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Resumen

Durante los ultimos años, las mejoras en la tecnologı́a de vehiculos espaciales se han
producido principalmente en las áreas de la microelectrónica, los dispositivos electrónicos
de alta frecuencia y los circuitos integrados para las comunicaciones y la navegación, las
células solares y las baterı́as para la generación y el almacenamiento de energı́a a bordo,
entre muchas otras.
A pesar de que las tecnologı́as de almacenamiento de energı́a han avanzado espectacu-
larmente en los últimos años, el consumo de energı́a de las comunicaciones, los sensores
y los sistemas de procesamiento de señales digitales a bordo es de suma importancia en
los sistemas alimentados por baterı́as o por energı́a solar, como los pequeños satélites.
Las aplicaciones que implican el uso de estos sistemas son múltiples, por ejemplo, apli-
caciones de observación de la tierra, vigilancia, comunicaciones de radiodifusión, investi-
gación cientı́fica, etc.
En las comunicaciones inalámbricas, el amplificador de potencia es un subsistema crı́tico
en la cadena de transmisión. No sólo porque es uno de los dispositivos que más energı́a
consume, sino también porque es la principal fuente de distorsión no lineal en el trans-
misor. Las señales de comunicaciones moduladas en amplitud y fase que presentan una
elevada PAPR(peak-to-average power ratio) tienen un impacto negativo en la eficiencia
del transmisor, porque el amplificador tiene que funcionar a niveles de retroceso de alta
potencia para evitar la introducción de distorsión no lineal.
La linealización mediante predistorsión digital (DPD) es la solución más común y extendi-
da para hacer frente a la linealidad inherente de los amplificadores de potencia (PA) frente
a la compensación de la eficiencia. Cuando se consideran señales de banda ancha, los
amplificadores de seguimiento de la envolvente o los transmisores de desfase, el número
de parámetros necesarios en el modelo DPD para compensar tanto las no linealidades
como los efectos de la memoria puede ser muy elevado. Esto tiene un impacto negativo
en la extracción de ceoeficientes del DPD, porque aumenta la complejidad computacional
y conduce a un exceso de ajuste e incertidumbre. Sin embargo, aplicando técnicas de
reducción de la dimensionalidad podemos evitar el mal condicionamiento numérico de la
estimación y reducir el número de coeficientes de la función DPD, lo que en última instan-
cia repercute en la complejidad computacional del procesamiento de la banda base y en
el consumo de energı́a.
En este proyecto se describirán y compararán varias técnicas de reducción de la dimen-
sionalidad en términos de capacidad de reducción del orden de los modelos y de su ren-
dimiento. En particular, se estudiarán algunas de las técnicas de aprendizaje automático
para la reducción de la dimensionalidad.
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Overview

Over the past half century, the improvements in spacecraft technology have been primarily
in the areas of microelectronics for on-board processing, high frequency electronic devices,
and integrated circuits for communications and navigation, solar cells and batteries for on-
board power generation and storage among many others.
Despite the fact that energy-storage technologies have advanced dramatically over the
past years, the power consumption of on-board communications, sensors and digital signal
processing systems is of paramount importance in battery or solar powered systems such
as small satellites, HAPs or UAVs (drones). There is multiple applications that involves
the use of these systems, e.g., Earth observation applications, surveillance, broadcast
communications, scientific research, etc.
In wireless communications, the power amplifier is a critical subsystem in the transmitter
chain. Not only because it is one of the most power hungry devices that accounts for most
of the direct current power consumption, but also because it is the main source of nonlin-
ear distortion in the transmitter. Amplitude and phase modulated communications signals
presenting high peak-to-average power ratio have a negative impact in the transmitter’s
power efficiency, because the PA has to be operated at high power back-off levels to avoid
introducing nonlinear distortion.
Digital predistortion (DPD) linearization is the most common and spread solution to cope
with power amplifiers (PA) inherent linearity versus efficiency trade-off. When consider-
ing wide bandwidth signals, such as Doherty PAs, envelope tracking PAs or outphasing
transmitters, the number of parameters required in the DPD model to compensate for both
nonlinearities and memory effects can be very high. This has a negative impact in the
DPD ceofficients extraction, because increases the computational complexity and drives
to over-fitting and uncertainty. However, by applying dimensionality reduction techniques
we can both avoid the numerical ill-conditioning of the estimation and reduce the num-
ber of coefficients of the DPD function, which ultimately impacts the baseband processing
computational complexity and power consumption.
In this Project, several dimensionality reduction techniques will be described and com-
pared in terms of model order reduction capabilities and evaluation performance. In partic-
ular, some of the machine learning techniques for dimensionality reduction will be studied.
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CHAPTER 1. INTRODUCTION

Artificial satellites are human-built objects orbiting the Earth and other planets in the Solar
System. This is different from the natural satellites, or moons, that orbit planets, dwarf
planets and even asteroids. Artificial satellites are used to study the Earth, other planets,
to help us communicate, and even to observe the distant Universe. Satellites can even
have people in them, like the International Space Station and the Space Shuttle. Artificial
satellites can have a range of missions, including scientific research, weather observation,
military support, navigation, Earth imaging, and communications. Some satellites fulfill a
single purpose, while others are designed to perform several functions at the same time.

Figure 1.1: Artificial satellites

Artificial satellites can be classified according to the altitude at which they will orbit, or
they can be classified according to their mass or size (see figure 1.2). Satellite platform
classification based on mass is presented in [1] where satellites with a mass of more than
1000 kg are considered large satellites, satellites between 1000 and 500 kg are considered
medium satellites and finally small satellites are all those below 500 kg. Small satellites are
divided into minisatellites, microsatellites, nanosatellites, picosatellites and femtosatellites.

The use of small satellites (mass lower than 500 kg), especially nanosatellites and mi-
crosatellites, is growing tremendously in the space field, thanks to the development and
wide use of the CubeSat standard and all related technology equipment. As an immedi-
ate consequence, small satellites have been increasingly proposed to build up distributed
space systems for earth observation and science purposes. However, even though the use
of this class of spacecraft presents several advantages in terms of mission costs, there are
additional constraints such as power and computational capabilities.

In a satellite communication system, main limitations are down link capabilities, especially
for small satellites. This is due to the limited amount of energy that can be obtained through
photovoltaic cells. A typical small satellite with 50 kg can generate only as small as power
of around 160 W as total and can distribute roughly 30 W. This is a power constraint for a
high-data-rate communication system for small satellites. Several hundred Mbps down link
system on conventional large satellite consume one or more hundreds watt. Therefore an
improvement in the efficiency of the satellite components is crucial to reduce the energy
consumed and thus improve the transmission rate.

All satellites have a communication system to be able to transmit collected data, therefore a
great part of the energy generated by the photovoltaic cells is consumed by the transmitter
elements. The main elements of a transmitter are the oscillator, the modulator and the
power amplifier, being the latter the one that consumes more energy. The PA are devices

3



4 Machine learning techniques applied to dimensionality reduction for digital predistortion linearizers

Figure 1.2: Satellite classification based on mass [2]

that convert a low power signal to a signal with a higher power and depending on the
gain it has, it can amplify more signal or less. The ideal operation of an amplifier is such
that with an input power Pin, you will have a power Pout = Pin ·Gain at the output. As
the input power increases, the output power increases proportionally. The reality is quite
different because from an input power Psat , the PA start presenting non-linear effects that
distort the output signal, thus limiting the maximum input power. Therefore, the non-linear
effects of the amplifier cause a worsening of the efficiency of the PA resulting in more
energy consumption. Over the years, several linearization methods have appeared that
try to improve the efficiency of such amplifiers and one of them is the digital predistortion
(DPD). DPD is a linearization technique oriented at extending the linear dynamic range
in PAs. By using mathematical models such as Volterra series or simplified versions of
the Volterra series, it is possible to model the behaviour of the PA and then use it DPD
linearization purposes. These parametric behavioral models consist of linear combinations
of nonlinear basis functions. The number of basis functions or coefficients in a model is
an indicator of its complexity and directly affects the computational load and therefore the
consumption of digital processors. One of the main challenges of behavioral modeling is
choosing the most relevant basis functions to achieve the right data fitting. In order to avoid
over-fitting (i.e., including more coefficients than needed) that yields to an inaccurate (or
ill-conditioned) estimation of the model parameters, in this project we will analyze several
methods to reduce the complexity of the behavioral models by reducing the number of
coefficients. This will not only have a beneficial impact by reducing the computational load
and therefore the power consumption of digital signal processors, but also it will introduce
regularization effects.

Therefore, this work is divided into 6 chapters and is organized as follows. In Chapter 1 a
short introduction and the motivation of this work is given.

Chapter 2 introduces the non-linear behaviour in power amplifiers, the most relevant met-
rics to measure it and finally, the main linearization techniques oriented at compensating
for these unwanted non-linear behavior in PAs.

Chapter 3 discusses some of the most relevant behavioral models in literature to charac-
terize the PA nonlinear behavior and introduces the the extraction of the behavioral models’
coefficients.

Chapter 4 presents a detailed analysis of the different model order (or dimensionality)
reduction methods under analysis. Some of the specific details will be discussed and
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partial results will be given.

In chapter 5 we describe the experimental data and setup used for obtaining the results.
In addition, a detailed comparison of the dimensionality reduction techniques described in
Chapter 4 is provided in terms of modeling accuracy versus number of required coefficients
and running time of the algorithms’ search.

Finally, in chapter 6 conclusions are given and some future work to do is envisaged.





CHAPTER 2. LINEARITY VERSUS POWER
EFFICIENCY TRADE-OFF IN POWER

AMPLIFIERS

2.1. Introduction

A radio frequency power amplifier is a tuned amplifier that amplifies high-frequency signals
used in radio communications. When the signal is sent from the transmitter, the power of
signal is absorbed by environment, in other words, the signal is attenuated. Therefore, if
the transmitted signal is not enough at the the transmitter side, when the signal reached
the receiver, it will have a very low power and the receiver may not be able to detect the
signal. Therefore, the power of signal have to be increased in the beginning as much
as it is possible and this is the main job of the power amplifier. Radio frequency PA are
the most power consuming devices in the transmitter block diagram and one of the main
sources of nonlinear distortion. Therefore, the PA’s efficiency is a key feature to lower
the running costs. The PA achieves highest efficiency when operated close to saturation,
but also tends to be nonlinear. Therefore, in order to obtain the best efficiency possible,
work will be done in the non-linear area of the amplifier. To do this, it will be necessary to
understand the non-linear behaviour of the amplifiers and to find a way to quantify the RF
PA parameters.

2.2. Power amplifier nonlinear behavior

Non-linearity behaviour is often a big issue, especially when power and frequency are
involved. It affects particularly RF Power Amplifiers (PA) where power is high (to drive
antenna) and frequencies are highly involved (modulated carriers). Figure 2.1 shows a
typical RF transmitter front end in which data are modulated or mixed with a carrier. The
created modulated RF signal has to be then amplified with a power amplifier in order to
drive the antenna so the signal can be transmitted through the air. The objective is that the
PA needs to play its amplification role as perfectly as possible without major distortion and
adding noise. In other words we want RFout perfectly proportional to RFin with respect
to the signal shape and integrity. Unfortunately all real PA’s have a certain degree of non-
linearity.

In figure 2.2 a non-linearity is visible when the output behavior ceases to follow the linear
line. On an amplifier it can be measured by the gap between the ideal line and the real
actual curve. Where the 1 dB compression point is the moment when the ideal and real
behaviour differ by 1dB and Psat level is the maximum the output can exhibit regardless of
the quantity of input injected, both of these are giving a certain measure of non-linearity of
a power amplifier.

7
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Figure 2.1: Transmitter block diagram

Mathematically a memoryless amplifier can be modeled by a polynomial expression where
the output y(t) is a series of terms proportional to the input x(t) and higher order terms.

y(t)≈
N

∑
n=1

gn · xn(t) (2.1)

When the amplifier is perfectly linear, all the gn terms other than n = 1 are zero so y(t) is
proportional to x(t). Non-linearity will be a measure of the presence and intensity of all the
gn terms where n is different than one. When n adopts even values, it adds components
at multiples of the carrier frequency (harmonics) of the input signal, this effect is known
as Harmonic Distortion (HD) and can be mitigated by using the filters. Intermodulation
products appear when n is odd, as it causes some components of the frequencies to
fall very close to the input signal. These components introduced by the intermodulation
products is called InterModulation Distortion (IMD). Some of these components fall directly
inside the signal bandwith and generate in-band distortion.

Figure 2.2: Real and ideal power amplifier

To be able to visualize and better understand the distortions caused by terms of order
greater than one, a test is discussed in [5] where the PA is fed with two tones separated
by ∆ f in frequency. The input signal is as follows:
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x(t) =V1 cos(ω1t)+V2 cos(ω2t) (2.2)

ω1 = 2π( fc−
∆ f
2
), ω2 = 2π( fc +

∆ f
2
)

For simplicity only the first three terms in 2.1 will be considered. The output signal will be

vout(t) =
g2V 2

1
2

+
g2V 2

2
2

+

+ V1
[
g1 +

3g3V 2
1

4
+

3g3V 2
2

2
]

cos(ω1t)+

+ V2
[
g1 +

3g3V 2
2

4
+

3g3V 2
1

2
]

cos(ω2t)+

+
g2V 2

1
2

cos(2ω1t)+
g2V 2

2
2

cos(2ω2t)+ (2.3)

+ g2V1V2
[

cos
(
(ω2−ω1)t

)
+ cos

(
(ω2 +ω1)t

)]
+

+
g3V 3

1
4

cos(3ω1t)+
g3V 3

2
4

cos(3ω2t)+

+
3g3V 2

1 V2

4
[

cos
(
(2ω1 +ω2)t

)
+ cos

(
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)]
+

+
3g3V 2

2 V1

4
[

cos
(
(2ω2 +ω1)t

)
+ cos

(
(2ω2−ω1)t

)]
It can be observed that the equation shows the effects produced due to the nonlinearity
effects of the PA. The distortions caused by PA can affect the spectrum in two ways. By
adding frequency components in the carrier frequency (in-band distortion)

• ω1 +ω1−ω1 = ω1 and ω2 +ω2−ω2 = ω2

• ω1 +ω2−ω2 = ω1 and ω2 +ω1−ω1 = ω2

And by adding frequency components outside the band (out-of-band distortion)

• Harmonic distortion which can be classified in:

– 2nd order harmonic distortion at 2ω1 and 2ω2

– 3rd order harmonic distortion at 3ω1 and 3ω2

• Intermodulation distortion which can be classified in:

– 2nd order Intermodulation distortion at ω1 +ω2 and ω1−ω2

– 3rd order Intermodulation distortion at 2ω1 +ω2 , 2ω1−ω2 and at 2ω2 +ω1,
2ω2−ω1
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Figure 2.3 shows the harmonic distortion and intermodulation distortion in the output of the
nonlinear PA when considering a two-tone signal. It can be seen how unwanted signals
that are far away from the baseband signals are easy to eliminate with simple filters. How-
ever, unwanted signals that are very close to the baseband signals can be very difficult to
eliminate, requiring complex and expensive filters.

