.e. dependence only on887

the current state of the chain), the only strong requirement is that the comparison in (9)888

remains objective. Therefore the simplest solution requires that every time a proposed889

model is solved with FE, we also recompute (only if needed) the previous model with890

FE. In doing so, the comparison is always performed with solutions represented in891

the same space and exhibiting a similar accuracy. The recomputed FE solution of892

the previous model is only used for the comparison in (9) and is not added to the893

basis, as otherwise it would provide redundant information to it. While this simple894

approach guarantees that the comparison is objective, it has the drawback of requiring895

additional FE solutions. More efficient approaches can certainly be devised, but a896

complete description of them and their effect on the covergence and ergodicity of the897

chain are beyond the scope of this work and thus left for a forthcoming publication.898
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