
Universitat Politècnica de Catalunya

Escola Tècnica Superior d’Enginyeria de Telecomunicació de Barcelona

A Deep Learning Based Approach

to Automated App Testing

David Llàcer Giner

Advisors: Rubèn Tous Liesa, Xavier Guàrdia Latorre

A thesis submitted in fulfillment of the requirements for the
Master in Telecommunications Engineering

Barcelona, September 2020

Abstract

Mobile applications are worldwide extended. We use them for everything, from texting friends
to managing our money. This boom has led to the emergence of companies dedicated exclusively
to the development of mobile applications. Also, the mobile industry, made up by millions of
apps and billions of users, has been growing at an unprecedented speed and has been incredibly
successful.

One of the most important steps in the process of application development is testing. Once
a first version of the application is released, the testing team is in charge of verifying its correct
functioning and that it meets all the requirements set by the design team. Normally, tests are
based on following a flow through the app. A person navigates through the di↵erent screens
tapping buttons and checking everything works fine. There are some tools and software that
automates this process, but they use brute force and random algorithms, that lead to ine�cient
testing.

The objective of this project is to design and implement a prototype of an artificial intelligence
able to navigate through a mobile application mimicking the behavior of a real user. The bur-
geoning of deep learning and neural networks allows this kind of tasks to be learned by machines
from experience.

The system consists of a deep learning architecture able to predict where to tap on the screen
and which type of action to perform at this location. It consists of a Convolutional Neural
Network to encode the images and recognize elements on the screen, and a Long Short-Term
Memory to learn where to tap based on previous screens. Then, we have 2 outputs, one generated
by a Deconvolutional Neural Network that predicts the location of the tap, and a Linear Neural
Network that predicts the action type.

Overall, this work presents how mobile application testing can be automated using deep
learning. Moreover, it shows the design and training process of a model to perform this task.

Key words: Deep learning, App testing.

1

Resum

Les aplicacions mòbils estàn àmpliament esteses pel món. Les fem servir per a tot, des d’enviar
missatges als amics fins andministrar els nostres diners. Aquest auge a condüıt a l’aparició
de companyies dedicades exclusivament al desenvolupament d’aplicacions. També, la indústria
mòbil, formada per milions d’aplicacions i bilions d’usuaris, ha estat creixent a una velocitat sense
precedents i ha aconseguit gran èxit.

Un dels passos més importants en el procés de desenvolupament d’aplicacions és el testing.
Un cop la primera versió de l’aplicació és llançada, l’equip de testing s’ha de fer càrrec de verificar
el seu correcte funcionament i de que complisca els requisits demandats per l’equip de disseny.
Normalment, els tests estàn basats en seguir un fluxe a través de l’aplicació. Una persona navega
a través de diferents pantalles prement botons i comprovant que tot funcione correctament. N’hi
han algunes ferramentes i softwares que automatitzen aquest procés, però utilitzen algoritmes de
força bruta o aleatoris que comporten un testing ineficient.

L’objectiu d’aquest projecte és implementar una sol·lució capaç de navegar a través d’una
aplicació mòbil imitant el comportament d’un usuari real. El creixement de l’aprenentatge profund
i les xarxes neuronals permet que aquest tipus de tasques puguen ser apreses per una màquina
gràcies a l’experiència.

El sistema està format per una arquitectura d’aprenentatge profund capaç de predir on prémer
en la pantalla i quin tipus de gest realitzar en aquesta localització. Està format per una xarxa
neuronal Convolucional per a extraure caracteŕıstiques de les pantalles i reconéixer elements en
ella, seguida d’una part LSTM per a aprendre informació sequencial, és a dir, on prémer basant-
se en interaccions anteriors. Per últim, la xarxa té dos ixides, una generada per una xarxa
Deconvolucional que prediu la localització de la pulsació., i l’altra generada per una xarxa linial
que prediu el tipus de gest.

En general, aquest treball presenta com el testing d’aplicacions mòbils pot ser automatitzat
fent servir aprenentatge profund. A més, demostra el disseny i el procés d’entrenament de model
per dur a terme aquesta tasca.

Paraules clau: Aprenentatge profund, Testing d’aplicacions.

2

Resumen

Las aplicaciones móviles están ampliamente extendidas en el mundo. Las utilizamos para
todo, desde enviar mensajes a amigos hasta administrar nuestro dinero. Este auge ha llevado a la
aparición de compañ́ıas dedicadas exclusivamente al desarrollo de aplicaciones móviles. También,
la industria móvil, formada por millones de aplicaciones y billones de usuarios, ha estado creciendo
a una velocidad sin precedentes y ha conseguido un gran éxito.

Uno de los pasos más importantes en el proceso de desarrollo de aplicaciones es el testeo. Una
vez la primera versión de la aplicación es lanzada, el equipo de testeo está a cargo de verificar
su correcto funcionamiento y de que cumpla todos los requisitos demandados por el equipo
de diseño. Normalmente, los tests están basados en seguir un flujo a través de la aplicación.
Una persona navega a través de diferentes pantallas pulsando botones y comprobando que todo
funcione como es debido. Hay algunas herramientas y software que automatiza este proceso,
pero utilizan algoritmos de fuerza bruta o aleatorios que conllevan a un testeo ineficiente.

El objetivo de este proyecto es implementar una solución capaz de navegar a través de una
aplicación móvil imitando el comportamiento de un usuario real. El crecimiento del aprendizaje
profundo y las redes neurales permite que este tipo de tareas puedan ser aprendidas por una
máquina gracias a la experiencia.

El sistema está formado por una arcquitectura de aprendizaje profundo capaz de predecir
dónde pulsar en la pantalla y qué tipo de gesto realizar en esa localización. Está formado por una
red neuronal Convolucional para extraer caracteŕısticas de las pantallas y reconocer elementos en
ellas, seguida de una parte LSTM para aprender informacióin secuencial, es decir, dónde pulsar
basándose en interacciones previas. Por último, la red tiene dos salidas, una generada por una
red Deconvolucional que predice la locaclización de la pulsación, y la otra generada por una parte
Lineal que predice el tipo de gesto.