Figure 2.3: Power amplifier two-tone test output spectrum [5]

The two-tone test discussed in [5], represents an approximation to characterize the non-
linear behavior of PA. Usually, the signals that travel through an amplifier are modulated
signals characterized by complex frequency spectra. In the case of complex modulated
signals, nonlinearities appear in a continuous band of frequencies as a spectral regrowth.
As it can be observed from figure 2.4 the output spectrum presents spectral regrowth due
to the nonlinear behavior of the PA. As expected, PAs have to meet certain standards
for commercial use and the way to quantify some of the characteristics of PAs is through
the error vector magnitude (EVM) and the adjacent channel leakage ratio (ACLR). These
two metrics allow both in-band and out-of-band quantification of PA distortion and will be
explained below.
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Figure 2.4: Power spectral density of the input and output signals of a nonlinear power
amplifier[5]

Metrics for evaluating the linearity in Power Amplifiers.

In order to quantify the in-band distortion, the Error Vector Magnitude (EVM) measures
the effects of the distortion on the amplitude and phase (or the In-phase and Quadrature
components) of the modulated output and it is defined as the square root of the ratio of the
mean error vector power to the reference power expressed as a percentage.

EV M =

√
Serr

Sre f
[%], (2.4)

where Serr =
1
N

N
∑
1
(∆I2 +∆Q2),Sre f =

1
N

N
∑
1
(I2

re f +Q2
re f ) and N is the number of samples.

Figure 2.5: Error vector magnitude representation [13]

The adjacent channel leakage ratio (ACLR) is a performance metric used for DPD. It
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measures the power of the distortion components that are leaked into the adjacent channel
in relation to the power of the signal in the main channel (2.5). The ACLR is defined as

ACLR = 10log10 max
m=1,2

[∫
(ad j)m

| Y ( f )∫
ch | Y ( f ) |2

]
[dB], (2.5)

where Y ( f ) denotes the power spectrum of the measured output signal y(n). The inte-
gration in the numerator is done over the adjacent channel that presents the largest power
and the integration in the denominator is done over the transmission channel. The ACLR
is generally presented in dB.

Figure 2.6: Main and adjacent channel representation

2.3. Power Efficiency in Power Amplifiers

Energy efficiency in an PA measures the relationship between signal energy at the output
of the amplifier and the energy with which the device has been fed to perform the ampli-
fication of the signal. Therefore, we can determine that this efficiency marks the ability
of the PA to convert continuous power (power fed into the PA) in radio frequency power
(output power). Therefore, efficiency is defined as

η =
Pout

PDC
[%], (2.6)

The power added efficiency (PAE) considers the presence of the input power Pin. It is
defined as

PAE =
Pout−Pin

PDC
[%], (2.7)

If the signal being transmitted consists of a signal with a variable envelope, the efficiency
of the amplifier will also be variable, showing greater efficiency when operating near the
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compression point. As this efficiency is time dependent, it is possible to calculate the
average power as the ratio between the average output power and the average feed power.

ηAV G =
PoutAV G

PDCAV G
[%], (2.8)

As mentioned above, working close to the compression point offers greater efficiency but
we have to deal with the nonlinear effects produced by PA. It can be seen that in amplifiers,
efficiency and linearity is a trade-off. The more linear the amplifier, the less efficient it is,
and the more efficient the PA, the more non-linear effects can be seen. An example of
linearity vs efficiency trade-off is drawn in figure 2.7.

Figure 2.7: Linearity versus efficiency trade-off [13]

2.4. Linearization techniques

A linearization operation is in fact a corrective action where the principle consists on adding
an opposite reaction to the non-linearity in order to compensate an to obtain a straight line.
The correction can be made before or after the amplifier and the term used are predistor-
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tion or post distortion. One can also make the correction at the baseband level sometimes
called digital predistorsion or at the RF level called RFPAL. Linearization adds elements
or functions in the signal path that compensate the nonlinearity of the elements. These
techniques can be roughly classified into three groups: feedback techniques, feedforward
techniques and predistortion techniques. In this project we will focus on predistortion tech-
niques especially in digital predistortion (DPD).

Digital predistortion is a popular technique to compensate for PA nonlinearity. It has the
advantage of unconditional stability. The bandwidth is limited by the gain and phase flat-
ness of the predistorter. In digital predistortion the inverse of the PAs response function H,
is first identified and then used for predistorting the signal before it is fed to the PA in such
a way that the output signal of the PA is similar to the desired output, according to given lin-
earization criteria. The output of the digital predistortion algorithm y(t)=H−1{xd(t)} is fed
to the PA so that the overall output can be calculated as x(t) = H{y(t)}= H{H−1[xd(t)]}.
If the inverse function H−1, is close to the inverse to the real function of the PA, the output
of the PA, x(t), will be close to the desired signal, xd(t).

Figure 2.8: Predistortion effect



CHAPTER 3. POWER AMPLIFIER BEHAVIORAL
MODELING AND DIGITAL PREDISTORTION

LINEARIZATION

3.1. Introduction

Behavioral models are parametric mathematical models describing either the PA nonlinear
behavior or its inverse. Selecting a proper behavioral model is key to the correct perfor-
mance of the DPD linearizer. In the following some of the most popular or commonly used
PA behavioral models will be discussed. Behavioral models can be divided into two main
groups: behavioural models without memory and those with memory. The models without
memory consist of a nonlinear mapping between the input and the output signal. On the
other hand, models with memory effect are best suited to characterize the behaviour of the
PA. These models take into account that the output of the amplifier not only depends on
the input signal at that instant, but also depends on the past samples of the input signal. In
this project, the Volterra series , the Memory Polynomial (MP) and the Generalized Mem-
ory Polynomial (GMP) behavioral models have been considered and will be explained in
more detail in the following.

3.2. Most Common PA Behavioral Models

3.2.1. Volterra series

A Volterra series is a combination of linear convolution and a nonlinear power series; it pro-
vides a general way to model a nonlinear system with memory, so that it can be employed
to describe the relationship between the input and the output of an amplifier with mem-
ory. However, high computational complexity makes general methods of this kind rather
impractical in some real applications because the number of parameters to be estimated
in the Volterra model increases exponentially with the degree of nonlinearity and with the
memory length of the system.An overview of recently developed, simplified Volterra series
based, behavioral modeling approaches is presented in [8].

In the discrete time domain, Volterra series can be written as follows

ŷ(n) =
P

∑
p=1

M

∑
m1=0
· · ·

M

∑
mp=0

wp(m1, · · · ,mp)
p

∏
j=1

x(n−m j), (3.1)

where x(n) and ŷ(n) represents the input and the estimated output, respectively, and
wp(m j, · · · ,mp) is called the pth order Volterra kernel. The Volterra series is normally
truncated to finite nonlinear order P and finite memory length M. The Volterra series in
(3.1) can be directly employed to represent the nonlinear transfer function of a PA. How-
ever, in system level analysis and design, most simulators use baseband complex enve-
lope signals to evaluate the system performance since modulation techniques are normally
employed in modern wireless communication systems, where only the envelopes carry the

15
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useful information. In order to process these carrier modulation signals, the Volterra series
must be converted to a low-pass equivalent format.

ỹ(n) =
M
∑

m=0
w̃1(m) x̃(n−m)

+
M
∑

m1=0

M
∑

m2=0

M
∑

m3=0
w̃3(m1,m2,m3) x̃(n−m1)x̃(n−m2)x̃∗(n−m3)

+ · · · (3.2)

where x̃(t) and ỹ(t) is the envelope of input and output signal, respectively, w̃p(m1,m2,
· · · ,mp) is the pth-order complex Volterra kernel and (·)∗ represent the conjugate trans-
pose. In equation (3.2), we have removed the redundant items associated with kernel
symmetry, and also the even-order kernels, whose effects can be omitted in band-limited
modulation systems. However, the main problem of the Volterra series is that the number of
coefficients grows significantly when the polynomial degree and memory depth increases.
The high-order model may include unnecessary information and lead to ill-conditioned
problems.

3.2.2. Memory Polynomial

As it was mentioned in the previous section Volterra series is capable of modelling any
non-linear system which has memory effects . Memory polynomial (MP) [5] is a special
case of Volterra series which does not have all of the terms in Volterra series. To model the
memory effect and nonlinearities of a power amplifier in a digital system, truncation have
to be done to original Volterra series due to its high number of coefficients. The MP can
be formulated as:

ŷ(n) =
P

∑
p=1

M

∑
m=0

wp,mx(n−m)|x(n−m)|(p−1) (3.3)

Where x is the input, ŷ is the estimated output, P is the maximum power order, M is the
maximum memory depth, and wp is the kernels of the system. As it can be seen from
(3.3), the MP is a method that models the system by only considering the input signal
and input signal’s envelope for the same memory instance. It can also be thought as; MP
method only considers the diagonal terms of the Volterra series. By changing P and M one
can have control over the memory length and the non-linearity order of the system. This
method makes a decent approximation as well as a great reduction of the coefficients.

3.2.3. Generalized Memory Polynomial

In order to improve the performance of the MP method, many different techniques have
been proposed. Generalized Memory Polynomial (GMP) [6] is one of these techniques.
The difference between GMP and MP is that in GMP there is an additional term used to
compare terms in MP. By adding some additional terms for MP, the the modeling system
can be improved. The GMP equation can be described as follows
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ŷ(n) =
Pa
∑

p=1

Ma
∑

m=0
wp,mx(n−m)|x(n−m)|(p−1)

+
Pb
∑

k=1

Mb
∑

m=0

Lb
∑

l=0
wp,m,lx(n− l)|x(n−m− l)|p

+
Pc
∑

k=1

Mc
∑

m=0

Lc
∑

l=0
wp,m,lx(n− l)|x(n−m+ l)|p (3.4)

Where Pa and Ma are the non-linearity order and memory depth of the diagonal terms.Pb,
Mb,Pc,Mc are the nonlinearity order and memory depth of the cross terms and Lb,Lc
are the values that controls the leading and lagging terms in the method. Second line of
equation (3.4) is a different version of first line by lagging the envelope compare to the
signal itself, and the third line is same except instead of lagging the envelope is shifted
forward in time (leading). This two new lines with respect to MP, make remarkable change
on the modelling performance.

3.3. Behavioral Model Parameters Estimation

The main objective of this algorithm is to find the ŵ coefficients of the model that best fits in
terms of quadratic error given the matrix of regressors and the output signal. The number
of samples in the input and output is much higher than the number of regressors and this
implies that it is not possible to find a solution that meets all the conditions and therefore it
is an incompatible system.

Figure 3.1: Block diagram of PA behavioral modeling

By means of the LS technique we can estimate the output signal to get as close as possible
to the desired solution.

ŷ = X · ŵ, (3.5)

where ŷ[n] is the estimated output with a length equal to N, ŵ(ŵ1, · · · , ŵi, · · · , ŵM)T where
M indicate the number of basis functions and X is a N×M matrix and can be defined as:

X = (ϕx[0],ϕx[1], · · · ,ϕx[n], · · · ,ϕx[N−1])T , (3.6)
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where ϕx[n] = (φx
1[n], · · · ,φx

i [n], · · · ,φx
M[n]) is the M× 1 vector of basis functions φx

i [n]
(with i = 1, · · · ,M) at time n.

The estimated error will be the difference between the output signal in PA and the esti-
mated output signal.

ê = y− ŷ = y−X · ŵ (3.7)

The aim of this method is to find the values of w that minimize this error taking the `2-norm
squared of the error, and it is defined as follows

min
ŵ
‖ê‖2

2 = min
ŵ
‖y−X · ŵ‖ (3.8)

Therefore, the cost function to be minimized is as follows:

J(ŵ) = ‖ê‖2
2 (3.9)

To minimize this function, we will calculate its derivative and set it equal to zero. The result
obtained will be the coefficients that minimize the error and can be seen in the following
equation.

ŵ = (XHX)−1XHy (3.10)

3.4. Adaptive predistortion

Adaptive predistortion [3] corresponds to the implementation of closed-loop DPD. In this
method, there is a feedback loop that allows the modification of the DPD coefficients,
therefore, DPD will adapt to the changes that the PA introduces. This time-dependent
response can be due to: thermal changes, equipment aging or the implementation of
automatic gain control. The implementation of the adaptive method leads to an increase in
equipment cost and energy consumption. In the forward path, the input-output relationship
at the DPD block can be described as

x[n] = u[n]−d[n] (3.11)

where x[n] is the signal at the output of the DPD block, u[n] is the input signal and d[n] is
the distortion signal introduced by the PA and can be modeled with some of the behavioral
models (Volterra, GMP or MP). Therefore, d[n] can be written as follows,

d[n] = ϕ
T
u [n]w[n], (3.12)

where w = (w1, · · · ,wi, · · · ,wM)T is a vector of coefficients at time n with dimensions
M× 1, with M being the order of the behavioral model, ϕT

u [n] = (φu
1[n], · · · ,φu

i [n], · · · ,
φu

M[n]) is the vector of basis functions φu
i [n] (with i = 1, · · · ,M) at time n.

Equation 3.11 can be written in matrix notation as follows

x = u−U ·w, (3.13)

where the U is a N×M matrix described as follows

U = (ϕu[0],ϕu[1], · · · ,ϕu[n], · · · ,ϕu[N−1])T , (3.14)
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In adaptive predistortion, the extraction of the DPD coefficients can be carried out following
a direct learning or an indirect learning approach.

In Indirect learning, the PA behavioral model is post-inversed by a postdistorter and the
coefficients of the postdistorter are applied to the predistorter. As mentioned in [4], indirect
learning assume that the coefficients of the postdistortion are equal to the coefficients of
the predistortion. Consequently, the input of the postdistortion can be noisy, making the
postdistorter coefficients estimation converge to biased values. The block diagram of a
closed-loop adaptive DPD architecture following an indirect learning approach is shown in
figure 3.2. In the direct learning method, the DPD coefficients are continually adjusted by
comparing the PA output y to the input signal u. This approach is also named closed-loop
since the predistorter is inside the feedback loop.

Figure 3.2: Indirect learning method for DPD

As explained in [4], the main advantage in direct learning is that we gain robustness against
noisy PA output observations and avoid the offset of the coefficient vector from its optimal
value. The block diagram of a closed-loop adaptive DPD architecture following an direct
learning approach is shown in figure 3.3.

