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ABSTRACT

Identifying which systems are more likely to host an imageable planet can play an important role

in the construction of an optimized target list for future direct imaging missions, such as the planned

Coronagraph Instrument (CGI) technology demonstration for the Nancy Grace Roman Space

Telescope. For single-planet systems, the presence of an already detected exoplanet can severely

restrict the target’s stable region and should therefore be considered when searching for unknown

companions. To do so, we first analyze the performance and robustness of several two-planet stabil-

ity criteria by comparing them with long-term numerical simulations. We then derive the necessary

formulation for the computation of (a, R) analytic stability maps, which can be used in conjunction

with depth-of-search grids in order to define the stable-imageable region of a system. The dynamically

stable completeness (i.e., the expected number of imageable and stable planets) can then be calculated

via convolution with the selected occurrence grid, obtaining a metric that can be directly compared

for imaging prioritization. Applying this procedure to all the currently known single-planet systems

within a distance of 50 pc, we construct a ranked target list based on the CGI’s predicted performance

and SAG13 occurrence rates. Finally, we evaluate the importance of considering the radial

velocity data from past Doppler surveys in order to rule out entire regions of our param-

eter space where, if a planet existed, it would have certainly been detected by previous

RV observations.

Keywords: methods: analytical - planets and satellites: dynamical evolution and stability - planets

and satellites: detection

1. INTRODUCTION

While indirect detection methods, such as radial velocity and transit photometry, have been the main source of

exoplanetary information to date, direct imaging has emerged as a challenging but highly desirable technique, pro-

viding unique information regarding the atmospheric structure and chemical composition of exoplanets (Konopacky

et al. 2013). In this context, space-based direct imaging instruments, such as the Nancy Grace Roman Space

Telescope’s Coronagraph Instrument (CGI), will enable the expansion and better characterization of the known pop-

ulation of exoplanets. Given the high cost and complexity of space observatories, detailed and extensive planning is

required in order to ensure the successful execution of the mission. In particular it is essential to create optimized

target lists by identifying which systems are more likely to host imageable planets.

Garrett et al. (2017) addressed this problem by defining the depth-of-search grids in the (a, R) space, where the

value of each bin represented the probability of detecting a planet with semi-major axis a and radius R. The resultant

imageable region was obtained according only to the instrument’s performance and capabilities, allowing for the

estimation of the expected number of detected planets (i.e., total completeness) by convolution with an assumed grid

of occurrence rates. A similar procedure can be used to evaluate the observability of previously discovered planets. This

provides two potential sources of targets: stars with no known planets where a new planet is likely to be observable,

and stars with known planets that could potentially be imaged with a new instrument. There remains, however, a third

category: stars with known planets that are not observable with proposed instrumentation, but which may harbor

additional planets that could be imaged. There also exists an overlapping population between the second and third
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categories, composed of targets where the known planet could be imaged, but we would also be interested in detecting

additional, unknown, companions via imaging.

When searching for additional exoplanets in already known single-planet systems, the gravitational effect of the

existing body can severely restrict the target’s stable region and must therefore be taken into account. For instance,

let us consider a nearby star with a large imageable region and a massive highly eccentric planet in the center of such a

region. In this context, most of the detectable area would be chaotic due to the known planet’s presence, consequently

reducing the probability of detecting a stable unknown companion in a system which a priori seemed a valuable target.

In general, for any system the following question is naturally raised: How many stable unknown companions could an

instrument detect? We seek to answer this question in an accurate but computationally inexpensive manner, in order

to rapidly identify which targets have a higher probability of hosting an additional planet and discard those systems

where no unknown companions could be detected. To do so, in Section 2 we begin by describing several two-planet

stability criteria and comparing them with long-term numerical simulations. In Section 3 we derive the necessary

expressions for the conditional density function of the outer pericenter to inner apocenter ratio (ρ) and the angular

momentum deficit (C), which will be essential for the computation of analytic stability maps presented in Section 4.

Finally, in Section 5 we make use of these results, together with depth-of-search and occurrence grids, in order

to obtain the expected number of imageable and stable planets for a given target. We conclude by presenting 213

currently known single-planet systems within 50 parsecs of the Earth, ranked according to the CGI’s predicted perfor-

mance and the Study Analysis Group 13 (SAG13) occurrence rates. This ranking, when coupled with updated

Doppler sensitivities for potential targets, could aide researchers working on any CGI participating

science program that follows the initial technology demonstration phase of the instrument, and would

potentially greatly expand the sample of targets observed by both Doppler spectroscopy and direct

imaging.

2. ANALYTIC STABILITY CRITERIA FOR TWO-PLANET SYSTEMS

Unlike systems with three or more planets, the stability of two-planet systems can be analytically characterized

via several different criteria. One of the main results was obtained by Marchal & Bozis (1982), who extended the

notion of Hill stability to the general three-body problem and showed that certain initial conditions can preclude close

encounters between the outer planet and the inner bodies. Based on this result, Gladman (1993) found that two

planets in initially circular and coplanar orbits are Hill stable if

a2 − a1 > 2
√

3RH , (1)

where

RH =

(
m1 +m2

3M?

)1/3
a1 + a2

2
(2)

is the mutual Hill radius, M? is the mass of the central star, ai are the semi-major axes of the planet orbits, mi are

the planetary masses, and the subscripts 1 and 2 refer to the inner and outer planet, respectively. It is important

to note, however, that long-term interactions between planets in Hill stable orbits could still ultimately lead to the

ejection of the outer planet or the collision of the inner planet with the star (i.e., Lagrange instability). From another

perspective, Wisdom (1980) applied the resonance overlap criterion to the coplanar and circular restricted three body

problem. By studying the region around a planet where first order mean motion resonances (MMRs) overlap, the

author found that a test particle with semi-major axis a would experience chaotic motion if

|a− ap|
ap

< Cwµ
2/7
p , (3)

where Cw is a constant value, ap is the semi-major axis of the planet and µp = mp/M? is the mass ratio between

the planet and the star. Although originally Wisdom obtained a theoretical value of Cw = 1.33, Duncan et al. (1989)

presented a numerically-derived estimate of Cd = 1.57. For the case of two massive planets in circular orbits, Deck

et al. (2013) extended Wisdom’s criterion and predicted that all orbits should be chaotic if

a2 − a1

a1
< 1.46ε2/7 , (4)
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where ε = (m1 + m2)/M? is the planets-to-star mass ratio. Deck et al. (2013) also developed a similar ex-

pression for non-circular configurations, only applicable, however, when the weighted eccentricity satisfies

σ ≈ e1 + e2 & 1.33ε3/7 and eccentricities are low enough that overlap of resonances of second order

and beyond are negligible. For arbitrary eccentricities, several criteria have been proposed (Giuppone et al. 2013;

Petrovich 2015; Laskar & Petit 2017; Petit et al. 2017; Petit et al. 2018), which we will divide into two generic cate-

gories depending on whether the criterion is based on the outer pericenter to inner apocenter ratio (ρ) or the angular

momentum deficit (C).

2.1. Criteria based on the Outer Pericenter to Inner Apocenter ratio

As demonstrated by Petrovich (2015), most of the proposed two-planet stability criteria for arbitrary eccentricities

can be expressed as a boundary of the ratio between the pericenter of the outer planet and the apocenter of the inner

planet, here denoted by

ρ =
a2(1− e2)

a1(1 + e1)
, (5)

where e1 and e2 are the corresponding eccentricities. Giuppone et al. (2013) developed an extended crossing orbit

criterion by adding and subtracting Wisdom’s overlap region (Wisdom 1980, Equation 3) to the outer pericentric and

inner apocentric distances, respectively. They also took into account the effect of the difference in the longitudes

of the pericenter ∆ω̄ and proposed stability limits for the case of aligned (∆ω̄ = 0◦) and anti-aligned (∆ω̄ = 180◦)

initial orbits. By studying the stability limits of a test planet around a known and existing planet, they presented the

following criterion for the anti-aligned configuration

ρ >


1

1− δ
a2 = ak

1 + δ a1 = ak ,
(6)

where ak is the known planet’s semi-major axis and δ = 1.57(µ
2/7
1 + µ

2/7
2 ). Here we will make use of the modification

proposed by Hadden & Lithwick (2018), where they employ δ = 1.46ε2/7 in accordance to the results of Deck et al.

(2013). Alternatively, Petrovich (2015) approached the problem numerically by performing long-term integrations for

a large number of planetary systems and a wide range of eccentricities and inclinations. They found ρ to be the single

parameter that best described the stability boundary and presented the following empirical criterion

ρ > 1.15 + 2.4
[
max(µ1, µ2)1/3

](a2

a1

)1/2

. (7)

2.2. Criteria based on the Angular Momentum Deficit

Considering the secular approximation of a planetary system, Laskar & Petit (2017) developed an alternative stability

criterion based on the conservation of the angular momentum deficit (AMD). Following the definition of Laskar (2000),
the AMD (C) is given by the difference between the norm of the angular momentum of an equivalent circular and

coplanar system and the norm of the real system’s angular momentum, which for a system of np planets is

C =

np∑
j=1

Λj(1−
√

1− e2
j cos ij) , (8)

where ij is the relative inclination, Λj = mj

√
GM?aj and G is the gravitational constant. For a two-planet system,

Laskar & Petit (2017) defined the relative angular momentum deficit as

C =
C

Λ2
= γ
√
α(1−

√
1− e2

1 cos i1) + (1−
√

1− e2
2 cos i2) , (9)

where α = a1/a2 represents the semi-major axis ratio and γ = m1/m2 is the mass ratio. In this context, they obtained

the minimum relative AMD which allowed for planetary collisions, referred to as the collisional critical AMD
(
CC
c

)
.