En general, este trabajo presenta como el testeo de aplicaciones móviles puede ser automati-
zado utilizando aprendizaje profundo. Además, demuestra el diseño y el proceso de entrenamiento
del modelo para llevar a cabo esta tarea.

Palabras clave: Aprendizaje profundo, Testeo de aplicaciones.

3

Acknowledgements

First of all, I want to thank my advisor Rubèn Tous for guiding me during the project devel-
opment, helping me, solving my questions and providing me with needed resources.

This project emerged from Soft For You (SFY), a software development company, and they
trusted me to lead it and develop it from scratch. This thesis proposal was presented to give an
answer to the question: ”Can we develop something to test mobile apps and find errors using
artificial intelligence, in order to ease and optimize the testing process?”, so this thesis is the first
step of the trip. I am very grateful with SFY, Joaqúın Custodio and Xavier Guàrdia for giving
me this opportunity.

There are many people who have contributed to this thesis through their professional advice
and work, such as Jaume Corb́ı, iOS developer at SFY, and Alfons González, Android developer
at SFY. Thank you all!

4

Revision history and approval record

Revision Date Purpose

0 02/07/2020 Document creation

1 25/08/2020 Document revision

2 31/08/2020 Document approbation

DOCUMENT DISTRIBUTION LIST

Name e-mail

David Llàcer Giner david.llacer@estudiant.upc.edu

Rubèn Tous Liesa rtous@ac.upc.edu

Xavier Guàrdia Latorre mmoran@sfy.com

Written by: Reviewed and approved by: Reviewed and approved by:

Date 31/08/2020 Date 31/08/2020 Date 30/08/2020

Name
David Llàcer
Giner

Name
Rubèn Tous
Liesa

Name
Xavier Guàrdia
Latorre

Position Project Author Position
Project Supervi-
sor

Position
Project Supervi-
sor

5

Contents

1 Introduction 9

1.1 Motivation . 9

1.2 Goals . 10

1.3 Hardware and Software Resources . 10

1.4 Work Plan . 10

2 State of the art 11

2.1 Neural Networks . 11

2.2 Automated test input generation . 12

3 Methodology 14

3.1 Design . 14

3.2 Dataset . 14

3.2.1 Data acquisition, the MCA module . 15

3.2.2 Images . 15

3.2.3 Interactions . 16

3.2.4 Context . 18

3.2.5 Inputs and Labels . 18

3.3 Model . 20

3.4 Training . 21

4 Results 24

5 Budget 28

6 Conclusion and Future Work 29

6

List of Figures

1.1 Gantt diagram . 10

3.1 Scheme of the system . 14

3.2 Data conversion from the app hierarchy to the final image. 16

3.3 Examples of app screens and their equivalent simplification. 16

3.4 Example of heat map location. 17

3.5 Single screen with its action location. 18

3.6 Sample. 19

3.7 Final set of input and labels. 19

3.8 Model architecture. 20

3.9 LSTM chain and LSTM gate. 21

3.10 Bounding boxes example. Green bounding box: ground truth. Red bounding box:
network prediction . 23

7

List of Abbreviations

AI Artificial Intelligence

App Mobile Application

UI User Interface

GUI Graphic User Interface

NN Neural Network

CNN Convolutional Neural Network

RNN Recurrent Neural Network

LSTM Long Short-Term Memory

GPU Graphics Processing Unit

MCA Módulo Común Aplicativo

QA Quality Assurance

8

Chapter 1

Introduction

1.1 Motivation

Mobile applications have become one of the first consumer goods in today’s society. There
are di↵erent types and they o↵er di↵erent services, from communication to social media, going
through entertainment, video games, fitness to bank account management, among others. To
develop these apps it is usual to follow a common path, normally it begins with an idea that is
presented to the design team, who is in charge of designing both the user experience and the
user interface architectures. Then, with a design, we can start developing making this design
real. There used to be two teams in charge of this step: front-end and back-end. Front-end
team develops the user interface and user experience part, while back-end team takes care of
databases, API and server issues. Once we release a first version of our app, we have to test
it to check that everything works fine and it follows the requirements of the established design.
To take care of this task, there is the testing team or Quality Assurance (QA) team. They have
to use the app as if they were users and verify that the user experience is correct and there are
neither bugs nor errors, and if there are, report them to the development team. Due to the fast
releasing cycle and limited human resources, it is di�cult to manually create test cases in a short
period of time. As a result, automated test input generators have been extensively developed.
There are some tools or software that already allow us to test apps automatically such as [1],
Monkey [12], DynoDroid [27], Espresso [2] and more.

The key to success for an automated test is to choose the correct interaction for a given UI,
being able to reach new relevant UI states. But choosing the correct button to click or do a scroll
and understanding the GUI can be very di�cult for a machine. That is why most of automated
test generators [3], [6], [12], [27] ignore di↵erent types of GUI elements and just apply random
strategy or brute force to choose the one to interact with. In this way, human testers are way
better that automated test input generators, because they can easily identify GUI elements that
are worth interacting with.

This research project is commissioned by a leading company in the banking sector in Spain,
that is interested in speed up and improve its applications by improving the testing process
applying new technologies, in this case deep learning and artificial intelligence. On the other
hand, although this is a private project, it can have repercussion and make contributions to the
community. In this work, we design and train a prototype of a deep learning model that tries to
mimic how humans interact with mobile apps.

9

1.2 Goals

The main goal of this work is to start the development of a system for automatic test input
generation for mobile applications. We want to create a first prototype to study the projection
that deep learning applied to input test generation can have and the possibilities that this kind
of model can o↵er to us.

1.3 Hardware and Software Resources

This project was developed using the Asterix server, that is part of the BSC-UPC NVIDIA
GPU Center of Excellence at Universitat Politècnica de Catalunya (UPC). The server consists
on two nodes. Each node has 12GB of RAM, four Intel(R) Xeon(R) E5620 @2.4 GHz 4-core
processors and 4 NVidia Tesla K40c GPUs (12GB memory and 2880 cores each). We also used
Jupyter Notebooks at Google Colab.