Finally, the DPD coefficients can be updated iteratively as follows

wi+1 = wi +µ∆wi (3.15)

with µ(0 ≥ µ ≤ 1) being a weighting factor and ∆w can be estimated by the following LS
solution

∆ŵ = (UHU)−1UHe, (3.16)

where e is the N×1 vector of the identification error defined as

e =
y

Go
−u (3.17)
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Figure 3.3: Direct learning method for DPD



CHAPTER 4. DIMENSIONALITY REDUCTION
TECHNIQUES

4.1. Feature selection techniques

In the field of DPD linearization, dimensionality reduction techniques are used with a dou-
ble objective: ensure a proper, well-conditioned parameter identification and reducing the
number of estimated parameters (thus reducing the computational complexity and memory
requirements of a hardware implementation).

As described in [3], some of the proposed solutions for dimensionality reduction of DPD
linearizers are based on feature selection techniques. The objective of these techniques
is to enforce the sparsity constraint on the vector of coefficients by minimizing the number
of regressors (i.e., `0-norm) subject to a constraint on the `2-norm squared of the identifi-
cation error. For example, particularizing for the identification of the PA behavioral model
coefficients described in Section 3.3., the optimization problem can be described as

min
w
‖w‖0 (4.1)

subject to ‖y−Xw‖2
2 ≤ ε

Unfortunately, this is a non-deterministic polynomial-time hard (NP-hard) combinatorial
search problem. Therefore, in the field of DPD linearization, several sub-optimal ap-
proaches based on greedy and global optimization (or heuristic search) algorithms have
been proposed targeting both robust identification and model order reduction. In the follow-
ing sections some selected greedy and heuristic search algorithms will be presented and
discussed for a later comparison in Chapter 5 of their dimensonality reduction capabilities,
in terms of accuracy and computational time.

4.2. Greedy algorithms

Greedy algorithms allow the reduction of regressors (or basis functions) from a single
model by analysing the importance of each regressor and thus, reducing the number of
estimated coefficients. When a behavioral model such as GMP defined in (3.4) is consid-
ered, we do not have a priori knowledge which is the best configuration of the polynomial
order, memory depth or memory of the cross-products. This leads to the use of regressors
that increase the complexity of the model without improving its accuracy and eventually
will derive in an ill-conditioned estimation. Some of the most relevant greedy algorithms
proposed in literature oriented at addressing the optimal configuration of PA and DPD
behavioral models will be explained in the following. The specific algorithms that will be
addressed are: least absolute shrinkage and selection operator (LASSO), Ridge regres-
sion, orthogonal matching pursuit (OMP), doubly orthogonal matching pursuit (DOMP),
Subspace Pursuit and Random Forrest.

In order to evaluate the greedy algorithms, the original GMP configuration, taking into
account the notation in (3.4), is:

21
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• pa = 9; pb = 3; pc = 3

• ma = [0 : 1 : 10]; mb = [−1 : 1 : 3]; mc = [−1 : 1 : 3]

• lb = [1 : 1 : 2]; lc = [1 : 1 : 2]

With this initial configuration the GMP behavioral model presents a number of 139 param-
eters.

4.2.1. Regularization techniques applied to dimensionality reduction

One of the challenges of behavioral modeling is choosing the necessary features to char-
acterize the system, thus avoiding underfitting or overfitting problems. An underfitting
model is one that does not have the essential coefficients required to properly characterize
the system while, on the other hand, an overfitting model is one that has more coefficients
than the necessary. Least absolute shrinkage and selection operator (LASSO) proposed
in [40] and Ridge regression proposed in [39] are adjustment techniques where a regular-
ization term (or constraint) is added to the cost function to avoid overfitting.

J(w) = ‖y−Xw‖2
2 +λR(w) (4.2)

In general, the main idea of the regularization techniques is to add a regularization term
R(w) to the cost function. Thus a cost function for Ridge and LASSO is presented as a
restricted version of the ordinary least squares (OLS). In the case of Ridge, the constraint
will be based on the `2-norm of the vector of coefficients, while in the case of LASSO, it
will be based on the `1-norm of the vector of coefficients.

4.2.1.1. Ridge regression or Tikhonov `2 regularization

In `2 regularization, the goal is to minimize the residual sum of squares subject to a con-
straint on the sum of squares of the coefficients.

min
w
‖y−X ·w‖2

subject to
M
∑

i=1
|wi|2 ≤ r2.

(4.4)

This restriction forces the coefficients to be in a sphere of radius r2. The solution of the
regression of Ridge is those coefficients that satisfied the restriction set, as can be seen
in figure 4.1 . Another way to represent the cost function is the following:

min
w
‖y−X ·w‖2 +λ‖w‖2

2

Once written in a compact form, the coefficients can be extracted using the following equa-
tion:

wRidge = (XHX +λI)−1XHy (4.5)
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where I is the identity matrix. wridge depends on the shrinkage parameter λ, as it grows,
there will be fewer coefficients that meet the condition, whileλ tends to zero, an expression
similar to OLS is obtained. Based on this concept, the wridge will be calculated for different
λ, thus obtaining an NMSE vs number of coefficients curve.

Figure 4.1: Ridge and LASSO 2D graphical representation [3]

Algoritmo 1: Ridge Algorithm for Dimensionality Reduction
INPUTS: X ,y,K
OUTPUT: W
initialization;
for i← 1 to length(K) do

Generate matrix identity I
Calculate wridge using (4.5)
Select coefficients that have an absolute value greater than a wthreshold
Store the select coefficients in Wi

end

The following algorithm has as inputs: the normalized regressor matrix X , the y vector of
PA output data and a vector K that contains all λ values. The algorithm provides as output
a matrix W where each column contains the index of the selected coefficients taking into
account the λ vector. Note that the length of K will be the same than the columns of W .
First, the algorithm finds a value from λ that reduces the coefficients obtained to below
wthreshold in modulus. With this, we assure that the matrix is well regularized. Then,
indexes of coefficients that meet the condition for that particular λ is selected and stored
in the output matrix W as a column. The above steps are repeated for all input lambdas
until final K value is reached.
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Figure 4.2: NMSE vs number of coefficients for Ridge

Once completed, each column of the output matrix W will represent a configuration for
which its NMSE can be calculated. Figure 4.2 show the NMSE for each of the K values.

In figure 4.3 it can be seen that the lambda value affects the NMSE and the number of co-
efficients. Note that the horizontal axis corresponds to the log10(λ). For very small values
of λ, the model is not well regularized, since the restriction set is insufficient; therefore,
the NMSE is similar to that of the original model, and the number of coefficients also. As
λ increases, there are fewer regressors that comply with the set restriction, and therefore
the number of coefficients decreases while NMSE increases.
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Figure 4.3: Variation of NMSE and the number of coefficients with respect to λ

4.2.1.2. LASSO or `1 regularization

Similarly to Ridge regression, LASSO can be used for both regularization and to generate
a sparse model. Whereas the constraint of the Ridge regression is the sum of square of
the coefficients, the LASSO constraint consists of the sum of the absolute value of the co-
efficients. Thus, the solution of LASSO regression satisfies to the following `1 optimization
problem,

min
w
‖y−X ·w‖2

subject to
M
∑

i=1
|wi| ≤ r1. (4.6)

The constrained cost function can also be written as following:

min
w
‖y−X ·w‖2 +λ‖w‖1

As depicted in Figure 4.1, this constraint forces the coefficients to stay within the diamond
shape.

Since the two algorithms works very similar, the same technique that has been applied in



26 Machine learning techniques applied to dimensionality reduction for digital predistortion linearizers

the ridge will be used.

Algoritmo 2: LASSO Algorithm for Dimensionality Reduction
INPUTS: X ,y,K
OUTPUT: W
Generate XLASSO and yLASSO with (4.7)
Calculate WLASSO with all K values
for i← 1 to length(K) do

Set i column of WLASSO as wi
Store nonzero coefficients of wi in nonzero
Store in W the wnonzero vector

end

LASSO has as input data: the matrix of regressors X , the output signal y and the vector K
and as output data, a matrix W where each column indicates the coefficients that comply
with the `1−norm condition. Note that the output matrix W will have the same number of
columns than the K vector length.

When computing LS, the fact that the samples are complex does not add an extra to the
problem, the solution is calculated the same as for the real numbers. The same goes for
Ridge as its solution does not differ much from the solution of the LS in terms of calculation.
However, for LASSO the thing changes, it cannot be applied directly to the complex sample
vectors. The input matrix will be adapted to solve this problem, as can be seen in the
equation (4.7).

XLASSO =

[
Re[X ] −Img[X ]

Img[X ] Re[X ]

]
yLASSO =

[
Re[y]

Img[y]

]
(4.7)

Once the problem has been solved, the algorithm can be applied. The objective is to
calculate the vector of coefficients for each of the K values. Once the calculations to
obtain wLASSO have been carried out, it has to be readapted to obtain the same original
length with real part and imaginary part

w = wLASSO(1 : L)+ i ·wLASSO(L : end), (4.8)

where L is the number of columns in the X matrix.

Figure 4.5 shows the variation of the NMSE and the number of coefficients as a function of
log10(λ). For very small values of λ, the model is barely regularized, since the restriction
set is insufficient; therefore, the NMSE is similar to that of the original model, and the
number of coefficients also. As λ increases, there are fewer regressors that comply with
the set restriction, and therefore the NMSE gets worse, and the number of coefficients
decreases similar to Ridge.
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Figure 4.4: NMSE vs number of coefficients for LASSO

Figure 4.5: Variation of NMSE and the number of coefficients with respect to λ

4.2.2. Orthogonal Matching Pursuit

Orthogonal Matching Pursuit (OMP) is a greedy and iterative algorithm used in [14] for
PA behavioral modeling purposes. This algorithm find the solution of a problem by adding
element by element in an iterative step-by-step manner optimally at each stage. Once the
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PA behaviour is modelled, not all the kernels (i.e., regressors, basis functions) obtained
contribute to the improvement of the modelling, indeed, the suppression of those elements
will allow us to enhance the robustness and efficiency of the modelling. Given a matrix of
regressors, OMP creates a new support set adding step by step regressor that has more
resemblance with the residual, measured by their cross-correlation.

Algoritmo 3: OMP algorithm [14]
INPUTS: X , y
OUTPUT: S, ŵ
Initialization : r(0)← y, S(0)←∅
for t← 1 to mmax do

g(t){i}←
XH
{i}

‖X{i}‖2
r(t−1)

s(t)← supp(H1|g(t))
S(t)← S(t−1)∪ s(t)

ŵS(t) ← X†
S(t)

y

ŷ(t)← XS(t)ŵ
r(t)← y− ŷ(t)

end

The input variables for this algorithm are the matrix X of regressors and the output data
y already defined in (3.14). The output variables are the vector S, which will contain all
the regressors that the OMP algorithm will select in order from major to minor importance
and the last output variable is the coefficient vector ŵ also ordered from major to minor
importance. Note that the indexes stored in S will coincide with the coefficient vector w.

Initializing the residue r with a value equal to the output y. The loop starts with the variable
g where the correlation between the matrix of regressors and the residue will be calculated.
This variable is a vector of length M which contains in each position a value that indicates
how correlated this regressor is with the residue.

g(t){i}←
XH
{i}

‖X{i}‖2
r(t−1) (4.9)

The operation supp(H1|g(t)) consists on obtaining the index of the maximum value of g,
thus obtaining the index of the most correlated element. OMP algorithm add the index s(t)

to our support set S(t). Then, an estimation of the coefficients vector with just the columns
that belong to the support set is performed with the following equation:

ŵS(t) ← X†
S(t)

y, (4.10)

The Moore–Penrose pseudoinverse X† computes the LS solution and can be written as
the following equation:

X† = (XHX)−1XH , (4.11)

where H is the Hermitian transpose operator. The output ŷ is estimated by means of the
coefficients that have already been added to the set and finally the residue is updated by
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subtracting between the estimated output and the real output.

r(t) = y− ŷ(t) (4.12)

This last step is very important because it eliminates the possibility of a regressor being
selected again. This loop is repeated until the residue obtained is low enough to consider
it zero or until all available regressors are selected.

Once the algorithm is finished, a representation between the NMSE and the number of
coefficients can be seen graphically in figure 4.6. The overffiting effect can be clearly
seen, after 80 coefficients the NMSE no longer improves. One way to solve this problem
is applying the Bayesian information criterion (BIC) presented in [21] to prune some coef-
ficients and determine the optimum number of coefficients mopt . In statistics, the BIC is a
criterion for model selection among a finite set of models; the model with the lowest BIC is
preferred. The BIC is defined as the sum of a term that depends on the error and a penalty
that is related to the number of model coefficients m

BIC = 2N ln σ̂
2
e +2m ln2N (4.13)

where σ̂2
e is the error variance and N is the number of samples used for the model iden-

tification. The BIC in (4.6) acts as a trade-off between the error and the number of com-
ponents. In an iterative sorting algorithm, the modeling error is commonly known as the
residual error r; therefore:

σ̂
2
e =Var[e] =Var [y− ŷ] , (4.14)

where Var[·] represents the variance of its argument.

Once the BIC of all the components of the model has been obtained, the minimum BIC
obtained corresponds to mopt

Figure 4.6: Linearization NMSE for OMP with BIC
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4.2.3. Doubly Orthogonal Matching Pursuit

OMP is a greedy algorithm that makes a hard decision based on a local optimal criterion
whereby the estimated output of the model is always orthogonal to the residual, orthog-
onalization from which OMP takes its name. Since OMP selects one component of the
model at each iteration, a pseudoinverse of the data matrix with a number of columns that
is equal to the iteration value has to be performed. The estimation of Volterra coefficients
is intricate since the basis functions of the Volterra series are highly correlated. This corre-
lation leads to a large condition number in the model matrices, implying that the equations
system is ill-conditioned, affecting the least squares (LS) solution. In this section, a vari-
ation of OMP known as Doubly orthogonal matching pursuit (DOMP) presented in [20] to
enhance the selection of coefficients in a sparse parameter identification of the model, is
described. The main difference between them is the addition of the Gram–Schmidt pro-
cess at one step of the OMP algorithm, decorrelating the selected regressors and those
still to be selected.

