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Abstract: Vortex cavitation can appear in the wake flow of hydrofoils, inducing unwanted 
consequences such as vibrations or unstable behaviors in hydraulic machinery and systems. To 
investigate the cavitation effects on hydrofoil vortex shedding, a numerical investigation of the flow 
around a 2D NACA0009 with a blunt trailing edge at free caviation conditions and at two degrees 
of cavitation developments has been carried out by means of the Zwart cavitation model and the 
LES WALE turbulence model which permits predicting the laminar to turbulent transition of the 
boundary layers. To analyze the dynamic behavior of the vortex shedding process and the coherent 
structures, two identification methods based on the Eulerian and Lagrangian reference frames have 
been applied to the simulated unsteady flow field. It is found that the cavitation occurrence in the 
wake significantly changes the main vortex shedding characteristics including the morphology of 
the vortices, the vortex formation length, the effective height of the near wake flow and the shedding 
frequency. The numerical results predict that the circular shape of the vortices changes to an 
elliptical one and that the vortex shedding frequency is significantly increased under cavitation 
conditions. The main reason for the frequency increase seems to be the reduction in the transverse 
separation between the upper and lower rows of vortices induced by the increase in the vortex 
formation length. 
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1. Introduction 

In recent decades, the interaction effects between cavitation and vortical flow structures have 
attracted great attention in academic research and engineering practice. The high vorticity intensity 
in the center of a vortical flow generates a low-pressure region which is prone to cavitation inception 
[1,2]. Furthermore, this type of cavitation is affected by vorticity generation mechanisms [3]. Once a 
cavitation bubble is formed and develops inside the vortex core, the unsteady vortex dynamic 
behavior, e.g., vortex shedding frequency and vortex formation length, tend to change significantly 
[4]. As cavitation is further developed, it may give rise to vibrations, noise and material erosion which 
is an actual risk for the safe operation of hydraulic machinery and systems [1]. 

To distinguish vortical flow cavitation and the cavitation appearing in a shear flow induced by 
a high-speed submerged jet, so-called jet cavitation, the cavitation in the vortices generated in the 
wake of the flow around a bluff body wake is called wake cavitation [2]. Many experimental and 
numerical research works can be found treating wake vortices behind bluff bodies in single-phase 
flows, like behind a circular cylinder [5–7] and a 2D wedge [8,9], which permit explaining the 
alternate vortex shedding mechanism. Although some researchers have also paid attention to the 
cavitating flow behind a circular cylinder [10–13] and a 2D wedge [3,4,14–18], there is a lack of 
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investigations devoted to understanding the cavitation effects on the dynamics of wake vortices, 
especially behind 2D symmetric hydrofoils. 

Young and Holl [14] were the first to experimentally measure the vortex shedding frequency 
behind a 2D triangular wedge. They found that the vortex shedding frequency remains constant 
when cavitation appears at cavitation number σi, but as the cavitation number σ further decreases 
below σi and the cavitation size increases, the vortex shedding frequency suffers an abrupt rise near 
½ of σi. After the vortex shedding frequency reaches this maximum value and σ is further decreased, 
the individual cavitation vortices grow until the point that they suffer a coalescence and it becomes 
impossible to measure any shedding frequency. Rao and Chandrasekhara [11] and Ramamurthy 
[12,15,19] also observed and confirmed similar results both in a circular cylinder and triangular 
wedge geometry under different area ratios of the model to the test section. Based on high-speed 
imaging results, Belahadji [4] found that cavitation cannot be considered as irrelevant for the flow 
around a 2D wedge since, as soon as cavitation happens, it can dramatically change the flow 
dynamics and lead to an increase in the vortex shedding frequency. However, this behavior is not 
often mentioned in research devoted to the observation and characterization of wake cavitation 
behind 2D symmetric hydrofoils. Ausoni et al. [20] conducted an experimental research to determine 
the cavitation effects on the flow behind a truncated NACA 0009 hydrofoil at high Reynolds numbers. 
With a high-speed camera and a laser vibrometer, they confirmed that the vortex shedding frequency 
increased gradually with the development of cavitation, although no mechanism for the phenomena 
was thoroughly described. 