The algorithm was implemented with Pytorch1 version 1.1.0, using CUDA 9.0 and cuDNN to
use GPU acceleration. We chose this framework because it is a well known Python-based open
source deep learning library. For the image processing and database creation, we used OpenCV2,
an open source computer vision library widely used in image processing projects.

1.4 Work Plan

Figure 1.1: Gantt diagram

1https://www.pytorch.org/
2https://opencv.org

10

https://www.pytorch.org/
https://opencv.org

Chapter 2

State of the art

This chapter aims to introduce the reader to the basic and relevant concepts about deep
learning, but also review some literature about specific models and app testing tools that helped
the development of this work.

2.1 Neural Networks

Artificial Intelligence appears from the aim of creating machines that simulate human intel-
ligence. Software able to do things that human beings can do, such as understanding a book,
recognize faces, speak, translate, or even drive vehicles, to help us in our day-to-day life and
improve it, but also to speed up and simplify industry tasks. It is known that computers are
faster and more precise than human beings solving mathematical problems or even playing shogi,
chess or even Atari games [34]. But when it tries to solve other tasks that we do intuitively such
as recognizing a face, it becomes more complicated to solve. Deep Learning presents a method
to solve these more intuitive problems by allowing machines to learn from experience.

Neural networks have become the main solution for many Machine Learning problems. They
were proposed time ago [22] [32], but it has not been until now, with the evolution and improve-
ment of the computational capacity of devices and the large amount of data we store allowing
the creation of large data sets, that this solution has been considered a reliable approach. In
fact, it has become really popular and widely used for lots of di↵erent tasks such as translation
[7], face recognition [20], text generation [21] and more.

From a mathematical point of view, a neural network can be seen as a function approximator
that learns how to map some inputs to their respective outputs. It consists of a set of non-linear
operations whose parameters are trained in order to minimize a cost function. A layer in a neural
network is modeled as:

h = f(Whx+ bh) (2.1)

where x is the input, f is a non-linear function (e.g. ReLU) and Wh and bh are trainable weights
and biases, respectively. Neural networks use to concatenate more of these layers to obtain a
more complex system with more capacity. These are called Feed-Forward neural networks.

There are di↵erent NNs architectures. Another extensively used one is the Convolutional
Neural Network model. These networks are commonly used in tasks that involve images such as
object recognition [9] or face detection[31]. They consist of a set of convolutional layers that are
able to extract and learn image features at di↵erent resolution levels. Each layer has a filter with
its own kernel size, that is convoluted with the image, and each kernel is connected to neuron
which has the learnable parameters to optimize the system.

The two neural networks architectures explained before do not care about previous inputs, they
just learn sample by sample. But, what if we need to learn something whose main characteristic
is that it is a sequence? Things like text, speech or video can be described as sequences of

11

letters, words or images. Recurrent Neural Networks extend the feed-forward model by adding a
recurrent connection in time:

h = f(Whxt + Uhht�1 + bh) (2.2)

where Uh operates on the hidden state in the previous time step, ht�1, allowing information to
persist along time dimension. Some examples of these kind of architectures are developed in [15]
and [35]. The main problem of RNNs is that it is di�cult for them to learn long sequences [8].
This led to the development of gated units and the so called LSTM architecture [17].

LSTM stands for Long Short-Term Memory and they main implementation concept is cell

state, allowing to retain information along time and not su↵ering from same problem as RNNs.
LSTM equations are described as follows:

ft = �(Wfxt + Ufht�1 + bf) (2.3)

it = �((Wixt + Uiht�1 + bi) (2.4)

ot = �(Woxt + Uoht�1 + bo) (2.5)

ct = ft � ct�1 + it � tanh(Wcxt + Ucht�1 + bc) (2.6)

ht = ot � tanh(ct) (2.7)

where it is the input gate, ft is the forget gate and ot the output gate, all of them at time t. �
is the sigmoid function, � is the element-wise multiplication and W and b are weights and bias
trainable matrices respectively. The cell state at time t is represented by ct and the hidden state
at each time state is represented by ht.

The other fundamental part of deep learning and training neural networks is the data and the
training process. A set of labeled samples is needed so that the network can learn from it. We
give the network train and validation inputs and their respective labels, but the behavior of the
layer is not defined. The layer parameters have to be tuned in order to optimize a loss function,
that indicates how well the network is predicting, in other words, how close to the expected
outputs these predictions are.

2.2 Automated test input generation

Since the appearance of mobile applications, automated GUI test generation has become an
active research area. As you can guess, manually writing test cases can be hard, time consuming
and error prone. Automated test generation approaches are normally designed with a particular
objective, such as achieving high coverage, uncovering the largest amount of bugs, reducing
testing scenarios or generating test scenarios that mimic representative use cases of an application.

Automated input generation techniques use to be divided into three approaches [25]:

• Random based input generation [12], [27].

• Semantic input generation [30], [4], [5].

• Model based input generation [29], [19], [28].

12

Recent work [10] illustrated the relative ine↵ectiveness of many research tools when comparing
program coverage metrics against a naive random approach and highlighted many unsolved chal-
lenges including generation of system events, the need for manually specified inputs for certain
complex app interactions, adverse side a↵ects between di↵erent runs and a need fro reproducible
cases among others.

Regarding GUI, it is one of the most important parts of an app. It allows the user to understand
and know how to interact with it. There are two lines of research in this area. First is understand
the problem from the software engineering point of view; and the second is to study the human-
device interaction point of view to analyze the UI design. Many automated testing software uses
GUI model based approaches to guide input generation. They analyse the information of current
UI state and not only the transitions between UI states [18], [33], [23].

Last but not least, we want to talk about deep learning in the field of automated input test
generation. There is no much research about introducing deep learning into automated testing.
There is just a very recent article, from 2019, where they implement this concept. It was published
by Li, Yang, Guo and Chen [24], in which they develop a system called Humanoid to generate
test inputs using artificial intelligence. They trained a neural network with an Android user-app
interactions dataset called Rico database [11]. Our work tries to follow their research line and
is based on this paper, trying to reproduce it but with some model modifications and a custom
dataset.

