
Understanding and Exploiting the Internals of
GPU Resource Allocation for Critical Systems

Alejandro J. Calderón1,3, Leonidas Kosmidis2, Carlos F. Nicolás3, Francisco J. Cazorla2, Peio Onaindia3
1Universitat Politècnica de Catalunya 2Barcelona Supercomputing Center (BSC) 3Ikerlan Technology Research Centre

Abstract—Critical real-time systems require strict resource provision-
ing in terms of memory and timing. The constant need for higher
performance in these systems has led industry to recently include GPUs.
However, GPU software ecosystems are by their nature closed source,
forcing system engineers to consider them as black boxes, complicating
resource provisioning. In this work we reverse engineer the internal
operations of the GPU system software to increase the understanding
of their observed behaviour and how resources are internally managed.
This way, we allow system engineers to accurately determine the
exact amount of resources required by their critical systems, avoiding
underprovisioning. We first apply our methodology on a wide range
of GPU hardware showing its generality in obtaining the properties
of the GPU memory allocators. Next, we demonstrate the benefits of
such knowledge in resource provisioning of two case studies from the
automotive domain, where the actual memory consumption is up to 5.6×
more than the memory requested by the application.

I. INTRODUCTION

In the domain of critical real-time systems we find a wide spectrum
of computer systems. On the one end of the spectrum we have safety
critical systems, ranging from transportation to medical and control
systems. Since human lives are at stake, such systems usually have
hard real-time requirements, which means that their correct behaviour
is dictated not only by correct functionality but also by their timely
execution with respect to predefined deadlines. On the other end we
find business and mission critical systems which although do not
impose a threat to human safety, their correct and timely execution is
essential to fulfil their mission, typically to provide valuable services
to science, society and economy. Examples of such systems are
banking and commerce services, communications and scientific space
missions, which have somewhat less strict timing requirements, but
still important for their operation and justification of their high cost.

Despite that these systems are very diverse and have very different
particular requirements, all of them have a common property: they
require high availability. The key to achieve high availability is the
careful resource provisioning of the system, in order to guarantee
that each of the tasks of the system has enough resources to be
efficiently executed, without at the same time exceeding a limit that
can jeopardise the entire system or impact the other tasks.

In particular, one of the most extreme cases of resource provi-
sioning is found in avionics [1], whose operating system standard,
namely ARINC653 [2] enforces strict memory and time budgets for
each task. This requires that the system engineer needs to figure
out the exact memory usage of each task and ensure that the total
memory usage does not exceed the size of the system memory.
Similarly in timing, the worst case execution time of each task has
to be determined, and ensure that it is smaller than its deadline and
that the overall system has enough capacity to accommodate the
execution of all tasks. Automotive operating systems, AUTOSAR-
compliant [3], follow a similar approach in resource allocation, as
well as the operating systems in other critical domains like Integrity
RTOS in industrial control systems [4].

In less critical systems built on general purpose operating systems
like Unix-based ones, although the operating systems do not impose

these limitations for each task, system engineers still perform the
same type of analysis. For example, although these operating systems
do allow the use of more memory than the one physically present
in the system, based on virtual memory and disk-backed memory (a
feature known as paging or swap) and/or compression, the perfor-
mance of the system is severely affected when this feature is used,
compromising its timing behaviour and under heavy memory pressure
even the stability of the system is jeopardised. Therefore, the accurate
resource provisioning allows to prevent such scenarios, guaranteeing
that the total capacity of the system is not exceeded.

A recent trend in the critical domains is the introduction of
GPUs, in order to satisfy the performance demand of advanced
features. Probably the most well known case is in automotive, where
automakers are working on autonomous driving prototype vehicles [5]
powered by GPUs mainly for cognitive tasks and artificial intelli-
gence. The medical domain and finance are also employing GPUs [6]
mainly for image processing and high-computational capacity, as well
as the space domain [7]. Other critical domains are expected to follow
as well, especially whenever there is a need for inference based on
artificial intelligence (AI) or high compute performance.

The GPU market lead vendor NVIDIA has performed significant
investments in the automotive and industrial automation sector by
designing embedded GPU systems meeting the temperature and
reliability needs of these markets, such as the NVIDIA PX2 and
its development board Jetson TX2, the NVIDIA Xavier and its latest
addition NVIDIA Jetson Nano.

Despite the important performance benefits provided by GPUs,
they are notoriously known about their closed source nature. In
particular, NVIDIA GPUs are programmed in CUDA, a proprietary
programming language developed by NVIDIA. The GPU execution
model in its rudimentary form follows an accelerator approach, in
which the programmer has to explicitly allocate GPU memory and
manage transfers between the CPU and the GPU, as well submitting
code to be executed in the GPU, known as kernel. Although this
explicit resource allocation provides the delusion of full control over
the resource management, the actual resource consumption both in
memory and timing is larger, hidden behind closed source layers. The
reason is that the actual resource management takes place within the
CUDA runtime and GPU driver, which are closed source.

As a consequence, an accurate resource provisioning of GPU
applications is complicated, leading either to underestimation or
overestimation of resource provisioning. Although this problem is
not yet very evident in the existing under-utilised prototype systems,
based on Unix-like operating systems e.g. Linux, it will soon be
a roadblock as these systems will require the consolidation of more
software functionalities in the same platform. Even more importantly,
the problem will be more pronounced when these systems will be
moved to operating systems for critical systems with strict and ex-
plicit resource provisioning per task like AUTOSAR and ARINC653.

In this work, we expose for the first time the internal resource
allocation mechanism of a GPU system. This way, we allow the

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works. DOI: 10.1109/ICCAD45719.2019.8942170

accurate resource provisioning for a GPU-based critical system.
First we review the different types of memory allocation in a GPU
system and we start by demonstrating the basis of our methodology
with a small motivational example. Next we present some essential
background on memory allocators and we describe in detail our
methodology to discover the properties of the memory allocator used
in a GPU-based system. Finally, we present our findings for a wide
range of GPUs and we use the information about the internals of the
memory allocator to demonstrate the benefits of accurate resource
provisioning with two case studies for a critical system, showing that
the actual memory consumption is significantly higher than the one
requested by the software.