Consequently, since the AMD is conserved at all orders (Laskar & Petit 2017), the impossibility of collisions between

the two planets is ensured if the initial relative AMD is bounded as

C < CC
c (α, γ). (10)
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This condition can be extended to multiple planet systems by analyzing the AMD-stability of every pair of adjacent

planets, as well as the innermost planet and the star. Furthermore, Agnew et al. (2018) compared the previous

criterion with numerical simulations over a large number of known systems and concluded that the AMD-stability is

a reliable tool for determining the stability of planetary systems. In order to take into account the effect of mean

motion resonances (MMR) ignored by the secular theory, Petit et al. (2017) proposed a new derivation of the first-order

MMR overlap criterion in the AMD framework. They refined the criteria presented by Wisdom (1980) and Deck et al.

(2013) by deriving a more global expression, for which they then associated a new critical AMD
(
CMMR
c

)
. Since it

only makes sense to apply the first-order MMR criterion when α is close to 1, they combined this with the previous

collision criterion
(
CC
c

)
and defined the following piece-wise critical AMD (Petit et al. 2017)

C < Cc(α, γ, ε) =

CC
c (α, γ) α < αR(ε, γ)

CMMR
c (α, γ, ε) α > αR(ε, γ) ,

(11)

where αR represents the semi-major axis ratio at which CC
c = CMMR

c . For lower values of α, the collisional criterion

becomes stricter and consequently more useful.

Continuing their work in the AMD framework, Petit et al. (2018) generalized the stability criterion proposed by

Gladman (1993) and defined the Hill stability AMD criterion

C < CH
c (α, γ, ε) = γ

√
α+ 1− (1 + γ)3/2

√
α

γ + α

(
1 +

34/3ε2/3γ

(1 + γ)2

)
, (12)

where CH
c is defined as the Hill critical AMD. As this expression was obtained as an approximation of the criterion

from Marchal & Bozis (1982), Petit et al. (2018) compared both criteria and proved that Equation (12) is accurate for

the typical range of values of ε and still valid for very large or small planetary mass ratios (γ).

2.3. Numerical Simulations and Criteria Comparison

To assess the performance and robustness of the criteria described above, we performed several numerical simulations

in order to study and compare their behaviour over a wide range of parameters. Specifically, we added a test planet

to two known single-planet systems (HD 154345 and HD 114613) and analyzed the long-term stability of the resultant

two-planet systems. The stellar parameters and the orbital elements of the known planet, denoted by the subscript

k, were extracted from the NASA Exoplanet Archive1 and can be found summarized in Table 1. For simplicity, all

systems were assumed to be coplanar and the existing planet’s mass was considered to be the minimum value mk sin I,

where I is the system’s inclination with respect to the line of sight. The remaining unknown parameters, such as the

longitude of the ascending node or the initial mean anomaly, were all set to zero. For each system, we then constructed

two different types of stability maps.

1. (a, e) stability map: regular grid with 70 logarithmically spaced semi-major axis bins and 40 linearly spaced
eccentricity bins. The ranges of a and e were selected taking into the account the extension of the chaotic region

around the known planet’s semi-major axis ak. The test planet’s mass m was constant through the whole grid,

being fixed in a different value depending on the system. In particular, for the system HD 114613 a mass of 1

MJ was employed, while a smaller value was used in the case of HD 154345. On the other hand, the argument

of periastron ω ∈ [0, 2π] was always randomly generated.

2. (a, m) stability map: regular grid with 70 semi-major axis bins and 40 mass bins, both logarithmically spaced.

The range of values of a and m was determined considering the imageable region of the system with the CGI.

In this case, the test planet’s eccentricity e was constant through the whole grid, being fixed in a different value

depending on the system. In the case of the system HD 154345, a nearly circular value was used, while a higher

eccentricity was assigned to the test planet in the system HD 114613. Finally, ω was again randomly generated.

The particular values employed for every system and stability map are presented in Table 1. For each bin, we

integrated the corresponding two-planet system using the Leapfrog integrator implemented in the REBOUND package

1 The required orbital parameters where retrieved from the NASA Exoplanet Archive (https://exoplanetarchive.ipac.caltech.edu) on
2019 June 8.
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Table 1. Stellar and Planetary Parameters

Target Star Known Planet (a, e) map (a, m) map

Name Distance M? ak ek mk sin I ωk a e m a e m

(pc) (M�) (AU) (MJ) (◦) (AU) (MJ) (AU) (MJ)

HD 154345 18.294 0.71 4.21 0.04 0.82 0a [2, 12] [0, 0.5] 0.1 [1.5, 25] 0.05 [0.067, 134.45]

HD 114613 20.295 1.27 5.34 0.458 0.357 196 [1.5, 20] [0, 0.5] 1 [1.5, 25] 0.1 [0.067, 134.45]

aThe argument of periapsis wk of the planet HD 154345 b was unknown and consequently set to zero.

Note—The (a, m) grid was ranged taking into account the imageable region of each system, which was assumed to be
approximately the same in both cases. In particular, the limiting values of m correspond to a planetary radius R between 4
and 17 R⊕.

(Rein & Liu 2012). The simulations were run for 109 yr with a timestep of T1/50, where T1 is the orbital period of

the innermost planet. Integrations were terminated if the two planets approached one another within one mutual Hill

radius (Equation 2), or if a planet reached an astrocentric distance of either 5× 10−3 or 250 AU.

Figure 1 shows the resultant stability maps for a nearly circular configuration (HD 154345) and a highly eccentric

system (HD 114613). In general, we observe that Petrovich’s criterion shows the most conservative boundaries,

appearing to be too pessimistic in the first case and slightly more appropriate for large eccentricities. In contrast,

the complete AMD stability limit (Equation 11) falls inside the chaotic region in most cases and will be consequently

discarded for the purposes of the following sections. Similarly to Giuppone’s criterion, the Hill AMD boundaries

offer an acceptable necessary condition for stability and could therefore be used as a more optimistic alternative. In

particular, we remark how the Hill AMD stability condition accurately delimits the earliest chaotic orbits in both (a,

e) maps, likely corresponding to the region where planetary close encounters occur. Hence, the remaining instabilities

outside these boundaries may be the result of ejections or collisions between the inner planet and the star, which by

definition are not taken into account in the Hill criterion. Furthermore, the HD 114613 (a, m) stability map shows

a pronounced increase in the Hill stability limits as the test planet’s mass decreases, disagreeing with other criteria

and the numerical simulations. Such behavior, which essentially increases the predicted unstable region, becomes

more significant for high eccentricities and can be related to the Hill stability’s strong dependence on the planetary

mass ratio γ for non-circular configurations (Deck et al. 2013). We must keep in mind that the Hill stability criterion

from Marchal & Bozis (1982) cannot be directly applied to the elliptic restricted three body problem and therefore

should not be used when one of the planetary masses is close to zero. Nonetheless, given that in most cases the

CGI-imageable region only covers high-mass planets, the Hill AMD can still be considered a valid criterion in the

following sections. Regarding the test planet’s mean motion resonances with the existing planet, we note how for the

nearly circular case, the stable resonant lines are more predominant and extend up to larger values of e and m, while

being less numerous and significant in the high-eccentricity system.

3. DERIVATIONS

Let us consider a coplanar, three-body system consisting of a central star of mass M?, and two orbiting planets,

where the mass and orbital elements of one of the planets (ak, ek, mk) are known. The remaining planet is unknown,

and its parameters (a, e and m) will be consequently treated as random variables. In particular, the eccentricity e

will follow a Rayleigh distribution with parameter σ (i.e. mean eccentricity µe = σ
√
π/2), while the semi-major axis

a and the planet’s mass m will have a joint probability density function fā,m̄(a,m) representative of the population

of interest. With this setup, for fixed values of a and m, the integral of the conditional density function of both the

AMD (C) and the outer pericenter and inner pericenter ratio (ρ) can be easily solved. As will be shown in Section

4, this result will be essential for the computation of the analytic stability maps and the prioritization of planetary

systems for followup imaging.

3.1. ρ Conditional Density Function
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Figure 1. Numerical stability maps for the nearly circular system HD 154345 (top) and high eccentricity system HD 114613
(bottom), compared to the stability boundaries given by the criteria specified in the legend. The white marker indicates the
position of the existing planet and the red dashed lines indicate low-order mean motion resonances with the known planet.

Making use of Equation (5), the outer pericenter to inner apocenter ratio can be rewritten as

ρ = gρ(e, a) =


qk

a(1 + e)
a < ak

a(1− e)
Qk

a > ak ,
(13)

where qk = ak(1 − ek) and Qk = ak(1 + ek) are, respectively, the known planet’s pericenter and apocenter. For a

fixed semi-major axis a, we observe that ρ = gρ(e | a) is a univariate function only dependent on e. Consequently, the

inverse function hρ = g−1
ρ (ρ | a) is directly obtained by isolating the eccentricity in Equation (13)

e = hρ(ρ | a) =


qk − aρ
aρ

a < ak

a−Qkρ
a

a > ak .

(14)
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For simplicity, we will omit the conditional notation in hρ(ρ) from here on out, since we are primarily interested in

evaluating all expressions for a given value of a. Taking the derivative of Equation (14) with respect to ρ, we get

∣∣∣∣dhρdρ (ρ)

∣∣∣∣ =


qk
aρ2

a < ak

Qk
a

a > ak .