The goal of this process is given a subspace W , we would like to find an orthogonal or
orthonormal basis for W . The Gram-Schmidt process allows to start with any basis for W
and construct a new basis that is orthogonal. Starting from a basis {x1,x2, ...,xp} for W
and the idea is to construct new vectors v1,v2, ...,vp as follows:

v1 = x1

v2 = x2− x2·v1
v1·v1

v1

v3 = x3− x3·v1
v1·v1

v1− x3·v2
v2·v2

v2

...

vp = xp−
xp·v1
v1·v1

v1−
xp·v2
v2·v2

v2−·· ·−
xp · vp−1

vp−1 · vp−1
vp−1︸ ︷︷ ︸pro jection o f xp onto vp−1

(4.15)

At each iteration, the projection of xi onto vi−1 is subtracted to obtain , that is going to guar-
antee two things: that vi is orthogonal to vi−1 and also it is going to guarantee that the span
of vi and vi−1 is the same. So the process is taking away the portions of xi that point on the
direction of vi−1 therefore the remaining component of xi is orthogonal to vi−1, vi−2 and the
ones before that in case they are calculated. When the process has been completed, the
v vectors will all be orthogonal to each other while maintaining the span. If an orthonormal
basis is desired, we first use Gram-Schmidt to find an orthogonal basis then we normalize
each vector to obtain an orthonormal basis. Adding this process to the OMP, the following
algorithm is obtained where the pseudocode of the DOMP presented by [20] can be seen.
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Algoritmo 4: DOMP algorithm [20]
INPUTS: X , y
OUTPUT: S, ŵ
Initialization : Z(0)← X r(0)← y S(0)←∅
for t← 1 to mmax do

g(t){i}←
ZH
{i}

‖Z{i}‖2
r(t−1)

s(t)← supp(H1|g(t))|
S(t)← S(t−1)∪ s(t)

p(t)← Z(t−1)
{i(t)}

HZ(t−1)

Z(t)← Z(t−1)− p(t)⊗Z(t−1)
{i(t)}

ŵS(t) ← X†
S(t)

y

ŷ(t)← XS(t)ŵ
r(t)← y−ˆ(t)

end

The algorithm returns a support set, S, whose elements are sorted in decreasing impact
over the output and the vector of coefficients w. The initial state of the support set is
empty, S(0) = ∅, since no components have been added to it yet. Prior to the algorithm
iterations, the matrix Z(0) = X is defined. This matrix will be used to keep the information
of the orthogonalized regressors, and after the algorithm execution, it will be equal to the
result of applying the Gram–Schmidt procedure to the regressors matrix X in the order
of the final support set S(end). The residual is set to r(0) = y, since it keeps track of the
remainder left to be captured by the selected regressors of the model, and initially, there
are no components in the support set.

The loop start with the normalization of basis components, dividing each regressor of Z by
its `2-norm followed by the selection of the component with the highest normalized scalar
resolution in the direction of the residual.

g(t){i} =
ZH
{i}

‖Z{i}‖2
r(t−1) (4.16)

The algorithm performs the Gram-Schmidt orthogonalization by first obtaining the vector
projections p of the selected regressors onto each one of the components of the basis. As
explained above, projection is subtracted from each regressor;

p(t) = Z(t−1)
{i(t)}

HZ(t−1)

Z(t) = Z(t−1)− p(t)⊗Z(t−1)
{i(t)} (4.17)

hence, the selected component is orthogonal to the remaining of the basis set. Therefore,
a double orthogonalization will be obtained as the name indicates. Finally kernel vector
is computed through LS and the residual updated. Figure 4.7 shows NMSE vs number of
coefficients and the optimum number of coefficients with BIC.
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Figure 4.7: Linearization NMSE for DOMP with BIC

4.2.4. Subspace Pursuit

DOMP and OMP are greedy pursuit algorithms that iteratively add new components to
the support set S, which is defined as the set of components in the model that are not
zero, providing element selection, i.e., a sorted list of regressors for the model. Although
these algorithms are easy-to-implement and fast algorithms they do not have recovery
guarantees. Subspace Pursuit is a thresholding technique which provide element selection
and pruning at once presented in [14], and theoretical performance guarantees that belong
to the family of thresholding algorithms.

Algoritmo 5: SP algorithm [14]
INPUTS: X , y, k
OUTPUT: S, ŵ
Initialization : r(0)← y, S(0)←∅
for t← 1 to stopping criterion do

g(t){i}←
XH
{i}

‖X{i}‖2
r(t−1)

s(t)← supp(Hk|g(t))
S(t−0.5)← S(t−1)∪ s(t)

ŵS(t−0.5) ← X†
S(t−0.5)y, ŵ

S(t−0.5) = 0

S(t)← supp(ŵS(t−0.5))

ŷ(t)← XS(t)ŵ
r(t)← y− ŷ(t)

end
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The algorithm start by setting the residue and the support set:

r(0)← y, S(0)←∅ (4.18)

Unlike the OMP and DOMP algorithms, the SP algorithm does not select a single element
but the k elements most correlated to the residue to be added to the intermediate support
set.

g(t){i} =
XH
{i}

‖X{i}‖2
r(t−1)

s(t) = supp(Hk|g(t))
(4.19)

The estimation of the kernel intermediate kernel vector is then performed and those coef-
ficients belonging to the complement of the support set are set to zero.

ŵS(t−0.5) = X†
S(t−0.5)y, (4.20)

The k highest values of ŵS(t−0.5) are added to the support set S(t) Finally a second pseu-
doinverse is performed to update ŵ.

While both OMP and DOMP add one component to the support set per iteration, SP run
iteratively for a desired sparsity level, providing a k-sparse solution until reaching the stop-
ping criterion r(t−1) > r(t). OMP is a particular case of SP in which the value of k = 1.
Note that if k is equal to 1, only one component will be added to the support set in each
iteration. Figure 4.8 shows how the NMSE vs number of coefficients curves varies as we
change the k.

Figure 4.8: Linearization NMSE with different values of k
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4.2.5. Random Forest

Random forests is an ensemble learning method for classification or regression that oper-
ates by constructing a multitude of decision trees. A decision tree is a type of supervised
learning algorithm that is mostly used in classification problems. A tree has many analo-
gies in life and turns out it is influenced in a wide area of machine learning covering both
classification and regression trees. A decision tree is a flowchart like structure where each
internal node denotes a test on an attribute, each branch represents an outcome of a test,
and each leaf or terminal node holds a class label. The topmost node in a tree is the root
node.

Figure 4.9: Decision tree attributes

In decision analysis, a decision tree can be used to visually and explicitly represent deci-
sions and decision making. As the name goes, it uses a tree like a model of decisions.
It can handle both numerical as well as categorical data and nonlinear relationships be-
tween parameters do not affect the performance of the algorithm. The main disadvantages
are that decision tree learners can create over complex trees that do not generalize the
data well, also known as overfitting. Decision trees can become unstable because small
variations in the data might result in a completely different tree generated. This is called
variance, which is needed to be lowered by methods of bagging and boosting. This can
be mitigated by training multiple trees, where features and samples are randomly sampled
with replacement.

The random forest algorithm is capable of performing both regression and classification
tasks. As the name suggests, this algorithm creates the forest with a number of decision
trees. In general, the more trees in the forest, the more robust the prediction and thus
higher accuracy. It is going to use the same method of constructing the decision with
the information gain to model multiple decision trees to create the forest. In a random
forest, we grow multiple trees as opposed to a single tree in the court model. To classify
a new object based on attributes, each tree gives a classification and the tree vote for that
class. The forest chooses the classification having the most votes over all the other trees
in the forests. In [37] an application of the random forest technique to behavioral modeling
component selection is presented.
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Table 4.1: Input data to the Random Forest algorithm [37]

t R1 R2 · · · Rm NMSE
1 1 0 · · · 0 29.81dB
2 1 0 · · · 1 22.17dB
...

...
...

...
...

...
NT 0 0 · · · 1 26.17dB

For ease of understanding, we will start considering binary decision trees, where variables
can only value 0 or 1. In order to obtain homogeneous subsets, a simple technique is to
split on a variable and measure the variance of the output when the value of this variable
is fixed. The variable with the lowest output variance will be considered as the next one to
use as split. Hence, variance will be computed as:

var( j) = co var(so)+ ci var(si), (4.21)

where ci is the amount of samples that belong to the si subset of the output, which accom-
plish that the j−th variable is equal to i. When working with non-binary decision trees, the
only difference of this method is that a previous step needs to be made. At binary trees,
there is no need to worry about where to split the values of each variable, since there are
only two different values. However, when variables are not binary, the first step requires
finding the best split point at each variable. This is usually made by going over the whole
range of values of the variable, dividing the output dataset and comparing the variance
computed as described in (4.21) until the lowest is found. This process continues until the
maximum number of splits (known as depth of the tree) is reached.

Figure 4.10: Decision tree representation of a GMP model[37]

The input data are the X matrix of regressors containing M columns and N rows, the output
signal y and NT which will be the number of trees. The algorithm returns an output vector
with a length equal to M, where each value indicates the importance of a single regressor.
In the first iteration, the table 4.1 is generated, and the NMSE of each row is calculated. In
the second iteration, the different decision trees are generated, where each decision tree
contains its determined splits taking into account the variance. The out-of-bag (OOB) is
calculated as the average NMSE of all the decision trees previously calculated. In order to
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compute the output vector Imp, the value of each column will be modified while leaving the
rest of the columns intact, and the new NMSE obtained for each case will be calculated.
The importance will be the subtraction between the NMSE for that case and the OOB.

Algoritmo 6: Random forest algorithm [37]
INPUTS: X , y, NT = number of trees
OUTPUT: Imp
Initialization:
for i← 1 to NT do

Create table with M/2 random regressors
Calculate NMSE of each model

end
for tree← 1 to NT do

Use 2/3 of the length of the input signal:
for split← 1 to M do

Randomly select M/3 regressors of the model
Split in the regressor with the lowest variance

end
Calculate NMSE of the tree

end
Compute the OOB as ∑

NT
t=1

NMSEt
NT

for f ← 1 to M do
Shuffle values of column f and leave the rest of the table unchanged to obtain X ′f
Calculate NMSE f of regressor matrix X ′f
Compute importance regressor as: Imp( f ) = NMSE f −OOB

end

The indexes of regressors can be ordered from highest to lowest once the importance of
each regressor is calculated. Figures 4.11 shows the variation of NMSE as a function
of the number of coefficients. In order to see how the NT variable affects the NMSE,
three plots have been made, where each one of them represents the NMSE vs number of
coefficients curve for a given number of trees.
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Figure 4.11: Random Forest algorithm with different number of trees

4.3. Heuristic search algorithms

Before calculating the coefficients of a DPD and applying it to a PA, it is necessary to
determine the best structure for the DPD. The objective is to find the structure that allows
for the best trade-off between good linearization performance and low complexity. For
example, the structure of an MP model is fixed by 2 parameters, the non-linearity order K
and the memory length L. It is easy to test all possible values in a given bounded range
of values, e.g. K < 11, L < 11 requires 112 = 121 tests. Compared to the MP model, the
GMP model improves the modeling accuracy significantly and achieves a better trade-off
for accuracy versus complexity. It is a good choice for DPD and PA modeling. But its
structure is determined by 8 integer parameters. So the determination of the structure
by an exhaustive search implies a very high computational cost. For example, if all the
parameters are bounded to a maximal value of 7 there are 78 tests to do.

Heuristic algorithms are designed to solve a problem in a faster and more efficient way than
traditional methods by sacrificing precision for speed. Employing a cost or merit function,
we give importance to each of the variables to be tuned. In this project, we try to find a
configuration that offers the best performance with the minimum possible computational
cost. Therefore it is translated in a trade-off between NMSE and number of coefficients.
These algorithms start from a set of several models to find the model that best fits the
defined cost or merit function. Since we try to get a graph where we can see the NMSE
vs the number of coefficients curve, we will make an adaptation where we will save all the
calculated models until we get the optimal configuration. With all these combinations in
the same graph, a Pareto front will be made to obtain the best result for each number of
coefficients. The cost function to be applied will have the following structure:

Ji = Nci +λ(NMSEi−NMSEthreshold), (4.22)

where Ji indicate the value of the cost function of model i, Nci represent the number of
coefficients, NMSEthreshold and λ are constants values that will be used to adjust the NMSE
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importance. To approximate λ value the chosen subset is the set of all MP model structures
with memory order pa bounded by pa,max and memory length ma bounded by ma,max. This
subset contains pa,maxma,max MP structures (with is much smaller than the number of GMP
structures). We calculate the NMSE for all the element in this subset, the minimum NMSE
value obtained for these models is labelled as NMSEmin and NMSEthreshold =NMSEmin·
0.8. Once NMSEthreshold has been calculated, the system of equations can be solved and
λ calculated as follows:

λ≥
Nci−Nc j

NMSE j−NMSEi
(4.23)

To obtain the values ofλ and NMSE, a MP subset has been used where ka,max is bounded
by 2 and la,max is bounded by 12. This gives a total combination of 24 models to be
calculated. Once the calculations of (4.23) have been made, the results obtained are:
NMSEmin =-25.76 dB and λ≥ 8.9.

Despite this equation has been obtained in an approximate way, the λ has been tuned to
obtain better results. After an exhaustive test of values, λ = 15.2 is the one that has given
the best results. Therefore, the cost function to be used for the analysis of the heuristic
algorithms is:

Ji = Nci +15.2(NMSEi− (−25.76)) (4.24)

In order to evaluate the performance of some selected heuristic algorithms, we restrict the
configuration parameters of the GMP to the following intervals:

• pa = [6 7 8 9]; pb = [2 3 4 5]; pc = [2 3 4 5]

• ma = [0 : 1 : 10]; mb = [−4 : 1 : 5]; mc = [−4 : 1 : 5]

• lb = [1 : 1 : 4]; lc = [1 : 1 : 4]

4.3.1. Hill Climbing

Hill climbing (HC) algorithm is a local search algorithm which continuously moves in the
direction of increasing elevation to find the peak of the mountain or best solution to the
problem. It terminates when it reaches a peak values where no neighbor has a higher
value. The solution obtained may not be the global optimal maximum or the best solution
for the problem but it is basically the best possible solution in a very reasonable period
of time. This implies that Hill climbing solves the problem where we need to maximize or
minimize a given function by choosing values from the given inputs. A very good example
of this is the travelling salesman problem where you need to minimize the distance travel
by the salesman. Figure 4.12 shows the flowchart of Hill climbing. An algorithm based
on HC search for the GMP model structure which provides the best trade-off between
modeling accuracy and its complexity is presented in [31]. Applying the previous idea to
our problem, in a discrete set, each node xi is assigned to a unique GMP model structure.
The coordinate of xi consists of 8 dimensions: pi

a, pi
b, pi

c, mi
a, mi

b, mi
c, li

b, li
c. The value

of a cost function Ji is associated to each node xi.A neighbor of node xi is defined in [31]
as a node of which parameters are pi

a + δ1, pi
b + δ2, pi

c + δ3, mi
a + δ4 ,mi

b + δ5, mi
c + δ6,

li
b +δ7, li

c +δ8 where δ ∈ [0,±1] and only one of the parameters can be different to zero
at a same time.
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Figure 4.12: Hill climbing flowchart [31]

The search procedure is described in algorithm 7. As input data, the variable R is a matrix
that in each row indicates the values of the parameters and the variable xk is the point
from which the algorithm will start. As output data, the algorithm returns the variable xb
that indicates the best node that the algorithm has been able to find taking into account the
given cost function. The first step is to evaluate the cost function for the xk node and set
this node as the current node. Once the node on which the algorithm will focus is selected,
all the possible combinations of neighbours for that node will be generated. The cost of
each of the neighbouring nodes will be calculated and the one with the lowest cost will
be compared with the current node. If the selected neighbor node has a lower cost than
the current node, it means that better results have been found and therefore the neighbor
node is updated as the current one. In case the current node is the best among all its
neighbors, the loop is considered completed. Finally the xb node will be the last best node
found during the loop.