II. MEMORY ALLOCATION IN GPUS

Before we enter into the GPU memory allocation internals, it is
essential to review the programmer’s view of memory management
in order to better understand its internal behaviour. As already
mentioned, in the CUDA programming model, the programmer is
in charge of explicitly managing memory for both the CPU and the
GPU side, including allocation, deallocation and transfers between
the CPU and the GPU.1

Regular CPU memory ie. allocated using malloc or mmap is by
default paged, which means that the operating system can swap it out
to the disk if needed, typically due to memory oversubscription. On
the other hand, GPU memory, allocated with cudaMalloc is always
non-paged, that is, it is always present in the memory. Copies between
CPU and GPU memory are performed by DMA (Direct Memory
Access) operations. However, as DMA transfers are asynchronous
with respect to the CPU execution, they can operate only when the
pages are guaranteed to be resident in the memory. Since this is not
always the case for paged memory, the transfers need to pass from a
staging area of non-paged memory. In other words, in a CPU to GPU
transfer, memory needs to be copied first to this intermediate buffer
using the CPU and therefore synchronously, before the DMA can kick
in to perform the asynchronous transfer to the device. This results
in additional memory, which can be shared among applications, and
additional timing overhead in GPU transfers.

In order to avoid these overheads, the programmer can allocate
non-paged CPU memory, also known as pinned memory or paged-
locked using cudaMallocHost. However, this type of memory in
the system is limited and its allocation is more expensive since it
requires a user space to kernel space switch. This allows the use of
fully asynchronous transfers using cudaMemcpyAsync.

Last, there is the option to allocate another type of pinned
memory in the CPU side, which is also memory mapped
to the GPU, using cudaHostAlloc and specifying the flag
cudaHostAllocMapped. This means that no explicit copies are
required between the CPU and GPU, which gives the name zero-copy.
Depending on the type of the GPU, this is implemented in a different
way. In a discrete GPU, ie. GPUs with their own physical DRAM
memory, the copies are performed in a fined-grained manner using the
DMA engines to transfer the data over the PCIe link. On the other
hand, in embedded (integrated GPUs) which share the same main
memory with the CPU, the GPU directly accesses the same memory
as the CPU. Of course in both cases it is up to the programmer to

1CUDA also provides a feature called Unified Memory, which takes this
responsibility away. Despite the increase in productivity, the performance of
this feature heavily depends on the application’s memory access patterns and
it adds even more black-box behaviour to the memory management and its
timing, which makes it less suitable for critical systems. For this reason, we
do not discuss this feature in the rest of this paper.

ensure the consistency of the shared memory between CPU and GPU.
This functionality is supported by a feature known as UVA (Unified
Virtual Addressing), which allows both the CPU and the GPU to
operate using the same virtual address. It is worth to note that UVA
is not the same with Unified Memory, which as we explained is not
appropriate for critical systems and therefore is not considered in
this study. On the contrary, Unified Memory is implemented using
the UVA feature.

III. MOTIVATIONAL EXAMPLE

Now that we have a clear idea about the different memory
allocation options in CUDA, we can see a motivational example
which explains the need for understanding the internals of GPU
memory allocations.

A l l o c a t e X b y t e s ;
Launch k e r n e l ;
A l l o c a t e Y b y t e s ;
Launch k e r n e l ;

Listing 1. Motivational Example

We execute the code shown in Listing 1 on a Jetson TX2 platform,
which is an embedded NVIDIA platform with an integrated GPU and
we measure the execution time of the 4 GPU-related calls shown in
the listing using nvprof, NVIDIA’s profiler.

In Figure 1 we see the results of running the example with two
allocations of the same size (1024 bytes). We notice that the first
allocation takes considerable time, while the second one is shorter
and the same happens on the first and second kernel launches.

However, when we allocate two chunks of memory with different
sizes (1024 and 4096 bytes), we notice that always the first allocation
and the first kernel launch for a given memory size take similar time
(Figure 2). We notice the same trend for all the 3 different types
of allocation introduced in the previous section (paged, pinned and
zero-copy).

This observation indicates that the underlying memory allocator
implemented in the closed source GPU runtime/driver manages each
of the memory allocations of different sizes in a separate way. The
question that is raised is following: can we determine the internals of
this memory allocator, so that we can know the exact system memory
allocated and predict which of the GPU related calls are expected
to take longer? In the following sections we will introduce our
methodology to discover the memory allocator internals. However, as
a first step we need to examine common characteristics of memory
allocators proposed in the literature for CPUs, since we suspect
that the implemented memory allocator is very probable to follow
a known design instead of being designed from scratch.

IV. BACKGROUND ON MEMORY ALLOCATORS

A memory allocator provides memory to a program when requested
and takes it back when the program frees it. It also keeps track of
the regions of memory that have been assigned and the regions that
are free to assign, using an auxiliary data structure. The main goal
of an allocator is to do these tasks in the least possible amount of
time minimising memory waste [8].

Initially the memory allocator reserves a contiguous chunk of
memory which is used as pool, to satisfy dynamic memory requests.
When the pool is full, the allocator expands by reserving a new pool.
Depending on whether the allocator is implemented in the operating
system or at user space, the memory for its pool is reclaimed by using
a predefined range of addresses or a preallocated memory region in

Host/CPU

223.65 ms 223.7 ms 223.75 ms 223.8 ms 223.85 ms 223.9 ms 223.95 ms 224 ms 224.05 ms 224.1 ms 224.15 ms

cudaHostAlloc cudaLaunch cud... cudaLau... cudaLau... cuda...

cudaHostAlloc cudaLaunch Kernel execution

GPU

Fig. 1. Execution times for GPU related calls shown in Listing 1 with same size, using zero-copy allocations.

cudaHostAlloc cudaLaunch Kernel execution

Host/CPU

223.5 ms 223.6 ms 223.7 ms 223.8 ms 223.9 ms 224 ms 224.1 ms 224.2 ms

cudaHostAlloc cudaHostAlloccudaLaunch cudaLaunch cud... cu...