(15)

Using Equations (14) and (15), the ρ conditional density function is then given by

fρ̄|ā(ρ | a) = fē(hρ(ρ))

∣∣∣∣dhρdρ (ρ)

∣∣∣∣ , (16)

where fē(e) is the density function of the eccentricity, assumed to be Rayleigh distributed. For fixed values of a and

m, the probability of having a stable configuration, denoted by Sρ(a,m), is obtained by integrating Equation (16) over

the region defined by the specific ρ stability criterion used:

Sρ(a,m) =

∫ ρc,u

ρc,l

fρ̄|ā(ρ | a)dρ = Fē(hρ(ρc,u))− Fē(hρ(ρc,l)) , (17)

where ρc,l(a,m) and ρc,u(a,m) are the lower and upper limit, respectively. Given our assumptions, the integral can

be simply calculated as the difference between the Rayleigh cumulative distribution function Fē(e) evaluated at the

limiting eccentricities hρ(ρc,u) and hρ(ρc,l). Substituting hρ from Equation (14) yields the solution

Sρ(a,m) =


− exp

(
−1

2σ2

(
qk − aρ
aρ

)2
)∣∣∣∣∣

ρc,u

ρc,l

a < ak

− exp

(
−1

2σ2

(
a−Qkρ

a

)2
)∣∣∣∣∣

ρc,u

ρc,l

a > ak .

(18)

The majority of currently available exoplanet data for CGI-imageable planets has been obtained from radial

velocity (RV) surveys. While transit photometry currently leads in the total number of exoplanet discoveries, most of

these (primarily due to Kepler and the K2 mission) are too distant for imaging with the next generation of space-based

coronagraphic instruments, and the CGI in particular. While we expect this to change with the Transiting Exoplanet

Survey Satellite (TESS) and other surveys, for now, the true mass mk of the majority of known exoplanets of interest

remains undetermined, and only the minimum mass mk,min = mk sin I is known. In these cases, we rewrite the

probability integral (17) as Sρ(a,m,mk) and we introduce the system’s inclination I ∈ [0, π) as a new random variable

with a sinusoidal probability density function fĪ(I) = sin(I)/2. We can then take into account the effect of the known

planet’s mass uncertainty by using Equation (18) and defining

S
′

ρ(a,m) =

∫ π

0

Sρ

(
a,m,

mk,min

sin(I)

)
fĪ(I) dI . (19)

For the stability criteria based on ρ, Equations (18) and (19) will be directly used for the computation of analytic

stability maps. Similarly, we now derive the equivalent formulation for the angular momentum deficit C.

3.2. C Conditional Density Function

For a two-planet system (np = 2), Equation (8) can be written as

C = gC(e, a,m) = K + Λ(1−
√

1− e2) , (20)

where K = Λk(1 −
√

1− e2
k) accounts for the known planet AMD contribution. For fixed values of a and m, Λ =

m
√
GM?a is completely defined and therefore C = gC(e | a,m) is only a function of e. The inverse function g−1

C (C |
a,m), which we will denote as hC , is then obtained by solving Equation (20) for the eccentricity

e = hC(C | a,m) =

√
1−

(
Λ− C +K

Λ

)2

, (21)
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where again the conditional notation will be dropped for simplicity. Since the inverse function must have the range

e = hC(C) ∈ [0, 1), the derivative ∣∣∣∣dhCdC (C)

∣∣∣∣ =
1

Λ

(√
1− h2

C(C)

hC(C)

)
(22)

is well defined except for the case C = K (i.e. hC(C) = 0). However, this singularity is naturally solved when the

expression of the conditional density function is simplified

fC̄|ā,m̄(C | a,m) = fē(hC(C))

∣∣∣∣dhCdC (C)

∣∣∣∣ =

√
1− h2

C(C)

Λσ2
exp

(
−h2

C(C)

2σ2

)
, (23)

where the formula of the Rayleigh probability density function for fē(e) has been used. Following the same procedure

as in Section 3.1, for certain values of Cc,l(a,m) and Cc,u(a,m) determined by the specific AMD stability criterion

used, the integral of the conditional density function is

SC(a,m) =

∫ Cc,u

Cc,l

fC̄|ā,m̄(C | a,m) dC = Fē(hC(Cc,u))− Fē(hC(Cc,l)) . (24)

Making use of Equation (21), the analytic solution is then given by

SC(a,m) = − exp

(
1

2σ2

((
Λ− C +K

Λ

)2

− 1

))∣∣∣∣∣
Cc,u

Cc,l

. (25)

As described in the previous subsection, in the case of systems with an undetermined planetary mass mk, we redefine

the probability of having a stable configuration as

S
′

C(a,m) =

∫ π

0

SC

(
a,m,

mk,min

sin(I)

)
fĪ(I) dI . (26)

Although a more detailed and consistent single-planet ranking is described in Section 5, a first approach relies on

the definition of the a, m and C (or ρ) joint probability density function

fā,m̄,C̄(a,m,C) = fā,m̄(a,m) · fC̄|ā,m̄(C | a,m) . (27)

By choosing the appropriate limits of integration which approximately define the imageable region, together with the

stability boundaries of C, a rapid estimation of the probability of detecting a stable planet can be computed as∫ mu

ml

∫ au

al

fā,m̄(a,m)

(∫ Cc,u

Cc,l

fC̄|ā,m̄(C | a,m) dC

)
da dm, (28)

where the term in the inner parentheses has already been analytically solved, simplifying the calculation to a double

integral. Equation (28), which can be equivalently derived for ρ, can be used to discard those systems with barely any

stable imageable region or to obtain a first imaging prioritization in a fast and computationally inexpensive manner.

4. ANALYTIC STABILITY MAPS

Following the previous assumptions and derivations, in this section we compute the analytic stability maps which will

allow us to rapidly characterize the stable region of a particular single-planet system. Essentially, these maps consist

of a regular grid with 100 semi-major axis bins and 100 mass bins, both logarithmically spaced and ranged around the

system’s imageable region. For a particular pair (a, m), the value of the corresponding bin represents the probability

of having a stable configuration according to the specific criterion used. For the systems where the known planet’s

mass mk is completely determined, the stability maps are built using Equations (18) and (25), depending on the type

of criterion used. On the other hand, if only mk sin I is known, Equations (19) and (26) are employed. To illustrate

this, we select the empirical criterion presented by Petrovich (2015), since it appears to give the most conservative and
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consistent boundaries according to the results from Section 2.3. Based on the critical ρ from inequality (7), we define

the lower limit of integration

ρP
c,l(a,m) =


1.15 + 2.4

[
max(µ, µk)1/3

]
(ak/a)

1/2
a < ak

1.15 + 2.4
[
max(µk, µ)1/3

]
(a/ak)

1/2
a > ak .

(29)

In general, given that we are only considering elliptical orbits (i.e., e ∈ [0, 1)), the outer pericenter to inner apocenter

ratio must have a range ρ ∈ (gρ(1, a), gρ(0, a)] and therefore, ρc,l should always be adjusted to the range of values of

ρ. That is, if ρc,l(a,m) < gρ(1, a) then ρc,l(a,m) = gρ(1, a), and equivalently if ρc,l(a,m) > gρ(0, a) then ρc,l(a,m) =

gρ(0, a). Furthermore, the expression of gρ(0, a) allows us to set the upper limit as

ρc,u(a) = gρ(0, a) =


qk
a

a < ak

a

Qk
a > ak .

(30)

In addition, we will also construct stability maps using Giuponne’s criterion (Giuppone et al. 2013, Equation 6)

and the Hill AMD criterion (Petit et al. 2018, Equation 12), which will serve as an alternative for ranking planetary

systems. In the first case, the lower limit of integration is directly given by Equation (6) and can be written as

ρG
c,l(a,m) =


1

1− 1.46ε2/7
a < ak

1 + 1.46ε2/7 a > ak ,

(31)

while the upper limit ρc,u is again given by Equation (30). On the other hand, assuming that the stellar mass M?

is known, the Hill critical AMD is only a function of the semi-major axis and mass ratios. From the definition of

CH
c (α, γ) given in Equation (12), we then derive the upper limit of integration as

Cc,u(a,m) =

{
Λk C

H
c (a/ak,m/mk) a < ak

ΛCH
c (ak/a,mk/m) a > ak ,

(32)

for which again the range of values of C ∈ [gC(0, a,m), gC(1, a,m)) should be taken into consideration. In particular,

the lower limit of integration is defined and given by Cc,l(a,m) = gC(0, a,m) = K.

We demonstrate this procedure by generating the (a, m) analytic stability maps of the single-planet systems HD

154345 and HD 114613 (Figure 2). Since none of the system’s inclinations are known, we make use of Equations (19)

and (26), together with the limits of integration presented above. The mean eccentricity for the Rayleigh distribution

is taken to be µe = 0.225 (Moorhead et al. 2011) and the required orbital parameters, as well as the range of values of a

and m, are as in Table 1. In the most favourable case where the unknown planet follows instead a circular

orbit, the stable region would be delimited by the gray dashed curves in Figure 2, which essentially

correspond to the 0 contour lines. Furthermore, we can easily build (a, R) stability maps by considering instead

a set of logarithmically spaced planetary radius R bins and applying the previous expressions to the corresponding

planetary masses. For each value of R, the related mass m is predicted using the FORECASTER best-fit density

model (Chen & Kipping 2016), originally composed of linear segments (in log-log space) of the form

R = 10C+log10(m)S , (33)

where C and S are fit coefficients defined in four mass intervals: Terran, Neptunian, Jovian and Stellar Worlds. Due

to inclusion of many tidally locked, inflated Jupiters in the model, the original results tend to overestimate the radius

for Jovian-size planets, and so we slightly modify the initial fit by moderating the transition between the Saturn and

Jupiter mass-radius points. Specifically, the Neptunian Worlds segment is adjusted to end at the Saturn mass-radius

point, from which a new fit is added as a straight line (in the log-log space) until the Jupiter mass-radius point.

