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Abstract 
 

Quantum computing is an exciting new technology that will allow to solve 
some problems that current computers cannot do. However, most of the 
technologies being researched for quantum computing need ultra-low 
temperatures on the order of tens of mK, at which digital computers are extremely 
inefficient to run, because of the cost of dissipating the heat produced. In order 
to interface a quantum computer and a digital one, cables cannot be used, as 
they conduct too much heat for the cooler to dissipate. Optical fibers do not have 
this problem, but then low energy conversion between optical and electrical 
signals are necessary. 

This work has two areas: on the one hand, the architecture of a distributed 
quantum computer and its interfacing with a digital computer is described, 
together with some bandwidth requirements; on the other, a CMOS ring 
modulator that uses its photocurrent to switch is characterized.  
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1. Introduction 
 

1.1. Motivation 
Quantum computers are expected to be able to do in a reasonable time some 

tasks that a classical computer cannot do efficiently. One of the most promising 
technologies underlying quantum computation, superconducting qubits, requires 
temperatures of about 20 mK in order to work. As quantum speedup is only 
known to be possible for some specific algorithms ([1], [2]), a solution would be a 
quantum coprocessor that would offload work from a main classical processor for 
said algorithms.  

This setup raises one problem – classical computers produce heat which has 
to be dissipated, even more so in an ultra-low temperature environment. 
Therefore, the most energy efficient solution would be to have the classical 
computer at room temperature and interface it with the quantum computer. 
However, conventional metallic cables are not fit for this purpose: they conduct 
well electricity (and thus, information in the shape of electric signals), but they 
conduct well heat, and dissipating this heat becomes prohibitively expensive. 

A solution to this is to send the information between the coprocessor and the 
central processor with an optical fiber, as fiber is not a good conductor of heat. 
This approach, however, needs optical modulators that can work at room 
temperature and at low temperature. 

In this work, a low-energy photovoltaic ring modulator that can convert 
between electrical and optical signals with a single transistor is described and 
characterized. The energy savings of this approach over a regular ring modulator 
are twofold: on one hand, the transistor makes switching between the on and off 
states require much less peak-to-peak voltage; and on the other hand, the light 
that is absorbed into the ring generates the photovoltaic energy that allows the 
modulator to work, and thus less energy is wasted.  

Another issue with quantum computers is that dilution refrigerators, which are 
currently used to cool down quantum computers, have very limited capacity, and 
thus a useful quantum computer would not be able to fit in a single one. A 
distributed architecture [3] can solve this problem, but introduces new ones, such 
as inter-node connection and coordination. 

In this work, a distributed quantum computer architecture is described where 
a specialized classical processor serves as an intermediary between the CPU 
and the quantum processor. 

In the remaining part of this chapter, the theoretical fundamentals for quantum 
computing and microring modulators are described, as well as a comparison of 
energy cost per bit of information transmitted for both electrical links and optical 
links. 
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1.2. Quantum computing fundamentals 
In this section I will first introduce reversible computing, as quantum 

computing is an extension of it. Then I will explain how quantum states and 
quantum gates are represented. Afterwards I will describe the sources of error in 
actual quantum computers and how they are characterized. Finally I will talk 
about two quantum algorithms that are of special interest. 

 

1.2.1. Reversible computing 

Due to the laws of thermodynamics, there is a minimum energy cost to erase 
a single bit of data [4], called the Landauer energy, equal to 𝑘𝑘𝑘𝑘 ln 2.  

For example, let us consider a XOR gate. The XOR gate has two inputs and 
one output. The output is 1 if the inputs have different values and 0 if they do not, 
as shown below. 

 

 

 

 

 
Figure 1.1: Icon and truth table for the XOR gate. 

 

This gate is irreversible: there is no way to guess the value of X and Y if only 
Z is known. However, with another additional bit of data, for example, the value 
of X, we could reconstruct the inputs. Therefore, we can say that this gate 
destroys one bit of information, and therefore cannot be executed without 
spending at least 𝑘𝑘𝑘𝑘 ln 2 joules of energy. With current technology, energy 
consumption per gate is several orders of magnitude above the Landauer energy 
and thus irreversible gates are used for computations, as they are simpler to build 
and use. 

However, if a computation only used gates that do not erase information (and 
are therefore reversible) the theoretically minimal energy cost can be 0.  

Reversible computing is a model of computing where the computations are 
performed by reversible gates, that do not destroy information and thus their 
energy cost can be arbitrarily small. 

As with standard irreversible computing, reversible computing can be 
decomposed in a set of elemental gates. Gates in reversible computing must 
have the same number of inputs and outputs, as to not destroy information. 

X Y Z 
0 0 0 
0 1 1 
1 0 1 
1 1 0 
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Moreover, since they must be reversible, different inputs have to result in different 
outputs. 

In irreversible computing, there are two elemental gates (NAND and NOR) 
that are called universal, because any one of the two is sufficient to express any 
computation. These gates are not reversible, as they have two inputs and only 
one output, but there are reversible equivalents, the FREDKIN and TOFFOLI 
gates ([5], [6]). 

 

                                               
 

 

 

 

 

 

 

 
 

Figure 1.2: Icon and truth table for the TOFFOLI gate (left) and for the FREDKIN gate (right). 

 

Another important concept for reversible logic are ancilla bits. Ancilla bits are 
bits with a constant value that are not inputs of the computation. They are used 
to store intermediate results and some computations do require a minimum 
number of them [5], but usage of a higher amount can lead to fewer gates. 

 

1.2.2. Qubits and quantum gates 

A digital bit can only have two different states: 0 and 1. On the other hand, a 
quantum bit or qubit has infinite states, any state 𝛼𝛼|0⟩ + 𝛽𝛽|1⟩ with 𝛼𝛼 and 𝛽𝛽 
complex numbers and 𝛼𝛼2 + 𝛽𝛽2 = 1 is a possible state (although, as with any 
quantum state, global phase cannot be measured). All the possible states of a 
single qubit can be corresponded to the points in the surface of a sphere called 
the Bloch sphere: 

 

X Y Z X’ Y’ Z’ 
0 0 0 0 0 0 
0 0 1 0 0 1 
0 1 0 0 1 0 
0 1 1 0 1 1 
1 0 0 1 0 0 
1 0 1 1 0 1 
1 1 0 1 1 1 
1 1 1 1 1 0 

 
 

X Y Z X’ Y’ Z’ 
0 0 0 0 0 0 
0 0 1 0 0 1 
0 1 0 0 1 0 
0 1 1 0 1 1 
1 0 0 1 0 0 
1 0 1 1 1 0 
1 1 0 1 0 1 
1 1 1 1 1 1 
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Figure 1.3: Bloch sphere. 

 

|0⟩ and |1⟩ represent basis states, so we can also represent the state of a 

qubit as �
𝛼𝛼
𝛽𝛽�. This idea can be extended for several qubits: the basis states would 

be |00⟩ = �

1
0
0
0

� , |01⟩ = �

0
1
0
0

� , |10⟩ = �

0
0
1
0

� , |11⟩ = �

0
0
0
1

� for two qubits, for example. 

Quantum gates operate on the state of one or more qubits. We can represent 
a quantum gate as a 2N by 2N matrix, where N is the number of qubits it acts on. 
Since quantum information cannot be destroyed, all quantum gates have to be 
reversible. Additionally, the matrix for a quantum gate has to be unitary, that is, 
that its inverse is equal to its conjugate transpose. This required property is an 
extension of the property that digital reversible gates have. 

There is also a universal base for quantum gates. Any quantum operation can 
be executed to arbitrary precision with only the following gates [7]: 

 

Hadamard gate: 𝐻𝐻 = 1
√2
�1 1
1 −1� 

 

Pauli X rotation gate: 𝑋𝑋 = �0 1
1 0� 

 

Pauli Z rotation gate: 𝑍𝑍 = �1 0
0 −1� 
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π/8 gate: 𝑇𝑇 = �
1 0
0 𝑒𝑒

𝑖𝑖𝑖𝑖
4
� 

 

Controlled-NOT gate: 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = �

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

� 

 

1-qubit gates are equivalent to a rotation on the Bloch sphere. For example, 
the Pauli X rotation gate is equivalent to a 180º rotation along the 𝑥𝑥� axis of the 
Bloch sphere, and a Hadamard gate is equivalent to a 180º rotation along the 
1
√2

(𝑥𝑥� + 𝑧̂𝑧) axis. 

When measured, a qubit on a state |𝜓𝜓⟩ = 𝛼𝛼|0⟩ + 𝛽𝛽|1⟩ will collapse to 0 with 
|𝛼𝛼|2 probability and to 1 with |𝛽𝛽|2 probability. 