GPU

Fig. 2. Execution times for GPU related calls shown in Listing 1 with different size, using zero-copy allocations.

the former case, or using the break or mmap system calls in the
latter. Custom memory allocators can also use the standard C library
calls such malloc.

A common challenge for a memory allocator is that programs
may free the allocated memory in any order, creating holes between
used blocks. Note that for efficient representation, block sizes are
usually powers of two and they have a minimum granularity. The
proliferation of small holes leads to the creation of unusable blocks
of memory, a problem known as fragmentation.

Fragmentation leads to memory waste, incrementing the amount of
memory used by the allocator. External fragmentation occurs when
the available free blocks are too small for the requested size or
when the allocator is unable to split bigger blocks to satisfy smaller
requests. Internal fragmentation occurs when a block larger than
needed is assigned, leaving wasted memory inside the block. To avoid
fragmentation, techniques like splitting free blocks (to satisfy smaller
requests) and coalescing free blocks (to create larger blocks) are used
in conjunction with an allocation policy.

As stated in [8], [9], [10] there are different policies and mecha-
nisms used by memory allocators to manage memory efficiently:

Sequential fits: memory allocators in this category are based in
a single linear list to manage the free blocks of memory. A best fit
allocator searches the smallest free block in the list large enough to
satisfy a request. A first fit allocator searches from the beginning of
the list and uses the first free block large enough to satisfy the request.
A next fit allocator begins the search from the last used position. A
worst fit allocator looks for the largest free block in the list.

Segregated free lists: such memory allocators use an array of free
lists, having one list for each block size. When a program requests
memory, the allocator uses the list with the smallest block size large
enough to satisfy the request. The fit of the allocations is not always
perfect because the available block sizes are limited, which causes
some internal fragmentation. Some segregated free lists allocators use
size classes to put together a range of sizes in the same list.

Buddy systems: these allocators allocate memory in fixed block
sizes which are split in two parts (or coalesced together) repeatedly to
obtain blocks of the requested size. A free block can only be merged
with it’s buddy, so coalescing usually is fast.

Indexed fits: some memory allocators, instead of searching se-
quentially in a free list, use a more complex indexing data structure
like a tree or a hash table to keep track of unallocated blocks. The
use of this type of indexed structures leads to faster searches and
allocations.

Bitmapped fits: these allocators use a bitmap to keep a record
of the used areas of the heap. A bitmap is a vector of one-bit

flags where each bit represents a word in the heap. The search in a
bitmap is slower than in an indexed structure, however, the memory
consumption is lower because it does not need to store the size of
the blocks.

V. REVERSE ENGINEERING CUDA’S MEMORY ALLOCATORS

After reviewing the properties of existing memory allocators, we
can design a methodology in order to discover the internals of
the CUDA memory allocators. Note that we are interested in the
key parameters of the memory allocator which affect its memory
consumption and timing behaviour, but we are not after obtaining
every single detail about its design ie. whether its free list is
implemented using a list, tree or a bitmap, since such a task may
not be entirely possible to achieve or at least not with a reasonable
amount of effort. Furthermore and most importantly it does not affect
resource provisioning in the same degree to the other parameters.

Without loss of generality, we focus on the same architecture we
used for the motivational example. In fact, as we show in the next
Section, the same methodology is applicable to all NVIDIA GPUs
we tried, ranging from old to bleeding edge GPU models. Moreover,
since our methodology does not depend on CUDA, it could also be
applied on non-NVIDIA GPUs programmed in OpenCL.

Starting from the zero-copy allocation scenario, we want to identify
the basic design of the memory allocator which is used in order to
allocate pinned memory in the CUDA runtime and driver. The fact
that the allocation for different sizes results in significantly longer
execution times for the first allocation, means that the allocator
follows a segregated free list design. Therefore, the next step is to
identify its size classes as well as the pool size of each free list.

In order to achieve our goal, we design carefully crafted memory
allocation experiments and observe their behaviour in order to extract
the information we are after. The entire methodology is implemented
using a fully automated set of scripts, that can be executed in any
system featuring an NVIDIA GPU and extract its memory allocator
properties. Our code is available at [11].

Algorithm 1: Pool size extraction
Output: pool size

1 Allocate 1 byte of pinned memory
2 Capture mmap system call
3 Extract len argument from mmap system call
4 pool size← len
5 Free memory allocated

Pool Size: In order to identify the pool size of each list, we first
create an experiment in which we allocate the minimum amount
of memory as shown in Algorithm 1. Since pinned memory has
to be requested from the operating system, a user space to kernel
space transition based on a system call is required. We monitor the
system calls of the executing process using the strace utility, which
intercepts the system calls as well as their parameters.

We notice that the memory allocation call generates a mmap system
call, whose second argument corresponds to the size of the memory
pool for the list. In our platform, this size is 2MB.

As a validation, running strace on the example of Listing 1
reveals a mmap only on the first allocation of each size, both with
the same size of 2MB, which explains their longer execution time.

Algorithm 2: Granularity calculation
Input: pool size
Output: granularity

1 Allocate 1 byte of pinned memory
2 allocations← 1
3 while a new mmap is not generated do
4 Allocate 1 byte of pinned memory
5 allocations← allocations+ 1
6 end while
7 granularity ← pool size/allocations
8 Free memory allocated

Allocation Granularity: Once we know the memory pool size,
we need to identify the minimum memory size which corresponds
in a single entry within the free list. We achieve this by applying
Algorithm 2. The idea is simple: we try to repeatedly allocate the
minimum size, until the free list is expanded, by using a new memory
pool, which is indicated by a mmap call in the strace. In our
platform, this happens after 4096 allocations, which means that each
allocation reserved a 512 bytes entry within the free list.