Moreover, the Jovian segment is corrected to be a constant Jupiter radius value ranging from 1 Jupiter Mass through

0.08 Solar Masses. The Terran and Stellar Worlds, on the other hand, remain unchanged. The resultant values of C

and S, for Earth mass and radius units, are shown in Table 2. It is important to note that we are not suggesting that
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Figure 2. (Modified Figure) Analytic stability maps for the systems HD 154345 (left column) and HD 114613 (right column),
using Petrovich’s empirical criterion (top row), Giuppone’s modified criterion (middle row) and the Hill AMD criterion (bottom
row). The white marker indicates the position of the existing planet, the dashed gray line delimits the stable
region in the circular case and the dotted brown curve is the 0.95 contour line.
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Table 2. C and S parameters of the FORECASTER modi-
fied fit

m (M⊕) C S

m ≤ 2.04 0.00346053 0.279

2.04 < m ≤ 95.16 -0.06613329 0.50376436

95.16 < m ≤ 317.828407 0.48091861 0.22725968

317.828407 < m ≤ 26635.6863 1.04956612 0

m > 26635.6863 -2.84926757 0.881

our modified fit is in any way more ‘correct’ than the original FORECASTER model. Rather, as we are focusing on

only the larger orbits amenable to direct imaging, we wish to avoid generating planetary mass objects of greater than

1 Jupiter radius, which are expected to be exceedingly rare at the relevant separations. As the original fit also passes

quite near the Saturn mass-radius point, we chose to explicitly incorporate Saturn’s density in our modification.

While the general procedure and calculations presented in the coming sections rely on the use of a

Rayleigh distribution for the eccentricity, we note that the results from Moorhead et al. (2011) were

obtained from a sample consisting mostly of intermediate and low-mass planets, and are therefore

potentially applicable to only certain regions of the parameter space considered. The range of masses

defined by the imageable region directly depends on the system’s distance, and therefore, the adequacy

of a particular distribution will be essentially determined by the region involved. For instance, in the

case of the closest and more interesting targets where lower mass planets are included, the use of the

distribution from Moorhead et al. (2011) is certainly convenient. Furthermore, the assumption of a

Rayleigh distribution allows for the derivation of a simple and easy to compute expression, which might

be more helpful when analyzing large target lists. Alternatively, in the case of the higher-mass regions

also explored in our study, the use of, for instance, the Beta distribution proposed by Kipping (2013)

may also be a suitable alternative worth considering. To do so, in Figure 3, we reproduce two sample

cases assuming that the unknown planet’s eccentricity follows a Beta(a, b) distribution with parameters

a = 0.867 and b = 3.03, while the systems and stability criteria remain the same. As we can see, despite

certain differences regarding the spatial evolution of the probability of stability, the resulting stability

maps bear a considerable resemblance to the figures obtained with the Rayleigh distribution, with

only small variations in the overall results yielded by the complete analysis performed in the following

sections.

5. SINGLE-PLANET SYSTEMS PRIORITIZATION

Having constructed the analytic stability maps, we now address the main purpose of this study by identifying which

single-planet systems are more likely to host an additional, imageable planet. Basically, the proposed methodology

consists of estimating and comparing the expected number of planets (i.e., occurrence rates) within each system’s

stable-imageable region defined in the (a, R) space. To do so, together with the stability maps obtained in Section 4,

we shall make use of the following additional grids:

1. Depth-of-search grid: Given a particular system, we obtain its imageable region by computing the depth-of-search

grids as defined by Garrett et al. (2017). For given values of a and R, the corresponding bin represents the

conditional probability of detecting a hypothetically existing planet (i.e., completeness; Brown 2005) according

to the considered instrument’s design and capabilities. In particular, here we set the necessary optical parameters

and contrast limits according to the CGI’s inner and outer working angles and predicted contrast curve in the

575 nm imaging band. For planet photometry, we use the model grids from Batalha et al. (2018), which are

interpolated to find the phase curves of various planets in reflected light.

2. Occurrence grid: In order to calculate the expected number of planets in a certain region, we build occurrence

grids using the SAG 13 parametric fit for G-dwarfs. Similarly to Garrett & Savransky (2018), we translate the
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Figure 3. (New Figure) Analytic stability maps assuming the eccentricity follows a beta distribution, for the
systems HD 154345 (left) and HD 114613 (right), using the Hill AMD and Petrovich’s criterion, respectively.
The white marker indicates the position of the existing planet, the dashed gray line delimits the stable region
in the circular case and the dotted brown curve is the 0.95 contour line.

Table 3. (New Table)
SAG13 parametric fit pa-
rameters.

R (R⊕) Γ α β

R < 3.4 0.38 -0.19 0.26

R ≥ 3.4 0.73 -1.18 0.59

original period-radius broken power law into the (a, R) space and we add an exponential decay term starting at

ak = 10 AU. The resulting parametric model for the occurrence rate η is then given by

∂2η

∂R∂a
= ΓiR

αi−1

(
2π

√
a3

µ

)βi−1 (
3π

√
a

µ

)
exp

(
−
(
a

ak

)3
)
,

where the values of the original SAG13 fit parameters Γ, α and β can be found in Table 3.

Given that the size of the imageable region strongly depends on the distance from the observer to the target star, all

three grids are ranged according to each system’s detection boundaries (amin, amax and Rmin). This is intended to

increase the accuracy of the results by only calculating stability around the imageable zone. In general, the maximum

planetary radius is set to Rmax = 17R⊕, since we only wish to consider bodies near the planetary mass regime. For

the semi-major axis, the inner limit will be essentially determined by the minimum projected separation

amin = smin = IWA · d , (34)

where IWA is the telescope’s inner working angle and d is the distance to the system. To find the maximum value of

a, we consider the expression for the ratio of fluxes between the planet and the star (Brown 2005)

FR = pΦ (β)

(
R

r

)2

, (35)

where p and β are the planet’s albedo and phase angle, respectively, Φ is the phase function and r is the distance

between the planet and the star. For a particular value of R, the upper limit of the imageable region is characterized
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by the maximum a such that the planet meets the instrument’s obscurational and photometric constraints, determined

by smin and the expected mininum contrast cmin. These values can be related to the upper boundary of the nonzero

region of the completeness joint probability density function (Garrett & Savransky 2016) given by one of the solutions

of

F (a | R) = cmin − pΦ
[
sin−1

(smin

a

)](R
a

)2

= 0 , (36)

where r has been replaced by a, since the depth-of-search grids are defined assuming that e = 0 (Garrett et al. 2017).

Since the width of the imageable region increases with R, the maximum semi-major axis amax is consequently given

by the upper bounding solution of the equation F (a | Rmax) = 0, where again Rmax is the largest planetary radius

considered. Having determined amin and amax, we can finally obtain the minimum radius by isolating R in Equation

(36) and calculating

Rmin = min
a∈(amin,amax)

{√
a2cmin

pΦ
(
sin−1 (smin/a)

)} . (37)

For each system, the product of the stability and depth-of-search grids yields the intersection between the stable and

imageable regions, where the value of each bin gives the probability of detecting a stable planet of radius R and semi-

major axis a. For instance, in Figure 4 we represent the resultant grids for the systems HD 154345 and HD 114613,

using the Hill AMD and Petrovich’s criteria respectively. In order to properly identify the limits of the nonzero regions,

the bins with null probability are not coloured.

As expected, in both cases the size of the imageable region is clearly defined by the solutions to the equations

presented above. Such limits, together with the estimated detection probability of each bin, are only a function of

the distance to the system and the instrument’s capabilities. In consequence, the resemblance between both depth-of-

search grids can be directly related to the similar target distance (see Table 1), while also evidencing that the results

ignore integration time constraints since there is no dependence on the magnitude of the star. Regarding the (a, R)

stability maps, we first note a clear contrast between the extension of the unstable regions of both systems, essentially

as a result of the difference in the orbital eccentricities of the existing planets and the stability criteria employed.

Moreover, the use of the modified FORECASTER best-fit described in Section 4 results in a discontinuous increase in

planetary mass occurring at 1 RJ (≈ 11.2R⊕), causing the steep growth in the unstable region observed at that point.

In general, the stable-imageable grid demonstrates how the depth-of-search is highly perturbed by the region where

planets cannot exist due to instabilities, confirming that the presence of the known planet should be considered when

optimizing the target selection. The sum over the intersection bins, normalized by the number of bins and multiplied

by the grid area, yields what we refer to as the dynamically stable depth-of-search. This value has no dependence on

the assumed planet population and only accounts for the considered instrument’s performance and stability criterion.

Finally, the convolution of the intersection region with the occurrence grid returns the desired estimate of the expected

number of stable and imageable planets in the system (dynamically stable completeness), yielding a metric that can

be directly used for imaging prioritization.