As with classical reversible computing, ancilla qubits (prepared beforehand in 
a known state, usually |0⟩ or |1⟩) are necessary for performing most 
computations. Moreover, ancilla qubits introduce a space-time tradeoff: additional 
ancilla qubits can reduce the number of necessary gates for a computation). 

 

1.2.3. Sources of error in quantum computing 

There are three sources of error for quantum computers: gate noise, 
decoherence, and state preparation and measurement errors. All three will be 
described in this section. 

 

- Gate noise 

The average fidelity of a quantum gate 𝑈𝑈, defined as how well it approximates 
a quantum gate 𝑉𝑉 is defined by the following equation [8]: 

 

𝐹𝐹�(𝑈𝑈,𝑉𝑉) = �𝑑𝑑𝑑𝑑 ⟨𝜓𝜓|𝑉𝑉+𝑈𝑈|𝜓𝜓⟩⟨𝜓𝜓|𝑈𝑈+𝑉𝑉|𝜓𝜓⟩ (1.1) 

 

The fidelity will be equal to 1 if 𝑈𝑈 = 𝑉𝑉, and lower otherwise. Therefore, a 
possibility would be to consider gate error as 1 minus the fidelity. However, the 
fidelity is hard to measure and gate noise is usually modeled in a simplified 
manner. For example [9], the gate noise can be determined by a single parameter 
𝜖𝜖. In this model, gates are performed perfectly with probability 1 − 𝜖𝜖 and there’s 
a probability 𝜖𝜖 of applying the gate and a 180º rotation along the 𝑥𝑥�, 𝑦𝑦� or 𝑧̂𝑧 axis. 
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- Decoherence 

If we have a quantum state |𝜓𝜓⟩ = 𝛼𝛼|0⟩+ 𝛽𝛽|1⟩, with |𝛼𝛼|2 + |𝛽𝛽|2 = 1, we can 
obtain its density matrix:  

 

𝜌𝜌 = |𝜓𝜓⟩⟨𝜓𝜓| =  �
|𝛼𝛼|2 𝛼𝛼𝛽𝛽∗

𝛼𝛼∗𝛽𝛽 |𝛽𝛽|2� (1.2) 

 

The diagonal components are the populations, and the off-diagonal ones are 
the coherences. We can use the density matrix to compute the expectation value 
of an operator 𝐴̂𝐴: 

 

⟨𝜓𝜓|𝐴̂𝐴|𝜓𝜓⟩ = 𝑇𝑇𝑇𝑇(𝜌𝜌𝐴̂𝐴) (1.3) 
 

However, a quantum system interacts with its environment, so there is a time 
evolution, as the states of the system entangle with the corresponding states of 
the environment: 

 

|𝜓𝜓(𝑡𝑡)⟩ = 𝛼𝛼|0⟩⊗ |𝑒𝑒0⟩ + 𝛽𝛽|1⟩ ⊗ |𝑒𝑒1⟩ (1.4) 
 

|𝑒𝑒0⟩ and |𝑒𝑒1⟩ are not necessarily perpendicular: 

⟨𝑒𝑒0|𝑒𝑒1⟩ = cos 𝜃𝜃 (1.5) 
 

The reduced density matrix 𝜌𝜌(𝑡𝑡) becomes: 

 

𝜌𝜌(𝑡𝑡) = |𝜓𝜓(𝑡𝑡)⟩⟨𝜓𝜓(𝑡𝑡)| =  �
|𝛼𝛼|2 𝛼𝛼𝛽𝛽∗ cos 𝜃𝜃

𝛼𝛼∗𝛽𝛽 cos 𝜃𝜃 |𝛽𝛽|2 � (1.6) 

 

As the environment evolves, cos𝜃𝜃 → 0 and the coherences disappear. In the 
limit, the density matrix is diagonal and corresponds to |𝛼𝛼|2 probability of state |0⟩ 
and |𝛽𝛽|2 probability of state |1⟩: the superposition of states is lost. This process 
has a lifetime which varies depending on the technology of the quantum 
computer. For example, in the case of superconducting qubits, the lifetime is 
about 60 µs [10]. 

 

- State preparation and measurement errors 

Quantum algorithms require a specific state to be set to a qubit (usually |0⟩) 
before being used. There is a probability of the qubit not being applied that state, 
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and that is a state preparation error. Measurement errors occur when the 
measurement, instead of returning the correct bit, returns the other. 

 

1.2.4. Quantum computing algorithms 

In this section I will talk about two quantum algorithms: quantum simulation 
and Shor’s algorithm. These two algorithms have special interest because they 
need a relatively low amount of qubits to surpass classical algorithms. However, 
there are many more, such as Grover’s search algorithm [2]. 

 

- Quantum simulation 

Quantum simulation refers to a set of algorithms to solve physical and 
chemical problems with a quantum computer. This was first suggested by 
Feynman [11], arguing that since nature is quantum, it should be simulated with 
a quantum computer, not with a digital one. 

The problem classical computers have simulating quantum systems is that a 
quantum system is represented by a Hilbert space of a number of dimensions 
that scales exponentially with the number of particles. Therefore, exact simulation 
gets prohibitively expensive in time and resources quickly, so that even 
supercomputers cannot run them in reasonable time, and classical quantum 
simulation algorithms have to rely on approximations. 

The most common problem in this category is calculating the ground state of 
a molecule [12] , because it is expected to require little quantum resources to 
surpass current supercomputers. This can be done, given the Hamiltonian 𝐻𝐻� of 

the molecule, by applying the time evolution operator 𝑒𝑒−
𝑖𝑖𝐻𝐻� 𝑡𝑡
ℏ  and then applying a 

phase estimation algorithm to find the eigenvalues of the Hamiltonian, which are 
the energies of the states, and thus the lowest eigenvalue will be the ground state 
of the molecule. 

The best result with an actual quantum computer so far has been determining 
the ground state energy of BeH2, with a seven-qubit quantum computer 
manufactured by IBM [13]. 

 

- Shor’s algorithm 

Shor’s algorithm [1] is a quantum algorithm for factoring integers. It offers 
exponential speedup over the best known classical algorithms, which scale 
exponentially [14], and is of special interest because one of the most used 
methods of public key cryptography, RSA [15], relies on the fact that factoring 
very large numbers is impossible for even the largest classical computers. 
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Shor’s algorithm transforms the problem of factoring a number N into finding 
the period of the sequence 𝑓𝑓(𝑥𝑥) = 𝑎𝑎𝑥𝑥  𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁, being 𝑎𝑎 an arbitrary number 
coprime with N. Using a Quantum Fourier Transform, this can be solved in 
polynomial time by a quantum computer. 

So far, only the number 15 has been factorized by an actual quantum 
computer [16]. 

As explained in Section 1.1, the necessity of using dilution refrigerators 
imposes restrictions on the maximum number of qubits that can be put together. 
This can be solved by having a distributed architecture of several nodes, each 
consisting in a dilution fridge with some number of qubits on it which can 
communicate among themselves and with the classical computer. In Chapter 2, 
a quantum computing distributed architecture that attempts to solve these 
communication problems is proposed. 

 

1.3. Ring modulator fundamentals 
In this section, the physics of the ring modulator are explained. In Chapters 3 

and 4, it will be shown how to turn this device into a PV modulator, and how this 
allows for lower energy dissipation. 

 

1.3.1. Physics of the P-N junction 

A P-N junction is the union of a P-type semiconductor (a semiconductor doped 
with holes, with density NA) and an N-type semiconductor (a semiconductor 
doped with electrons, with density ND). 

In the absence of an external voltage, due to diffusion, electrons will flow into 
the P-type semiconductor and holes will flow into the N-type semiconductor. 
Therefore, the regions close to the boundary become electrically charged, and 
thus generates an electrical field which moves the electrons and holes in the 
opposite direction until it compensates the diffusion effect and the system arrives 
to an equilibrium. 

We call the region where the semiconductors have charge the depletion layer 
region. The width of this region can be calculated by the following equation: 

 

𝑊𝑊 = �
2𝜖𝜖𝜙𝜙𝑒𝑒𝑒𝑒
𝑞𝑞 ·

𝑁𝑁𝐴𝐴 + 𝑁𝑁𝐷𝐷
𝑁𝑁𝐴𝐴 · 𝑁𝑁𝐷𝐷

  (1.7) 

 

Where 𝜙𝜙𝑒𝑒𝑒𝑒 is the potential of the junction in equilibrium. 
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Figure 1.4: Schematic of the P-N junction. 