Algoritmo 7: Hill climbing algorithm [31]
INPUTS: R, xk
OUTPUT: xb
Initialization: Select a initial node xk
Calculate the Jo with the cost function
Set initial node as the current node
while parameters inside the restricted range R do

Generate a set of neighbors according to the definition of neighbor
Evaluate the cost function of current node neighbors
Select the neighbor with the lowest cost function
if Neighbor’s cost is lower than current node cost then

Set neighbour as current node
else

end loop
end

end
Take current node as the solution xb
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Hill climbing algorithm is a local search algorithm which continuously moves in the direction
of increasing elevation, this implies that the results obtained are not the best and that they
are very sensitive to the initial conditions. In this algorithm the initial condition is the point
xk. Therefore we will try several xk values to see how the results varies (see Figure 4.13).
Table 4.2 shows the results obtained starting from three different xk values until reaching
the neighbor xb with the best cost function.

The first start point xk,1 has the following parameters

• pa = [6]; pb = [2]; pc = [2]

• ma = [0 : 1 : 3]; mb = [−4 : 1 : 0]; mc = [−4 : 1 : 0]

• lb = [1]; lc = [1 : 1 : 3]

The second start point xk,2 has the following parameters

• pa = [7]; pb = [3]; pc = [5]

• ma = [0 : 1 : 6]; mb = [−4 : 1 : 2]; mc = [−4 : 1 : 0]

• lb = [1]; lc = [1 : 1 : 4]

The third start point xk,3 has the following parameters

• pa = [8]; pb = [3]; pc = [3]

• ma = [0 : 1 : 8]; mb = [−4 : 1 : 3]; mc = [−4 : 1 : 3]

• lb = [12]; lc = [12]

Table 4.2: Hill Climbing results

Initial point xk Best point xb cost
Nº
coeffi-
cients

NMSE

pk
a = 6, pk

b2, pk
c = 2;

mk
a = [0 : 1 : 4], mk

b =

[−4 : 1 : 0], mk
c = [−4 : 1 : 0];

lk
b = 1, lk

c = [1 2 3];

pb
a = 6, pb

b = 2, pb
c = 2;

mb
a = [0 1 2], mb

b = [−4 : 1 :
0], mb

c = [−4 : 1 : 0]; lb
b = 1,

lb
c = [1 2 3];

-106.23 38
-30.11
dB
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Figure 4.13: Hill climbing with different xk

4.3.2. Genetic Algorithm

Genetic Algorithms (GA) are adaptive methods which may be used to solve search and
optimization problems. They are based on the genetic processes of biological organisms.
Over many generations, natural populations evolve according to the principles of natural
selection and survival of the fittest. In nature, individuals in a population compete with
each other for resources such as food, water and shelter. Those individuals which are
most successful in surviving will have relatively larger numbers of offspring. Poorly per-
forming individuals will produce few of even no offspring at all. This means that the genes
from the highly adapted, or fit individuals will spread to an increasing number of individuals
in each successive generation. GAs work with a population of individuals, each represent-
ing a possible solution to a given problem. Each individual is assigned a fitness score
according to how good a solution to the problem it is. The fittest individuals are given the
opportunities to reproduce with other individuals in the population. This produces new in-
dividuals as offspring, which share some features taken from each parent. The least fit
members of the population are less likely to get selected for reproduction, and so they are
eliminated from the population. A whole new population of possible solutions is then pro-
duced by selecting the best individuals from the current generation, and crossing them to
produce a new set of individuals. This new generation contains a higher proportion of the
characteristics possessed by the good members of the previous generation. In this way,
over many generations, good characteristics are spread throughout the population, being
mixed and exchanged with other good characteristics and the most promising areas of the
search space are explored. If the GA has been designed well, the population will converge
to an optimal solution to the problem.

Before a GA can be run, a suitable coding for the problem must be done. We also require
a fitness function, which in our case we take the cost function defined in (4.24), which



42 Machine learning techniques applied to dimensionality reduction for digital predistortion linearizers

assigns a cost to each of the coded solution. During the run, parents must be selected for
reproduction, and recombined to generate offspring.

Figure 4.14: Graphical representation of crossover and mutation [26]

During the reproductive phase of the GA, individuals are selected from the population
and recombined, producing offspring which will comprise the next generation. Parents
are selected randomly from the population using a scheme which favours the more fit
individuals. Good individuals will probably be selected several times in a generation, poor
ones may not be at all. Having selected two parents, their chromosomes are recombined,
typically using the mechanisms of crossover and mutation.

The most basic forms of these operators are as follows (see figure 4.14): Crossover takes
two individuals, and cuts their chromosome strings at some randomly chosen position, to
produce two head segments, and two tail segments. The tail segments are then swapped
over to produce two new full length chromosomes . The two offspring each inherit some
genes from each parent. Mutation is applied to each child individually after crossover. It
randomly alters each gen with a small probability, that add robustness to the algorithm.

In the article [25] an integer genetic algorithm for the determination of orders of polynomial
series for predistortion or power amplifier modeling.Due to the type of problem we are try-
ing to solve, to perform the integer optimization, standard GA with functions for generating
integer population and integer mutations will be used as explained in [25]. Basically we are
trying to obtain a vector of integer numbers representing the different GMP models based
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on fitness function already defined.

Algoritmo 8: Genetic algorithm [25]
INPUTS: R
OUTPUT: xb
Initialization: Generate initial random integer populations P of individuals from R
while generation≤ max generations do

Evaluate the cost function of all individuals in the current generation
Find the best individuals
for i=1 with step 2 to population size do

Selection
Crossover
Mutation

end
Create new population from offspring
generation = generation+1
if Stall then

Break;
end

end

GA algorithm deals with individuals, in this case an individual is a particular GMP model
and the population is a subset of models chosen randomly from the models set of possible
values R previously defined. Applying the cost function in 4.24, the algorithm will apply
the process of selection, crossover and mutation as the generations pass until reaching
the maximum number of generations or until a stopping criterion is reached. The best
individual according to the cost function will be set as xb. Table 4.3 shows the results ob-
tained starting from a random model and finding the best individuals xb parameters and
its cost. This mean that the individuals with the lowest cost is equal to -112.7 achieving
-30.14 dB with 32 coefficients. The GA Matlab function was used to obtain the results and
shown in figure 4.15. Where the crossover fraction is set to 0.8 that means that the frac-
tion of the population at the next generation not including elite children that the crossover
function creates is 80%. The elite count is a positive integer specifying how many individ-
uals in the current generation are guaranteed to survive to the next generation and set to
0.05·PopulationSize. The maximum number of generations is set to 100 ·NVar(8) and
population size is set to 200.

Table 4.3: Genetic algorithm results

Initial point Best point xb cost
Nº
coeffi-
cients

NMSE

Random

pb
a = 6, pb

b = 2, pb
c = 3;

mb
a = [0 1 2], mb

b = [−4 : 1 :
0], mb

c = [−4 : 1 : 0]; lb
b = 1,

lb
c = [1 2 3 4];

-112.7 32
-30.14
dB
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Figure 4.15: Pareto front and best individual for genetic algorithm

4.3.3. Simulated Annealing

The simulated annealing algorithm presented in [33] and applied for the extraction of power
amplifier (PA) behavioral model parameters is inspired from the process of annealing in
metal work and is used to obtain low energy states over over solid metal. The way anneal-
ing works in metal work is as follows: the temperature of a solid metal is increased until
the metal melts and becomes liquid after that,in the liquid state it is cooled down until the
particles rearranged in the ground state of the solid. This is a simulation of the process of
annealing and can be used to generate a solution to combinatorial optimization problems
where the cost of a solution is related with the energy of a state. Simulated Annealing is
a modified version of hill climbing. Starting from a random point in the search space, a
random move is made. If this move takes us to a higher point, it is accepted. If it takes us
to a lower point, it is accepted only with probability p(t), where t is time. The function p(t)
begins close to 1, but gradually reduces towards zero similar to the process of cooling of a
metal as already explained.

p(t) = e−
δ(E−E′)

T , (4.25)

where δ(E ′−E) is the energy difference between current and next model to move and
T is the temperature. If δ(E ′−E) is negative, i.e. the transition decreases the energy,
the movement is accepted with probability p = 1. It is important to note that the condition
that the system always switches to a lower energy system when one is found is not at
all necessary for the success of the method. When δ(E ′−E) is positive the transition
probability p(t) is always different from zero, i.e., the system can move to a higher energy
state (worse solution) than the current state. This property prevents the system from being
trapped in a local optimum. As the temperature tends to the minimum, the probability of
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transition to a higher energy state tends to zero asymptotically. When T reaches zero,
the algorithm will only accept changes to lower energy states. Due to this property, the
temperature plays a very important role in the control of the evolution of the system. At
high temperatures, the system will tend to large energy jumps between the states, while at
lower temperatures, the changes in energy will be smaller.

Algoritmo 9: Simulated Annealing algorithm [17]
INPUTS: R
OUTPUT: xb
Select a random model in R as current model xc
Evaluate the cost function of xc
Set initial temperature T
while Stopping criterion is not met do

Generate a new neighbor
Evaluate neighbor cost function Ji+1
if Ji ≤ Jc then

Update neighbor model xi as current model xc
else

update neighbor model xi as current model xc with probability p
end
Decrease temperature T periodically

end
Set current model xc as best model xb

The algorithm initiates by choosing a random model and setting current model. The initial
value of temperature T is an important parameter for successful implementation of SA. If
the value is too high, then it takes more reduction to converge. If too small, the search
process may less than perfect so that the points could potentially global optimum be ex-
ceeded. Then a evaluation of a new solution is done. If Ji ≤ Jc, then new neighbor is
accepted and it replaces xc, update the existing optimal solution. On the other hand, if
Ji ≥ Jc, new neighbor xi can also be accepted with a probability p.

Table 4.4 shows the results obtained starting from a random model and finding the best
model xb parameters and its cost. This mean that the individuals with the lowest cost
is equal to -111.35 achieving -30.45 dB with 38 coefficients. The Simulated annealing
Matlab function was used to obtain the results in figure 4.16 with an adaptation for integer
variables presented in [17].

Table 4.4: Simulated annealing results

Initial point Best point xb cost
Nº
coeffi-
cients

NMSE

Random

pb
a = 6, pb

b = 3, pb
c = 3;

mb
a = [0 1], mb

b = [−4 : 1 : 4],
mb

c = [−4 : 1 : 0]; lb
b = 1, lb

c =
[1 2 3 4];

-111.35 38
-30.45
dB
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Figure 4.16: Pareto front and best result for Simulated Annealing algorithm

4.3.4. Adalipo

The Adalipo algorithm is an extension of LIPO proposed in [18] which involves an estimate
of the Lipschitz constant and takes as input a parameter p ∈ (0,1) and a nondecreasing
sequence of Lipschitz constant ki∈. The algorithm is initialized with a Lipschitz constant
k̂1 set to 0 and alternates randomly between two distinct phases: exploration and exploita-
tion. Indeed, at step t < n, a Bernoulli random variable Bt+1 of parameter p which drives
this trade-off is sampled. If Bt+1 = 1, then the algorithm explores the space by evaluating
the function over a point uniformly sampled over X . Otherwise, if Bt+1 = 0, the algorithm
exploits the previous evaluations by making an iteration of the LIPO algorithm with the
smallest Lipschitz constant of the sequence k̂t which is associated with a subset of Lips-
chitz functions that probably contains f . Once an evaluation has been made, the Lipschitz
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constant estimate k̂t is updated.

Algoritmo 10: Adalipo algorithm [18]

INPUTS: n, ki∈, X ⊂d, f ∈Uk≥0Lip(k)
OUTPUT: Return Xîn where în ∈ argmaxi=1···n f (Xi)
Initialization: Let X1 ∼U(X )
Evaluate f (X1), t← 1, k̂1← 0
while t < n do

Let Bt+1 ∼ B(p)
if Bt+1 = 1 then

Exploration: Let X t+1 ∼U(X )
else

Exploitation: Let X t+1 ∼U(Xk̂t ,t where Xk̂t ,t denotes the set of potential
maximizers

end
Evaluate f (X t+1), t← t +1

Let k̂t = in f
{

ki∈ : max
i6= j

| f (X i)− f (X j)|
‖X i−X j‖2

≤ ki

}
end

The algorithm described previously was adapted to solve the problem of finding the best
model that fit our cost function. The results obtained can be seen in the figure 4.17 where
each one of the blue points represent a model that Adalipo has evaluated and the green
points represents the Pareto front. The values of n is set to 15000 so that the number of
iterations can’t pass this number.

Figure 4.17: Pareto front and best result for Adalipo
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4.3.5. Dynamic Model Sizing

Dynamic Model Sizing (DMS) is a model structure adaptation algorithm proposed in [22],
which can well address the challenges of adaptive model pruning problems while achiev-
ing good pruning performance. The algorithm starts from a given model structure and
iteratively searches for a new model suitable for the current PA condition. To achieve the
desired objective, the algorithm explores new basis functions that are potentially benefi-
cial for DPD modeling and removes old ones that have a negligible impact on linearization
performance. Therefore, the update of the structure mainly consists of two algorithmic
steps, namely model pruning and model growing. As we can observe, this algorithm is a
combination of greedy pursuit idea of pruning the less important regressors combined with
the search for other basis functions outside the first model selected, typical of heuristic
algorithms.