13

Chapter 3

Methodology

3.1 Design

In this section we explain the main structure of the system. Our main goal is to create a bot
able to navigate through an app. For this, we have to train a neural network that consumes a
sequence of images, that represents the actual screen and the three previous screens, and outputs
two probability distributions: one corresponding to the location of the next touch and the second
corresponding to the type of action. We can see a representation of the system in Figure 3.1.

Figure 3.1: Scheme of the system

3.2 Dataset

Now that we know the structure of the project, in this section we are going to explain the
steps we followed to generate the data that we used to create the dataset.

In general terms, the dataset consists of 5504 user interactions. Each sample is a sequence of
4 images representing the actual and previous screens. This will allow the networks to learn how
to navigate through the app thanks to the context we are giving to it.

If we get a sample of the dataset we will get the following data:

• Sequence of four RGB images. It is a tensor of dimensions [4, 3, Height, Width]

• Location label. A tensor of dimensions [4, 1, Height, Width]

• Interaction label. An integer in the range [0,6] representing the seven action types.

As it is a custom dataset, we also made a custom dataset class in order to manage it. This
class inherits from the PyTorch’s class Dataset1.

1https://pytorch.org/docs/stable/data.html#torch.utils.data.Dataset

14

https://pytorch.org/docs/stable/data.html%23%23torch.utils.data.Dataset

3.2.1 Data acquisition, the MCA module

The first approach was to make a screen shot of the actual screen in order to have an image
of the GUI, but then we realized that this would take a big computational and storage cost. On
one hand, it can a↵ect the smooth operation of the app slowing it down, and on the other hand,
storing a high-resolution image of the screen would take up a lot of storage space. That is why
we decided to capture only the hierarchy of each screen, which is a kind of dictionary that stores
all the elements that compose the interface. This allows us to save in computational time and
storage up to 40%.

We obtained our data from a private bank account and money managing app. In order
to extract the data, we implemented and introduced an MCA within the app. MCA refers to
”Módulo Común Aplicativo”, it is a module developed by the company business department that
is transversal to several applications in the company. In this case, our MCA is in charge of
capturing:

• The hierarchy of the actual screen where the user taps. This gives information about all
the elements that was present on the screen in the moment the user made an interaction,
such as buttons, labels, images, text boxes and others.

• The location where the user has tapped, represented with two coordinates (x,y).

• Information about the tap such as start and end location of the tap, start and end time
of the tap. This information allows us to know if this was a regular tap or a long tap, but
also a scroll or a swipe (up or down).

• Information about the keyboard activation. For privacy reasons we were not able to capture
the text input of the user, but we need to know at least if the keyboard is active because
in those cases the user can also tap buttons that are out of it.

With this module, we were able to generate data just using the app and navigating through it.
This data was stored in json files that we will call traces, and will be used later to generate the
image data. As the generated files are stored inside the mobile phone, we coded the key words
in order to minimize the storage space they occupy. The average size per file is about 8KB.

3.2.2 Images

From the information stored in the traces, we can ”draw” our screens and generate a simpler
representation of them. We made our representation based on a flag common to all the elements
of the GUI: ”interaction enabled”. If this parameter is set to True, it means this element is
interactive, in other words, if you touch it, you cause a change in the GUI such as change to
another screen or make a message appear. Examples of interactive elements could be: buttons,
sliders or text boxes. On the other hand, non-interactive elements are those that if you interact
with them nothing happens, such as texts, images, titles or labels, among others. Based on this
flag, we will represent interactive elements with the color green and non-interactive elements with
the color red. The process of data transformation is shown in Figure 3.2.

15

Figure 3.2: Data conversion from the app hierarchy to the final image.

In origin, images are stored with size 667x375, that is the size of the screen in the mobile app;
and the image size file is between 4 and 7 KB. We can see more examples of app screens and
how, after processing, we obtain the representative image in Figure 3.3.

Figure 3.3: Examples of app screens and their equivalent simplification.

3.2.3 Interactions

We define interaction with two concepts: location and type of action. In this section we
explain what they are and how we obtain them.

16

Location stands for the coordinates where the user performed the interaction on the screen.
We obtain this coordinates from the traces. To represent the location, we decided to code the
coordinates in a heat map that will be the same size of the screen image (see Figure 3.4). It
represents a distribution in which each pixel corresponds to the probability of this pixel to be the
target location. As the raw coordinates are highly non-linear and di�cult to learn, we decided
to represent the location with a gaussian distribution around the target location that is easier to
learn.

Figure 3.4: Example of heat map location.

Action type is self explanatory, it represents the type of the action the user performed. We
also refer to it as gesture. In this work we considered 7 types, including touch, long touch,
scroll up/down, swipe left/right and input text. In Table 3.1 we can observe each
action type with its corresponding class value. This classes will be used later in the classifier part
of the network.

In order to know which type of action it is, we make use of the start and end coordinates and
the start and end time of the stored in the traces. We established a set of heuristic rules based
on [13] to determine the interaction type. Those rules are showed in Table 3.1.

Interaction Class Rules

Touch 0
|locend - locstart| < 48px and
timeend - timestart < 500ms

Long touch 1
|locend - locstart| < 48px and
timeend - timestart > 500ms

Swipe right 2

|locend - locstart| < 48px and
locend is on top / right / bottom /

left from the locstart

Swipe left 3

Scroll up 4

Scroll down 5

Input text 6 keyboard activated flag

Table 3.1: Interaction types with their corresponding class and the heuristic conditions.

At the same time we generate the images from the traces, we also generate a csv file where
we associate each image to its action type. In this way, just knowing the image filename we also
know which action type was performed.

17

3.2.4 Context

To achieve the network to learn how to use the app mimicking a real user, we need to introduce
the concept of context.