 

When a bias voltage 𝑉𝑉𝑏𝑏 is applied, the width of the region changes to: 

 

𝑊𝑊 = �
2𝜖𝜖 · (𝜙𝜙𝑒𝑒𝑒𝑒 − 𝑉𝑉𝑏𝑏)

𝑞𝑞 ·
𝑁𝑁𝐴𝐴 + 𝑁𝑁𝐷𝐷
𝑁𝑁𝐴𝐴 · 𝑁𝑁𝐷𝐷

  (1.8) 

 

The bias voltage also changes the concentration of carriers in the 
semiconductor, because it changes the rate of diffusion of carriers. Under low-
level injection (that is, low NA and ND), the concentration of minority carriers at 

the extremes of the depletion layer increases by a factor of 𝑒𝑒
𝑞𝑞·𝑉𝑉𝑏𝑏
𝑘𝑘𝑘𝑘 . This effect is 

used in the ring modulator. 

 

1.3.2. Physics of the micro ring modulator 

A ring modulator consists in an optical waveguide next to a waveguide in the 
shape of a ring. 

Part of the light that goes through the waveguide enters into the ring, travels 
through the ring and part of it goes back into the waveguide. The output of the 
modulator depends on the resonance of the light that has travelled through the 
ring with the light that enters the ring, as we will see later. 
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Figure 1.5: Optical ring modulator diagram. 

 

In this diagram, τ is the transmittance of the waveguide and κ is the coupling 
coefficient between the waveguide and the ring. We can express the relations 
between the amplitudes of the fields in matrix form: 

 

�𝐸𝐸𝑡𝑡1𝐸𝐸𝑡𝑡2
� = � 𝜏𝜏 𝜅𝜅

−𝜅𝜅∗ 𝜏𝜏∗� · �𝐸𝐸𝑖𝑖1𝐸𝐸𝑖𝑖2
� (1.9) 

 

We can obtain an expression [17] of the output power, Pt1: 

 

𝑃𝑃𝑡𝑡1 = |𝐸𝐸𝑡𝑡1|2 =
𝛼𝛼2 + |𝜏𝜏|2 − 2𝛼𝛼|𝜏𝜏| · 𝑐𝑐𝑐𝑐𝑐𝑐 �4𝜋𝜋2𝑛𝑛𝑛𝑛

𝜆𝜆 + 𝜙𝜙𝑡𝑡�

1 + 𝛼𝛼2|𝜏𝜏|2 − 2𝛼𝛼|𝜏𝜏| · 𝑐𝑐𝑐𝑐𝑐𝑐 �4𝜋𝜋2𝑛𝑛𝑛𝑛
𝜆𝜆 + 𝜙𝜙𝑡𝑡�

𝑃𝑃𝑖𝑖1 (1.10) 

 

In this expression, 𝛼𝛼 is the loss coefficient of the ring, 𝜙𝜙𝑡𝑡 the phase introduced 
by the coupler, 𝑟𝑟 the radius of the ring, 𝜆𝜆 the wavelength of the wave and 𝑛𝑛 the 
refractive index of the ring. This equation shows that there is a peak of resonance 

when cos �4𝜋𝜋
2𝑛𝑛𝑛𝑛
𝜆𝜆

+ 𝜙𝜙𝑡𝑡� = 1, which occurs when Ei2 and Et2 form a constructive 
interference, and results in a minimum of output power. The minimum 
transmission is: 

 

�
𝑃𝑃𝑡𝑡1
𝑃𝑃𝑖𝑖1
�
𝑚𝑚𝑚𝑚𝑚𝑚

=
𝛼𝛼2 + |𝜏𝜏|2 − 2𝛼𝛼|𝜏𝜏|

1 + 𝛼𝛼2|𝜏𝜏|2 − 2𝛼𝛼|𝜏𝜏| =
(𝛼𝛼 − |𝜏𝜏|)2

(1 − 𝛼𝛼|𝜏𝜏|)2 (1.11) 

 

Our objective is that the minimum transmission is as low as possible, because 
it sets a limit on how good the resonator can be. For example, if the difference 
between the maximum and minimum possible transmission is 3 dB, then in the 
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best case the on and off states of our resonator will have 3 dB of difference 
between them. In order to achieve a good extinction ratio (defined as 𝑃𝑃𝑡𝑡1max

𝑃𝑃𝑡𝑡1min
), the 

minimum power should be as low as possible, and for that, 𝛼𝛼 = |𝜏𝜏|, which we call 
the critically-coupling condition.  

Experimentally, we can observe the total quality factor Q of the ring with the 
following equation (FWHM = Full Width at Half Maximum): 

 

𝑄𝑄 =
𝜆𝜆

𝛿𝛿𝜆𝜆𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
 (1.12) 

 

This quality factor measures the ratio of stored / lost energy per unit time. 
There are other two Q factors that help with the characterization of a ring 
modulator: the coupling Q, Qc, which determines the amount of energy that goes 
into the ring; and the intrinsic Q, Qi, which determines the amount of energy lost 
by the ring. The expressions are: 

 

𝑄𝑄𝑐𝑐 =
4𝜋𝜋2𝑛𝑛𝑛𝑛
𝜆𝜆𝜅𝜅2  (1.13) 

 

𝑄𝑄𝑖𝑖 =
2𝜋𝜋𝜋𝜋
𝜆𝜆𝜆𝜆  (1.14) 

 

With these definitions, we can express the quotient between the output and 
input power near the resonance peak as: 

 

𝑃𝑃𝑡𝑡1
𝑃𝑃𝑖𝑖1

=

1
2 �

1
𝑄𝑄𝑖𝑖
− 1
𝑄𝑄𝑐𝑐
� − 𝑗𝑗 ∆𝜔𝜔𝜔𝜔

1
2 �

1
𝑄𝑄𝑖𝑖

+ 1
𝑄𝑄𝑐𝑐
� − 𝑗𝑗 ∆𝜔𝜔𝜔𝜔

 (1.15) 

 

Where ∆𝜔𝜔 is the distance from resonance. If 𝜔𝜔 = 𝜔𝜔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛𝑐𝑐𝑐𝑐, the equation 
reduces to: 

 

𝑃𝑃𝑡𝑡1
𝑃𝑃𝑖𝑖1

=

1
𝑄𝑄𝑖𝑖
− 1
𝑄𝑄𝑐𝑐

1
𝑄𝑄𝑖𝑖

+ 1
𝑄𝑄𝑐𝑐

 (1.16) 
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This expression of the output power in the resonance frequency helps us to 
distinguish between two different causes for low extinction ratio: undercoupling, 
where 1

𝑄𝑄𝑖𝑖
< 1

𝑄𝑄𝑐𝑐
 and the coupling loss is bigger than the intrinsic loss; and 

overcoupling, 1
𝑄𝑄𝑖𝑖

> 1
𝑄𝑄𝑐𝑐

. 

The coupling factor Qc can be modified by changing the distance between the 
waveguide and the ring, and the intrinsic factor Qi by varying the input power of 
the laser. 

The ring is a P-N junction. There are three different ways the P-N junction can 
be arranged in a ring: lateral, vertical and interleaved. 

 

 
Figure 1.6: Schematic of the three different types of junction in a ring modulator [18]. 

 

Due to restrictions in the CMOS fabrication process, vertical junctions cannot 
be made. In our case, the P-N junction of the ring is lateral. 

If we are transmitting light with a fixed wavelength, we can change the 
resonance wavelength of the device by modifying the refractive index of the ring. 
This results in a variance in output power, further amplified with a good extinction 
ratio. In order to modify the refractive index, we apply a voltage on the P-N 
junction of the ring, so that the width of its depletion layer region changes, which 
has an impact on the carrier concentration of the ring, which in turn changes its 
refractive index. This last relation was experimentally characterized by Soref et 
al. in [19] and for a wavelength of 1550 nm at 300 K the equation is: 

 

∆𝑛𝑛 =  −(2.1 · 10−22 · 𝑁𝑁𝑒𝑒1.04 + 3.4 · 10−18 · 𝑁𝑁ℎ0.82) (1.17) 
 

Where Ne and Nh are the density of electrons and holes, respectively, in        
cm-3. 

To sum up, in order to transform an electrical signal into an optical signal with 
a ring modulator, the electrical signal is applied to the P-N junction of the ring, 
and this changes the depletion width, which modifies the overall concentration of 
carriers, which in turn changes the refractive index of the ring, and the resonance 
peak shifts. If the frequency of the laser is close to the resonance frequency of 
the ring, we get a shift of output power between the two different voltages. 
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Figure 1.7: Example of ring resonator modulation. 

 

1.4. Energy consumption for modulation 
Dilution refrigerators [20] are capable of dissipating a maximum amount of 

heat, which is known as its cooling power. The cooling power, apart from the 
specifics of the refrigerator, depends on the target temperature. For example, a 
state-of-the art dilution refrigerator, the BF-XLD1000, has 30 µW of cooling power 
at a temperature of 20 mK and 1000 µW at 100 mK. This sets a maximum on 
how much power the energy modulation can consume.  