An important parameter that determines the vortex shedding frequency at the high Reynolds 
numbers is the vortex formation length as proposed by Gerrard [5]. In a single-phase flow, Gerrard 
insisted that the larger the vortex formation region, the lower the vortex shedding frequency. 
However, when cavitation occurs, the situation becomes more complex. For example, Kumar et al. 
[21] observed and confirmed similar results at subcritical Reynolds numbers on the cavitating flow 
over a circular cylinder employing high-speed imaging. In contrast, Ramamurthy et al. [12] observed 
an increase in the vortex formation length when σ decreased in both a 2D wedge and a circular 
cylinder. Despite those works, few studies can be found related to the vortex formation length behind 
hydrofoils. Ausoni et al. [20] provided measurements of the vortex formation length for different free 
stream velocities at cavitation free regimes. They concluded that the vortex shedding frequency is 
reduced as the vortex formation length increases both in the natural boundary layer transition and 
tripped transition setups, which agrees well with Gerrard [5]. Nevertheless, no measurements of the 
vortex formation length for cavitation conditions were reported in their study. 

Some numerical investigations regarding the vortex shedding flow around hydrofoils without 
cavitation should be mentioned. Ausoni et al. [20] carried out a numerical investigation of the vortex 
shedding behind a NACA 0009 hydrofoil with a truncated trailing edge for several free stream 
velocities and high Reynolds numbers under no cavitation conditions. Their numerical results 
showed that the boundary layer transition from laminar to turbulent regimes predicted with the SST 
transition turbulence model provided more consistent results with the experimental measurements 
than the standard SST turbulence model. Lee et al. [22] and Chen et al. [23] used 2D LES and 3D LES 
turbulence models, respectively, to investigate the same hydrofoil geometry. They stated that the 
choice of a turbulent model with the capability of predicting the boundary layer laminar to turbulence 
transition is a key point to obtain an accurate prediction of the vortex shedding frequency.  

Under cavitation conditions, the most commonly used cavitation model is the homogeneous 
mixture model, which is derived from the simplified Rayleigh–Plesset bubble dynamics equation. 
The coupling of the cavitation model with RANS and LES turbulence models has been found to 
capture with good accuracy the cavitating flow phenomena in the wake of bluff bodies. For example, 
Kim et al. [24] used a combination of URANS with a homogeneous mixture cavitation model to 
investigate the unsteady cavitating flow over a 2D triangular wedge. Further, Gnanaskandan et al. 
[13,17] applied the LES turbulence model coupled with a compressible homogeneous mixture 
cavitation model to investigate the cavitating wake flow over a circular cylinder and a 2D wedge. In 
summary, these numerical investigations confirmed the capability of the homogeneous mixture 
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cavitation models to predict the vortex shedding frequency and the vortex dynamics behind a bluff 
body. Futhermore, their results demonstrated that the patterns and processes of vortex shedding 
were well captured for both geometries. More specifically, it was found that LES can offer a better 
performance in the prediction of the intermittent vortices compared with RANS. Thanks to the latest 
works of the research groups at the Swiss Federal Institute of Technology of Lausanne [25–28], the 
Technical University of Munich [29–31], the Chalmers University of Technology [32–34], the Delft 
University of Technology [35] and the University of London [36–38], great progress has been made 
in the simulation of cavitation in vortical flows with LES. These works have increased the 
understanding of the cavitation effects on vortices/eddies dynamic behavior, ranging from the large 
scales to the intermittent ones. Based on their findings, the LES WALE model has been applied in the 
present simulations for its demonstrated performance when predicting the laminar–turbulence 
boundary layer transition and the cavitating vortical flows. 

Although there is no agreed definition of what is a “vortex” among the fluid mechanics 
community [39], a vortex may be derived from a snapshot of the velocity field and its gradient under 
the Eulerian frame of reference. The most used criteria for vortex tracking are the Q criterion [40], the 
vorticity magnitude [41] and the ∆ criterion [42], among others. All of these Eulerian vortex criteria 
have been widely applied in fundamental vortex dynamic research [39] as well as in industrial 
engineering applications [2,4,43]. On the other hand, a vortex is just one type of “coherent structure” 
in which the fluid particles share a common orbit axis from the Lagrangian point of view. The term 
“coherent structure” can be first traced back to Brown and Roshko [44]. In 1991, Robinson [45] gave 
a more precise meaning for the coherent structure as a “three-dimensional region of the flow over 
which at least one fundamental flow variable (velocity component, density, temperature, etc.) 
exhibits a significant correlation with itself or with another variable over a range of space and/or time 
that is significantly larger than the smallest local scales of the flow”. Under the Lagrangian frame of 
reference, the coherent structures can be identified by tracking the fluid parcel trajectories over a 
reasonable finite time. Based on this method, Haller [46,47] firstly used the finite-time Lyapunov 
exponent (FTLE) as a criterion for the identification of Lagrangian coherent structures (LCS). After 
the FTLE scalar field was established, the diagnostic and analysis of the vortex dynamics using LCS 
identification approaches became active, and they served in the studies of vortex ring pinch-off flow 
[48–50], the wake of pitching panels [51], circular cylinders [52], wings [53], vortex break downs [54], 
turbines draft tube vortexes [55], ocean current eddies [56] and hurricanes [57]. A comprehensive 
review and a rigorous assessment of the LCS diagnostic approaches and their application was 
conducted by Haller in 2014 [58]. 