The context refers to the sequence of actions that led the user to the current screen, that
is: previous screens and previous interactions. This is important because when a user navigates
through an app, normally it has an intention. For example, if the user wants to check one of
its bank account, it will follow a concrete path to get the account screen, but if the user wants
to change the password of its account, it will follow a di↵erent path in order to arrive to the
corresponding screen.

Our actual screen is si and the action to be performed on this screen is ai, so for the actual
screen we have the interaction (si, ai). If we apply this to the context concept, the context of
the actual screen is ci = <(si), (si�1, ai�1), (si�2, ai�2), (si�3, ai�3)>. Notice that the action
taken in the actual screen does not belong to its context, because this is the thing that we want
to predict.

As a result, the samples of our database are a sequence of images and not single images.

In this project we considered a context of 3 previous screens with its 3 corresponding previous
interactions. It means that each sample in the dataset will be formed by:

• 3 images for the previous screens.

• 1 image for the actual screen.

3.2.5 Inputs and Labels

In our dataset, each sample is formed by 4 images. Each image is represented in RGB format,
so we have 3 channels per image: Green, Red and Blue. This is perfect for our purpose, because
we can store all the information relative to screen and interaction in a single image as we can
observe in 3.5. At the end, in each image channel we have:

• R channel: Non-interactive elements.

• G channel: Interactive elements.

• B channel: Location of the interaction.

Figure 3.5: Single screen with its action location.

18

Figure 3.6: Sample.

In Figure 3.6, we can observe the 4 screens sequence. First image (left) is the actual screen
and the other three images are the previous screens. They are ordered temporarily from right to
left. Intuitively, first 3 traces do not have a complete context of previous images. In this case,
we just pad these previous states with zeros.

In a sequence, the images belonging to the context have their corresponding location heat
map in the B channel, but the image of the actual screen does not. This is because the location
of the action the user took on the actual screen is the label of the sequence, it is the ground
truth we use to compare with the network prediction. In that way, once we take the B channel
from the actual screen image, we fill it with zeros in order to keep the three channel format.

In order to save storage space, we store images as single image, and not as sequences, each one
with its own action location in B channel. To form the sequences, we use the time information
we get from the traces json files, and then generate a csv file where we organise the images in
sequences. This file is structured in 4 columns, as sequences are 4 images long, and each column
has the path to the corresponding image file.

Summarizing, the input of the network is a sequence of 4 images: the actual screen and the
3 past screens and their corresponding interaction locations. On the other hand, the labels are:
the heat map, that represents the probability distribution of the screen pixels to be the target
location; and the action type class. The set of training components are shown in Figure 3.7.

Figure 3.7: Final set of input and labels.

19

3.3 Model

In this section we describe the neural network we programmed, its parts and why we decided
to choose this structure. This model is inspired by the one presented in [24] but with some
di↵erences such as: it is simpler, having one less convolutional layer and consequently it has one
less LSTM layer. It also has one Linear layer to adjust sizes at the en of the location part, and
also one more Linear layer in the action type part.

The network follows a Convolutional Encoder-Decoder structure with two LSTM layers in
the middle after the bottleneck. It has two outputs: one is the De-Convolutional part of the
Encoder-Decoder to calculate the heat map and the other is a Linear or Fully Connected part,
in charge of predicting the action type.

As we said in 3.1, we need a model to predict two conditional distributions:

• ptype(type | ci) with type 2 {touch, long touch, scroll up, swipe right...} It is the
probability distribution of the type of the next action ai given the current context ci.

• plocation(x, y | ci), where 0 < x < screen width and 0 < y < screen height. It is the
probability distribution of the target location of the next action ai given the current context
ci.

Figure 3.8: Model architecture.

In Figure 3.8 we can see the full model architecture. The first part is formed by Convolu-

tional layers. Convolutional networks have become the most popular approach for image feature
extraction as they are very powerful in computer vision tasks [36]. Our model has 4 convolutional
layers with ReLU activations to perform the feature extraction from the GUI representations and
location heat maps. After each convolutional layer, there is a max-pooling layer with stride-2 that
reduces the width and height of its input to half, and a batch normalization layer that allows each
layer to learn by itself a little bit more independently of other layers, but also helps to prevent
overfitting because it has slight regularization e↵ects.

Next part are the LSTM modules. LSTM (Long Short-Term Memory) networks are used for
sequence-to-sequence problems such as translation or video next frame prediction. We can see

20

the internal structure if an LSTM gate and how they are connected to from a chain in Figure
3.9. LSTM networks deal with exploding and vanishing gradient problems that can appear when
training traditional RNN by incorporating gates to regulate the information flow. We put residual
LSTM modules after each of the 2 last convolutional layers to extract features at di↵erent levels
of resolution. The residual LSTM adds the last dimension of the input and the output of the
regular LSTM together, this makes the network easier to optimize [16] and gives hint that the
location of an action lies inside a GUI element. In order to decrease model complexity, we added
a convolutional layer before each LSTM just to reduce the number of features from 64 to 1.

Figure 3.9: LSTM chain and LSTM gate.

Now the network splits into two parts, to output both probability distribution. The De-

Convolutional layers are used to get a get back to the input size and get a high resolution
probability distribution from the low resolution output of the LSTM modules. Features of di↵erent
resolution levels are combined to improve the quality of the heat map [26]. As the output of
the De-Convolutional layers is not exactly the same as the input of the network, we added a
Linear layer to adjust the size to [160x90]. At the end, we use a Softmax layer to normalize
the output so that all pixels sum to 1, as it has to be a probability distribution.

The other output consists of 2 Linear or Fully connected layers with a Softmax to predict
the probability distribution of the action types.

Regarding activation functions, we tried some of them like Sigmoid, ReLU and Tanh. As our
targets are probabilities and have values between 0 and 1, the best options were Sigmoid and
ReLU, because they both put negative values to zero. Sigmoid is a good option for our objective,
but tends to have the gradient vanishing problem due to the small values the sigmoid derivative
has. This is solved using the ReLU activation, because when it’s derivative is back-propagated
there will be no degradation of the error. So we used ReLU as the activation function along the
entire network.