This is a very low amount of power for computing purposes. To put an 
example, the commercial device that currently offers the most floating point 
operations per joule is the Virtex-7 690T, an FPGA manufactured by Xilinx. It 
offers 78 GFLOP/J. At cryogenic temperature, power efficiency will increase by 
about 50%, because leakage currents, which constitute about 30-40% of the 
energy consumption of CMOS chips, decreases dramatically with temperature 
(the other factors of energy consumption will likely not be affected) [21]. 
Therefore, inside a dilution fridge, current state-of-the-art would be 117 GFLOP/J, 
which is equivalent to 117 KFLOP/µJ. That is to say, one million floating point 
operations per second require at least 8.55 µW with current technology. 

If we were to assume that we connected the room-temperature classical 
computer with a low-temperature quantum computer using a 1 meter long copper 
cable of 0.5 mm2 section, we can estimate the heat transfer by conduction with 
the following equation: 
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𝐻𝐻 =  𝑘𝑘𝑘𝑘
∆𝑇𝑇
𝐿𝐿  (1.18) 

 

Here 𝐻𝐻 is the heat transfer in watts, 𝑘𝑘 is the thermal conductivity of the material 
(assumed constant), 𝐴𝐴 the area of the medium, ∆𝑇𝑇 is the temperature difference 
and 𝐿𝐿 is the length of the cable. The thermal conductivity of copper is around 400 
W·m-1·K-1, so the result is that the heat transfer is about 60 mW, which is several 
orders of magnitude outside the possibilities of dilution refrigerators, without even 
taking into account the energy cost of the data transmission itself. 

For modulation of optical signals, it has to be taken into account that there are 
two sources of energy consumption: the light that is absorbed by the microring 
and transformed into heat, and the electrical energy consumed by the circuit. The 
electrical energy consumption increases more or less linearly with the frequency. 
However, the optical power consumption does not increase with bandwidth to first 
order, although in order to maintain signal-to-noise ratio, higher laser power is 
needed for very high frequencies. This means that in terms of efficiency it is best 
to operate a photonic modulator as fast as it can work, but since in this case the 
energetic constraints are so tight, it may make sense to operate a device slower 
to reduce the total consumption even though the cost per bit is higher. 

Our energy consumption per bit target depends of the specifics of the 
refrigerator and the desired bandwidth. If the power that can be dissipated is 10 
µW, and the desired bandwidth is 10 Gbps, energy consumption must be 1 fJ/bit, 
which is two orders of magnitude better than the current state-of-the-art [22], 
which achieves a data rate of 3.5 Gbps and 70 fJ/bit for the transmitter, as well 
as 2.5 Gbps and 220 fJ/bit.  

 

1.5. Thesis outline 
The remainder of this thesis is organized as follows: 

Chapter 2 presents the current technological obstacles for quantum 
computing scalability and with that base it presents a distributed architecture that 
aims to solve the scalability issues. 

An optical ring modulator that can be switched with a single transistor by 
taking advantage of the open circuit voltage that is generated by the light entering 
the ring is described in Chapters 3 and 4. Chapter 3 is dedicated to explaining 
the physics of this device and for the DC measurements, whereas chapter 4 
contains the information about the necessary setup to test the frequency 
response of the device and the AC measurements. 

Finally, in Chapter 5, conclusions of the work and possible future work are 
discussed. 
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2. Quantum computing architecture 
 

2.1. Current challenges in quantum computing 
There are a number of as of yet unresolved challenges for practical quantum 

computing to be achieved. 

1- Scaling the number of qubits: increasing the number of qubits results in 
lower ability to target them individually. 

2- Quantum gates have a lot of noise (at best around 3% gate error [23]). 

Problem number 2 can be solved, as long as gate error is under a threshold, 
with quantum error correction (QEC) algorithms. The needed threshold varies 
with the algorithm, for example, 1.5 · 10-3 for Steane error correcting codes ([24], 
[25]) and 1% for C4/C6 architecture [26]. QEC algorithms use several physical 
qubits to represent a single qubit (which is called a logical qubit) which has less 
gate error than the original physical qubits. In order to obtain arbitrarily small gate 
error, this method can be concatenated, that is, several logical qubits forming a 
single higher-order logical qubit. 

However, this solution spawns two new, different problems: 

3- Some QEC algorithms cannot perform all the necessary fundamental qubit 
gates on the logical qubits directly. 

4- All qubits cannot fit in a single chip. 

Problem 3 means that for some QEC algorithms [27] a percentage of the 
available logical qubits have to be dedicated to generating specific states with 
high precision, as using these states the missing gates can be implemented. 
However, this requires even more qubits and thus problem 4 is aggravated. 

Problem 4 stems from the fact that the qubits must be separated about 10 µm 
to prevent undesired interactions between neighboring qubits, and the capacity 
of dilution refrigerators is small, which puts a cap on how many qubits there can 
be in a dilution refrigerator. 

 

2.2. Distributed architecture 
To solve the problem of fitting all the qubits necessary for QEC (which will 

vary depending on the specific algorithm used), a distributed architecture can be 
used. This approach has already been suggested before: in one paper there were 
a set of logic units that hold qubits and can operate with them connected by an 
optical cross-connect switch that provides all-to-all connectivity [28], and another 
paper proposes links between nodes using quantum teleportation [29]. Here I 
present some improvements for the second option.  
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The high-level view of this architecture is a set of nodes, where the qubits and 
gates to manipulate them are, connected in a 2-D mesh architecture. In order to 
be able to operate between logical qubits in different nodes, in the middle of each 
link there must be a device that generates EPR pairs (a pair of qubits that are in 
an specific entangled state called a Bell state) [30] in order to be able to teleport 
qubits between nodes.  

The nodes interchange digital information with the exterior through optical 
fibers. Thanks to frequency multiplexing, a single optical fiber can transmit the 
information of several nodes. 

  

 

Figure 2.1: Schematic of the proposed architecture. The black lines represent communication 
between nodes by quantum teleportation. 

 

Each node would have the following structure: 
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Figure 2.2: Schematic of the structure of a node. 

 

The qubits are arranged in a 2-D mesh with an extra qubit on each side 
dedicated for quantum teleportation. 2-D mesh is a configuration that makes 
sense for qubits that are setup on a plane, like superconducting qubits. Moreover, 
the number of links required for all-to-all interconnect scales quadratically and is 
thus hard to do when the number of qubits gets large. 2-D mesh has a maximum 
number of steps between any two qubits on the node of 2√𝑁𝑁, where N is the 
number of qubits in the mesh. Operations on logical qubits should be parallelized 
in order to boost performance. QEC operations on the physical qubits need to be 
parallelized in order to maintain coherence on the qubits. 

Since there is a possibility of error when applying QEC, a response has to be 
sent back to the processor whenever an operation finishes. This means latency 
between the nodes and the processor is of great importance for the performance 
of the device. For that purpose, I propose a specialized processor that can control 
the quantum processors. This processor (Quantum Control Processor), would be 
connected to the CPUs and memory with the system bus: 
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Figure 2.3: Connection with the classical computer. 

 

The QCP would have the following high-level structure: 

 

 
Figure 2.4: QCP pipeline for processing input from the CPU. 

 

 
Figure 2.5: QCP pipeline for processing input from the quantum processor. 
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From the CPUs there would come high-level instructions, such as “Do a 50-
qubit QFT”, which a first stage, the interpreter, would break down into individual 
qubit instructions such as “Apply X gate on qubit #134”, taking into account the 
layout of the quantum processor and minimizing inter-node communications. 
These instructions would be separated depending on which node they have to be 
applied at and they would be arranged into a dependency tree so that the 
instructions can be put into a queue and be sent optimally to the quantum 
processor.  

From the quantum processor there would come confirmations that the 
instruction that was being done on a qubit has ended, and the results from 
measurements. If the instruction finished successfully, the queue would be 
updated and the next instructions sent. On the other hand, if there were an 
unrecoverable error, it should be communicated to the interpreter in order to redo 
the execution of the affected instructions. Measurement results will go back to the 
interpreter to discern if they have to be sent to the CPU, or used internally.  

 

2.3. Bandwidth requirements 
In this section I will estimate the amount of bandwidth this architecture would 

need with the main classical processor. The necessary bandwidth will vary mainly 
on the number of qubits of the node and whether the quantum processor can 
handle error correction by itself and thus no instructions for error correction are 
needed. Both cases will be presented. 

 

- Case 1: No error correction instructions needed 

This case is the simplest. We can assume a single-qubit gate time of 𝑡𝑡1𝑞𝑞, a 
CNOT gate time of 𝑡𝑡2𝑞𝑞 and a measurement time of 𝑡𝑡𝑚𝑚. We will consider a 2-D 
grid of logical qubits of W · L, so the total number of logical qubits will be W · L + 
4, as we have 4 qubits on the sides solely for quantum teleportation. 

We don’t have to consider the effect of there being several nodes here 
because the data for different nodes will be transmitted through different 
channels: either a different optical fiber or a different frequency mode in the same 
fiber. 