Inspired by the success of LCS analysis in single-phase flows, some researchers have applied it 
to study two-phase cavitating flows. Tseng et al. [59] used LCS analysis to track the trajectories of the 
fluid particles in the cavitating flow around a hydrofoil. They discovered three different LCS groups 
on the hydrofoil surface and they enhanced the understanding of the interactions between the 
cavitation bubbles and the vortex region. Wang et al. [60] used LCS analysis to study the ventilated 
cavitation over a bluff body and established a correlation between the vortex shedding frequency and 
the vortex formation region. Hence, these works demonstrate that LCS analysis is a powerful tool to 
uncover the physics of the vortex structures in cavitating flows. 

In this study, the Zwart homogeneous cavitation model [61] and the LES wall-adapting local 
eddy-viscosity turbulence model [62] are used to simulate the cavitating vortex shedding flow behind 
the truncated trailing edge of a 2D NACA 0009 hydrofoil. The numerical setup has been validated by 
comparison with existing experimental measurements. Based on the simulation results, it has been 
possible to find out the correlation between the degree of cavitation and the vortex shedding 
frequency and formation length. Eulerian and Lagrangian vortex identification criteria have been 
applied to the numerically predicted flow velocity field behind the trailing edge in order to analyze 
the evolution of the cavitating vortex shedding in comparison with the cavitation free conditions. As 
a result, the effects of the cavitation on the vortex shedding dynamic behavior have been identified 
and analyzed. The novelty of the present work lies in the fact that few attention has been given to 
investigate the cavitation effects on the Von Kármán vortex shedding dynamic behavior behind 
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hydrofoils, which are widely used in hydraulic machinery. Moreover, it permits proving that the use 
of both Eulerian and Lagrangian vortex identification methods is a valuable tool to assess the 
dynamics and the morphology of the primary Von Kármán vortex shedding in cavitation conditions. 

2. Methods 

2.1. Experimental Setup Description 

The experimental tests taken as a reference to validate our models were carried out at the EPFL 
high-speed cavitation tunnel inside a rectangular test section with the dimensions 150 × 150 × 750 mm 
with an NACA 0009 hydrofoil. The hydrofoil chord length, C, and the span, SP, were 100 and 150 
mm, respectively. For additional details, see Ausoni’s thesis [20]. 

The hydrofoil was truncated at 90% of its original chord length and the resulting trailing edge 
thickness b was 3.22% of the new chord length, b = 3.22 mm. The hydrofoil was fixed at both sides 
and its span was equal to the width of the test section, 150 mm. Hydrofoil vibrations and flow velocity 
profiles were measured at different sections during the tests. The vortex-induced vibrations on the 
hydrofoil surface were measured with a laser vibrometer. The vibration signals permitted to 
determine hydrofoil natural frequencies and the vortex shedding frequency. The velocity profiles 
were measured using a laser Doppler velocimetry (LDV) technique. High-speed camera visualization 
techniques were used to show the cavitating flow characteristics. Further details of the experiments 
can be found in Ausoni [20]. 

2.2. Governing Equations 

The numerical simulations were conducted with the commercial CFD solver code ANSYS CFX® 
version 18.1. The turbulence model selected to close the unsteady Navier–Stokes equations was the 
LES wall-adapting local eddy-viscosity (WALE) model [62] because it can eliminate the additional 
false eddy viscosity of the Smagorinsky model [63] in the laminar flow regions and give a more 
precise prediction of the laminar–turbulence transition. 

The homogeneous multiphase model was used which neglects the velocity differences between 
the liquid and vapor media. Thus, the corresponding governing equations are given by ∂𝜌∂𝑡 + ∂(𝜌 𝑢 )∂𝑥 = 0 (1) ∂(𝜌 𝑢 )∂𝑡 + ∂(𝜌 𝑢 𝑢 )∂𝑥 = − ∂𝑝∂𝑥 + ∂∂𝑥 (𝜇 ∂𝑢∂𝑥 ) (2) 

Where ui is the velocity components and p is the pressure. The mixture density, ρm, and the mixture 
viscosity, µm, are expressed by 𝜌 = 𝜌 𝛼 + 𝜌 𝛼  (3) 𝜇 = 𝜇 𝛼 + 𝜇 𝛼  (4) 

where ρ, µ and α are the density, viscosity and volume fraction, respectively, and subscripts l and g 
indicate liquid and gas, respectively. 