The goal of the model pruning is to remove the unimportant terms in the model to make
the model more efficient without degrading the performance. To do so, an effective and
robust metric to measure the importance of model basis functions must be developed first.
The significance of model coefficients can be evaluated using the z-test to evaluate its
statistical significance:

zi =
| wi |√

νi
, (4.26)

where zi is the quantification of the importance of regressor i− th regressor,νi is the diag-
onal elements of matrix (XHX)−1 and wi is the LS estimation of coefficient i. Therefore,
based on the vector z, the importance of all coefficients in the current model can be evalu-
ated, and the Nprune terms with the smallest z should be removed from the current model.
Besides the pruning strategy, it is important to find potentially important terms that are not
included in the current model. A straightforward approach is to consider all possible model
terms in every iteration, but this will require high computational complexity and can reduce
the robustness of model pruning due to a large number of coefficients involved.

It is thus desirable to consider only a subset of the full model terms that are considered
useful in increasing model accuracy. The idea is to select only those neighbours of the
elements that have been left after making the prune. The concept is very similar to Hill
Climbing but with a slight difference. The idea of a neighbor is not a new model but a basis
function that has the non-linear terms very close to the remaining basis function after the
prune process. Taking MP model as an example, the nonlinear term |x(n−m)|(p−1)x(n−
m) has polynomial order p and memory depth m, so it corresponds to the point (p,m)
in the feature space. Nonlinear terms that lie in its neighborhood in the feature space,
such as the terms corresponding to (p±1,m) and (k,m±1), are likely to provide similar
modeling capability of these characteristics. Thus, new terms close to the important basis
functions are added to the model during the model growing phase. For initialization, to
avoid starting from scratch, the model can start from a predetermined model structure,
such as a GMP model. Nν is the number new terms that will be added after the process
of pruning and growing at each iteration. Note that Nν = Ngrow−Nprune, therefore if the
model structure grow by 10 if we want to have 4 new basis functions added to the original
set Nprune is going to be 6. The stopping criterion set is the number coefficients, so the
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Figure 4.18: Illustration of the model terms being added during model growing [22]

model keep growing until it reach a defined number of coefficients.

Algoritmo 11: Dynamic Model Sizing algorithm [22]
INPUTS: Initial model structure Xo, Ngrow,Nν, y
OUTPUT: Updated model structure X f
while stopping criterion is not met do

Update Nprune = Ngrow−Nν

Add Ngrow coefficients to the model from candidate set Xset
for t = 1 to Nprune do

Calculate z
Select the index with lowest z and remove it from Xo
Update X f with the new Xo and calculate ŵ
if Performance degrades dramatically then

Restore the removed index
Break

end
end
Generate Neighbors of remaining elements from Xo
Build candidate set X set
Update Ngrow

end

Since DMS starts with an initial GMP model, the same one defined in greedy algorithm
has been used. Once algorithm 11 is executed, figure 4.19 can be plotted where x-axis
represent the number of coefficients and y-axis the linearization NMSE. In this figure, it
can be seen how the NMSE improves when Nν values decreases.
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Figure 4.19: NMSE vs Number of coefficients with different Nν values



CHAPTER 5. COMPARISON OF MODEL ORDER
REDUCTION TECHNIQUES

In this chapter, we provide a comparison of the results obtained with the different model
order reduction algorithms described in Chapter 4. First, we will begin by explaining the
type of data used and the test-bench used for obtaining experimental input-output data
observations. Then, the metrics for evaluating the modeling performance will be described,
so that we can make a comparison on equal terms with the methods analysed in this work.
Finally, a comparison among the different reduction methods previously analysed will be
made. Since greedy algorithms and heuristic algorithms have a different way of posing
the same problem, we will first compare the first group among them and then the heuristic
algorithms among them. Finally, a comparison taking into account the algorithms from both
approaches will be made discussing the most relevant issues of each of the dimensionality
reduction algorithms under study.

5.1. Experimental setup and data used

The experimental data was obtained from a instrumentation-based testbench depicted in
figure 5.1. The device under test was a load modulated balanced amplifier (LMBA), de-
signed to operate with high bandwidth signals while keeping high power efficiency values.
The signal generation and acquisition equipment consists of an arbitrary waveform gen-
erator (AWG) M8190A from Keysight, with a clock rate of 7.9872 GHz and 14 bits, and
a digital storage oscilloscope (DSO) 90404A from Keysight operating at 20 GSa/s with 8-
bit resolution to capture the RF signal directly. The digital processing and control of the
equipment is carried out in a PC running MATLAB.

The RF signal used to extract the PA behavioral models consists in 4-LTE channels of 20
MHz distributed over 200 MHz, as depicted in figure 5.2. A total of 307200 data samples
of the digital base-band input-output data were obtained with a sampling frequency of
614.4 MHz. From the total amount of samples, half were used for the estimation of the PA
behavioral model coefficients and the other half were used for the validation purposes.

51
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Figure 5.1: Picture of the test setup employed for LMBA experimental validation

Figure 5.2: RF test signal spectrum

The algorithms used in this project are computationally intensive and the number of sam-
ples used for the model coefficients estimation is of importance in order to be able to relax
the computational load. Thus, using the whole data set implies a very high running time,
making it difficult to perform many tests. In order to solve this problem, two methods for
the reduction of the samples used for the estimation of the coefficients will be presented
below, namely, brute force and mesh selecting. The results shown throughout this work
have been obtained using all samples of the signal, however in the first tests carried out
to check the operation and decide some tuning parameters of the algorithms, these two
sample reduction methods were used to reduce the required computational time.

As the name suggests, the brute force (BF) method consists of reducing the data that
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are used abruptly to make a first study of the signal. As mentioned above, the signal
contains 307200 samples of which half of them (153600) are used to extract the model
coefficients. This number of samples is quite high and this causes an increase in the run
time. The method consists of reducing the identification data by a factor α, L′ = L

α
, where

the number of samples used to identify the coefficients are the first L′ samples.

On the other hand, with the mesh selecting method proposed in [41], a multi-dimensional
mesh is created in order to capture the input data statistics. Later, a proportional pruning
of the samples of each of the mesh bins is carried out. As a results, a selection of the most
representative input-output data is obtained.

In order to see the difference between these two methods, we have considered a Volterra
behavioral model with a parameter configuration that gives a total of 1595 coefficients.
Figure 5.3 shows the results obtained when applying OMP for each type of reduced data.
The legend indicates the number of samples used to obtain the coefficients.

Figure 5.3: Comparison between brute force and mesh selecting

We can see how the mesh selecting method is more robust than brute force method. In
brute force, as we reduce the samples, the error grows. It can be seen that for a number
of coefficients equal to 200, the BF can vary up to 4 dB depending on the factor we use,
being the maximum αmax =3000. However, the mesh select under the same conditions
only worsens by a total of 2 dB. This indicates that the BF is not very reliable for a first study
of the data since it can alter the results. On the other hand, mesh selecting is a method
that can help us to make a first study by reducing the execution time in a remarkable way
but at the price of a certain degradation of the NMSE.
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5.2. Order reduction performance indicators

The algorithms described in Chapter 4 allow us to reduce the number of coefficients of
a given behavioral model at the price of some degradation of the modeling performance.
In this project, the GMP behavioral model has been considered in order to evaluate the
performance of the dimensionality reduction algorithms under study. Once the behavioral
model has been chosen, it is crucial to have accurate metrics to evaluate its performance.
Several metrics have been proposed for this. This section introduces some of the most
commonly used performance indicators of PA behavioral models.

5.2.1. Normalized mean square error

The normalized mean square error (NMSE) indicates how well the model is approximat-
ing the reality, i.e., the difference between the estimated and the real (measured) output
squared, normalized by the measured output squared. The NMSE is normally expressed
in dB:

NMSE = 10log10

[
∑

N
n=1 | yreal(n)− ymod(n) |2

∑
N
n=1 | yreal(n) |2

]
[dB], (5.1)

where yreal(n) denotes the measured signal at the PA output, ymod(n) denotes the mod-
eled output and N the number of samples. Since the NMSE is dominated by the in-band
error, it is used to evaluate the in-band performance of the model.

5.2.2. Adjacent channel error power ratio

In order to highlight the out-of-band modeling capabilities, the adjacent channel error
power ratio (ACEPR) metric is proposed. This metric calculates power of the error (be-
tween the modeled and the real signals) in the adjacent channels normalized by the in-
band channel power. The ACEPR is normally expressed in dB

ACEPR = 10log10

[∫
(ad j) | Yreal( f )−Ymod( f ) |2∫

ch | Yreal( f ) |2

]
[dB], (5.2)

where Yreal( f ) is the Fourier transform of the real output signal, and Ymod( f ) is the Fourier
transform of the modeled output signal. In the numerator, the operation is done taking
into account the adjacent channels, while in the denominator we take into account the
transmission channel.

5.2.3. Running time

The Landau notation could be used to measure the complexity of each of the algorithms.
The main problem is that, with heuristic algorithms, it is very difficult to make a complexity
analysis using Landau notation. A simple approach is to record the running time of the
different algorithms. This depends a lot on the hardware from where the code is being
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executed. The running time will be obtained using the same hardware to make a fair
comparison.

5.3. Greedy algorithms comparison

In this project, we have considered that greedy algorithms are those algorithms that, start-
ing from a given configuration of the behavioral model (considering a lot of coefficients),
will find the minimum number of coefficients required for meeting a certain modeling per-
formance. Therefore, it can be said that DOMP, OMP, SP, RF, LASSO and Ridge have the
same purpose, but they solve the problem in different ways.

Figure 5.4: NMSE vs Number of Coefficients

As it can be observed in figure 5.4 and figure 5.5 and more concretely in table 5.1, DOMP,
OMP and SP are the ones that offer the best performance, reducing the number of co-
efficients of the model from 139 coefficients to 70 coefficients without almost no loss of
performance in terms of NMSE and ACEPR, respectively. That means a reduction of the
coefficients of 50% without changing the NMSE more than 0.1 dB. On the other hand, by
using the regularization techniques of LASSO and RIDGE, in order to offer the same per-
formance in terms of NMSE, we cannot reduce the coefficients by more than 30%. Finally,
Random Forest’s algorithm is the one that offers the worst performance. In order to obtain
the same NMSE performance, it can reduce the coefficients up to 20%.
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Figure 5.5: ACEPR vs Number of Coefficients

Table 5.1: Minimum number of coefficients required to achieve an NMSE≤ −32 dB and
ACEPR ≤−36.5 dB

CASE Number of Coefficients % of Coefficients reduction

SP 70 50%
OMP 70 50%
DOMP 50 64%
LASSO 97 30%
RIDGE 97 30%
Random
Forest

97 30%

We can conclude then that the best results have been obtained with the first group of
algorithms: DOMP, OMP and SP, since they classify the regressors by correlating them
with the residue of the identification error. That allows the importance of each regressor
to be quantified and to sort them from the most to least important. SP and OMP work in a
very similar way and therefore, their NMSE/ACEPR vs. coefficients curves are very similar.
With SP, for each iteration, a subset of the k elements most closely related to the residue is
selected. As you can see, for a k = 1 we have exactly the OMP, since in each iteration we
are adding only one regressor. The higher the k, the fewer iterations the code has to run
and consequently slightly worse results are obtained but in a much shorter time. However,
with DOMP, a double orthogonalization is guaranteed by including the the Gram-Schmidt
process to the original OMP. The selected basis are always orthogonal to the residue,
and at the same time, they are orthogonal to the regressors that do not belong to the set
of unselected regressors. Including the Gram-Schmidt orthogonalization introduces more
computational complexity, which is translated into longer running time, as can be seen
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in figure 5.6. The LASSO and RIDGE regularization algorithms are good at solving the
problem of bad conditioning and reducing the coefficients, but when trying to obtain the
best NMSE for each number of coefficients the best results are not obtained. Equations
(4.3) and (4.6) represent RIDGE and LASSO restrictions respectively, where λ is set to
obtain the coefficients that meet the conditions. As we increase the λ value, we reduce the
number of coefficients that meet the condition, consequently we are worsening the NMSE
obtained. Therefore, when we use high values of λ, to be able to obtain the NMSE vs
number of coefficients curve, the restriction is so big that we are eliminating coefficients
that have high importance. Their running time is generally lower than the DOMP and OMP,

Figure 5.6: Running time greedy algorithm

but they give us a poorer results. The Random Forest (RF) algorithm offers the worst
results in addition to having a much longer execution time. Being an algorithm that uses
randomness and statistics to obtain results, without looking at the relationship between
the regressors and the residual modeling error, it needs many data to obtain satisfactory
conclusions. Therefore its execution time is much higher in addition to having the lowest
performance.

As mentioned before, we start from a GMP behavioral model configuration with 139 co-
efficients in total. Before applying the reduction algorithms, the original model offers an
NMSE of -32.19 dB, the maximum NMSE that is obtained when considering all the 139
coefficients. SP, LASSO and RIDGE work independently for each number of coefficients;
therefore, they do not guarantee models with increasing capacities of error mitigation, con-
sequently, for some coefficients values in figures 5.4 and 5.5, the error does not improve
when considering more coefficients.
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Table 5.2: Benchmark of greedy algorithms with 20 coefficients

CASE NMSE ACEPR NMSE-NMSEopt

SP -29.56 dB -33.79 dB 2.49 dB
OMP -28.88 dB -33.15 dB 3.17 dB
DOMP -30.84 dB -35.14 dB 1.21 dB
LASSO -29-86 dB -34.09 dB 2.19 dB
RIDGE -28.31 dB -34.29 dB 3.74 dB
Random
Forest

-26.31 dB -30.77 dB 5.74 dB

Table 5.3: Benchmark of greedy algorithms with 50 coefficients

CASE NMSE ACEPR NMSE-NMSEopt

SP -31.45 dB -35.78 dB 0.6 dB
OMP6 -31.45 dB -35.91 dB 0.6 dB
DOMP -32.05 dB -36.49 dB 0 dB
LASSO -31.3 dB -35.54 dB 0.75 dB
RIDGE -30.8 dB -35.54 dB 1.25 dB
Random
Forest

-30.1 dB -35.22 dB 1.95 dB

In tables 5.2 and 5.3 , the NMSEopt is set to a value -32.05 dB, slightly higher than the
minimum NMSE to avoid bad conditioning. With 20 coefficients, DOMP achieves an NMSE
of -30.84 dB, thus obtaining the best possible result with respect to the other algorithms
studied, being 1.21 dB worse than the NMSEopt . SP, LASSO, RIDGE and OMP get quite
similar results, being between 2 dB and 3 dB from the optimal result and finally Random
Forest offering much worse results of almost 6 dB to the optimal NMSE. If we increase the
number of coefficients needed to 50, we can see that DOMP reaches the optimal NMSE
and OMP, SP and LASSO are also very close to the optimal since they have already added
the most important regressors. Random Forest and RIDGE are between 2 and 1 dB of
the optimum result respectively, so despite offering worse performance than the previous
algorithms, they have managed to reduce most of the coefficients with a decent NMSE.