3.4 Training

In this section we explain how we proceeded to prepare the data and get it ready for training.

First of all, we applied a resize of the images because their original size is 667x375. This
size is too large to handle in memory during training, and as the images are quite simple, we can
a↵ord a resizing to a smaller size like 160x90 keeping all details.

21

Second step is to normalize and standardize the data. Normalization is the process of
rescaling data in the range [0, 1] or [�1, 1] operating as follows respectively:

x
0 = x�min(x)

max(x)�min(x) (3.1) x
0 = x�mean(x)

max(x)�min(x) (3.2)

In our case, as the pixels of images are already zeros and ones, it is not necessary to normalize
them.

Standardization is used to rescale the data to zero-mean and unit-variance.

x
0 =

x� µ

�
(3.3)

where µ stands for the expectation of x and � is its standard deviation. We calculated
both parameters along each image channel obtaining mean:[0.1976, 0.4471, 0.0008] and
std:[0.3848, 0.4826, 0.0196].

The complete dataset has 5504 samples, but for the training process, we split it into training
and validation set. We gave 80% for the training set (4403 samples) and 20% for the validation
set (1101 samples).

To train the network we need a cost function to obtain a measure of how good the network
predicting our target labels is. In our case, we have two outputs, so we need two loss functions.
As both heat map and action type outputs are probability distributions, the most suitable cost
function we found is the Cross Entropy Loss. This function measures the performance of a
classification model whose output is a probability value between 0 and 1. It is calculated as
follows:

H(p, q) = �
X

8x
p(x)log(q(x)) (3.4)

In PyTorch, CorssEntropyLoss
2 just accepts as labels the corresponding target class. For

example, imagine we have a classification problem with 4 classes, so classes belong to [0,3]; if
our input corresponds to class 2, the label will be ’2’, and not a one hot encoded like [0,0,1,0]
nor a probability distribution like [0.1, 0.1, 0.6, 0.2]. This helps us with the action type

part of the network because the action type labels follows this format. But the heat map labels
are probability distributions, also called soft labels. So in order to be able to use Cross Entropy
loss we had to implement a custom soft cross entropy function in order to accept these kind of
labels.

In order to updates the network parameters, we need something called optimizer. This is an
algorithm or method to change the attributes of the network such as weights and biases in order
to reduce the loss values. Regarding the optimizer, we trained the network with two optimizers:

• Stochastic Gradient Descend (SGD) with momentum. It is a variant of the basic Gradient
Descent algorithm. It changes the model parameters more frequently, specifically after loss
computation in each train sample. One of the disadvantages of SGD is the high variance

2https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.htmltorch.nn.CrossEntropyLoss

22

in model parameters. To solve that, we added a momentum parameter that accelerates
the convergence towards the relevant direction and reduces the fluctuation to the irrelevant
direction.

• Adaptive Moment Estimation (Adam). It works with momentums of first and second order.
The idea behind Adam is not to roll so fast just because we can avoid a minimum; we want
to decrease the velocity a little for a careful search. The main advantages of Adam are
that it converges in a fast way and rectifies vanishing learning rate avoiding high variance.
On the other hand, it is computationally expensive.

In both optimizers, we added an L2 Regularization of the weights. It is a penalty added in the
weight update process and avoids very big weight values smoothing the oscillations of the loss
curve.

To check the accuracy of the system we employed bounding boxes around heat map locations
in order to allow a certain degree of error, since a button has a number of pixels that can be
clicked, so there is no di↵erence if you click some pixels away. We used 10x10 bounding boxes.
We applied a widely used measure in object detection called Intersection Over Union (IoU) [37].
This measure calculates the overlapping between both prediction and ground truth bounding
boxes. In Figure 3.10 we can see an example of both bounding boxes on a real sample. Then,
taking into account the percentage of overlapping area, we determine an acceptable threshold
to say if it is a hit or not. The most common thresholds are 50% and 75%. We decided to use
the second because is more restrictive, as we are already allowing some degree of freedom when
using the bounding box method.

IoU =
AreaIntersection

AreaUnion
(3.5)

The threshold we put to consider the prediction is a hit is of IoU � 0.75. It means that, if
the overlapping between both bounding boxes is lower than 75%, it will be considered as a fail.

Figure 3.10: Bounding boxes example. Green bounding box: ground truth. Red bounding box:
network prediction

23

Chapter 4

Results

In this section we present and describe some of the trainings we performed and the respective
training results we obtained.

To optimize training process, it is recommended to initialize network parameters. Initializing
the network with the right weights can be the di↵erence between the network converging in a
reasonable amount of time and the network loss function not going anywhere. The initialization
we chose is Xavier initialization, proposed in [14] using a normal distribution.

As the network has a multi-output structure, we have to calculate two losses: heat map and
action type. But we can only use one loss value to perform the backward pass. To do that, we
just added both losses and used the result to update the weights like:

loss = lossheatmap + lossactiontype.

From all the training experiments carried out, we have chosen only the most relevant to show
them in this report. Their results can be seen in Tables 4.1 and 4.2. We present 5 trainings with
di↵erent parameter configurations changing the values of learning rate, weight decay, momentum
and number of epochs. Also, as we said in 3.4, we tried two di↵erent optimizers.

The first result to comment is that action type prediction almost always gets an accuracy of
75%. It means the classifier part of the network works pretty well. It seems to be the part that
most depends on changing parameters is the location predictor part. It could be due to the fact
that making a classification could be easier than predict a bigger probability distribution.

We tried di↵erent learning rates, but we got that the one which gives the best result is 0.01.
A learning rate of 0.001 is too low and delays the training a lot. On the other hand, a higher
learning rate of 0.1 is too high and leads to very weird and static loss curves as we can see in
Table 4.3.

Regarding optimizers, Adam was expected to perform better but surprisingly SGD performed
better in our experiments. Adam is able to reach a higher training accuracy as we can see in
Training 2, getting almost 35%, but validation accuracy is very bad with 11% in front of 14%
of Training 3. Training 2 gets better results than Training 1 in general because it trained for 50
epochs.