Applying the implicit filtering operation on the unsteady Navier–Stokes equations, one can 
obtain ∂𝜌∂𝑡 + ∂(𝜌𝑢 )∂𝑥 = 0 (5) ∂(𝜌𝑢 )∂𝑡 + ∂(𝜌𝑢 𝑢 )∂𝑥 = − ∂𝑝∂𝑥 + ∂∂𝑥 (𝜇 ∂𝑢∂𝑥 ) − ∂𝜏∂𝑥  (6) 

where 𝑢  is the filtered velocity components and τij is the sub-grid scale (SGS). 
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The Zwart–Gerber–Belamri cavitation mass transfer model [61] was used because of its better 
robustness and generalization. The corresponding transport equation of the vapor volume fraction, 
αg, is given by ∂𝜌 𝛼∂𝑡 + ∂(𝜌 𝛼 𝑢 )∂𝑥 = 𝑚 (7) 

𝑚 =
⎩⎪⎨
⎪⎧ 𝐶 3𝛼 𝜌𝑅 23 (𝑝 − 𝑝v)𝜌 , 𝑝 > 𝑝v

−𝐶 3𝜌 (1 − 𝛼 )𝛼nuc𝑅 23 (𝑝v − 𝑝)𝜌 , 𝑝 < 𝑝v

 (8) 

where 𝑚 is the mass transfer rate between the water liquid and vapor; and pv is the saturated vapor 
pressure with a constant value of 2000 Pa. The constants in Equations (7) and (8) are given by the 
initial value of the bubble radius R = 1 µm, the nucleation site of the volume fraction αnuc = 5 × 10−4 
and the empirical condensation and vaporization coefficients Cd = 0.01 and Cp = 50.0, respectively. 

2.3. Mesh and Numerical Setup 

A 2D computational domain, as shown in Figure 1a, was considered because it has been 
assumed that the span-wise effects are not significant for the present study. The inlet surface was 
defined as semicircular and located at 1.2C upstream the hydrofoil leading edge. The outlet was 
located at 3.0C downstream the trailing edge. 

 
(a) 

 
(b) 

Figure 1. Computational domain with dimensions (a) and mesh topology close to the hydrofoil 
surface and near wake region (b). 

The grid of the fluid domain close to the hydrofoil is shown in Figure 1b. In order to find a mesh-
independent solution, four (4) different meshes with different refinement levels and dimensions were 
tested. As indicated in Table 1, the number of elements and the mesh resolution were increased 
progressively from mesh MC to mesh MF_1 while keeping the same domain dimensions. Another 
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mesh, named MF_2, was also checked with the outlet boundary wall located at a distance of 6C from 
the trailing edge that was double the other three (3) meshes. The meshes MC, MM and MF_1 have a 
first layer height equal to 1 × 10−6 m, corresponding to a maximum y+ of 2.8 and an average y+ lower 
than 1. Meanwhile, mesh MF_2 has a first layer height equal to 1 × 10−7 m, a maximum y+ of 0.38 and 
an average y+ lower than 0.1. 

Table 1. Details of the checked meshes and results obtained for the mesh independency study. 

Name Number of 
Elements 

Max 
y+ [–] 

Resolution in 
Near Wake 

[mm] 

Outlet 
Boundary 
Location 

Shedding 
Frequency 

[Hz] 

St 
[–] 

Deviation 
[%] 

MC 29525 3.5 0.6 3C 1550 0.250 10.7 
MM 49420 2.8 0.4 3C 1500 0.242 7.1 

MF_1 71200 2.8 0.2 3C 1450 0.233 3.6 
MF_2 313790 0.38 0.2 6C 1450 0.233 3.6 

A uniform inflow at 20 m/s was set at the inlet according to Ausoni [20]. Moreover, constant 
pressure was applied at the outlet boundary based on the corresponding cavitation number, σ=⁄ , where 𝑝  is the reference pressure, which is set to equal the pressure located at the outlet 

boundary. The cavitation number range, σ/σi, has been taken from 1.3 to 0.4, where σi denotes the 
inception cavitation number. 

2.4. Vortex Identification Methods 

In order to identify the vortices being shed in the wake flow of the hydrofoil both at free 
cavitation and cavitation conditions, two criteria were applied based on the Eulerian and Lagrangian 
frames of reference, respectively. The first one is the Eulerian Q criterion which was proposed by 
Hunt et al. [41] and applied by Rockwood et al. [52], who found that there are no significant 
differences with other Eulerian criteria such as the λ2 and Δ. So, the advantages of the Q criterion are 
its simplicity and its consistency with the rest of the Eulerian criteria. The second one is the finite-
time Lyapunov exponent (FTLE) used by Haller [46,47]. The FTLE is a scalar derived from the fluid 
particle trajectories which measures the tendency of neighbor particles to separation over a finite time. 