We apply this procedure to all 213 currently known single-planet systems within a distance of 50 pc, creating a

ranking based on Petrovich’s stability criterion and complemented by the results obtained with Giuppone’s and the

Hill AMD criteria (Appendix A). Naturally, the results show a clear dependence on the system’s distance d, generally

making the closest targets the most valuable. Nonetheless, we also note how some of the nearest stars present a

lower dynamically stable completeness in comparison to farther targets with smaller imageable regions. This is clearly

observed in Figure 6, where the stable completeness for every target analyzed and stability criteria used, as a function

of the system’s distance, is represented. As a result of the dependence of the imageable region on the distance to the

system, the expected number of stable and imageable planets decreases along the horizontal axis. Those targets where

the presence of the known planet has a greater effect present a lower stable completeness, consequently falling below

the main tendency defined by the upper line. Comparing the results given by each stability criterion, we observe how

Giuppone’s criterion usually returns the highest completeness values, while Petrovich’s and the Hill AMD criteria,

in accordance with the behaviors observed in Section 2.3, tend to give more conservative results. Although we are

focusing on the search of unknown companions, the systems where the already existing exoplanet falls inside the

imageable region (such as HD 154345 or HD 114613) are still interesting targets, given that the majority of known

exoplanets have been discovered with indirect detection techniques and still need to be directly imaged in order to

obtain spectral information, which will allow for modeling currently unknown properties such as their
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Figure 4. Depth-of-Search (top), Stability (middle) and Intersection (bottom) grids for the system HD 154345 using the Hill
AMD criterion (left), and the system HD 114613 using Petrovich’s criterion (right). The black marker indicates the position of
the existing planet.
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Figure 5. Depth-of-Search (top), Stability (middle) and Intersection (bottom) grids for the system GJ 649 using Giuppone’s
modified criterion (left), and the system HD 221420 using Petrovich’s criterion (right). The black marker indicates the position
of the existing planet.
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Figure 6. Stable completeness as a function of the system’s distance. For all targets, the estimated number of imageable and
stable planets according to each stability criterion is plotted. Completeness values below 10−3 are plotted over the horizontal
axis.

atmospheric structure or chemical composition. In Figure 5 we present the resultant grids for the systems

GJ 649 and HD 221420, where the existing planet is located outside the lower and upper limits of the imageable

region, respectively. These plots clearly demonstrate how the presence of the known planets, which are

themselves unobservable with the assumed instrument, still impacts the likelihood of observing other

potential planets in these systems.

Furthermore, in order to complete our study, we should also take into account the radial velocity data

obtained from past Doppler surveys. In this sense, the exploration and subsequent non-detection of

additional planets in some of the targets considered may help us rule out entire regions of our parameter

space where, if a planet existed, it would have certainly been detected by previous RV observations. To

do so, we directly apply the results from Howard & Fulton (2016), where they use measurements at both

Lick and Keck Observatories taken by the California Planet Survey in order to evaluate the probability

of recovering an additionally injected synthetic RV signal simulating the presence of a planet of mass

m sin I and semi-major axis a. In particular, for each target considered, they introduce 5000 synthetic

planets uniformly distributed and apply an iterative planet search algorithm to attempt to detect the

injected signals, ultimately obtaining a spatial distribution of the corresponding recovery rates. They

apply this procedure to a target list containing 76 nearby stars, 6 of which were single-planet systems

also present in our star sample. While repeating the recovery tests for the remaining 207 stars included

in our target list is beyond the scope of this work, we can make use of the available calculations by

combining our dynamically stable completeness maps with the results presented by Howard & Fulton

(2016). Regarding the latter, due to the differences between the range of values employed in each study,

we need to carefully translate the recovery rate distribution from Howard & Fulton (2016) into our

parameter space and grid values. To do so, we build our adapted contour plots by linearly interpolating

the recovery rates corresponding to the grid points falling inside their original range of values. On

the other hand, for the higher planetary masses considered in the present study, we follow the vertical

trend observed in the original contour plots and perform a uniform extrapolation of the recovery rates

associated with the upper mass limits evaluated in Howard & Fulton (2016). This entire procedure

is demonstrated in the left-hand plot of Figure 7, where the distribution of recovery rates for the

system HD 3651, adapted to our parameter space and range of values, is represented. In particular,
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Table 4. (New Table) Doppler corrected dynamically stable completeness.

Target Known Planet Stable Completeness Doppler Corrected Completeness

Name Distance ak ek mk sin I Petrovich Giuppone Hill AMD Petrovich Giuppone Hill AMD

(pc) (AU) (MJ) (Stability criteria) (Stability criteria)

HD 3651 11.14 0.295 0.645 0.228 0.22829 0.24871 0.19898 0.13682 0.13693 0.11859

51 Peg 15.47 0.053 0.013 0.472 0.18147 0.18147 0.18074 0.10399 0.10399 0.10399

tau Boo 15.66 0.049 0.011 4.32 0.17870 0.17870 0.17870 0.12827 0.12827 0.12827

70 Vir 17.91 0.481 0.399 7.416 0.13822 0.14952 0.06767 0.08031 0.08291 0.01935

HD 19994 22.54 1.305 0.063 1.37 0.07743 0.09913 0.07212 0.05941 0.06159 0.05799

eps Eri 3.21 3.39 0.702 1.55 0.00046 0.04020 0.00016 0.00043 0.03795 0.00000

the gray dashed line indicates the mass above which the results were uniformly extrapolated, while

the lower values were linearly interpolated. Similarly, the equivalent (a, R) maps can be constructed

(right-hand plot of Figure 7), where now the colour map represents the fraction of non-recovered

planets, which we will refer to as Doppler insensitivity. In this sense, in the regions where the Doppler

insensitivity decreases (i.e., the fraction recovered is high), an additional planet would have already been

detected by past RV surveys and therefore the corresponding probability of finding a new companion is

lower. Furthermore, by combining the resulting Doppler insensitivity maps with our stable-imageable

regions in the (a, R) space, we can compute the Doppler corrected, dynamically stable completeness

associated with the six single-planet systems considered, the values of which can be found in Table 4.

As we can observe, the consideration of the radial velocity data reduces significantly the target’s total

completeness, consequently suggesting that, in future studies, a detailed Doppler analysis for the most

interesting targets would be needed in order to improve and complement our prioritization.

While the target ranking presented in Appendix A is certainly incomplete without the addition of

Doppler insensitivity for all of the tabulated systems, the true utility of this table is in its index of the

underlying depth of search and stability grids. These represent more than half of the effort involved

in the final determination of the utility of direct imaging of these targets in search for unknown

companions. These grids can be combined with updated Doppler completeness values as these become

available, in order to produce up to the minute target rankings at the time a mission is launched.

6. CONCLUSIONS

Running numerical simulations up to 109 years, we have analyzed and compared various stability criteria for two-

planet systems with arbitrary eccentricities, showing that the criterion from Petrovich (2015) is generally the most

conservative and useful for our purposes, although the stability limits defined by Giuppone et al. (2013) and Petit

et al. (2018) also perform reasonably well. The code used to perform the numerical simulations is publicly available

at https://github.com/CarlosGascon/NumSim. For any criterion expressed as a boundary of the outer pericenter

to inner apocenter ratio (ρ) or the angular momentum deficit (C), we have derived expressions for the conditional

probability of having a stable companion given fixed values of a and m. This formulation has been directly used for

the computation of analytic stability maps, allowing us to rapidly characterize the stable region of a system in the

(a, R) space. By intersecting with the depth-of-search grids defined by Garrett et al. (2017), we have obtained the

corresponding stable-imageable region, yielding the definition of the total dynamically stable depth-of-search, with no

dependence on the assumed planet population. In particular, we have presented two cases where the detectable region

is clearly perturbed by the stability boundaries, showing the importance of accounting for the effects of the existing

planet in such systems. Furthermore, we added two examples of systems where the existing planet falls outside the

imageable region but its gravitational effect is still noticeable. Finally, the convolution with the selected occurrence

grid has allowed us to estimate the expected number of stable and imageable planets in a system. Applying this

procedure to all the currently known single-planet systems and several stability criteria, we have built a ranked target

https://github.com/CarlosGascon/NumSim
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Figure 7. (New Figure) Recovery rates (left) and Doppler insensitivity map (i.e., fraction of non-recovered
planets) in the (a, R) space (right) for the system HD 3651. Colour maps were built by translating the results
from Howard & Fulton (2016) into our parameter space. In particular, the gray dashed line in the left figure
indicates the mass above which the original recovery rates had to be extrapolated following the observed vertical
trend.

list based on the CGI’s capabilities and the SAG13 parametric fit. Additionally, we have completed our study

by considering the radial velocity data from past Doppler surveys and evaluating how the non-detection

of additional planets in some of the targets can help us rule out entire regions of our parameter space.

Making use of the results from Howard & Fulton (2016), we have observed that the consideration of

the radial velocity data reduces significantly the target’s total completeness, consequently suggesting

that, in future studies, a detailed Doppler analysis for the most interesting targets would be needed

in order to improve and complement our prioritization. The code used for both the construction of analytic

stability maps and the systems prioritization is publicly available at https://github.com/CarlosGascon/StableDoS.

The generated depth of search and stability grids are all available via Cornell eCommons at [url to be

filled in at time of manuscript acceptance]. Although a numerical analysis could lead to more accurate results,

the proposed methodology is a powerful tool, not only for rapidly identifying which targets have a higher probability

of hosting an additional planet, but also for discarding those systems where no unknown companions can be detected.

This research made use of the NASA Exoplanet Archive, which is operated by the California Institute of Technology,
under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program.

In addition, this research employed the Imaging Mission Database, which is operated by the Space Imaging and Optical

Systems Lab (SIOSlab) at Cornell University. C. G. would also like to thank the Interdisciplinary Higher Education

Center (CFIS) from the Polytechnic University of Catalonia (UPC), as well as the CELLEX Foundation, for offering

him the opportunity of developing this work at Cornell University.
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Astrophysics, 607, A35

Petit, A. C., Laskar, J., & Boué, G. 2018, A&A, 617, A93
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APPENDIX

A. SINGLE-PLANET SYSTEMS RANKING

Table 5. Dynamically stable depth-of-search and completeness values (We would like this table to appear in machine readable format).