Each instruction sent to the node has to encode two things: 

- Which qubit the gate will be acted on. 
- Which gate will be applied. 

For the first one, the number of bits needed to encode a number between 1 
and W · L + 4 is ⌈log2𝑊𝑊 · 𝐿𝐿 + 4⌉, whereas for the second we need to count the 
number of possible operations. There are 10 different possibilities: Measurement 
of the qubit, Hadamard gate, X gate, Z gate, T gate, CNOT with 4 different 
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neighboring qubits, and in the case of the qubits for teleportation, quantum 
teleportation. With 10 possibilities, 4 bits are needed. Since 4 bits allow for up to 
16 choices, we could include in the possible operations some non-essential but 
nonetheless useful gates, such as the inverse of the T gate, the SWAP gate, or 

the phase gate �𝑆𝑆 = �1 0
0 𝑖𝑖 ��. 

The final minimum number of bits for encoding an instruction is: 

 

𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 4 + ⌈log2(𝑊𝑊 · 𝐿𝐿 + 4)⌉ (2.1) 
 

In the worst case, every single qubit is doing a 1 qubit gate operation at the 
same time, as 1 qubit gates are the fastest. The necessary bandwidth would be: 

 

𝐵𝐵𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 · (𝑊𝑊 · 𝐿𝐿 + 4)

𝑡𝑡1𝑞𝑞
 (2.2) 

 

For example, for a number of qubits of 1000, and a 1-qubit gate time of 1000 
ns, the necessary bandwidth would be 14 Gbit/s. This is high, but it’s also the 
worst possible case, and if it isn’t met it would just mean the coprocessor is not 
operating at full capacity. 

These calculations are for inbound data rates. Outbound data rates will be 
smaller, since there are less possibilities. There are only 4 possible outputs for 
each operation: operation unsuccessful, operation successful and not a 
measurement, measurement successful, result 0 and measurement successful, 
result 1. 

We can encode that information with only 2 bits, so the responses will be 2 +
⌈log2(𝑊𝑊 · 𝐿𝐿 + 4)⌉ bits long, shorter than the instructions. Since the node can only 
respond to the instructions the central processor has asked for, the outbound 
bandwidth will always be smaller than the inbound bandwidth. 

 

- Case 2: Error correction instructions needed 

If QEC cannot be managed by the chip itself, then it is necessary to be able 
to address every single physical qubit. Let’s name the number of physical qubits 
per each logical qubit as K. 

The possible operations will be the same as before, but the number of bits to 
address the specific qubit will increase. 

 

𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠2 = 4 + ⌈log2(𝐾𝐾 · (𝑊𝑊 · 𝐿𝐿 + 4))⌉ (2.3) 
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However, this time we do not have to consider the case of all the qubits 
operating at once. In a paper by A. Petznick and B. W. Reichardt [31] it is 
described how to prepare |0⟩ states in the [[7,1,3]] and [[23,1,7]] QEC algorithms. 
For the 7-qubit one, there are 8 CNOT gates in 3 steps, so 2.67 CNOT gates at 
once on average; whereas for the 23-qubit one there are 57 CNOT gates 
operating in 7 stages for an average parallelism of 8.14 CNOT gates operating at 
once. Assuming the load stays similar for all operations, if we were to concatenate 
the two, in order to achieve a good effective gate error [29], we would have 𝐾𝐾 =
23 · 7 = 161 and assuming a similar CNOT gates/physical qubits ratio as before, 
there would be 57 CNOT gates executing at once per logical qubit. 

Assuming a 𝑊𝑊 · 𝐿𝐿 + 4 of 100, and a CNOT gate time of 100 ns: 

 

𝐵𝐵𝑊𝑊𝑒𝑒𝑒𝑒𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠2 · 𝑁𝑁𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 · (𝑊𝑊 · 𝐿𝐿 + 4)

𝑡𝑡2𝑞𝑞
=  798 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 (2.4) 

 

This is too high of a bandwidth per node, considering the node only has 100 
logical qubits. The bandwidth can be lowered, with a proportional performance 
cost, as long as QEC is done before the qubits decohere. 

 

2.4. Possible bottlenecks 
The most likely bottleneck in this architecture is the inter-node communication. 

The node diagram in section 4.3.2 only had qubits in the node can perform 
quantum teleportation. This can pose an issue if the number of logical qubits in a 
single node increases. However, it is perfectly possible to add more qubits for 
quantum teleportation. If it truly were to pose a problem, there could even be 
quantum teleportation links in every qubit in the side, like this: 
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Figure 2.6: Schematic of a node with all the side qubits being dedicated to quantum 

teleportation. 

 

Nevertheless, even in the last case, the compiler and QCP should minimize 
the links between nodes, as they probably will end up having higher latency than 
intra-node communication. 
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3. Photovoltaic optical modulator 
In this section an optical ring modulator is described. First the physics of the 

device are explained. Then a mechanism that takes advantage of the 
photocurrent of the device to modulate a signal is discussed and finally it is 
experimentally measured. 

 

3.1. Photovoltaic effect in P-N junctions 
In our case, we do not want to switch the ring modulator with a bias voltage, 

but rather by short circuiting and open circuiting the ring. The motivation is 
twofold: it has not been done before, and it could lead to lower power 
consumption per bit transmitted. In this section the physics on how this works will 
be explained. 

The current that goes through a P-N junction in the ideal case can be 
expressed as: 

 

𝐼𝐼(𝑉𝑉) = 𝐼𝐼0 · �𝑒𝑒
𝑞𝑞𝑞𝑞
𝑘𝑘𝑘𝑘 − 1� (3.1) 

 

Where k is the Boltzmann constant and q the elemental charge. 

If the P-N junction is illuminated, electron-hole pairs are generated and cause 
an additional current source: 

  

𝐼𝐼(𝑉𝑉) = 𝐼𝐼0 · �𝑒𝑒
𝑞𝑞𝑞𝑞
𝑘𝑘𝑘𝑘 − 1� − 𝐼𝐼𝑝𝑝ℎ (3.2) 

 

Here, the P-N junction has an open-circuit voltage, which equals: 

 

𝑉𝑉𝑂𝑂𝑂𝑂 =
𝜂𝜂𝜂𝜂𝜂𝜂
𝑞𝑞 · ln �

𝐼𝐼𝑝𝑝ℎ
𝐼𝐼𝑜𝑜

+ 1� (3.3) 

 

The unknown variables are 𝐼𝐼𝑝𝑝ℎ, the photonic current; 𝐼𝐼𝑜𝑜, the reverse bias 
saturation current; and 𝜂𝜂, the ideality factor. 𝐼𝐼𝑝𝑝ℎ depends on the input optical 
power 𝑃𝑃𝑖𝑖𝑖𝑖 and the responsivity 𝑅𝑅, measured in A/W: 

 

𝐼𝐼𝑝𝑝ℎ = 𝑅𝑅 · 𝑃𝑃𝑖𝑖𝑖𝑖 (3.4) 
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Silicon does not absorb much IR light (which is why silicon waveguides are 
possible), so the responsivity will be small. On a similar device [32] a responsivity 
of 12 mA/W was reported, which would result in a photocurrent of 12 µA for a 𝑃𝑃𝑖𝑖𝑖𝑖 
of 1 mW. For a similar polysilicon P-N junction [33] 𝜂𝜂 was 2.1. With this data, if 
we assume a reverse bias saturation current of 1·10-10 A, the open circuit voltage 
would be 636 mV, which seems reasonable. In the next section we will check our 
assumptions in this area with the experimental results. 

 

3.2. DC Measurements 
The device we have tested is a polysilicon ring modulator. The diameter of the 

ring is 9 µm, its width is 500 nm and the distance to the waveguide is 250 nm. 

To measure the wavelength shift between open-circuit and short-circuit, a 
1550 nm tunable laser (HP 8164A) was used. In order to obtain higher optical 
power, an Erbium-doped fiber amplifier (FITEL ErFA 11000) is added. In order to 
control the polarization of the light going into the chip, a polarization controller is 
used. After that, in order to measure the output power, there is a 90/10 coupler. 
The coupler is necessary because the power of the laser changes in function of 
the frequency. Therefore, in order to accurately compute the transmission of the 
device, two measurements are needed: one from the 10% fiber to know the power 
of the laser, and another one of the device. The tunable laser doubles as 
photodetector. 

 

 
Figure 3.1: Experimental setup for DC measurements. Electrical links are in blue, on-chip 

waveguides in red and optical links in black. 

 

The device has three metal contacts for a probe to be connected to the circuit. 
In order to switch between open and short circuit a SMA socket is connected to 
a probe, which can be short circuited by putting a small metal piece between the 
contacts. 
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Figure 3.2: Surface of the chip observed through a microscope. Optical power enters the 

waveguide through the left optical fiber and is collected in the one on the right. 