The Eulerian Q criterion is defined as the difference between the magnitude of the rotation rate, 
Ω, and of the strain tensor, S, given by 𝑄 = 12 [∥ Ω ∥ −∥ 𝑆 ∥ ] (9) 

where Ω and S are derived from the velocity gradient tensor ∇u with Ω = (∇u − ∇u∗) and 𝑆 =(∇u + ∇u∗). Q can be proved to be Galilean invariant. Where Q > 0, a vortex can be identified 
indicating that Ω is larger than S. However, in practice, only the condition Q > 0 cannot identify with 
enough precision the vortex region. Unfortunately, a threshold value is required for the vortex 
identification which is somehow subjective. 

The Lagrangian FTLE criterion can be obtained from the velocity field data obtained from 
numerical or experimental results over the domain of interest. The fluid particle trajectories, which 
are also called the flow map x(t;x0,t0), are generated from the velocity field u(x,t) via differential 
equations by 𝒖 = (𝒙, 𝑡) 𝒙(𝑡 ; 𝒙𝟎, 𝑡 ) = 𝐱𝟎 𝒙 ∈ 𝓓 t ∈ [𝑡 , 𝑡 ] (10) 

Then, considering an arbitrary point 𝒙 ∈ 𝓓 at the initial time t0, when being advected by the 
flow, the new position at the time t1 = t0 + T is denoted by 𝒙 = 𝐹 (𝐱𝟎) (11) 
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Further, considering the trajectory of the virtual flow particle at y and t0, denoted by y = x + δx(t0), 
and assuming that δx(t0)→ 0, this perturbation displacement after a time interval T is given by  

𝜹𝒙(𝑡 + 𝑇) = 𝐹 (𝒚) − 𝐹 (𝒙) = 𝑑𝐹 (𝒙) 𝑑𝒙 𝜹𝒙(𝑡 ) + 𝒪(‖𝜹𝒙(𝑡 )‖ ) (12) 

The symmetry matrix ∆, called the Cauchy–Green deformation tensor, is defined as 

∆= 𝑑𝐹 (𝒙) 𝑑𝒙 ∗ 𝑑𝐹 (𝒙) 𝑑𝒙  (13) 

Then, the maximum stretching ratio, max𝜹𝒙( )‖𝜹𝒙(𝑡 + 𝑇)‖, that occurs between points x and y is 

associated with the maximum eigenvalues of ∆: max𝜹𝒙( )‖𝜹𝒙(𝑡 + 𝑇)‖ = 𝑒 (𝒙)| | 𝜹𝒙(𝑡 )  (14) 

where 𝜎 (𝒙) = 1|𝑇| ln λ (∆) (15
) 

which is aligned with the eigenvector associated with λmax(Δ), and 𝜎 (𝒙) represents the FTLE at 𝒙 ∈𝓓 and t0 with a finite integration time in which T can take both positive and negative values. When 
T is positive, the FTLE scalar is called forward-time FTLE and it represents the degree of repulsion of 
the flow particles at t0. When T is negative, the FTLE scalar is called backward-time FTLE and it 
represents the degree of attraction of the flow particles at t0 . From the ridges of the backward- and 
forward-time FTLEs, the vortex boundary of the complex flow at t0 can be extracted. In fact, the 
computational cost to obtain the FTLE is much higher than to calculate the traditional Eulerian Q 
vortex criterion. However, FTLE does not require any threshold selection and the boundary of the 
vortex derived from the FTLE scalar field can objectively provide additional information of the vortex 
dynamics. 

3. Results 

3.1. Validation of the Numerical Simulation 

In order to investigate the mesh independence, the lift and drag coefficients, CL and CD, of the 
truncated hydrofoil were calculated from the instantaneous lift and drag forces, Fy and Fx, acting on 
the hydrofoil with the following expressions: 𝐶 = 𝐹1 2⁄ 𝜌𝑉 𝐴  (16) 

𝐶 = 𝐹1 2⁄ 𝜌𝑉 𝐴  (17) 

where Vinlet is the free stream velocity with a value of 20 m/s, ρ is the water density with a value of 
1000 kg/m3 and Aref is the reference area calculated as the hydrofoil chord length times the span length. 