Algorithm 3: Size classes extraction
Input: granularity
Output: size classes information

1 inferior size← granularity
2 superior size← granularity
3 size class← 0
4 while not all classes extracted do
5 Allocate inferior size bytes of pinned memory
6 size class← size class+ 1
7 while a new mmap is not generated do
8 superior size← superior size+ granularity
9 Allocate superior size bytes of pinned memory

10 Free last allocation
11 end while
12 Save size class, inferior size and

superior size− granularity
13 inferior size← superior size
14 Free memory allocated
15 end while

Size Classes: Knowing the size of each free list and the allocation
granularity, we can focus on detecting how many free lists are kept
by the allocator, each corresponding to a different size class. In
Algorithm 3 we start creating allocations of increasing sizes, by using

the granularity as an increment factor. If a new pool is not created
(no new mmap) we free the allocation and try the next size. This way
we prevent the case that the existing pool used for the current size
class is expanded and therefore generating a false positive mmap.

In this experiment, we also validate that the pool size and gran-
ularity obtained for the first size class using Algorithms 1 and 2
respectively, hold also for each of the other free lists corresponding
to the rest of the size classes. However, this validation is not shown
in Algorithm 3 for clarity. This is achieved by using the same
algorithms, but instead of allocating 1 byte, we allocate minimum
size corresponding to the examined size class. We confirm that in
all our experiments, these values are consistent among all the size
classes for the examined systems described in the Results Section.

Algorithm 4: Best fit ascending test
Input: inferior size, superior size
Output: Determines if the policy used is best fit

1 for size = superior size to inferior size do
2 Allocate size bytes of pinned memory
3 end for
4 foreach other allocation do
5 Store size of other allocation
6 Free other allocation
7 end foreach
8 for size = min stored size to max stored size do
9 Allocate size bytes of pinned memory

10 end for
11 Check if all new allocations were assigned using best fit

policy
12 Free memory allocated

Allocation Policy: Having obtained all the parameters of the
memory allocator, it only remains to identify the policy used in a free
list. For this reason, we created validation tests for each type of the
four main policies: first fit, best fit, next fit and worst fit. Algorithm 4
shows one these tests checking for the best fit policy. We first create
a number of allocations with a decreasing size corresponding to
the entire range of allowed sizes for a given size class, so that all
allocations are held in the same free list (lines 1-3). Since at this
point the free list is empty, each allocation takes the next available
free block, resulting in consecutive allocations in the list.

Next, we start freeing every other allocation, creating free blocks of
decreasing size and keeping track of their size (lines 4-7). In the final
step, we start allocating the same size of blocks that were released
in the previous step, but in the reverse order (lines 8-10). That is,
each new allocation best fits in the last block of the free list. If the
allocator follows a best fit policy, it will result in allocating the same
positions as the ones that were freed in the previous step. Otherwise,
eg. if the allocator follows a first fit policy, then the allocations would
be suboptimal, resulting in an expansion of the original pool.

In order to perform the validation, we use multiple measures. First
we use strace to validate that there is no expansion of the pool
during lines 8-10. Moreover, we keep track of the addresses returned
by each and make sure that the new allocations correspond to their
best locations, which were their old locations.

Note that the presented example is only one of the variations of
the policy validation tests, which are not shown here due to the lack
of space and because they are quite similar. In particular, we have
versions which perform the allocations in reverse order, or applying
the last step (lines 8-10) in random order, in order to check whether

the policy instead of best fit follows a LIFO (Last-In Last-Out, stack-
like) policy. Another variation of this test uses allocations of the same
size, in order to identify what is the allocation policy in the presence
of multiple equal size blocks.

Coalescing: In this experiment we perform a series of allocations
with arbitrary sizes which however can be rounded up to the same
size in a given size class. Next, we create two neighbouring free
blocks in the middle of the free list. In the following, we allocate a
single block with size equal to the addition of the free blocks and
we check whether the allocator merges the blocks or creates a new
allocation in the free list.

Splitting: This experiment is similar to the previous one, with the
difference that only one block is freed in the free list. Then a smaller
size block is allocated, to check whether the allocator splits the free
block, or the new allocation takes place elsewhere in the free list.

Expansion Policy: For this experiment we perform allocations for
a given size class, until the pool is expanded one or multiple times.
First we check whether the pool is expanded when it is full – after
allocating exactly the same size of allocations with the pool size – or
earlier, when an occupancy threshold in the list is exceeded. Next we
free a block from the first pool, and perform a new allocation. This
way we can check whether the allocation policy is applied across all
the pools of the same size, or whether an alternative policy is applied
eg. only to the last allocated pool.

Shrinking: Finally, we check whether the memory allocated for
expanded memory pools is returned to the system. This is similar
to the previous experiment. We perform allocations of the same size
class until the memory pool is expanded several times and then we
free all the allocations of a given memory pool. We validate whether
the memory pool is returned to the system by observing a munmap
after its last block is freed. Moreover we check whether only a certain
memory pool is returned eg. only the last allocated or any of them.

Timing: The methodogy we presented so far corresponded to the
case of pinned memory and in particular with zero-copy. In this
case, in addition to the mmap during memory allocation calls, we
obtain also ioctl system calls during the kernel launches. These
system calls are used in order to communicate with device drivers. We
observe that in the first kernel execution after a new pool created for
a new size class, the kernel invocation has an extra ioctl call. We
attribute the longer execution time of these kernels in this additional
ioctl, which we speculate that is responsible for performing the
memory mapping of the host pinned memory to the GPU’s MMU
(Memory Management Unit).

Paged-memory Allocator: The previously presented methodology
is also appropriate without any modifications for the conventional
pinned memory allocation, in which there is an one-to-one corre-
spondence of CPU and GPU allocated memory. However, for the
memory allocator used for the paged-memory allocations we need a
slightly different way to observe its internals.

In particular, the paged-memory allocations do not require a user-
to-kernel switch and therefore its parameters cannot be obtained using
strace. However, we assume that the same allocator design used for
pinned memory for CUDA is also used for managed memory within
CUDA, in order to reduce development and verification costs. As we
comment in the Results Section, this assumption is fully validated.
Since strace is not applicable in this case, the observation of
the memory allocator’s behaviour is applied by instrumenting the
code with gdb in order to obtain the API call parameters and the
returned pointers to the allocated blocks. Also, the timing behaviour
is observed as previously, using NVIDIA’s profiler. With these

modifications, the previously presented algorithms are also used to
obtain the key properties of the paged-memory allocator, too.