5.4. Heuristic algorithms comparison

As mentioned before, heuristic search algorithms find the best model from a large set of
possible configurations. Therefore, the comparison of heuristic algorithms in figure 5.7 and
figure 5.8 show the best GMP behavioral model configuration (i.e., the Pareto front) taking
into account a certain number of coefficients.

Unlike the rest, hill climbing (HC) is a deterministic algorithm looking at each iteration to the
neighbour with the best merit function. Consequently, it can be sensitive to local extrema.
On the other hand, the GA, Adalipo and SA algorithm may be seen as a probabilistic
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searches. Genetic algorithm (GA) starts from random initial population randomly spread
throughout the whole solution space. Thus, it could be quite sensitive to the size of the
population which in turn has an impact on the complexity. Simulated annealing (SA) uses
the metallurgical term, this technique converges to a solution in the same way metals are
brought to minimum energy configurations by increasing grain size. In each iteration, it
probabilistically decides whether to stay in the current state or move to another state, and
finally make the system enter the lowest energy state. As observed in Figure 5.7 and 5.8,
HC is not showing promising results, that is because of its facility to get stuck in a local
minimum.

Figure 5.7: NMSE vs Number of Coefficients
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Figure 5.8: ACEPR vs Number of Coefficients

The main problem with HC is that in order to find good results, the initial conditions has
to be modified by varying the initial point xk as explained in chapter 4. However, GA,
SA and Adalipo can find better results due to the randomness they offer. Since they do
not focus on a single point, it can be seen that the three aforementioned algorithms can
reach models with much higher number of coefficients, since they consider that they fit the
cost function used. The running time of the heuristic algorithms is directly linked to the
number of models that they analyze during that time, but it is also related to the number
of coefficients that each model has. Studying a model with more coefficients means that it
takes longer to find the optimal solution. With an exhaustive search, the number of models
to be analysed would be greater than 106.

Table 5.4 shows that HC analyzes less than 4000 models to get the result, and focuses on
models that contain less than 130 coefficients in figure 5.9. Unlike HC, the running time of
the other methods can be twice or three times HC’s, because they analyze models that can
reach up to 300 coefficients while increasing number of models under study. Consequently,
their running time increases. The use of heuristic search methods has made possible to
reduce the number of models under study from 106 to 15000 in the most extreme case,
offering very good NMSE and ACEPR performance. In the case of making the first study
to evaluate the characteristics of predistortion, HC can be a good option because it offers
indicative results in a shorter time. Nevertheless, if NMSE or ACEPR is critical in our
project, Adalipo, GA, or SA would be the most indicated to use, sacrificing more time.
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Figure 5.9: NMSE vs Number of coefficients for each of the calculates models

Figure 5.10: Running time heuristic algorithm

5.5. Greedy versus Heuristic algorithms

After seeing in detail how these two families of dimensionality reduction algorithms func-
tion, we will discuss some of the most critical points to take into account while providing
a comparison of their modeling performance. The main difference between greedy and
heuristic search algorithms is that they address two different problems. Greedy algorithms
start from an initial configuration of the model and select the most relevant basis in order to
have the best NMSE and ACEPR with the minimum necessary coefficients. On the other
hand, the heuristic search algorithms try to find the best model configuration among a
large set of possible configurations that best fits the defined cost function. For this reason,



62 Machine learning techniques applied to dimensionality reduction for digital predistortion linearizers

the greedy algorithms will have a much lower running time, as it can be observed in table
5.4.

Figure 5.11: NMSE greedy vs heuristic algorithm

Figure 5.12: ACEPR greedy vs heuristic algorithm
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Table 5.4: Benchmark of greedy and heuristic algorithm

CASE Best NMSE Models Analyzed
Running
Time

SP -32.19 dB 1 6.8 s
OMP -32.19dB 1 238.1 s
DOMP -32.19 dB 1 296.6 s
HC -31.8 dB 3888 2361 s
SA -32.91 dB 8238 13683 s
GA -32.9 dB 5521 7833 s

Figure 5.11 and 5.12 shows a comparison between the three best greedy algorithms vs
the three best heuristic search algorithms. For numbers of coefficients less than 80, it can
be observed that the greedy algorithms tend to offer better performance. Since the greedy
algorithms start from a initial configuration of the model, the NMSE that can achieve can-
not be better than the one already offered by the model with all the coefficients. For that
reason, as we pass the 80 coefficients, the heuristic algorithms start to be slightly bet-
ter. In order to make a fairer comparison between the two families, we can set a target
number of coefficients and determine the algorithm that provides the best modeling per-
formance (in terms of NMSE and ACEPR) with the configuration found. For this purpose,
the DOMP,OMP and GA algorithms will be used with a modified cost function,

Ji =| Nci−Nci | 50 (5.3)

where Nck is the number of coefficients the model will focus on, and Nci is the number
of coefficients of the model i. The equation has its minimum point in Nci = Nck, and any
other value different from Jk implies a very high cost. Therefore the model will be able to
analyze numerous models with a number of coefficients equal or close to Nci.

Table 5.5: DOMP, OMP and GA performance with 10, 20, 40 and 100 coefficients

CASE
Number of
Coefficients

NMSE Models Analyzed Running Time

10 -28.74 dB 1 2.26 s
DOMP 20 -30.84 dB 1 11.23

40 -31.82 dB 1 27.68 s
100 -32.19 dB 1 113 s
10 -26.73 dB 1 1.785 s

OMP 20 28.9 dB 1 4.63 s
40 -31.06 dB 1 17.31 s
100 -32.19 dB 1 130 s
10 -26.5 dB 281 312 s

GA 20 -29.9 dB 390 475 s
40 -30.6 dB 506 721 s
100 -32.3 dB 731 1071 s

After adjusting the cost function, table 5.5 shows how DOMP and OMP algorithms still have
a much lower computational cost and offer a better NMSE and ACEPR in a shorter time;
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however, they do not explore new basis functions of other models. On the other hand GA,
despite exploring less models than the first cost function used, still have a higher running
time than OMP and DOMP. Greedy and heuristic algorithms have their advantages and
disadvantages; besides, they solve two different problems.

Finally, we include in the comparison the dynamic model sizing (DMS) algorithm previously
explained in chapter 4. The DMS combines the best of both families of dimensionality
reduction algorithms. Similarly to OMP or DOMP it provides a sorted list of the most
relevant regressors taking into account the z-test to prune the less relevant coefficients;
and similar to HC it grows including neighbors of the remaining elements’ neighbors. The
performance of DMS is shown in figures 5.13 and 5.14. With a running time of 2796
seconds, DMS shows the best results, applying the idea of looking for the importance of
the regressor, typical of greedy algorithms, and the concept of analyzing models different
than the initial one, typical of heuristic algorithms, obtaining a NMSEopt of -33 dB for 140
coefficients.

Figure 5.13: NMSE DMS vs greedy and heuristic algorithms
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Figure 5.14: ACEPR DMS vs greedy and heuristic algorithms
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CHAPTER 6. CONCLUSION

When it comes to improving the transmission rate in an RF system, energy consumption
and system efficiency become key factors. We know that PA is the most energy-consuming
element in the transmission chain and that by improving its performance, the overall system
improves. Using DPD techniques, the amplifier’s efficiency is greatly improved as it can
work in close to compression. A proper selection of the PA behavioral modeling is crucial
for DPD linearization. The use of behavioral models with many coefficients can cause over-
fitting or poor conditioning which ultimately would degrade the linearization performance.
In addition, having a very high number of coefficients will result in high computational
complexity and unnecessary power consumption from the digital signal processor.

There are several dimensionality reduction methods to address this problem. In this work,
we have focused on greedy algorithms and heuristic search algorithms. These two families
of algorithms work in different ways, and each one has its advantages or disadvantages
depending on the problem to be treated. A comparison in terms of run time is not com-
pletely fair since heuristics search algorithms analyze several models over a much more
extended time, but this allows us to compare several results.

On the other hand, the greedy algorithms can reduce the number of coefficients of a model
up to 65% without degrading the NMSE or ACEPR. This can leads us to conclude that
combining some of the strengths of both families of algorithms can allow us to obtain even
better results. The DMS algorithm is one example of this concept and manages to obtain,
together with DOMP for low number of coefficients, the best possible performance in terms
of NMSE and ACEPR.

As future work to be done, we will try to find alternatives to the DMS algorithm, combining
the DOMP approach in which the most relevant coefficients are selected from an original
configuration but allowing the model to grow and explore alternative basis functions not
present in the original configuration set.

67
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APPENDIX A. MATLAB CODE

Orthogonal matching pursuit

1 function [ U red , index , n 0 , i n d ex t o t , n 0 nan ]=
Orthogonal Match ing Pursu i t and BIC (U, y )

2 [ L , n columns ]= size (U) ;
3 index=zeros ( n columns , 1 ) ;
4 BIC=zeros ( n columns , 1 ) ;
5 e=y ;
6 i t e =1;
7 disp ( ’ S t a r t i n g OMP+BIC a lgo r i t hm . Please , be p a t i e n t . . . ’ ) ;
8 n 0 nan =0;
9 for i =1: n columns

10 [ ˜ , pos ]=max( abs (U’ * e ) ) ;
11 index ( i ) =pos ;
12 i f ( isnan ( ( ( U( : , nonzeros ( index ) ) ’ *U( : , nonzeros ( index ) ) ) ˆ −1) *U( : , nonzeros (

index ) ) ’ * y ) )
13 break
14 else
15 n 0 nan= n 0 nan + 1;
16 w=( (U( : , nonzeros ( index ) ) ’ *U( : , nonzeros ( index ) ) ) ˆ −1) *U( : , nonzeros (

index ) ) ’ * y ;
17 end
18 y es t =U( : , nonzeros ( index ) ) *w;
19 e=y−y es t ;
20 Sigma e =(Lˆ −1) *norm ( e , 2 ) ;
21 BIC ( i ) =(2*L* log ( Sigma e ) +2* i * log (2*L ) ) ;
22 i f ( i ==100* i t e ) ; f p r i n t f ( ’\n Number o f processed columns= %d \n ’ , i ) ;
23 i t e = i t e +1;
24 end
25 end
26 [ ˜ , n 0 ]=min ( BIC ) ;
27 j =1;
28 U red=U( : , index ( 1 : n 0 ) ) ;
29 missing=zeros ( n columns−n 0 , 1 ) ;
30 for i =1: n columns
31 i f ( isempty ( f ind ( index ( 1 : n 0 ) == i ) ) )
32 missing ( j ) = i ;
33 j = j +1;
34 end
35 end
36 i n d e x t o t =[ index ( 1 : n 0 ) ; missing ] ;
37

38 end

Doubly Orthogonal Matching Pursuit

1 function [ U red , index , n 0 , i n d ex t o t , n 0 nan ]=
Doubly Orthogonal Match ing Pursu i t and BIC (U, y )

2 [ L , n columns ]= size (U) ;
3 index=zeros ( n columns , 1 ) ;
4 BIC=zeros ( n columns , 1 ) ;
5 Z=U;
6 e=y ;
7 i t e =1;
8 disp ( ’ S t a r t i n g OMP+BIC a lgo r i t hm . Please , be p a t i e n t . . . ’ ) ;
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9 n 0 nan =0;
10 for i =1: n columns
11 [ ˜ , pos ]=max( abs (Z ’ * e ) ) ;
12 index ( i ) =pos ;
13 p = Z ( : , pos ) ’ *Z ;
14 Z = Z − kron ( p , Z ( : , pos ) ) ;
15 i f ( isnan ( ( ( U( : , nonzeros ( index ) ) ’ *U( : , nonzeros ( index ) ) ) ˆ −1) *U( : , nonzeros (

index ) ) ’ * y ) )
16 a=1;
17 else
18 n 0 nan= n 0 nan + 1;
19 w=( (U( : , nonzeros ( index ) ) ’ *U( : , nonzeros ( index ) ) ) ˆ −1) *U( : , nonzeros (

index ) ) ’ * y ;
20 end
21 y es t =U( : , nonzeros ( index ) ) *w;
22 e=y−y es t ;
23 Sigma e =(Lˆ −1) *norm ( e , 2 ) ;
24 BIC ( i ) =(2*L* log ( Sigma e ) +2* i * log (2*L ) ) ;
25 i f ( i ==100* i t e ) ; f p r i n t f ( ’\n Number o f processed columns= %d \n ’ , i ) ;
26 i t e = i t e +1;
27 end
28 end
29 [ ˜ , n 0 ]=min ( BIC ) ;
30 j =1;
31 U red=U( : , index ( 1 : n 0 ) ) ;
32 missing=zeros ( n columns−n 0 , 1 ) ;
33 for i =1: n columns
34 i f ( isempty ( f ind ( index ( 1 : n 0 ) == i ) ) )
35 missing ( j ) = i ;
36 j = j +1;
37 end
38 end
39 i n d e x t o t =[ index ( 1 : n 0 ) ; missing ] ;
40

41 end

Subspace Pursuit

1 z = zeros ( size ( Phi , 2 ) ,1 ) ; %size ( z ) = N*1
2 v = u ;
3 t = 1 ;
4 numer i ca lp rec i s ion = 1e−12;
5 T = [ ] ;
6 while ( t <= max i te ra t i ons ) && (norm ( v ) / norm ( u ) > t o l )
7 y = abs ( Phi ’ * v ) ;
8 [ vals , z ] = sort ( y , ’ descend ’ ) ;
9 Omega = f ind ( y >= va ls (2*K) & y > numer i ca lp rec i s ion ) ;

10 T = union (Omega, T ) ;
11 b = pinv ( Phi ( : , T ) ) *u ;
12 [ vals , z ] = sort ( abs ( b ) , ’ descend ’ ) ;
13 K ind ices =(abs ( b ) >= va ls (K) & abs ( b ) > numer i ca lp rec i s ion ) ;
14 T = T( K ind ices ) ;
15 z = zeros ( size ( Phi , 2 ) ,1 ) ;
16 b = b ( K ind ices ) ;
17 z (T ) = b ;
18 v = u − Phi ( : , T ) *b ;
19 t = t +1;
20



21 end
22 n 0= length (T ) ;
23 index = T ;
24 U red = Phi ( : , T ) ;

LASSO

1 U lasso =[ rea l ( X i d c u t ) −imag ( X i d c u t ) ; imag ( X i d c u t ) rea l ( X i d c u t ) ] ;
2 y lasso =[ rea l ( y i d c u t ) ; imag ( y i d c u t ) ] ;
3 lambdas=logspace (1 ,6 ,50) /1 e8 ;
4 t i c
5 w lasso= lasso ( U lasso , y lasso , ’Lambda ’ , lambdas ) ;
6 for aa=1: size ( w lasso , 2 )
7 w lasso2=w lasso ( 1 : o rde r i , aa ) + j * w lasso ( o r d e r i +1:end , aa ) ;
8 I l a s s o = f ind ( w lasso2 ) ;
9 w lasso2=w lasso2 ( I l a s s o ) ;