 

Figure 3.3 shows the wavelength shift between open and short circuit, for 3 
and 10 mW of input power. The plotted data is the average of three 
measurements for each curve.  

 

 
Figure 3.3: Wavelength shift between open and short circuit, for 3 and 10 mW of optical power. 

 

In both cases, there is a wavelength shift of 30 pm, which is the same shift 
that is observed between bias voltages of 0 and 0.6 V, as predicted by Section 
3.1. This is equivalent to a 50 pm/V resonance shift, which is a good figure for 
ring modulators operating at positive voltages [34]. The Q factor is 3400 both for 
3 mW and for 10 mW of input power. We can also see that with 10 mW the 
resonator acts nonlinearly and the transmission curve is no longer symmetric. For 
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3 mW of input power, a shift of output power of about 2 dB can be obtained. For 
10 mW the plot shows that the shift in transmitted power is about 3 dB, 
considering that only wavelengths lower than the resonance peak should be used 
for modulation, in order to prevent instability due to temperature effects. 

To compute the parameters of the P-N junction, we do an I-V sweep of the 
junction with no light. 

 

 

Figure 3.4: I-V curve of the modulator, for no input power. Current is represented in absolute 
value. 

 

If the ring were an ideal P-N junction, the current for negative voltages should 
be constant and equal to 𝐼𝐼0, however that is not the case here, and it makes it 
somewhat harder to compute 𝐼𝐼0. After doing a least-squares fitting, the 
parameters turned out to be: 𝐼𝐼0 = 5.5 · 10−12 𝐴𝐴,𝜂𝜂 = 1.86. The ideality factor is 
reasonably similar to what we predicted (18% difference), but the reverse bias 
saturation current is 18 times smaller than the estimation. 
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Figure 3.5: Fitting of different curves with 𝜂𝜂 = 1.86 and several values of 𝐼𝐼0.  

 

 
Figure 3.6: Fitting of different curves with 𝐼𝐼0 = 5.5 · 10−12 𝐴𝐴 and several values of 𝜂𝜂. 

 

In both Figures 3.5 and 3.6, it can easily be seen that although the behavior 
for positive voltages follows closely the equation, that is not the case for negative 
V. 

In order to obtain the responsivity of the cavity, we measure the I-V curves for 
both of the input powers. 
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Figure 3.7: IV curve of the modulator, for 0, 3 and 10 mW of optical power, at the respective 

resonance peaks. 

 

We must take here into consideration that the power that goes through the 
input optical fiber is not the same 𝑃𝑃𝑖𝑖𝑖𝑖 in our equations in Section 3.1. This is 
because there is an insertion loss of about 10 dB between the optical fiber and 
the waveguide on-chip. Therefore, if the input power is 10 mW, 𝑃𝑃𝑖𝑖𝑖𝑖 will be about 
1 mW. 

As we can see in Figure 3.5, the open circuit voltage of the modulator is 0.62 
V for an input power of 3 mW and 0.67 V for 10 mW. We observe a responsivity 
of 12.3 mA/W for 3 mW of optical power and 14.5 mA/W for 10 mW after taking 
into account the insertion loss of the waveguide, which are close to the predicted 
number. Overall, the estimations of the variables of Equation 3.3 balance out and 
the experimental open circuit voltage is pretty close to what was predicted. 
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4. Frequency response of PV modulator 
 

The modulator described and measured in the last section must be switched 
manually between the on and off states. In order to be able to switch using an 
electrical signal, it is necessary to attach a transistor so that the signal can be 
directly applied. However, since we are interested in high-frequency modulation, 
the experimental setup must be designed to have as little parasitic capacitance 
as possible. 

 

4.1. Transistor-switched modulator 
In the DC measurements, the on and off switching was done manually, 

connecting and disconnecting two terminals. For an actual modulator, this cannot 
be the case. For this purpose, we will use a transistor as a high-frequency switch. 
The best one for this approach would be one that has high switching frequency, 
low activation voltage and low energy consumption. In order to choose the most 
adequate one, an LTspice simulation was made. 

 

 
Figure 4.1: LTspice simulation of the transistor-switched resonator. 

 

In this diagram, I_ph, D_ph and R_ph constitute a simplified model for the 
modulator: the PN junction of the ring works as a diode and has, due to pair 
generation caused by light absortion, a current source. A small series resistance 
is added. C_parasite is used to study the effects of parasitic capacitance. R2, R3 
and C2 are used to couple the AC voltage source V_switching. In order to choose 
the best transistor for the task, the internal parameters of PMOS were changed 
to test different existing models of transistors. 

In the simulation, the objective is to alternate V_ph between 0 and the open 
circuit voltage. In the case that the transistor operates as an open circuit, V_ph 
will equal the open circuit voltage. If the transistor is operating as a small resistor, 
V_ph will be close to zero. 
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Several types and models of transistor were tested, and the transistor chosen 
in the end was a MOSFET, the CE3514M4, manufactured by California Eastern 
Laboratories. This transistor was picked because of its IV curves. 

 

 
Figure 4.2: Experimental measurements of the IV curves of the CE3514M4 transistor for several 

gate voltages and of the ring modulator for different amounts of optical power. 

 

As we can see in Figure 4.2, the open circuit / short circuit state of the 
modulator can be changed with only a peak-to-peak voltage of 0.2 V (Between    
-0.5 and -0.7 for 10 mW, and between -0.6 and -0.8 for 3 mW). 

 

4.2. Frequency measurements setup 
The circuit designed in the previous section was put into a PCB to achieve 

minimal parasitic capacitance: 

 

   
Figure 4.3: EAGLE schematic and photo of the PCB. 

 

In the schematic, X_IN and X_OUT are SMA connectors. The size of the 
board is 25.4 x 8.89 mm.  
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Figure 4.4: PCB with components mounted on it. 

 

The experimental setup for the AC measurements is similar to the one for the 
DC measurements, with some added components. Since only one specific 
frequency is being tested at a time, and the optical amplifier introduces some 
unwanted noise, a tunable frequency filter is added. The PCB is connected on 
one end to the probe and on the other end to a wave generator (Agilent 81180A), 
which is set to generate square waves with arbitrary frequency, bias voltage and 
peak-to-peak voltage. In order to verify that VDS is varying, a probe is connected 
on the PCB and connected to the oscilloscope (LeCroy WaveSurfer 422). In order 
to verify that the output power of the microring is switching, the output of the chip 
is amplified again and sent into the oscilloscope with the aid of a photodetector 
(u2t XPDV2320R). 

 

 
Figure 4.5: Experimental setup for AC measurements. Electrical links are in blue, on-chip 

waveguides in red and optical links in black. 
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Figure 4.6: Connection of the PCB and the probe on the chip. The probe that measures VDS 

is not present. 

 

4.3. Results 
First the VDS evolution was tested for 10 mW of input power at a low frequency: 

 

 
Figure 4.7: VDS evolution for square waves of 200 KHz and peak-to-peak voltage of 100 mV, for 

different bias voltages. 
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As we can see in Figure 4.7, offset voltage makes a great difference in the 
voltage swing. This is a good thing, as this allows us to reduce the peak-to-peak 
voltage of the input electric signal, and since energy consumed by a digital circuit 
depends quadratically on the voltage, the consumed energy significantly 
decreases. We can also notice a big difference between rise times and fall times. 

Next we measure the output power. The probe that measured VDS introduced 
noticeable parasitic capacitance and for that reason it was removed during the 
output power measurements. We seek to optimize the extinction ratio (𝐸𝐸𝐸𝐸 = 10 ·
log10

𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚
𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚

 𝑑𝑑𝑑𝑑) for each peak-to-peak voltage chosen. 

Extinction ratios of over 3 dB were achieved for peak-to-peak voltages of 200 
mV and 100 mV: 

 

 
Figure 4.8: Best extinction ratio found for 200 mV peak-to-peak (black) and for 100 mV peak-to-

peak (red) at 1 MHz frequency. 

 

The results found were 4.0 dB extinction ratio for 200 mV peak-to-peak, for 
an optical power of 10 mW, 1543.65 nm frequency and -540 mV bias voltage. For 
the 100 mV peak-to-peak sample, 3.3 dB extinction ratio was found, with the 
same parameters as before except that the bias voltage was -610 mV. 

In both measurements, we can see a high discrepancy between rise time and 
fall time. For the 200 mV peak-to-peak one, we can also observe some overshoot. 

Reducing the peak-to-peak voltage further gets the extinction ratio below 3 
dB, but the results are still interesting: 
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Figure 4.9: Best extinction ratio found for 30 mV peak-to-peak (red) and for 21.9 mV peak-to-

peak (black) at 1 MHz frequency. 