VI. RESULTS

A. Obtained Properties of CUDA allocators for various GPU models

In this Section, we provide the results we have obtained using our
methodology on a wide range of NVIDIA GPUs, ranging from very
old products with capability 1.1 to the latest NVIDIA’s embedded
SoC Nano, as shown in Table I.

TABLE I
TESTED GPU PLATFORMS

Device Name Comp. Runtime/ Kernel GPU
Capabil. Driver Version Type

GeForce 9300M GS 1.1 6.5 3.19.0 Discrete
Quadro FX 3700 1.1 6.5 3.12.9 Discrete
GeForce GTX 960M 5.0 10.0 4.15.0 Discrete
GeForce GTX 1050 Ti 6.1 9.2 4.15.0 Discrete
GeForce GTX 1080 Ti 6.1 9.2 4.15.0 Discrete
Tegra X1 (Nano) 5.3 10.0 4.9.140 Integrated
Tegra X2 (TX2) 6.2 9.0 4.4.38 Integrated
Xavier 7.2 10.0 4.9.108 Integrated

We have implemented our methodology in a fully automated set of
scripts performing the experiments described in the previous section.
Once the scripts are executed, in a few seconds a report is generated
with the information about the memory allocator. In the Listing 2
we can see the generated report about the NVIDIA’s TX 2 platform,
which we used in the discussion of the previous Sections.

We observe that the pool size is 2MB and the minimum allocation
granularity is 512 bytes. The allocator is using 6 size classes, with
the last one ranging up to the pool size. Larger allocations are always
rounded up to the next 4KB multiple, which is the system’s page size.
The allocator is implementing a Segregated Lists Allocator with best
fit policy. In the event of expansion, the allocator is keeping a stack
of pools. Deallocations can happen to any of the pools, however new
allocations are only allocated in the last created pool. The allocator
frees the memory used by any pool when all its blocks are freed.

Device name : NVIDIA Tegra X2
Compute c a p a b i l i t y : 6 . 2
CUDA r u n t i m e v e r s i o n : 9 . 0
CUDA d r i v e r v e r s i o n : 9 . 0

Pool s i z e : 2097152 b y t e s
G r a n u l a r i t y : 512 b y t e s

S i z e c l a s s e s
1 : 1 t o 2 b l o c k s o f 512b [1 t o 1024 b]
2 : 3 t o 8 b l o c k s o f 512b [1025 t o 4096 b]
3 : 9 t o 32 b l o c k s o f 512b [4097 t o 16384 b]
4 : 33 t o 128 b l o c k s o f 512b [16385 t o 65536 b]
5 : 129 t o 512 b l o c k s o f 512b [65537 t o 262144 b]
6 : 513 t o 3583 b l o c k s o f 512b [262145 t o 1834496 b]
L a r g e r a l l o c a t i o n s : mmap rounded t o n e x t 4KB m u l t i p l e

A l l o c a t o r p o l i c y : Bes t f i t
C o a l e s c i n g s u p p o r t : Yes
S p l i t t i n g s u p p o r t : Yes
Expans ion p o l i c y : When f u l l . Use l a s t c r e a t e d .
S h r i n k i n g s u p p o r t : Yes . Any poo l d e l e t e d .

Listing 2. NVIDIA TX2 memory allocator report

Regardless of the version of the driver or the hardware, we obtained
exactly the same results for the following GPUs: GeForce GTX 1080

TABLE II
GPU MEMORY ALLOCATIONS IN EDGE DETECTION TASK (TX2)

Variable Type Size

Input Image (640×480) int8 RGB 921600 bytes
Filter Kernel (3×3) int8 9 bytes
Output Image (640×480) int8 307200 bytes

Total: 1228809 bytes

TABLE III
GPU MEMORY ALLOCATOR USAGE IN EDGE DETECTION (TX2)

Variable Size Size Occupied Occupied
Class 512b Blocks Size

Input Image 6 921600 bytes 1800 921600 bytes
Filter Kernel 1 9 bytes 1 512 bytes
Output Image 6 307200 bytes 600 307200 bytes

Total: 1229312 bytes

Ti, GTX 1050 Ti and Xavier. For the GPUs GeForce GTX 960M
and TX1 Nano we also obtained identical results but with the pool
size being 1MB. For the older GPUs, Quadro FX 3700 and GeForce
9300M GS we obtained a pool size of 1MB but 256 bytes granularity.

Our results indicate that the same properties are followed by
both the memory allocator for paged and pinned memory, includ-
ing zero-copy. However, our system call and timing analysis for
understanding the sources of variability in the execution time of
GPU related calls has revealed that in the newer devices which
support UVA (the ones with compute capability more than 2),
only the zero-copy scenario is supported, regardless of whether the
flag cudaHostAllocMapped is used.

B. Exploiting the knowledge of CUDA allocators in Automotive case
studies’ resource provisioning

The ultimate purpose of exposing the internals of the CUDA
allocators, is this knowledge to be leveraged to compute precisely the
amount of memory used by critical applications. As explained in the
introduction, this will be essential when GPUs will be incorporated
in avionics and automotive RTOSes. Moreover, in current general
purpose operating systems it allows to make sure that the system
can safely accommodate the memory and timing requirements of the
application, without the use of unpredictable swap memory.

In order to demonstrate these benefits, we apply our knowledge on
two automotive case studies used in modern vehicles’ environment
perception: a model-based generated safety-critical automotive task,
implementing a sobel filter for edge detection and a pedestrian
detection task [12]. The former, edge detection, is very common in
both ADAS (Advanced Driving Assistance Systems) and autonomous
driving for numerous tasks such as lane departure [13], sign [14] and
car detection [15]. Pedestrian detection is also used for ADAS, eg.
automated breaking as well as for autonomous driving.