The four (4) meshes previously mentioned were tested and the calculated shedding frequencies 
and the corresponding Strouhal numbers are indicated in Table 1. The Strouhal number, St, was 
calculated as 𝑆𝑡 = 𝑓𝑏𝑉  (18) 

where f is the vortex shedding frequency obtained with a fast Fourier transform (FFT) of the CL time 
history. The shedding frequency experimentally obtained by Ausoni [20] is about 1400 Hz, 
corresponding to an St equal to 0.225. The percent deviations between the numerical estimates and 
the experimental value demonstrate that mesh MF_1 is a good compromise to model vortex shedding. 
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The ratio between the average mesh resolution Δ and Taylor scales for mesh MF_1 is plotted in 
Figure 2. The calculation of Δ and the Taylor scale is based on Δ = ΔxΔy (19) Taylor scales = 𝐶 . .

  (20) 

where Δx and Δy are the mesh sizes in x and y directions, respectively, Cµ is a constant value of 0.09, 
k is the turbulence kinetic energy and ε is the turbulence dissipation rate. The distributions of k and 
ε have been obtained from a steady-state simulation with mesh MF_1. Close to the hydrofoil surface 
and trailing edge area, the maximum ratio is less than 3, which suggests that the grid resolution has 
a similar order to the Taylor scales. Therefore, it is confirmed that mesh MF_1 with a resolution of 0.2 
mm meets the adequate conditions required by the LES turbulence model. 

 
Figure 2. Contour plot of the ratio between the mesh resolution, Δ, and the Taylor scales. 

The hydrofoil mean pressure coefficient, 𝐶 = ⁄ , was plotted along the chord as shown 

in Figure 3a where the dimensionless position x/L = 0 corresponds to the center of the hydrofoil chord 
line. The numerical results were compared with the results obtained with the vortex panel method 
by Bouziad [64] and they show a very good agreement around 90% of the chord length. Some 
discrepancy mainly lays on the trailing edge area which may result from the Kutta thickness trailing 
edge conditions involved in the vortex panel method. Figure 3b shows the good agreement between 
experimental measurements and the current numerical results of the mean normalized horizontal 
and vertical velocity profiles, ux,mean/Vinlet and uy,mean/Vinlet, along a vertical line located 2.0 mm 
downstream the trailing edge. The vertical locations were normalized by tmax which is the maximum 
thickness of the hydrofoil. For example, the maximum value of uy,mean/Vinlet predicted by the the 
simulation is 0.26 and the experimental one is 0.24 with a percent deviation of around 8%.  
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Figure 3. Comparison of: (a) numerical mean pressure coefficient, Cp, with the vortex panel method 
as a function of the dimensionless position, x/L; (b) numerical mean normalized horizontal and 
vertical velocities, ux,mean/Vinlet and uy,mean/Vinlet respectively, with experimental results at different 
vertical dimensionless positions, y/tmax. 
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The time histories of CL and CD are shown in Figure 4 for one free cavitation condition at σ/σi = 
1.3, and for two cavitation conditions at σ/σi = 0.6 and σ/σi = 0.4. As it has been marked in Figure 3a, 
all the signals present an irregular evolution at the beginning of the run until the Von Kármán vortex 
shedding street behind the trailing edge is fully developed. After 0.01 s, a regular oscillation is 
achieved for both quantities in all the cases. Hence, this time was used as a reference starting time to 
obtain the mean values of the physical quantities of interest, e.g., velocity and pressure, over 10 cycles. 
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Figure 4. Time history of the lift and drag coefficients, CL and CD, at: (a) free cavitation conditions (σ/σi 
= 1.3); (b) cavitation conditions (σ/σi = 0.6); and (c) cavitation conditions (σ/σi = 0.4). 

To validate the unsteady simulation of the vortex shedding dynamic behavior, FFT was applied 
to identify the main vortex shedding frequency. Figure 5 shows the spectra of CL for all the simulated 
cases which permit identifying from the maximum frequency peak the corresponding shedding 
frequency. Under free cavitation conditions, the frequency is equal to 1450 Hz, but when cavitation 
occurs at σ/σi = 0.6, the frequency rises up to 1600 Hz and at σ/σi = 0.4, the frequency reaches a value 
of 1650 Hz. 
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Figure 5. Spectra of the time evolution of the lift coefficient at free cavitation conditions (σ/σi = 1.3) 
and at two cavitation conditions (σ/σi = 0.6 and 0.4). 

Figure 6 permits comparing the current numerical simulation results with the experimental 
measurements in terms of St numbers. It can be confirmed that the numerical results are able to 
capture the linear increase in St as the cavitation grows in the wake flow with the reduction in the 
cavitation number. 
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Figure 6. Comparison of Strouhal, St, estimates between the numerical simulations and the 
experimental measurements at free cavitation conditions and at cavitation conditions. 