 

We achieve 1.2 dB of ER for a peak-to-peak voltage of 30 mV, bias voltage 
of -583 mV, 14.36 mW of optical power and at a wavelength of 1543.85 nm. For 
a peak-to-peak voltage of 21.9 mV, an ER of 1.0 dB was observed, with a bias 
voltage of -586 mV, 15.3 mW of optical power and a wavelength of 1543.8 nm. 

Another measurement that was done was directly applying voltages between 
0 and 0.7 V to the ring modulator, without using a transistor. This was done for 
two reasons: to measure the frequency response of the ring modulator itself, and 
to measure the amplifying effect that the transistor has on the peak-to-peak 
voltage. 

In order to discover the maximum frequency at which the modulator can 
operate, eye diagrams are done for several frequencies. For this measurement, 
a different wave generator (Picosecond Pulse Labs SDG Model 12072) and 
oscilloscope (Agilent DCA-X 86100D) are needed, since the ones used for the 
previous measurements had a maximum bandwidth of 200 MHz. Figure 4.10 
shows the eye diagram for 8 Gbps, and an input signal of 250 mV of bias voltage 
and 500 mV of peak-to-peak voltage: 
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Figure 4.10: Eye diagram of the ring modulator without transistor, at 8 Gbps, modulated with 0.5 
V of amplitude. 

 

As we can see in this figure, the ‘eye’ is barely open, so 8 GHz is (almost) the 
fastest the device can operate. Taking into account this behavior without the 
transistor, the frequency bottleneck of the PV modulator must be the parasitic 
capacitance of the setup. 

For 10 mW of input power, extinction ratios for several peak-to-peak voltages 
have been measured and organized into the following graph: 

 

 

Figure 4.11: Extinction ratio for different peak-to-peak voltages and two modulation methods, for 
10 mW of input power. 
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As we can see, PV modulation achieves similar extinction ratio with peak-to-
peak voltages up to 4 times lower than by modulating directly, although it has 
diminishing returns for higher peak-to-peak voltages. 

 

4.4. Interpretation of the results 
The first thing that must be explained about the results is the poor frequency 

response of the PV modulation, especially compared to the frequency response 
of just applying the bias voltage directly into the ring without any transistor. In 
order to explain this, we model the circuit as follows: 

 

 
Figure 4.12: Circuit model of the ring resonator and transistor 

 

Here in this model 𝐶𝐶 is the total parasitic capacitance of both the transistor, P-
N junction and connections, and 𝑅𝑅 is the resistance of the MOSFET for a certain 
𝑉𝑉𝐺𝐺 and 𝑉𝑉𝐷𝐷𝐷𝐷, and is calculated as 𝑅𝑅 = 𝑉𝑉𝐷𝐷𝐷𝐷

𝐼𝐼𝐷𝐷𝐷𝐷
. The photocurrent is also assumed 

constant. 

In this model, the voltage between the two terminals V is constant until VG 
changes and thus the resistance of the MOSFET changes. From the diagram, we 
can see that: 

 

𝐼𝐼𝑝𝑝ℎ = 𝐼𝐼𝐷𝐷 + 𝐼𝐼𝐶𝐶 + 𝐼𝐼𝑅𝑅 (4.1) 
 

Since the equations that give the current that goes through a diode, capacitor 
and resistor are known, we can express this as: 
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𝐼𝐼𝑝𝑝ℎ = I0 · 𝑒𝑒
𝑉𝑉

𝜂𝜂·𝑉𝑉𝑇𝑇 + 𝐶𝐶
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 +

𝑉𝑉
𝑅𝑅 (4.2) 

 

Attempting to solve the resulting ODE, we get: 

 

�𝐼𝐼𝑝𝑝ℎ − I0 · 𝑒𝑒
𝑉𝑉

𝜂𝜂·𝑉𝑉𝑇𝑇 −
V
R� · dt = 𝐶𝐶 · 𝑑𝑑𝑑𝑑 (4.3) 

 

𝑡𝑡 + 𝐾𝐾 = �
𝐶𝐶 · 𝑑𝑑𝑑𝑑

𝐼𝐼𝑝𝑝ℎ − I0 · 𝑒𝑒
𝑉𝑉

𝜂𝜂·𝑉𝑉𝑇𝑇 − V
R

 (4.4) 

 

Where K is the integration constant. Unfortunately, the integral in Equation 4.4 
has no analytical solution, and there is no exact solution. However, some 
reasonable approximations can be applied here. Up to approximately 0.5 V, as 
shown in Chapter 3, the IV curve of the ring is mostly flat, which means that 𝐼𝐼𝐷𝐷 is 
small compared to 𝐼𝐼𝐶𝐶 and 𝐼𝐼𝑅𝑅. Therefore, for low voltage: 

 

𝑡𝑡 + 𝐾𝐾 = �
𝐶𝐶 · 𝑑𝑑𝑑𝑑

𝐼𝐼𝑝𝑝ℎ −
V
R

= −𝑅𝑅𝑅𝑅 · ln�𝐼𝐼𝑝𝑝ℎ −
V
R� (4.5) 

 

Solving for V: 

 

𝐼𝐼𝑝𝑝ℎ −
V
R = 𝐾𝐾2𝑒𝑒

− 𝑡𝑡
𝑅𝑅𝑅𝑅 → 𝑉𝑉(𝑡𝑡) = 𝑅𝑅 · 𝐼𝐼𝑝𝑝ℎ − (𝑅𝑅 · 𝐼𝐼𝑝𝑝ℎ − 𝑉𝑉(0))𝑒𝑒−

𝑡𝑡
𝑅𝑅𝑅𝑅 (4.6) 

 

Therefore, the time constant of the circuit is 𝜏𝜏 = 𝑅𝑅𝑅𝑅, the final voltage is 𝑅𝑅 · 𝐼𝐼𝑝𝑝ℎ , 
which is just the new 𝑉𝑉𝐷𝐷𝐷𝐷, and the circuit is fundamentally an RC circuit. 

This last equation is valid as long as the current that flows through the diode 
is negligible. For higher voltage values, it will be necessary to model the diode. 
We can approximate it roughly as a piecewise linear model. For voltages over a 
activation voltage 𝑉𝑉𝑂𝑂𝑂𝑂, 

 

ID ≅
𝑉𝑉 − 𝑉𝑉𝑂𝑂𝑂𝑂

𝑟𝑟  (4.7) 

 

This is equivalent to a 𝑉𝑉𝑂𝑂𝑂𝑂 voltage source in series with a resistor of resistance 
𝑟𝑟. With this approximation, the ODE is: 
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𝑡𝑡 + 𝐾𝐾 = �
𝐶𝐶 · 𝑑𝑑𝑑𝑑

𝐼𝐼𝑝𝑝ℎ −
𝑉𝑉 − 𝑉𝑉𝑂𝑂𝑂𝑂

𝑟𝑟 − V
R

= �
𝐶𝐶 · 𝑑𝑑𝑑𝑑

𝐼𝐼𝑝𝑝ℎ + 𝑉𝑉𝑂𝑂𝑂𝑂
𝑟𝑟 − 𝑟𝑟 + 𝑅𝑅

𝑟𝑟𝑟𝑟 V
 (4.8) 

 

This integral has a similar solution to Equation 4.5: 

 

𝑡𝑡 + 𝐾𝐾 = −
𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅 + 𝑟𝑟 · ln �𝐼𝐼𝑝𝑝ℎ +

𝑉𝑉𝑂𝑂𝑂𝑂
𝑟𝑟 −

𝑟𝑟 + 𝑅𝑅
𝑟𝑟𝑟𝑟 V� (4.9) 

 

𝑉𝑉(𝑡𝑡) =
𝑅𝑅 · 𝑟𝑟 · 𝐼𝐼𝑝𝑝ℎ
𝑅𝑅 + 𝑟𝑟 +

𝑅𝑅 · 𝑉𝑉𝑂𝑂𝑂𝑂
𝑅𝑅 + 𝑟𝑟 − (

𝑅𝑅 · 𝑟𝑟 · 𝐼𝐼𝑝𝑝ℎ
𝑅𝑅 + 𝑟𝑟 +

𝑅𝑅 · 𝑉𝑉𝑂𝑂𝑂𝑂
𝑅𝑅 + 𝑟𝑟 − 𝑉𝑉(0))𝑒𝑒−

𝑅𝑅+𝑟𝑟
𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡 (4.10) 

 

This equation describes another RC circuit, but this time with two resistors in 
parallel. We can see that for both V < 𝑉𝑉𝑂𝑂𝑂𝑂  and V > 𝑉𝑉𝑂𝑂𝑂𝑂  the time constants depend 
linearly on the parasitic capacitance, which is good news: reducing the parasitic 
capacitance of the modulation setup by, for example, integrating the transistor 
into the chip will improve the frequency response by orders of magnitude. 