Focusing on Trainings 3 and 4, here we introduce the concept of momentum that is supposed
to help reaching the goal in less steps. We tried values in the range [0.7, 0.9] and we presented
the values with better results 0.85 and 0.88. Momentum is a parameter that changes a lot how
fast we get the minimum of the cost function when using Stochastic Gradient Search. As you
can see, we got better validation accuracy in Training 3 in only 12 epochs in front of the 20
epochs of Training 4.

The best result was obtained for Training 3 as it got the highest location accuracy of 14%,
even though it got a 74% of action type accuracy.

24

Training 1

Epochs: 20 BS: 16 Optim: Adam LR: 0.01 wd: 0.001 momentum: -

Train Loss Validation Loss

Train HM acc.: 20% Train AT acc.: 78% Val. HM acc.: 12% Val. AT acc.: 75%

Training 2

Epochs: 50 BS: 16 Optim: Adam LR: 0.01 wd: 0.001 momentum: -

Train Loss Validation Loss

Train HM acc.: 34% Train AT acc.: 77.8% Val. HM acc.: 11.5% Val. AT acc.: 79%

Table 4.1: Training 1 and 2 results. Epochs: Number of epochs, BS: Batch Size, Optim:
Optimizer, LR: Learning Rate, wd: Weight Decay, momentum: Momentum.

25

Training 3

Epochs: 12 BS: 16 Optim: SGD LR: 0.01 wd: 0 momentum: 0.88

Train Loss Validation Loss

Train HM acc.: 14% Train AT acc.: 77% Val. HM acc.: 14% Val. AT acc.: 74%

Training 4

Epochs: 20 BS: 16 Optim: SGD LR: 0.01 wd: 0.001 momentum: 0.85

Train Loss Validation Loss

Train HM acc.: 26% Train AT acc.: 78% Val. HM acc.: 12% Val. AT acc.: 78%

Table 4.2: Training 3 and 4 results. Epochs: Number of epochs, BS: Batch Size, Optim:
Optimizer, LR: Learning Rate, wd: Weight Decay, momentum: Momentum.

26

Training 5

Epochs: 20 BS: 16 Optim: Adam LR: 0.1 wd: 0.001 momentum: -

Train Loss Validation Loss

Table 4.3: Training 5 results. To show the bad performance of too high learning rate. Epochs:
Number of epochs, BS: Batch Size, Optim: Optimizer, LR: Learning Rate, wd: Weight Decay,
momentum: Momentum.

27

Chapter 5

Budget

The hardware resources needed for the project were a MacBook Pro laptop and the Asterix
server. The GPU was used during 1 month for the development of the model, which adds to
400 hours of computation. We compute the computation cost based on Amazon Web Services
(AWS) rates1 for p2.xlarge instances with one NVIDIA K40c. Software employed was Atom2

that is license free.

The main costs of this project come from the salary of the researches and the time spent in
it. The team for the development of this thesis is formed by two senior app developers as the
developers of the MCA and myself as a junior engineer. The length of the project was 20 weeks,
as presented in the Gantt diagram. Assuming a commitment of 30 weekly hours and that each
advisor spent an average of 1h per week on meetings, the complete costs for the project are the
following:

Amount Cost/hour Time Total

GPU TESLA K40c 1 0,90 e 400h 360 e

Junior engineer 1 10,00 e 700h 7.000 e

Senior developer 2 30,00 e 40h 1.200 e

Other equipment - - - 3.000 e

Total 12.760 e

Table 5.1: Cost of the project. Other equipment includes o�ce and campus services and employed
laptop.

1https://aws.amazon.com/ec2/instance-types/p2/?nc1=h_ls
2https://atom.io

28

https://aws.amazon.com/ec2/instance-types/p2/?nc1=h_ls
https://atom.io

Chapter 6

Conclusion and Future Work

We presented the design and training processes of a deep learning prototype model that tries
to learn how to navigate through a mobile application mimicking the human behavior. For that,
we created a dataset from scratch. We implemented a software module (MCA) in order to extract
the user data from the application: location of the touch and type of action; and then process
this information to generate the images that will be the inputs to feed our model. These images
are simpler representations of the application GUI screens.

Once we had our dataset prepared, we designed and programmed a neural network formed
mainly by a convolutional part to recognise features from the GUI screen, and an LSTM part to
learn the sequence information of the user interactions.

The best experiments obtained a validation accuracy of 14% in the location prediction (the
accuracy for a random classifier (random guess) is 0.35%) and 79% in the action type prediction.
These results are highly improvable, but for a prototype it is a good starting point.

We did try di↵erent network configurations, but as future work, we want to try way more
in order to improve the results. Furthermore, we want to try longer training time, generate a
larger dataset or try to use transfer learning to train first one part of the network and then the
other. Another possibility would be to train the network with a bigger public dataset and then
use transfer learning method to train it over our custom dataset. The next step of this project,
after improving the results, is to connect the output of the network to a testing software to use
the model as an automatic input generator and check how many screens it can go through. Once
the prototype is ready to navigate, the idea is to try to train it to find bugs and glitches over the
app using methods like reinforcement learning, rewarding it every time it finds an error.

29

Bibliography

[1] Appium testing framework, http://appium.io.

[2] Espresso testing framework, https://developer.android.com/training/testing/espresso.

[3] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Salvatore De Carmine,
and Gennaro Imparato. A toolset for gui testing of android applications. In 2012 28th IEEE

International Conference on Software Maintenance (ICSM), pages 650–653. IEEE, 2012.

[4] Saswat Anand, Mayur Naik, Mary Jean Harrold, and Hongseok Yang. Automated con-
colic testing of smartphone apps. In Proceedings of the ACM SIGSOFT 20th International

Symposium on the Foundations of Software Engineering, pages 1–11, 2012.

[5] Tanzirul Azim and Iulian Neamtiu. Targeted and depth-first exploration for systematic testing
of android apps. In Proceedings of the 2013 ACM SIGPLAN international conference on

Object oriented programming systems languages & applications, pages 641–660, 2013.