3.2. Vortex Formation Length 

The vortex formation length is a magnitude related to the vortex formation process at the near 
wake of the bluff body which is important for the overall evolution of the vortex shedding. There are 
several definitions of the vortex formation length and thorough notes about the definition methods 
are given by Griffin [65]. In the present work, the vortex formation length was found based on the 
maximum of the wake velocity fluctuation on the wake centerline, as proposed by Gerrard [5] for a 
bluff body wake at high Reynolds numbers. The same method has also been used in the works of Lee 
et al. [22] and Gnanaskandan et al. [13]. 

Figure 7 shows the root mean square value of the fluctuating velocity along the horizontal line 
behind the hydrofoil trailing edge normalized by the inlet flow velocity, 𝑢 𝑉⁄ , at free cavitation 
and cavitation conditions. When there is no cavitation for σ/σi = 1.3, the position of the peak value of 𝑢 𝑉⁄  is located at 1.8 mm downstream of the trailing edge and this value is almost the same as 
the one obtained by Ausoni [20]. As the cavitation number further decreases, the position of the 
maxima of 𝑢 𝑉⁄  increases gradually from 2.7 at σ/σi = 0.6 to 3.3 mm at σ/σi = 0.4. However, it is 
observed that the amplitude of 𝑢 𝑉⁄  is generally reduced as the cavitation number decreases, 
which suggests that the velocity fluctuations decay due to the cavitation development. 
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Figure 7. Root mean square value of the fluctuating velocity normalized by the inlet flow velocity, 𝑢 𝑉⁄ , at different distances, x, from the trailing edge of the hydrofoil along a horizontal line for 
free cavitation and cavitation conditions. 

3.3. Vortex Shedding Morphology and Dynamic Behavior 
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Figure 8 shows the time history of CL over 6 × 10−4 s for the different cavitation conditions. Five 
typical instants of time were marked (from t0 to t4) to compare the vortex shedding process among 
the three flow conditions. For each instance, the instantaneous Eulerian Q criterion was derived from 
a snapshot of the velocity field and its gradient. Moreover, the contour of the backward FTLE scalar 
was also calculated considering as the initial time the one corresponding to each of the selected time 
instants. It should be mentioned here that the finite integration time, T, was chosen equal to −0.0015 
s, which corresponds to almost two periods of the vortex shedding process. In fact, no significant 
differences are found among the results if larger integration times are considered. 
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Figure 8. Comparison of lift coefficient, CL, evolutions during less than one shedding period at 
different cavitation conditions. 

In Figure 9, both the evolution of the Eulerian Q criterion on the instantaneous velocity field and 
the backward FTLE scalar levels display the alternating vortex shedding cycle behind the trailing 
edge at free cavitation conditions. At instant t0, both the closer upper vortex to the trailing edge, 
marked with letter “A”, and the closer lower vortex, marked with letter “B”, are observed 
immediately behind the hydrofoil at the vortex formation region. At this time, vortex A has a larger 
size than vortex B. From t0 to t1, vortex B continues its growth and induces enough velocity to the 
wake flow so that the link between the upper boundary shear layer and vortex A is cut off. Thus, 
vortex A reaches its maximum size at instant t1. Then, the upper vortex A is shed from the vortex 
formation area, which corresponds to the minimum value of the lift coefficient. From t1 to t4, a new 
upper vortex appears, marked with the letter “C”, and it grows as it is fed by the upper boundary 
shear layer. When it reaches sufficient size to cut off the previous lower vortex B, the process already 
described for vortex A is repeated by vortex C. In general, all the shed vortices take a circular shape 
and the two rows of vortices are clearly separated in the transverse direction. All these observations 
of the vortex shedding evolution are in agreement with the results for a bluff body obtained by Wang 
et al. [60]. 
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Figure 9. Plot for free cavitation conditions (σ/σi = 1.3) at five correlative instants of time from top to 
bottom of: (a) the instantaneous Eulerian Q criterion superposed to the instantaneous velocity; (b) 
the backward finite-time Lyapunov exponent (FTLE). 
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As cavitation occurs, the instantaneous contour of the vapor volume fraction, the instantaneous 
Eulerian Q criterion and the contours of the backward FTLE scalars are plotted in Figures 10 and 11 
for two degrees of cavitation. 
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Figure 10. Plot for cavitation conditions (σ/σi = 0.6) at five correlative instants of time from top to 
bottom of: (a) vapor volume fraction distribution; (b) the instantaneous Eulerian Q criterion 
superposed to the instantaneous velocity; and (c) the backward finite-time Lyapunov exponent 
(FTLE). 
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At σ/σi = 0.60, the pressure inside the vortex center decreases to the vapor pressure, pv, and the 
vortices cavitate at their cores, as it can be seen in Figure 10a where the graphs show the evolution of 
the vapor volume fraction. Firstly, the upper cavitating vortex A is being formed at instant t0. Then, 
vortex A is stretched and reaches its maximum size at instant t1 when CL is minimum. From t1 to t2, 
the vapor also fills a long filament that connects the cavitating upper vortex A with the trailing edge 
region. After that moment, vortex A is completely detached from the trailing edge and the lower 
cavitating vortex B is still attached to the trailing edge and begins to be stretched. Further, a new 
upper cavitating vortex C begins to be formed. From t2 to t3, vortex B continues to be stretched and 
its size keeps increasing. Finally and just before instant t4, vortex B is cut off by vortex C and 
completely shed from the trailing edge area. 