This model is very approximated, since the equivalent resistance of the 
MOSFET changes at the same time the voltage changes. The most precise way 
to compute this would be to integrate along the IV curves of both the ring 
modulator and the MOSFET, but that would not allow us to have a simplified 
expression for the voltage evolution. 

We can test this model with the date from Figure 4.7: 

 

Bias voltage (mV) Vlow (mV) Vhigh (mV) trise (ns) tfall (ns) 

-550 15 430 1270 70 

-600 60 630 800 360 

-650 350 656 450 1100 

Figure 4.13: Table with the data from Figure 4.7. 

 

In Figure 4.13 trise and tfall are computed as the time it takes to reach 95% of 
the final value, which is equivalent to three time constants. In theory, the Vhigh of 
the signal with bias voltage of -550 mV and the Vlow of the signal with bias voltage 
should be equal, as the gate voltage under those two conditions should be the 
same. This is not the case here, probably because of some imprecision in the 
wave generator. The resistance used to compute the tfall of the signal with bias 
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voltage of -650 mV had to be adjusted for the model to converge to the actual 
final voltage. 

We also consider 𝑉𝑉𝑂𝑂𝑂𝑂 = 0.5 V and that 𝐼𝐼𝐷𝐷 reaches 𝐼𝐼𝑝𝑝ℎ for V = 0.7 V, which 
makes 𝑟𝑟 = 0.2 𝑉𝑉

𝐼𝐼𝑝𝑝ℎ
. 𝐼𝐼𝑝𝑝ℎ is 1.45 · 10-5 A, as shown in Figure 3.5, considering that the 

measurements were taken for 10 mW of input power. The resistances of the 
transistor are calculated from Figure 4.2 and the IV curves of the transistor for 
gate voltages of -0.55 and -0.65 V, which were not shown in Figure 4.2 for lack 
of space. 

From the first row we can compute the parasitic capacitance of the setup, 
since the voltage evolution is always below 𝑉𝑉𝑂𝑂𝑂𝑂 and therefore is modeled as a 
single exponential. The results are 14 pF and 23 pF. This is a significant 
difference, so for the rest of the calculations we will take the average of the two, 
and assume that 𝐶𝐶 is 19 pF. 

Now that we have an estimation for the parasitic capacitance, we can check 
how accurate the model is: 

 

Bias voltage (mV) trise (Exp.) trise (Model) % Error tfall (Exp.) tfall (Model) % Error 

-550 1270 1716 35% 70 58 -17% 

-600 800 1163 45% 360 270 -25% 

-650 450 581 29% 1100 1359 24% 

Figure 4.14: Comparison of results provided by the model and experimental results. 

 

Overall, for such a simple approximation of the behavior of the P-N junction, 
the results the model provides are satisfactory. For all the experimental results, 
the model was able to estimate with up to 45% of error the rise and fall times. 

We also want to check whether 19 pF is a reasonable estimation of the 
parasitic frequency. When measuring 𝑉𝑉𝐷𝐷𝐷𝐷, most of the parasitic capacitance 
comes from the probe. We can know this because measurements with a probe 
had to be done at 200 KHz, like in Figure 4.7; whereas measurements without a 
probe could have a frequency of 1 MHz, like in Figures 4.8 and 4.9. According to 
our model, this implies that the parasitic capacitance due to the probe is 80% of 
the total parasitic capacitance. 

The probe was connected to a coaxial cable of about 1 m of longitude. These 
kind of cables have a parasitic capacitance of between 50 and 100 pF per meter. 
Since the probe represents 80% of the capacitance, this means that the total 
parasitic capacitance of the circuit is between 62.5 pF and 125 pF. Therefore, the 
capacitance estimate of our model is too low, but within an order of magnitude of 
the real value. 
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The most positive result from the experiments is the low peak-to-peak voltage: 
100 mV of peak-to-peak voltage on the gate of the transistor is amplified and 
results in 3.3 dB of extinction ratio, whereas applying 300 mV of peak-to-peak 
voltage directly results in only 3 dB of ER. For even lower voltage differences we 
still observe a noticeable extinction ratio. This is thanks to the IV curve of the 
chosen transistor, which amplifies a lot the signal coming through VGS.  

From these results we can estimate the consumed energy per bit, assuming 
that the minimum ER needed is 3 dB. The consumed power was the 10 mW of 
optical power used (since the wavelength of the laser was very close to the 
resonance peak, meaning that the output power was several orders of magnitude 
smaller than the input power, and thus negligible) and 𝐶𝐶 · ∆𝑉𝑉2 · 𝜈𝜈 of electrical 
power. Since the frequency of the signal was 200 KHz, the power per bit will be: 

 

𝐸𝐸1 𝑏𝑏𝑏𝑏𝑏𝑏 =
𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝜈𝜈 =
0.01

200 · 103 + 100 · 10−12 · 0.12 = 50
𝑛𝑛𝑛𝑛
𝑏𝑏𝑏𝑏𝑏𝑏 

(4.11) 

 

This is not close to the state-of-the-art. However, if we considered that the 
transistor was on-chip and therefore its parasitic capacitance were on the order 
of 10 fF, then the maximum frequency, as explained in this section, would 
increase by a factor of 10000 to 2 GHz. Assuming as well that the loss entering 
the waveguide is only 1 dB instead of 10 dB, we would get: 

 

𝐸𝐸1 𝑏𝑏𝑏𝑏𝑏𝑏 =
𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝜈𝜈 =
0.00126
2 · 109 + 10 · 10−15 · 0.12 = 630

𝑓𝑓𝑓𝑓
𝑏𝑏𝑏𝑏𝑏𝑏 

(4.12) 

 

This is a much better result, although still inferior to the state-of-the-art. The 
limiting factor is the optical power, which constitutes more than 99.9% of the total. 
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5. Conclusions and future work 
 

5.1. Conclusions 
In Chapter 2, the current technical challenges for quantum computation were 

presented. Aiming to partially solve this issues, a distributed quantum computing 
architecture was presented, together with the interfacing with a classical 
computer. Finally, bandwidth requirements per node were discussed and 
estimated. It was shown that if the quantum coprocessors can perform QEC by 
themselves without needing communication with the classical processor, it could 
reduce the necessary bandwidth between quantum coprocessors and classical 
processor by approximately a factor of 50. 

In Chapter 3 it was shown that the modulator behaves as an ideal diode which 
is generating photocurrent due to absorption of light inside the microring. This 
photocurrent produces a positive voltage. With this voltage, short-circuiting and 
open-circuiting the ring can produce a noticeable resonance shift. We also have 
observed non-linearities for high input power, which make the transmission curve 
asymmetrical. These non-linearities are probably due to the dissipation of heat 
inside the ring, which increases its temperature and shifts its resonance peak to 
the right. 

In Chapter 4, the frequency response of the device under standard modulation 
and under PV modulator was measured. High extinction ratios with low peak-to-
peak voltage were found: with only 100 mV of peak-to-peak voltage, 3.3 dB of 
extinction ratio was observed with PV modulation, which compares to 1.0 dB of 
ER for the same peak-to-peak voltage with standard modulation.  Moreover, a 
circuit model for PV modulation was presented, showing that the frequency 
response is inversely proportional to the parasitic capacitance. This model was 
tested using the experimental data and showed a maximum deviation of 45%. 

 

5.2. Future work 
There are several directions in which the quantum computing architecture 

work can be expanded. For example, models of communication overhead can be 
built, and with those models estimate the effect of different network topologies 
and QEC algorithms. Another interesting result would be to describe an efficient 
algorithm for resolving the dependencies of quantum operations that the QCP 
could implement in hardware and with it estimate the average latency between 
receiving confirmation of the end of one instruction, and sending the next one. 

There are three more experiments that should be done with the PV modulator 
described in this work for it to be a viable solution for low-energy data modulation 
and for quantum computation.  
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First, in order to reduce the parasitic capacitance, an on-chip transistor could 
be used instead of a PCB. This should decrease the capacitance by orders of 
magnitude. As seen in Section 4.4, this should in turn decrease the rise and fall 
times proportionally. 

Second, low-temperature measurements should be performed to make sure 
that the PV modulator can work at cryogenic temperatures. Under such 
conditions, it would also be interesting to measure how much thermal energy is 
released by the device. 

Third, this PV modulator has not been tested as a photodetector. In order to 
verify that this device can be used to transform optical signals into electrical 
signals, the photocurrent for different input power and wavelength should be 
measured, as well as the frequency response. 

Another possible improvement would be to use a different material for the 
modulator. Although the modulator used had a good wavelength shift per volt, 
the Q factor is comparatively low. A modulator with a similar wavelength shift but 
a 10 times larges Q factor would be able to achieve much higher extinction ratios 
while using both lower peak-to-peak voltage to modulate the signal, and lower 
laser power.   
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