[6] Young-Min Baek and Doo-Hwan Bae. Automated model-based android gui testing using
multi-level gui comparison criteria. In Proceedings of the 31st IEEE/ACM International

Conference on Automated Software Engineering, ASE 2016, page 238–249, New York, NY,
USA, 2016. Association for Computing Machinery.

[7] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[8] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with
gradient descent is di�cult. IEEE transactions on neural networks, 5(2):157–166, 1994.

[9] Yongqiang Cao, Yang Chen, and Deepak Khosla. Spiking deep convolutional neural networks
for energy-e�cient object recognition. International Journal of Computer Vision, 113(1):54–
66, 2015.

[10] Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro Orso. Automated test input gen-
eration for android: Are we there yet?(e). In 2015 30th IEEE/ACM International Conference

on Automated Software Engineering (ASE), pages 429–440. IEEE, 2015.

[11] Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan, Yang Li,
Je↵rey Nichols, and Ranjitha Kumar. Rico: A mobile app dataset for building data-driven
design applications. In Proceedings of the 30th Annual ACM Symposium on User Interface

Software and Technology, pages 845–854, 2017.

[12] A. Developers. Ui/application exerciser monkey,, 2012.

[13] Zac Dickerson. Size matters! accessibility and touch targets, 2018. Last accessed 19 June
2020.

[14] Xavier Glorot and Yoshua Bengio. Understanding the di�culty of training deep feedfor-
ward neural networks. In Proceedings of the thirteenth international conference on artificial

intelligence and statistics, pages 249–256, 2010.

[15] Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan Wierstra.
Draw: A recurrent neural network for image generation. arXiv preprint arXiv:1502.04623,
2015.

30

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016.

[17] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[18] Jianjun Huang, Xiangyu Zhang, Lin Tan, Peng Wang, and Bin Liang. Asdroid: Detecting
stealthy behaviors in android applications by user interface and program behavior contradic-
tion. In Proceedings of the 36th International Conference on Software Engineering, pages
1036–1046, 2014.

[19] Casper S Jensen, Mukul R Prasad, and Anders Møller. Automated testing with targeted
event sequence generation. In Proceedings of the 2013 International Symposium on Software

Testing and Analysis, pages 67–77, 2013.

[20] Steve Lawrence, C Lee Giles, Ah Chung Tsoi, and Andrew D Back. Face recognition: A
convolutional neural-network approach. IEEE transactions on neural networks, 8(1):98–113,
1997.

[21] Rémi Lebret, David Grangier, and Michael Auli. Neural text generation from structured
data with application to the biography domain. arXiv preprint arXiv:1603.07771, 2016.

[22] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Ha↵ner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[23] Yuanchun Li, Yao Guo, and Xiangqun Chen. Peruim: Understanding mobile application
privacy with permission-ui mapping. In Proceedings of the 2016 ACM International Joint

Conference on Pervasive and Ubiquitous Computing, pages 682–693, 2016.

[24] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. A deep learning based approach
to automated android app testing. arXiv preprint arXiv:1901.02633, 2019.

[25] M. Linares-Vásquez, K. Moran, and D. Poshyvanyk. Continuous, evolutionary and large-
scale: A new perspective for automated mobile app testing. In 2017 IEEE International

Conference on Software Maintenance and Evolution (ICSME), pages 399–410, 2017.

[26] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for se-
mantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 3431–3440, 2015.

[27] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. Dynodroid: An input generation system
for android apps. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software

Engineering, pages 224–234, 2013.

[28] Riyadh Mahmood, Nariman Mirzaei, and Sam Malek. Evodroid: Segmented evolutionary
testing of android apps. In Proceedings of the 22nd ACM SIGSOFT International Symposium

on Foundations of Software Engineering, pages 599–609, 2014.

[29] Ke Mao, Mark Harman, and Yue Jia. Sapienz: Multi-objective automated testing for android
applications. In Proceedings of the 25th International Symposium on Software Testing and

Analysis, pages 94–105, 2016.

31

[30] Kevin Moran, Mario Linares-Vásquez, Carlos Bernal-Cárdenas, Christopher Vendome, and
Denys Poshyvanyk. Automatically discovering, reporting and reproducing android applica-
tion crashes. In 2016 IEEE international conference on software testing, verification and

validation (icst), pages 33–44. IEEE, 2016.

[31] Omkar M Parkhi, Andrea Vedaldi, and Andrew Zisserman. Deep face recognition. 2015.

[32] Frank Rosenblatt. The perceptron: a probabilistic model for information storage and orga-
nization in the brain. Psychological review, 65(6):386, 1958.

[33] Julia Rubin, Michael I Gordon, Nguyen Nguyen, and Martin Rinard. Covert communication
in mobile applications (t). In 2015 30th IEEE/ACM International Conference on Automated

Software Engineering (ASE), pages 647–657. IEEE, 2015.

[34] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre,
Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al.
Mastering atari, go, chess and shogi by planning with a learned model. arXiv preprint

arXiv:1911.08265, 2019.

[35] Ilya Sutskever, James Martens, and Geo↵rey E Hinton. Generating text with recurrent neural
networks. In ICML, 2011.

[36] Jonathan J Tompson, Arjun Jain, Yann LeCun, and Christoph Bregler. Joint training of a
convolutional network and a graphical model for human pose estimation. In Advances in

neural information processing systems, pages 1799–1807, 2014.

[37] Dingfu Zhou, Jin Fang, Xibin Song, Chenye Guan, Junbo Yin, Yuchao Dai, and Ruigang
Yang. Iou loss for 2d/3d object detection. In 2019 International Conference on 3D Vision

(3DV), pages 85–94. IEEE, 2019.

32

	Introduction
	Motivation
	Goals
	Hardware and Software Resources
	Work Plan

	State of the art
	Neural Networks
	Automated test input generation

	Methodology
	Design
	Dataset
	Data acquisition, the MCA module
	Images
	Interactions
	Context
	Inputs and Labels

	Model
	Training

	Results
	Budget
	Conclusion and Future Work