When we execute our memory allocator properties detector on a
given platform, we generate a configuration file with its properties.
We have created a library exposing the CUDA memory allocation
API calls, which is preloaded before a GPU program execution. This
way, we can intercept all memory requests and their sizes and based
on the configuration file, we can provide details about the actual
memory consumption of the allocator, as we present in the results of
the two case studies next.

TABLE IV
GPU MEMORY ALLOCATIONS IN PEDESTRIAN DETECTION (TX2)

Variable Allocs. Individual Size Total Size

Input Image (640×480) 1 307200 bytes 307200 bytes
Output Image (640×480) 1 307200 bytes 307200 bytes
Classifier
Struct A 1 32 bytes 32 bytes
Struct B (30×16 array) 1 480 bytes 480 bytes
Struct C (250×32 array) 30 8000 bytes 240000 bytes
Struct D 7500 84 bytes 630000 bytes

Total: 7534 1484912 bytes

1) Edge Detection: Table II shows the dynamically allocated
memory, explicitly allocated in the program. We notice that the input
is a 3-component (RGB) image 640×480 and a 3×3 filter kernel,
while the output is a single component 640×480 image, containing
the detected edges. Without knowing the internals of the CUDA
memory allocator, when the task is executed on the TX2 platform
with zero-copy pinned memory a system engineer might provision
1228809 bytes memory consumption.

However, Table III shows the actual memory used by the memory
allocator. We notice that we have allocations from two different size
classes. This means that two memory pools are created, with 2MB
each. Each of these creations will increase the execution time of two
memory allocation calls, the first ones corresponding to these class
sizes, as well as the execution time of the first kernel invocation
following these allocations.

Therefore, the total memory consumption to be provisioned is 4MB
for this platform and configuration, which is 3.4× more than it was
expected, due to internal fragmentation. The memory allocator though
is only using a fraction of those. In the first free list, the 3×3 kernel
is occupying a single block of 512 bytes instead of 9 bytes due to
the minimum block granularity, while in the other free list 1228800
bytes are occupied compared to the 2MB of the pool, resulting in
58% free list occupancy.

On the other hand, in a Nano platform, each memory pool occupies
1MB. However, the two images exceed the memory pool size for
size class 6, requiring the memory pool to expand. Therefore the
allocator uses 3MB for its pools, which is 2.6× larger that the
memory explicitly allocated by the application. In older GPUs like
the GeForce 9300M GS, the figures are almost identical, with the
difference of the block size of 256, which slightly changes the
occupied size in the pool for the filter kernel.

If the application is configured to use pinned memory but not zero-
copy, the above numbers are correct, too. The only difference is that
in this case both CPU and GPU memory is used, which doubles the
aggregate memory consumption.

Finally, if the application is configured to use paged memory, the
memory consumption is also doubled because both CPU and GPU
memory are used2. The difference in this case is that a pinned buffer
provided by the operating system is also used for performing the

2In fact the CPU paged memory consumption in that case is closer to
the explicitly allocated memory using malloc, since the GNU memory
allocator [16] only uses 8 byte aligned blocks in 32-bit platforms and 16
byte aligned blocks in 64 bit ones and it does not use segregated lists.
Moreover, the memory pool in CPU is lazily allocated, which means that the
OS only reserves the pages of the heap which have been accessed. However,
considering equal CPU and GPU memory consumption simplifies the CPU
side memory analysis and provides a safe upper bound for a safety critical
system in which lazy allocation is not used.

TABLE V
GPU MEMORY ALLOCATOR USAGE IN PEDESTRIAN DETECTION TASK

Variable Size Individual Occupied Individual Occupied Allocations Total Occupied
Class Size 512b Blocks Size Size

Input Image 6 307200 bytes 600 307200 bytes 1 307200 bytes
Output Image 6 307200 bytes 600 307200 bytes 1 307200 bytes
Classifier
Struct A 1 32 bytes 1 512 bytes 1 512 bytes
Struct B 1 480 bytes 1 512 bytes 1 512 bytes
Struct C 3 8000 bytes 16 8192 bytes 30 245760 bytes
Struct D 1 84 bytes 1 512 bytes 7500 3840000 bytes

Total: 7534 4701184 bytes

transfers. However, this buffer is shared among different applications
and as such it does not need to be taken into account when computing
the total memory consumption of the system, when multiple critical
tasks are consolidated in the same platform.

2) Pedestrian Detection: This application is significantly more
complex than the previous task and it is obtained from the open source
implementation of the benchmark described in [12]. In addition to
the input and output images, this task uses a complex dynamically
allocated cascade classifier structure. This structure consists of nu-
merous smaller dynamically allocated structures with sizes ranging
from 32 bytes to 84 bytes arranged in arrays, requiring a total of
7534 dynamic memory allocations as shown in Table IV.

In a zero-copy scenario, the CPU and the GPU can use the same
memory, therefore the complex structure can be used as is in the
GPU, gaining in programmability.

Table IV summarises the different GPU allocations of the ap-
plication. Without knowing the internals of the GPU allocator, a
system engineer would provision 1484912 bytes, out of which 870512
correspond to the structure of the classifier.

However, the Table V shows the actual memory consumption
within the memory allocator. Again we notice that the allocations are
rounded up to 512 byte multiples, since this is the minimum alloca-
tion granularity in the allocator, which penalises small allocations. In
this task there are 3 size classes used.

In platforms like the NVIDIA TX2 where the memory pool is
2MB, a single pool is enough for class sizes 3 and 6. However, for
the class 1 the total size exceeds 2MB, which requires the free list to
expand to accommodate the total of 3841024 bytes required for this
size class. Therefore the allocator uses 8MB in total, which is 5.6×
more than the initially provisioned one.

For platforms like Nano with 1MB pool size, again the class sizes
3 and 6 can use a single pool, while the class 1 requires 4 pools.
Therefore, the total consumption of the allocator is 6MB, 4.2× bigger
than the memory explicitly requested by the application.