At σ/σi = 0.40, the instantaneous evolution of the vapor volume fraction presented in Figure 11a 
permits observing that the cavitating vortices are more stretched than at σ/σi = 0.60. From t1 to t2, it is 
observed that the upper cavitating vortex A is connected to the upper and lower cavitating vortices 
C and B, respectively, by a thin cavitation filament. Then, at t3, the lower cavitating vortex B separates 
from the upper vortex C, and vortex A is completely shed downstream. At t4, it can be seen how two 
vortices coexist in contact with the hydrofoil trailing edge which corresponds to vortex C and to the 
rear part of vortex B that occupies the very near wake and provokes the boundary layers coming 
from the extrados and the intrados to require a longer distance to create shed new vortices. 
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Figure 11. Plot for cavitation conditions (σ/σi = 0.4) at five correlative instants of time from top to 
bottom of: (a) vapor volume fraction distribution; (b) the instantaneous Eulerian Q criterion 
superposed to the instantaneous velocity; and (c) the backward finite-time Lyapunov exponent 
(FTLE). 

In Figure 10b or Figure 11b, the instantaneous contour plots of the Eulerian Q criterion show the 
evolution of the vortex shedding and the simultaneous velocity field under cavitation conditions. 
Compared with the free cavitation condition presented in Figure 9a, it is observed that the shedding 
vortex pattern and shapes of the vortices near the trailing edge are significantly affected by the 
occurrence of cavitation. For example, at instant t1, the dimensions of vortex B tend to increase as the 
cavitation number decreases. Moreover, the vortices are elongated in the main flow direction and 
they cannot be entirely cut off by the opposite vortex. Consequently, their rear part remains attached 
to the blunt trailing edge instead of being shed with the front part. 

In Figure 10c or Figure 11c, the instantaneous contour plots of the backward FTLE scalar show 
the evolution of the vortex shedding from the Lagrangian viewpoint. The obtained results are in 
agreement with the previous observation and thus confirm that the morphology and shape of the 
vortices continue to be affected by the increasing level of cavitation as well as their formation length. 

In summary, at the free cavitation condition, the two rows of vortices are well separated in the 
transverse direction and each vortex depicts a well-defined circular shape. However, under cavitation 
conditions, the tranverse distance between the two rows is significantly reduced and the vortices 
change their shape towards an elliptical one mainly elongated in the transverse direction. As 
cavitation increases, the sizes of the vortices decrease and they are almost in line with the horizontal 
axis of the hydrofoil. Therefore, all the results seem to indicate that the effective height of the near 
wake formation region is significantly reduced which explains the fact that the shedding frequency 
is increased if the Strouhal number is assumed to be invariant. 
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4. Conclusions 

The characteristics of the cavitating wake flow of a 2D NACA0009 with a blunt trailing edge 
have been numerically investigated and compared with the free cavitation conditions by means of 
the LES WALE turbulence model and the Zwart cavitation model. The numerical setup has been 
validated in comparison with experimental observations. To understand the effects of cavitation on 
the vortex shedding process, two vortex identification criteria based on the Eulerian and Lagrangian 
frames of reference have been applied to the unsteady flow velocity field. The following conclusions 
have been obtained: 

1. Vortices shape: it has been observed that the circular shape of the vortices changes to an elliptical 
one as they are stretched in the streamwise direction with the development of cavitation. 

2. Vortices transverse separation: it has been observed that the transverse separation between the 
upper and lower rows of vortices is reduced with the development of cavitation. 

3. Vortex formation length: it has been numerically found that the vortex formation length 
increases by around 83% with the development and growth of cavitation in the wake flow in 
comparison with the free cavitation condition when the cavitation number is reduced to 40% of 
the incipient cavitation number. 

4. Vortex shedding frequency: it has been numerically found that the vortex shedding frequency 
increases by 14% with the development and growth of cavitation in the wake flow in comparison 
with the free cavitation condition when the cavitation number is reduced to 40% of the incipient 
cavitation number. 
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