Target Known Planet Petrovich’s Crit. Giuppone’s Crit. Hill AMD Crit.

Name Distance ak ek mk sin I DoS Completeness DoS Completeness DoS Completeness

(pc) (AU) (MJ) (Dynamically Stable) (Dynamically Stable) (Dynamically Stable)

Proxima Cen 1.30 0.049 0.350 0.004 44.25 0.40553 52.07 0.41418 39.39 0.39538

GJ 411 2.55 0.079 0.220 0.009 52.76 0.36637 57.83 0.37178 45.12 0.35245

Ross 128 3.38 0.050 0.116 0.004 56.37 0.36255 57.89 0.36422 44.41 0.34088

GJ 674 4.55 0.039 0.200 0.035 59.15 0.35824 59.22 0.35833 48.66 0.33925

GJ 687 4.55 0.170 0.040 0.060 54.40 0.35174 59.20 0.35829 46.52 0.33474

GJ 625 6.49 0.078 0.130 0.009 61.58 0.33251 61.90 0.33296 46.38 0.30137

HD 180617 5.91 0.336 0.160 0.038 47.40 0.31868 59.10 0.34149 44.15 0.30944

Gl 686 8.16 0.092 0.077 0.021 62.30 0.30439 62.40 0.30452 45.94 0.27006

GJ 433 9.07 0.060 0.080 0.020 61.39 0.28633 61.40 0.28633 46.17 0.25446

HD 285968 9.47 0.066 0.000 0.026 60.72 0.27940 60.73 0.27941 45.46 0.24692

GJ 436 9.76 0.029 0.138 0.070b 61.41 0.27324 61.41 0.27324 53.51 0.25779

Gl 49 9.86 0.091 0.363 0.018 60.91 0.27147 61.07 0.27171 44.00 0.23557

GJ 1265 10.26 0.026 0.040 0.023 61.33 0.26413 61.33 0.26413 49.20 0.23939

GJ 536 10.41 0.067 0.080 0.017 61.58 0.26188 61.59 0.26189 44.52 0.22630

GJ 86 10.79 0.110 0.040 4.420 60.60 0.25471 60.61 0.25473 60.59 0.25467

HD 102365 9.29 0.460 0.340 0.050 46.70 0.25312 60.47 0.28076 42.20 0.24039

HD 147379 10.77 0.323 0.070 0.090 57.24 0.24950 60.68 0.25505 42.53 0.21670

HD 85512 11.28 0.260 0.110 0.010 56.86 0.24182 59.67 0.24641 37.91 0.19858

HD 3651 11.14 0.295 0.645 0.228 49.05 0.22829 60.18 0.24871 42.89 0.19898

GJ 96 11.94 0.291 0.440 0.062 51.30 0.22102 59.49 0.23535 40.27 0.19457
VHS
J125601.92-
125723.9

12.70 102.0 0.000a 11.200 57.47 0.22018 26.42 0.12668 55.94 0.21635

HD 211970 13.00 0.143 0.150 0.041 58.40 0.21789 58.48 0.21803 40.13 0.17971

GJ 3779 13.75 0.026 0.070 0.025 57.74 0.20652 57.74 0.20652 46.62 0.18434

GJ 685 14.32 0.134 0.000 0.028 56.90 0.19775 56.92 0.19778 37.48 0.15788

GJ 1214 14.65 0.014 0.000a 0.020b 56.25 0.19296 56.25 0.19296 45.87 0.17243

Gl 378 14.96 0.039 0.109 0.041 56.53 0.18869 56.53 0.18869 45.77 0.16756

51 Peg 15.47 0.053 0.013 0.472 55.16 0.18147 55.16 0.18147 54.74 0.18074

HIP 79431 14.54 0.360 0.290 2.100 47.90 0.17905 56.73 0.19474 50.35 0.17237

tau Boo 15.66 0.049 0.011 4.320 55.17 0.17870 55.17 0.17870 55.17 0.17870

HD 177565 16.93 0.246 0.059 0.048 53.47 0.16164 53.54 0.16175 32.83 0.12114

GJ 3942 16.94 0.061 0.121 0.022 53.50 0.16162 53.51 0.16162 36.21 0.12787

GJ 504 17.54 43.50 0.000a 4.000 50.98 0.15338 50.44 0.15253 46.06 0.14327
LSPM
J2116+0234

17.64 0.088 0.183 0.042 52.71 0.15288 52.72 0.15289 36.69 0.12224
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Table 5 (continued)

Target Known Planet Petrovich’s Crit. Giuppone’s Crit. Hill AMD Crit.

Name Distance ak ek mk sin I DoS Completeness DoS Completeness DoS Completeness

(pc) (AU) (MJ) (Dynamically Stable) (Dynamically Stable) (Dynamically Stable)

HN Peg 18.13 773.0 0.000a 21.999 51.48 0.14691 51.24 0.14632 51.48 0.14691

HD 99492 18.21 0.120 0.250 0.070 51.17 0.14590 51.21 0.14596 36.75 0.11846

70 Vir 17.91 0.481 0.399 7.416 45.41 0.13822 51.75 0.14952 31.19 0.06767

WD 0806-661 19.20 2500 0.000a 7.500 50.01 0.13453 49.77 0.13407 50.01 0.13453

GJ 3021 17.56 0.490 0.511 3.370 41.06 0.13326 52.29 0.15379 31.75 0.07325

HR 810 17.33 0.920 0.140 2.270 39.78 0.13240 52.06 0.15568 41.01 0.13327

HD 192263 19.65 0.150 0.050 0.560 49.38 0.12922 49.39 0.12923 47.09 0.12526

GJ 3634 19.80 0.029 0.080 0.026b 49.36 0.12767 49.36 0.12767 36.59 0.10460

HD 104067 20.38 0.260 0.000 0.160 48.34 0.12136 48.41 0.12147 33.65 0.09502

GJ 649 10.38 1.135 0.300 0.328 19.05 0.11665 33.41 0.17755 22.74 0.12044

GJ 4276 21.35 0.082 0.370 0.052 46.58 0.11155 46.59 0.11157 33.42 0.08847

HD 27442 18.28 1.271 0.060 1.560 33.29 0.10893 49.20 0.14089 33.73 0.11127

HD 90156 21.96 0.250 0.310 0.057 45.78 0.10546 45.96 0.10574 25.83 0.07132

HD 4308 22.03 0.120 0.000 0.050 45.71 0.10502 45.71 0.10502 29.56 0.07736

HD 147513 12.91 1.320 0.260 1.210 18.79 0.09736 36.64 0.16028 17.04 0.07235

GJ 3341 23.16 0.089 0.310 0.021 44.18 0.09466 44.18 0.09467 24.63 0.06263

HD 39855 23.28 0.041 0.140 0.027 43.83 0.09364 43.83 0.09364 31.55 0.07342

HIP 12961 23.39 0.250 0.170 0.360 43.40 0.09254 43.49 0.09267 36.19 0.08064

HD 62509 10.34 1.640 0.020 2.300 14.18 0.08797 27.82 0.14986 23.77 0.14131

alf Ari 20.21 1.200 0.250 1.800 29.04 0.08582 46.20 0.11947 30.04 0.08280

HD 156668 24.35 0.050 0.000 0.013 41.73 0.08465 41.73 0.08465 23.46 0.05560

HD 42618 24.35 0.554 0.190 0.045 40.26 0.08238 41.72 0.08465 18.05 0.04721

HD 19994 22.54 1.305 0.063 1.370 31.71 0.07743 44.26 0.09913 28.45 0.07212

HD 16417 25.41 0.140 0.200 0.070 40.37 0.07640 40.37 0.07641 26.21 0.05474

alf Tau 20.43 1.460 0.100 6.470 23.19 0.06815 44.02 0.11328 31.05 0.08371

HD 103949 26.52 0.439 0.190 0.035 37.92 0.06750 38.51 0.06837 15.20 0.03491

HD 33564 20.97 1.100 0.340 9.100 23.44 0.06595 45.16 0.11161 22.33 0.04146

HD 210277 21.31 1.130 0.480 1.290 21.57 0.06332 42.77 0.10527 20.89 0.04926

HD 179949 27.48 0.044 0.022 0.916 37.02 0.06204 37.02 0.06204 37.01 0.06204

gam Cep 13.54 2.050 0.049 1.850 11.63 0.05867 24.54 0.11039 19.60 0.09681

HD 125595 28.22 0.080 0.000 0.020 35.59 0.05742 35.59 0.05742 18.03 0.03351

HD 164595 28.28 0.230 0.088 0.051 35.64 0.05703 35.65 0.05704 16.91 0.03172

HD 10647 17.34 2.015 0.150 0.940 14.44 0.05699 29.24 0.10065 19.66 0.07537

HD 93083 28.54 0.477 0.140 0.370 34.77 0.05476 35.31 0.05554 23.95 0.03989

HD 75289 29.14 0.050 0.030 0.490 34.48 0.05209 34.48 0.05209 34.42 0.05201

HD 21411 29.16 0.362 0.400 0.207 34.03 0.05142 34.43 0.05199 21.75 0.03520

HD 102195 29.36 0.050 0.000 0.410 33.97 0.05095 33.97 0.05095 33.87 0.05082
DENIS-P
J082303.1-
491201

20.77 0.360 0.345 28.500b 17.12 0.05088 47.51 0.11737 21.82 0.03981
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Table 5 (continued)

Target Known Planet Petrovich’s Crit. Giuppone’s Crit. Hill AMD Crit.