In the case of paged-memory or pinned memory without zero copy,
the complex classifier structure cannot be used, since the pointers it
contains are not valid across the different CPU and GPU address
spaces. For this reason, the authors of [12] have used a single
allocation for the entire structure, which is partitioned accordingly.
This is similar to a custom GPU memory allocator, allowing a more
predictable behaviour. In that case, a single 870512 bytes allocation
is requested, which can fit in a single pool of either 2MB or 1MB
depending on the device. Inside this pool, it will occupy 1701 blocks
of 512 bytes, occupying 870912 bytes in the free list.

Since only a single size class is actually used in this case (class 6),
the total space used inside the free list will be 1485312, so the total
memory consumption of the allocator is the 2MB of the free list (same

amount divided in 2 free lists for devices with pool size of 1MB,
like the Nano), which is 1.4× more than the initially provisioned
one. Moreover, as in the previous task, since the application under
this scenario requires both CPU and GPU memory, this amount is
doubled.

VII. RELATED WORK

In this Section we present some previous works in the literature
similar to our work. We can categorise these works in articles related
to resource allocation and reverse engineering techniques in GPUs
and CPU memory allocators.

GPU Memory Allocators. Multi-core memory allocators like the
one proposed by Berger et al. [17], has been shown not to scale
well with many-core architectures like GPUs. For this reason, some
authors have approached the GPU resource management topic by cre-
ating custom memory allocators suited for many-core architectures:

Huang et al. [18], [19] proposed XMalloc, a memory allocator
based in two techniques: allocation coalescing (aggregation of mem-
ory allocation requests from SIMD-parallel threads to be handled by
the CUDA allocator) and buffering of freed blocks for faster reuse
using parallel queues. Results on a NVIDIA G480 GPU showed that
XMalloc magnified the CUDA allocator throughput by a factor of 48.

Steinberger et al. [20] showed that traditional memory allocation
strategies used by CPUs are not suited for the use on GPUs and
proposed ScatterAlloc. This allocator reduces collisions by scattering
memory requests using hashing. Experimental results showed that
ScatterAlloc was about 100 times faster than the CUDA allocator
and up to 10 times faster than XMalloc.

Widmer et al. [21] proposed FDGMalloc, which makes use of
the SIMD parallelism present in GPUs to significantly speed-up
the allocation of dynamic memory. The authors compared their
implementation with the CUDA allocator and with ScatterAlloc,
achieving a speed-up of several orders of magnitude.

A common characteristic in all these works is that they focus their
analysis in comparing the performance of their allocators with the
performance of the CUDA allocator, without trying to understand
its internal structure or the way it works as we do in this paper.
Moreover, these works obtain their memory through the CUDA
memory allocator, so they are still susceptible to the timing effects
of its usage.

Reverse Engineering Works on GPUs. The black box nature of
the GPUs has lead to the creation of some research works oriented
to the use of reverse engineering techniques to get information about
their internal characteristics.

Wong et al. [22] developed a microbenchmark suite to measure
various undisclosed characteristics of the processing elements and
memory hierarchies of a NVIDIA GTX280 GPU. Their results

validated some of the hardware characteristics publicly available
and revealed some other undocumented hardware structures used
for control flow and caching. Following a similar approach, Mei
et al. [23] exposed previously unknown characteristics about the
memory hierarchy of Fermi, Kepler and Maxwell NVIDIA GPUs.

Amert et al. [24] applied black-box experimentation to a NVIDIA
TX 2 GPU. Based on results, they defined a set of rules describing
the behaviour of the NVIDIA TX2 scheduler. The same group later
extended their work on software and disclosed a set of non-obvious
pitfalls to avoid when using CUDA-enabled GPUs for safety-critical
systems [25].

All these works are based in applying reverse engineering tech-
niques to hardware or software of GPUs, however, none of them is
oriented to get information about the memory allocation system and
leverage it, which is the focus of our study.

Reverse Engineering Memory Allocators. Eventhough memory
allocation is an extensively researched area, the only work to our
knowledge related to reverse engineering memory allocators is the
MemBrush tool, proposed by Chen et al. [26]. The purpose of Mem-
Brush is to detect the API functions of custom memory allocators in
stripped binaries. MemBrush has been used to improve other reverse
engineering tools like Howard [27], which is used to extract data
structures from C binaries without having any symbol tables.

To the best of our knowledge, our paper is the first work oriented
to extract information (real memory usage, size classes and allocation
policy) about a closed source GPU memory allocator and to analyze
the benefits of this information for critical systems.

VIII. CONCLUSIONS

In this paper we presented a methodology and an automated way
to extract information about the internals of the CUDA memory
allocators. We applied our method in a wide range of GPUs and
we identified that there is only a slight difference between different
GPUs, in the amount of memory used internally as a pool and the
granularity, in particular in older GPUs.

Moreover, we have applied our extracted information about the
memory allocator in two safety critical automotive case studies,
showing how a system engineer can be benefited by this information,
in order to provision the correct amount of memory. In particular
we have shown that the actual memory consumption of the memory
allocator can be up to an order of magnitude higher than the amount
requested by the application.

ACKNOWLEDGMENTS

This work has been partially supported by the Spanish Ministry of
Science and Innovation under grant TIN2015-65316-P, the HiPEAC
Network of Excellence and the European Research Council (ERC)
under the European Union’s Horizon 2020 Research and Innovation
programme (grant agreement No. 772773). Leonidas Kosmidis is also
funded by the Spanish Ministry of Economy and Competitiveness
(MINECO) under a Juan de la Cierva Formación postdoctoral fel-
lowship (FJCI-2017-34095).

REFERENCES

[1] L. Kosmidis, C. Maxim, V. Jegu, F. Vatrinet, and F. J. Cazorla, “Industrial
Experiences with Resource Management under Software Randomization
in ARINC653 Avionics Environments,” in IEEE/ACM International
Conference on Computer-Aided Design, Digest of Technical Papers,
ICCAD, 2018.

[2] ARINC, “Avionics Application Software Standard Interface: ARINC
Specification 653P1-3. Aeronautical Radio,” 2010.