10 y es t = X v a l t o t ( : , I l a s s o ) * w lasso2 ;
11 NMSE id PA ( aa ) =dpd Qmeasurements ( y va l , y est , ’NMSE ’ ) ;
12 N coef ( aa ) = length ( w lasso2 ) ;
13 w LS=( X i d c u t ( : , I l a s s o ) ’ * X i d c u t ( : , I l a s s o ) ) ˆ−1* X i d c u t ( : , I l a s s o )

’ * y i d c u t ;
14 y est LS= X v a l t o t ( : , I l a s s o ) *w LS ;
15 NMSE id PA LS ( aa ) =dpd Qmeasurements ( y va l , y est LS , ’NMSE ’ ) ;
16 ACEPR( aa ) =acepr ( y va l , y est LS ,20e6 , f s ) ;
17 end
18 RT lasso=toc ;
19 v p l o t s ( n p l o t s ) = s c a t t e r ( N coef , NMSE id PA LS , ’ o ’ ) ;

Hill Climbing

1 close a l l ; clear a l l ;
2 Beh Models path
3 load ( ’ data\ IN OUT Mult iband Signal . mat ’ ) ;
4 L= length ( xBB) ;
5 x i d =xBB ( 1 : L / 2 ) ; y i d =yBB ( 1 : L / 2 ) ; x v a l =xBB( L /2+1 :end ) ; y v a l =yBB( L /2+1 :

end ) ;
6

7

8 %Constantes para c a l c u l a r l a func ion de coste .
9 NMSE threshold = −25.7664*0.8; lambda =1.0122*15;

10

11 %model s e l e c t i o n
12 PA model= ’GMP’ ;
13 %armamos una mat r i z donde cada f i l a s i g n i f i c a
14 m a t r i z i n i c i o ( 1 , : ) =[1 1 1 4 6 6 2 2 ] ;
15

16

17 for r =1: size ( m a t r i z i n i c i o , 1 )%en cada i t e r a c i o n va a c o r r e r e l HC empezando
en d i f e r e n t e s puntos .

18 pos parameters actua l= m a t r i z i n i c i o ( r , : ) ;
19 swi tch PA model
20 case ’MP ’ %Este pr imer modelo nos s i r v e para c a l c u l a r l as

constantes
21

22 case ’GMP’
23 %Caargamos los vectores desde donde se van a generar las
24 %d i f e r e n t e s combinaciones de d i f e r e n t e s modelos .
25 t i c



26 Pa=[6 7 8 9 ] ; Pb=[2 3 4 5 ] ; Pc=[2 3 4 5 ] ;
27 taus Ma = [ 0 : 1 : 1 0 ] ; taus Mb = [ −4 : 1 : 5 ] ; taus Mc = [ −4 : 1 : 5 ] ;
28 taus Lb = [ 1 : 1 : 4 ] ;
29 taus Lc = [ 1 : 1 : 4 ] ;
30 %Elegimos los parametros de pr imer modelo y calculamos sus
31 %c a r a c t e r i s t i c a s .
32 Pa actua l=Pa( pos parameters actua l ( 1 ) ) ;
33 Pb actua l=Pb( pos parameters actua l ( 2 ) ) ;
34 Pc actua l=Pc ( pos parameters actua l ( 3 ) ) ;
35 taus Ma actua l=taus Ma ( 1 : pos parameters actua l ( 4 ) ) ;
36 taus Mb actua l=taus Mb ( 1 : pos parameters actua l ( 5 ) ) ;
37 taus Mc actua l=taus Mc ( 1 : pos parameters actua l ( 6 ) ) ;
38 t aus Lb ac tua l =taus Lb ( 1 : pos parameters actua l ( 7 ) ) ;
39 t aus Lc ac tua l = taus Lc ( 1 : pos parameters actua l ( 8 ) ) ;
40 [ X id , N coe f ac tua l ]= Bui ld Data matr ix GMP ( x id , Pa actual ,

Pb actual , Pc actual , . . .
41 taus Ma actual , taus Mb actual , taus Mc actua l ,

taus Lb ac tua l , t aus Lc ac tua l ) ;
42 [ X val , o r d e r v a l ]= Bui ld Data matr ix GMP ( x va l , Pa actual ,

Pb actual , Pc actual , . . .
43 taus Ma actual , taus Mb actual , taus Mc actua l ,

taus Lb ac tua l , t aus Lc ac tua l ) ;
44 w pa=( X id ’ * X id ) ˆ−1* X id ’ * y i d ;
45 y es t =X va l *w pa ;
46 NMSE actual=dpd Qmeasurements ( y va l , y est , ’NMSE ’ ) ;
47 %c o s t a c t u a l =N coe f ac tua l+lambda * ( NMSE actual−NMSE threshold ) ;
48 c o s t a c t u a l =0.78* N coe f ac tua l +2.39* NMSE actual ;
49 encontrado =0;
50 cont =0; %para saber cuantas veces a buscado nuevos vecinos
51 acumular NMSE = [ ] ;
52 acumular N Coef = [ ] ;
53 while ( encontrado<1)
54 f p r i n t f ( ’\n Evaluando grupo de vecinos numero : = %d\n ’ , cont

+1) ;
55 [ PaI , PbI , PcI , MaI , MbI , McI , LbI , Lc I ]= Generate Neighbors GMP (Pa

, Pb , Pc , taus Ma , . . .
56 taus Mb , taus Mc , taus Lb , taus Lc ,

pos parameters actua l ) ;
57 neighboors= length ( PaI ) ;
58 %c a l c u l a r coste de todos los vecinos
59 i t e =1;
60 for i =1: neighboors
61 PaN=Pa( PaI ( i ) ) ;
62 PbN=Pb( PbI ( i ) ) ;
63 PcN=Pb( PcI ( i ) ) ;
64 MaN=taus Ma ( 1 : MaI ( i ) ) ;
65 MbN=taus Mb ( 1 : MbI ( i ) ) ;
66 McN=taus Mc ( 1 : McI ( i ) ) ;
67 LbN=taus Lb ( 1 : LbI ( i ) ) ;
68 LcN=taus Lc ( 1 : Lc I ( i ) ) ;
69 [ X id , N coef ( i ) ]= Bui ld Data matr ix GMP ( x id ,PaN,PbN, PcN

,MaN,MbN,McN, LbN , LcN) ;
70 [ X val , o r d e r v a l ]= Bui ld Data matr ix GMP ( x va l ,PaN,PbN,

PcN,MaN,MbN,McN, LbN , LcN) ;
71 %data v a l i d a t i o n
72 w pa=( X id ’ * X id ) ˆ−1* X id ’ * y i d ;
73 y es t =X va l *w pa ;
74 NMSE id PA ( i ) =dpd Qmeasurements ( y va l , y est , ’NMSE ’ ) ;



75 ACEPR( i ) =acepr ( y va l , y est ,20e6 , f s ) ;
76 %cost ( i ) =N coef ( i ) +lambda * ( NMSE id PA ( i )−NMSE threshold

) ;
77 cost ( i ) =0.78* N coef ( i ) +2.39*NMSE id PA ( i ) ;
78 i f ( i ==100* i t e ) ; f p r i n t f ( ’\n Numero de vecinos

evaluados = %d de %d \n ’ , i . . .
79 , neighboors ) ;
80 i t e = i t e +1;
81 end
82 end
83 %comprobar s i hay alguno vecino mejor que e l ac tua l
84 [M, I ]=min ( cost ) ;
85 i f (M<c o s t a c t u a l )
86 c o s t a c t u a l =M;
87 pos parameters actua l =[ PaI ( I ) , PbI ( I ) , PcI ( I ) , MaI ( I ) , MbI (

I ) , McI ( I ) , LbI ( I ) , Lc I ( I ) ] ;
88 NMSE actual=NMSE id PA ( I ) ;
89 N coe f ac tua l= N coef ( I ) ;
90 cont=cont +1;
91 else
92 encontrado =2;
93 f p r i n t f ( ’\n Modelo Encontrado\n ’ ) ;
94 end
95 acumular NMSE =[ acumular NMSE NMSE id PA ] ;
96 acumular N coef =[ acumular N Coef N coef ] ;
97 acumular ACEPR =[ acumular ACEPR ACEPR ] ;
98 end
99 RT HC=toc ;

100 case ’VOLTERRA ’
101

102

103 end
104 COST TOTAL( r , : ) =cost ;
105 NMSE TOTAL( r , : ) =NMSE id PA ;
106 N COEF TOTAL( r , : ) =N coef ;
107 CONT TOTAL( r ) =cont ;
108 POS PARAMETER TOTAL( r , : ) =pos parameters actua l ;
109 INDEX TOTAL( r ) = I ;
110 N coef=acumular N coef ;
111 NMSE id PA=acumular NMSE ;
112 ACEPR=acumular ACEPR ;
113 f igure ( r )
114 [ pareto x , pare to y ]= pareto ( N coef , NMSE id PA ) ;
115 [ ACEPR x , ACEPR y]= pareto ( N coef ,ACEPR) ;
116 f igure ( r +1)
117 plot ( pareto x , pareto y , ’ ok ’ , ’ L ineWidth ’ , 1 . 5 ) ;
118 xlabel ( ’NUMERO DE COEFICIENTES ’ ) ;
119 ylabel ( ’NMSE [ dB ] ’ ) ;
120 t i t l e ( ’NMSE vs NUMERO DE COEFICIENTES CON HILL CLIMBING ’ ) ;
121 f p r i n t f ( ’\n Conf igurac ion numero %d \n ’ , r ) ;
122 end
123 save ( ’ data\HC\Hil l c l imbing GMP 11146622 ’ , ’ cost ’ , ’ NMSE id PA ’ , ’ N Coef ’ , ’

pa re to x ’ , ’ pa re to y ’ , . . .
124 ’RT HC ’ , ’ACEPR x ’ , ’ACEPR y ’ ) ;

Dynamic Model Sizing

1 function [P ,V, I ,NMSE, N coef ,ACEPR]=DMS( x id , x va l , X id , X val , y id , y va l



, params , N grow , N grow2 , N nu )
2 load ( ’ data\ IN OUT Mult iband Signal . mat ’ ) ;
3

4 Target NMSE=−33;
5 P=X id ;
6 V=X val ;
7 NMSE anterior =0;
8 params1=params ;
9 I = ( 1 : 1 : size ( params , 2 ) ) ;

10 %N grow=120;
11 %N nu=3;
12 a=0;
13 cont =1;
14 while ( a==0)
15 N prune=N grow−N nu ; ;
16 NMSE anterior =0;
17 for t =1: N prune
18 %w pa=(P ’ * P) ˆ−1*P ’ * y i d;%% a l e levar a −1 da i n f i n i t o
19 w pa=P\ y i d ;
20 nu = diag ( ( P ’ * P) ˆ −1) ;
21 z score=abs ( w pa ) . / nu . ˆ ( 0 . 5 ) ;
22 [ z score , I ]= sort ( z score , ’ descend ’ ) ;
23 I temp= I ;
24 l owes t z= I ( end ) ;
25 P ( : , lowes t z ) = [ ] ;
26 V ( : , lowes t z ) = [ ] ;
27 params1 ( : , lowes t z ) = [ ] ;
28 P temp=P;
29 %w pa=(P ’ * P) ˆ−1*P ’ * y i d ;
30 w pa=P\ y i d ;
31 w pa temp=w pa ;
32 y es t =V*w pa ;
33 NMSE actual=dpd Qmeasurements ( y va l , y est , ’NMSE ’ ) ;
34 ACEPR actual=acepr ( y va l , y est ,20e6 , f s ) ;
35 maxDegr=NMSE actual−Target NMSE ;
36 Degr=NMSE actual−NMSE anterior ;
37 NMSE anterior=NMSE actual ;
38 i f ( Degr>maxDegr )
39 P=P temp ;
40 w pa=w pa temp ;
41 break ;
42 end
43 end
44 NMSE( cont ) =NMSE actual ;
45 ACEPR( cont ) =ACEPR actual ;
46 N coef ( cont ) = length ( w pa ) ;
47 cont=cont +1;
48 i f ( length ( w pa )>139)
49 nu = diag ( ( P ’ * P) ˆ −1) ;
50 z score=abs ( w pa ) . / nu . ˆ ( 0 . 5 ) ;
51 [ z score , I ]= sort ( z score , ’ descend ’ ) ;
52 params1=params1 ( : , I ) ;
53 P=P ( : , I ) ;
54 V=V ( : , I ) ;
55

56 break ;
57 end
58 nu = diag ( ( P ’ * P) ˆ −1) ;



59 z score=abs ( w pa ) . / nu . ˆ ( 0 . 5 ) ;
60 [ z score , I ]= sort ( z score , ’ descend ’ ) ;
61 params1=params1 ( : , I ) ;
62 P=P ( : , I ) ;
63 V=V ( : , I ) ;
64

65 a l l N e i g b o r s = [ ] ;
66 for x =1: size ( params1 , 2 )
67 f lag=params1 (1 , x ) ;
68 M=params1 (2 , x ) ;
69 L=params1 (3 , x ) ;
70 n=params1 (4 , x ) ;
71 [ Neigbors ]= Generate DMS Neighbors ( f lag ,M, L , n ) ;
72 a l l N e i g b o r s =[ a l l N e i g b o r s Neigbors ] ;
73 end
74 a l l N e i g b o r s =( unique ( a l l Ne igbo rs ’ , ’ rows ’ , ’ s tab le ’ ) ) ’ ;
75 a l l N e i g b o r s =a l l Ne igbo rs ’ ;
76 params1=params1 ’ ;
77 [ Lia , eoe ]= ismember ( a l l Ne igbo rs , params1 , ’ rows ’ ) ;
78 f i n a l N e i g b o o r s = a l l N e i g b o r s . * ˜ L ia ;
79 newParams = f i n a l N e i g b o o r s ( any ( f i na l Ne igboo rs , 2 ) , : ) ’ ;
80 N grow=N grow2 ;
81 for y =1: N grow
82 newP ( : , y ) =Bui ld Data vector GMP ( x id , newParams ( : , y ) ) ;
83 newV ( : , y ) =Bui ld Data vector GMP ( x va l , newParams ( : , y ) ) ;
84 end
85 P=[P newP ] ;
86 V=[V newV ] ;
87 params1 =[ params1 ’ newParams ( : , 1 : N grow ) ] ;
88

89 end
90 end
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