Name Distance ak ek mk sin I DoS Completeness DoS Completeness DoS Completeness

(pc) (AU) (MJ) (Dynamically Stable) (Dynamically Stable) (Dynamically Stable)

GJ 3470 29.45 0.036 0.000a 0.044b 33.75 0.05047 33.75 0.05047 26.41 0.04063

HD 46375 29.58 0.040 0.063 0.226 33.59 0.04972 33.59 0.04972 33.32 0.04935

HD 101930 30.05 0.300 0.110 0.250 32.88 0.04722 32.94 0.04731 23.67 0.03529

HD 52265 30.01 0.520 0.270 1.210 32.53 0.04681 33.04 0.04751 29.59 0.04284

HD 218566 28.85 0.690 0.300 0.200 29.75 0.04656 34.74 0.05377 16.42 0.02951

7 CMa 19.82 1.930 0.220 2.460 13.86 0.04475 31.99 0.09056 15.12 0.04120

HD 162020 30.85 0.080 0.280 9.840 31.45 0.04335 31.45 0.04335 31.40 0.04323

HD 8326 30.71 0.533 0.200 0.210 31.06 0.04303 31.78 0.04402 16.70 0.02539

HD 128356 26.03 0.870 0.570 0.890 19.22 0.04017 38.84 0.07122 24.53 0.04694

HD 64114 31.55 0.246 0.120 0.056 30.40 0.04010 30.41 0.04011 13.48 0.02021

HD 130322 31.91 0.093 0.029 1.150 29.96 0.03848 29.96 0.03849 29.94 0.03846

HIP 71135 32.36 0.335 0.210 0.059 28.97 0.03642 29.08 0.03656 11.31 0.01658

HIP 35173 33.19 0.217 0.160 0.040 27.96 0.03323 27.97 0.03324 11.01 0.01494

mu Leo 32.63 1.100 0.090 2.400 26.48 0.03232 28.86 0.03546 23.87 0.02925

HD 40979 34.12 0.850 0.250 4.670 24.83 0.02778 26.47 0.02987 25.52 0.02862

HD 45652 34.89 0.237 0.607 0.433 25.25 0.02719 25.32 0.02727 22.62 0.02423

HD 63765 32.57 0.940 0.240 0.530 20.81 0.02498 28.98 0.03568 15.36 0.01996

BD-11 4672 27.30 2.280 0.050 0.530 11.52 0.02441 28.86 0.04998 12.48 0.02800

16 Cyg B 21.15 1.660 0.680 1.780 7.44 0.02285 24.33 0.06426 5.34 0.00867

HD 114386 27.95 1.730 0.230 1.140 11.42 0.02260 31.50 0.05179 15.49 0.02924

HD 216770 36.70 0.460 0.370 0.570 22.18 0.02132 22.65 0.02187 17.91 0.01700

HD 195019 37.71 0.140 0.010 3.980 21.21 0.01928 21.21 0.01928 21.21 0.01928

HD 63454 37.73 0.040 0.000 0.250 21.17 0.01923 21.17 0.01923 21.08 0.01913

HD 117618 37.82 0.180 0.150 0.174 20.98 0.01899 20.99 0.01899 16.18 0.01438

HD 16141 37.83 0.360 0.250 0.260 20.94 0.01894 20.97 0.01897 14.07 0.01248

HD 23079 33.49 1.600 0.100 2.610 16.96 0.01861 27.25 0.03183 18.28 0.02111

HD 111998 33.26 1.820 0.030 4.510 16.75 0.01858 27.42 0.03244 19.26 0.02234

HD 113337 36.22 0.920 0.460 2.830 18.71 0.01770 23.32 0.02320 21.01 0.02045

HD 108147 38.96 0.102 0.530 0.261 19.41 0.01644 19.41 0.01644 18.53 0.01557
2MASS
J01225093-
2439505

36.00 52.00 0.000a 24.500 12.10 0.01626 2.54 0.00413 12.56 0.01697

HD 4208 34.23 1.662 0.042 0.810 15.58 0.01615 26.02 0.02920 10.49 0.01245

HD 102117 39.62 0.150 0.120 0.170 18.57 0.01508 18.57 0.01508 15.14 0.01200
2MASS
J02192210-
3925225

39.40 156.0 0.000a 13.900 16.03 0.01491 1.07 0.00145 13.59 0.01395

GJ 849 8.80 2.350 0.040 1.000 2.11 0.01476 6.51 0.04162 8.14 0.04811

HD 28185 39.43 1.020 0.050 5.900 18.00 0.01449 18.89 0.01545 18.26 0.01480

gam 1 Leo 38.52 1.190 0.144 8.780 17.35 0.01446 19.94 0.01736 19.33 0.01668

HD 114762 40.23 0.360 0.340 10.690 17.68 0.01384 17.74 0.01391 17.70 0.01385
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Table 5 (continued)

Target Known Planet Petrovich’s Crit. Giuppone’s Crit. Hill AMD Crit.

Name Distance ak ek mk sin I DoS Completeness DoS Completeness DoS Completeness

(pc) (AU) (MJ) (Dynamically Stable) (Dynamically Stable) (Dynamically Stable)

HD 38283 38.10 1.020 0.410 0.400 16.19 0.01338 20.61 0.01833 8.88 0.00781

HD 111232 28.98 1.970 0.200 7.140 8.24 0.01314 28.55 0.04394 15.50 0.02016

HD 142415 35.57 1.060 0.500 1.670 13.83 0.01269 24.28 0.02504 18.26 0.01827

HD 83443 40.95 0.040 0.010 0.340 16.85 0.01262 16.85 0.01262 16.83 0.01261

HD 178911 B 41.02 0.340 0.110 8.030 16.73 0.01250 16.73 0.01251 16.73 0.01250

HD 98736 32.48 1.864 0.226 2.330 9.52 0.01187 26.59 0.03299 14.86 0.01855

kap CrB 30.09 2.650 0.167 1.811 7.73 0.01176 23.13 0.03227 11.24 0.01784

HD 89744 38.68 0.917 0.677 8.350 14.97 0.01165 19.88 0.01700 18.04 0.01450

HD 103720 41.60 0.050 0.086 0.620 16.08 0.01155 16.08 0.01155 16.08 0.01155

bet UMi 38.78 1.400 0.190 6.100 14.89 0.01153 19.69 0.01677 17.97 0.01495

HD 7199 36.19 1.360 0.190 0.270 13.21 0.01152 23.30 0.02319 6.47 0.00720

HD 168746 41.62 0.070 0.110 0.270 16.05 0.01152 16.05 0.01152 15.81 0.01130

HD 121504 41.71 0.330 0.030 1.510 15.91 0.01138 15.91 0.01138 15.69 0.01117

HD 10697 33.15 2.140 0.104 6.383 10.25 0.01096 25.68 0.03042 16.91 0.01923

HD 197037 33.00 2.070 0.220 0.790 8.95 0.01082 25.09 0.02977 9.41 0.01284

HD 216437 26.71 2.497 0.317 2.223 5.26 0.01078 20.39 0.03537 7.52 0.01112

HD 216435 33.01 2.560 0.070 1.260 9.27 0.01068 23.88 0.02806 9.03 0.01220

HD 6434 42.41 0.140 0.170 0.490 15.02 0.01032 15.02 0.01032 14.71 0.01005

HD 204941 28.74 2.550 0.370 0.230 4.86 0.01021 16.93 0.02538 7.84 0.01662

GJ 179 12.36 2.410 0.210 0.820 1.91 0.01016 6.70 0.03552 3.80 0.01860

HD 85390 33.56 1.373 0.500 0.099 8.04 0.00978 26.31 0.03052 6.17 0.00962

HD 141937 33.39 1.500 0.410 9.690 9.38 0.00970 26.47 0.03104 19.33 0.01926

HD 49674 43.09 0.060 0.090 0.100 14.26 0.00937 14.26 0.00937 12.93 0.00832

HD 137388 40.53 0.890 0.360 0.200 13.01 0.00899 17.31 0.01333 5.17 0.00387

HD 126525 37.69 1.837 0.035 0.237 11.74 0.00896 20.96 0.01911 3.96 0.00421

iot Dra 31.67 1.275 0.712 8.820 6.90 0.00877 28.10 0.03667 20.24 0.02221

HD 208487 44.00 0.524 0.240 0.520 13.22 0.00816 13.27 0.00820 9.89 0.00578

91 Aqr 44.08 0.700 0.027 3.200 13.14 0.00808 13.17 0.00811 12.88 0.00787

HD 42012 36.84 1.670 0.200 1.600 9.16 0.00714 22.02 0.02104 11.56 0.01050

HD 285507 45.09 0.060 0.090 0.980 12.10 0.00699 12.10 0.00699 12.10 0.00699

HD 8574 44.88 0.760 0.300 2.030 12.04 0.00698 12.31 0.00721 11.44 0.00654

30 Ari B 44.71 0.990 0.290 13.820 12.03 0.00696 12.52 0.00739 12.48 0.00735

HD 330075 45.36 0.040 0.000 0.480 11.82 0.00670 11.82 0.00670 11.82 0.00670

HIP 91258 45.95 0.060 0.020 1.090 11.20 0.00612 11.20 0.00612 11.19 0.00612

HD 77338 46.00 0.060 0.090 0.060 11.14 0.00608 11.14 0.00608 8.95 0.00468

HD 114729 37.85 2.067 0.079 0.825 8.61 0.00602 20.36 0.01824 6.17 0.00546

HD 17674 44.48 1.420 0.130 0.870 9.90 0.00523 12.70 0.00765 6.06 0.00317

HD 29021 31.02 2.280 0.459 2.400 3.11 0.00522 18.51 0.02335 6.64 0.00591

BD-17 63 34.49 1.340 0.540 2.850 3.37 0.00520 23.81 0.02595 12.99 0.01150
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Table 5 (continued)

Target Known Planet Petrovich’s Crit. Giuppone’s Crit. Hill AMD Crit.