[3] AUTOSAR, “AUTOSAR,” accessed April 2019. [Online]. Available:
https://www.autosar.org

[4] Green Hills Software, “Integrity RTOS,” 1996, accessed April 2019.
[Online]. Available: https://www.ghs.com/products/rtos/integrity.html

[5] NVIDIA Corporation, “Self Driving Cars,” accessed April 2019.
[Online]. Available: https://www.nvidia.com/en-us/self-driving-cars

[6] X. Yu, H. Wang, W. . Feng, H. Gong, and G. Cao, “GPU-Based Iterative
Medical CT Image Reconstructions,” Journal of Signal Processing
Systems, vol. 91, no. 3-4, pp. 321–338, 2019.

[7] R. L. Davidson and C. P. Bridges, “Error Resilient GPU Accelerated Im-
age Processing for Space Applications,” IEEE Transactions on Parallel
and Distributed Systems, vol. 29, no. 9, pp. 1990–2003, 2018.

[8] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles, Dynamic
Storage Allocation: A Survey and Critical Review, ser. Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 1995, vol. 986.

[9] Y. Hasan and J. M. Chang, “A Tunable Hybrid Memory Allocator,”
Journal of Systems and Software, vol. 79, no. 8, pp. 1051–1063, 2006.

[10] V. Shah and A. Shah, Proposed Memory Allocation Algorithm for
NUMA-Based Soft Real-Time Operating System, ser. Advances in In-
telligent Systems and Computing, 2019, vol. 814.

[11] A. J. Calderón, L. Kosmidis, C. F. Nicolás, F. J. Cazorla, and
P. Onaindia, “CUDA Memory Allocator Inspector.” [Online]. Available:
https://github.com/ajcalderont/cmai

[12] M. M. Trompouki, L. Kosmidis, and N. Navarro, “An Open Bench-
mark Implementation for Multi-CPU Multi-GPU Pedestrian Detection
in Automotive Systems,” in IEEE/ACM International Conference on
Computer-Aided Design, Digest of Technical Papers, ICCAD, vol. 2017-
November, 2017, pp. 305–312.

[13] U. Ozgunalp, “Combination of the Symmetrical Local Threshold and
the Sobel Edge Detector for Lane Feature Extraction,” in Proceedings -
9th International Conference on Computational Intelligence and Com-
munication Networks, CICN 2017, vol. 2018-January, 2018, pp. 24–28.

[14] H. Vishwanathan, D. L. Peters, and J. Z. Zhang, “Traffic Sign Recog-
nition in Autonomous Vehicles Using Edge Detection,” in ASME 2017
Dynamic Systems and Control Conference, DSCC 2017, vol. 1, 2017.

[15] R. Younis and N. Bastaki, “Accelerated Fog Removal from Real Images
for Car Detection,” in 2017 9th IEEE-GCC Conference and Exhibition,
GCCCE 2017, 2018.

[16] Free Software Foundation, “The GNU Alloca-
tor,” 2019, accessed April 2019. [Online]. Avail-
able: https://www.gnu.org/software/libc/manual/html node/The-GNU-
Allocator.html

[17] E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R. Wilson,
“Hoard: A Scalable Memory Allocator for Multithreaded Applications,”
in International Conference on Architectural Support for Programming
Languages and Operating Systems - ASPLOS, 2000, pp. 117–128.

[18] X. Huang, C. I. Rodrigues, S. Jones, I. Buck, and W. Hwu, “XMalloc:
A Scalable Lock-Free Dynamic Memory Allocator for Many-Core
Machines,” in Proceedings - 10th IEEE International Conference on
Computer and Information Technology, CIT-2010, 7th IEEE Interna-
tional Conference on Embedded Software and Systems, ICESS-2010,
ScalCom-2010, 2010, pp. 1134–1139.

[19] X. Huang, C. I. Rodrigues, S. Jones, I. Buck, and W.-m. Hwu, “Scalable
SIMD-Parallel Memory Allocation for Many-Core Machines,” Journal
of Supercomputing, vol. 64, no. 3, pp. 1008–1020, 2013.

[20] M. Steinberger, M. Kenzel, B. Kainz, and D. Schmalstieg, “ScatterAlloc:
Massively Parallel Dynamic Memory Allocation for the GPU,” in 2012
Innovative Parallel Computing, InPar 2012, 2012.

[21] S. Widmer, D. Wodniok, N. Weber, and M. Goesele, “Fast Dynamic
Memory Allocator for Massively Parallel Architectures,” in ACM Inter-
national Conference Proceeding Series, 2013, pp. 120–126.

[22] H. Wong, M. . Papadopoulou, M. Sadooghi-Alvandi, and A. Moshovos,
“Demystifying GPU Microarchitecture through Microbenchmarking,” in
ISPASS 2010 - IEEE International Symposium on Performance Analysis
of Systems and Software, 2010, pp. 235–246.

[23] X. Mei and X. Chu, “Dissecting GPU Memory Hierarchy through
Microbenchmarking,” IEEE Transactions on Parallel and Distributed
Systems, vol. 28, no. 1, pp. 72–86, 2017.

[24] T. Amert, N. Otterness, M. Yang, J. H. Anderson, and F. Donelson Smith,
“GPU Scheduling on the NVIDIA TX2: Hidden Details Revealed,” in
Proceedings - Real-Time Systems Symposium, vol. 2018-January, 2018.

[25] M. Yang, N. Otterness, T. Amert, J. Bakita, J. H. Anderson, and F. D.
Smith, “Avoiding Pitfalls when Using NVIDIA GPUs for Real-Time
Tasks in Autonomous Systems,” in Leibniz International Proceedings in
Informatics, LIPIcs, vol. 106, 2018.

[26] X. Chen, A. Slowinska, and H. Bos, “Who Allocated My Memory?
Detecting Custom Memory Allocators in C Binaries,” in Proceedings -
Working Conference on Reverse Engineering, WCRE, 2013, pp. 22–31.

[27] A. Slowinska, T. Stancescu, and H. Bos, “Howard: A Dynamic Excavator

for Reverse Engineering Data Structures,” Proceedings of the 18th
Annual Network and Distributed System Security Symposium (NDSS’11),
2011.