Name Distance ak ek mk sin I DoS Completeness DoS Completeness DoS Completeness

(pc) (AU) (MJ) (Dynamically Stable) (Dynamically Stable) (Dynamically Stable)

HD 70642 29.30 3.318 0.175 1.993 2.99 0.00505 14.53 0.01938 6.06 0.00960

HD 164604 39.41 1.331 0.350 1.998 8.13 0.00496 18.74 0.01538 13.10 0.01006

HD 210193 42.25 1.487 0.240 0.482 9.03 0.00483 15.22 0.01051 4.79 0.00296

HD 30562 26.18 2.340 0.760 1.220 2.38 0.00482 12.25 0.02060 2.37 0.00213

HD 22781 32.63 1.167 0.819 13.650 3.97 0.00449 26.98 0.03284 20.10 0.02080

GU Psc 48.00 2000 0.000a 11.300 9.27 0.00442 0.00 0.00000 9.27 0.00442

HR 2562 34.04 20.30 0.000a 30.000 2.55 0.00439 2.02 0.00404 5.38 0.00931

HD 154345 18.29 4.210 0.040 0.820 1.43 0.00423 5.21 0.01524 4.91 0.01739

HD 20782 36.02 1.365 0.950 1.488 3.35 0.00401 21.26 0.02067 10.49 0.00813

HD 143105 48.70 0.038 0.070 1.210 8.63 0.00394 8.63 0.00394 8.63 0.00394

HD 89307 32.04 3.270 0.200 2.110 2.68 0.00373 14.68 0.01598 5.72 0.00700

HD 107148 49.49 0.269 0.050 0.210 8.01 0.00344 8.01 0.00344 5.79 0.00233

HD 196885 34.20 2.370 0.480 2.580 2.63 0.00330 17.08 0.01708 7.36 0.00542

WASP-80 49.86 0.034 0.002 0.538b 7.69 0.00323 7.69 0.00323 7.69 0.00323

HD 167042 49.73 1.320 0.089 1.700 7.46 0.00307 7.81 0.00330 5.84 0.00226

BD+14 4559 49.42 0.780 0.290 1.040 7.16 0.00288 8.07 0.00348 6.38 0.00257

HD 50554 31.19 2.353 0.501 4.954 1.97 0.00283 16.95 0.02027 7.53 0.00593

HD 81040 34.47 1.940 0.530 7.270 2.71 0.00281 20.06 0.02082 12.91 0.01062

eps Tau 49.23 1.930 0.151 7.600 6.89 0.00270 8.17 0.00359 7.48 0.00315

HD 153950 48.52 1.280 0.340 2.950 6.84 0.00269 8.81 0.00406 7.66 0.00335

HD 100777 49.60 1.030 0.360 1.030 6.42 0.00241 7.90 0.00338 5.49 0.00213

HD 117207 32.38 3.787 0.157 1.926 1.63 0.00223 10.90 0.01051 4.04 0.00535

HD 213240 40.92 1.890 0.420 5.580 4.87 0.00213 16.16 0.01187 12.61 0.00835

HD 32963 38.12 3.410 0.070 0.700 2.16 0.00203 13.41 0.00986 2.56 0.00270

14 Her 17.94 2.930 0.370 4.660 0.55 0.00136 5.33 0.01550 0.80 0.00067

HD 222582 42.21 1.340 0.730 8.370 3.38 0.00117 15.06 0.01034 13.88 0.00912

HD 156846 47.80 1.120 0.850 10.670 3.93 0.00103 9.42 0.00456 9.32 0.00448

HD 187085 45.96 2.100 0.251 0.836 3.53 0.00086 10.95 0.00591 3.24 0.00137

HD 4113 41.92 1.280 0.903 1.560 1.94 0.00081 15.17 0.01060 9.63 0.00589

HD 7449 38.71 2.380 0.920 0.508 0.66 0.00075 8.76 0.00494 1.65 0.00073

HD 70573 45.70 1.760 0.400 6.100 2.91 0.00063 11.27 0.00620 9.58 0.00491

eps Eri 3.21 3.390 0.702 1.550b 0.09 0.00046 7.00 0.04020 0.13 0.00016

HD 106252 38.23 2.610 0.480 6.930 0.52 0.00044 11.99 0.00814 7.11 0.00350

HD 142022 A 34.31 2.930 0.530 4.440 0.43 0.00044 9.28 0.00700 3.70 0.00157

HD 171238 44.87 2.570 0.234 2.720 1.30 0.00021 11.00 0.00598 4.65 0.00185

HD 86226 45.74 2.840 0.150 0.920 1.52 0.00020 10.21 0.00525 1.81 0.00060

HD 87883 18.30 3.580 0.530 1.540 0.13 0.00019 1.56 0.00300 0.16 0.00008

psi 1 Dra B 22.16 4.430 0.400 1.530 0.13 0.00016 1.67 0.00217 0.26 0.00017

HD 20868 47.79 0.950 0.750 1.250 1.35 0.00015 9.44 0.00457 6.91 0.00304
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Table 5 (continued)

Target Known Planet Petrovich’s Crit. Giuppone’s Crit. Hill AMD Crit.

Name Distance ak ek mk sin I DoS Completeness DoS Completeness DoS Completeness

(pc) (AU) (MJ) (Dynamically Stable) (Dynamically Stable) (Dynamically Stable)

RR Cae 21.20 5.300 0.000 4.200 0.11 0.00013 5.20 0.00761 0.71 0.00133

HD 221420 31.17 18.50 0.420 9.700 0.04 0.00009 1.12 0.00239 0.23 0.00035

HD 220689 46.94 3.396 0.054 1.118 1.04 0.00008 8.62 0.00387 1.10 0.00023

GJ 328 20.54 4.500 0.370 2.300 0.03 0.00003 0.99 0.00120 0.08 0.00003

HD 114613 20.29 5.340 0.458 0.357 0.02 0.00002 0.35 0.00031 0.14 0.00016

HD 45350 46.94 1.920 0.778 1.790 0.15 0.00001 9.00 0.00418 4.85 0.00192

HD 8673 37.90 3.020 0.723 14.200 0.01 0.00001 6.00 0.00253 4.67 0.00144

HD 24040 46.68 4.920 0.040 3.860 0.05 0.00000 4.53 0.00110 0.46 0.00003

DE CVn 30.55 5.750 0.000 12.029b 0.00 0.00000 2.40 0.00150 0.08 0.00005

HD 13931 47.46 5.150 0.020 2.200 0.07 0.00000 4.32 0.00100 0.30 0.00001

HD 108341 49.40 2.000 0.850 3.500 0.01 0.00000 6.66 0.00247 4.67 0.00152

HD 79498 49.02 2.980 0.575 1.340 0.00 0.00000 4.94 0.00134 1.46 0.00031
CFBDSIR
J145829
+101343

23.10 2.600 0.000a 10.500 0.00 0.00000 5.64 0.01107 0.00 0.00000

HD 106515 A 34.12 4.590 0.572 9.610 0.00 0.00000 0.78 0.00014 0.26 0.00001

HIP 70849 24.07 20.25 0.715 9.000 0.00 0.00000 0.00 0.00000 0.00 0.00000

HD 150706 28.29 6.700 0.380 2.710 0.00 0.00000 0.06 0.00001 0.00 0.00000

HD 219077 29.21 6.220 0.770 10.390 0.00 0.00000 0.00 0.00000 0.00 0.00000

HD 25015 37.47 6.190 0.390 4.480 0.00 0.00000 0.13 0.00001 0.00 0.00000

HD 196067 39.98 5.020 0.660 6.900 0.00 0.00000 0.34 0.00002 0.18 0.00000

HD 98649 42.22 6.570 0.860 6.790 0.00 0.00000 0.00 0.00000 0.00 0.00000

HD 13724 43.52 12.40 0.340 26.770 0.00 0.00000 0.00 0.00000 0.00 0.00000

HD 92987 43.59 9.620 0.210 16.880 0.00 0.00000 0.00 0.00000 0.00 0.00000

HD 166724 45.19 5.420 0.734 3.530 0.00 0.00000 0.03 0.00000 0.00 0.00000

HD 133131 B 47.00 6.150 0.610 2.500 0.00 0.00000 0.02 0.00000 0.00 0.00000

HD 181234 47.81 7.520 0.730 8.370 0.00 0.00000 0.00 0.00000 0.00 0.00000

HD 220773 49.00 4.940 0.510 1.450 0.00 0.00000 0.86 0.00003 0.14 0.00000
WISEP
J121756.91
+162640.2 A

10.10 8.000 0.000a 22.000 0.00 0.00000 0.00 0.00000 0.00 0.00000

aThe eccentricity of this system’s planet was unknown and consequently set to zero.

bThis system’s inclination was known and therefore the given value corresponds to the true mass mk.

Note—Results are obtained for 213 single-planet systems using Petrovich’s, Hill AMD and Giuppone’s criteria. In particular,
the systems are ranked according to the completeness values calculated with Petrovich’s criterion.


