
FACTORIZATION AND MALLEABILITY OF RSA MODULI, AND
COUNTING POINTS ON ELLIPTIC CURVES MODULO N

LUIS V. DIEULEFAIT AND JORGE JIMÉNEZ URROZ

Abstract. In this paper we address two different problems related with the
factorization of an RSA modulus N . First we can show that factoring is equivalent
in deterministic polynomial time to counting points on a pair of twisted Elliptic
curves modulo N . The second problem is related with malleability. This notion
was introduced in 2006 by Pailler and Villar, and deals with the question of wether
or not the factorization of a given number N becomes substantially easier when
knowing the factorization of another one N ′ relatively prime to N . Despite the
efforts done until today, a complete answer to this question was unknown. Here
we settle the problem affirmatively. To construct a particular N ′ that helps the
factorization of N we use the number of points of a single elliptic curve modulo
N . Coppersmith’s algorithm allows us to go from the factors of N ′ to the factors
of N in polynomial time.

1. Introduction

There is no need to explain the importance of secure digital communication nowa-
days. We are using computers for military purposes, politics, electronic payments,
voting and even lately taking sharing decisions via blockchain. And the standard
tool to provide data security is through Cryptography. Since 1977 it has been proved
that asymmetric encryption and, in particular RSA which is the most widely used,
is a very convenient mechanism both from security and efficiency point of view.

The security of RSA is based on the hardness of factoring large integers, and there
is a massive literature on this subject. Nowadays, even though the most efficient
factorization algorithm is the general number field sieve [1], [2], [3], which works in
subexponential running time, the future seems to lead us to quantum computation,
where the improvement is dramatic. In this setting we find Shor’s algorithm which
is able to factor integers in polynomial-time in a gate-based quantum computer,
and there are other apparently fast algorithms in adiabatic or annealing quantum
computers [4], [5], [6], [7].

In spite of the existence of these algorithms, since it is not yet possible to build
quantum computers with sufficiently many qbits to factor large integers, the security
of cryptosystems relying on the hardness of integer factorization such as RSA is not
currently at stake. Therefore, both for practical purposes and for its theoretical
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intrinsic interest, the problem of integer factorization (with classical computers) is
highly relevant.

But we have many algorithms to find the factors of a number, and we learn them
at the school, so what does it mean that factoring is difficult? Well, it simply means
that given

N = 2211282552952966643528108525502623092761208950247001539441374831912

8822941402001986512729726569746599085900330031400051170742204560859

2763579537571859542988389587092292384910067030341246205457845664136

64540684214361293017694020846391065875914794251435144458199

and knowing that it is the product of two prime factors, nobody in the world knows
how to find them using only N and no extra a priori information on his factors. It
is so hard that in fact the problem seems completely different each time you try to
factor a new number. In other words it seems, at first, that even if you know the
factors of any number relatively prime to N , it will not help to find the factors of
N . This is what is known in the literature as non-malleability of the factorization
problem.

The motivation of this note is twofold. We started studying the problem of mal-
leability of an RSA modulus N and suddenly we came to deal directly with the
problem of factorization, finding that in fact it is equivalent to counting the number
of points on an elliptic curve modulo N .

But let us start with malleability. It was introduced in 2006 in the paper by
Pailler and Villar [8]. This notion, which we give explicitly in Section 3, captures a
very basic fact in arithmetic: intuitively, one tends to believe that the problem of
factoring a given number N (an RSA modulus) is not made easier if we know how
to factor other numbers N ′ relatively prime to n. If this is true we say that factoring
is non-malleable.

Appart from its purely arithmetic nature, the truth is that malleability appeared
to the authors while studying the existence of a tradeoff between one-wayness and
chosen ciphertext security, already observed back in the eighties for example in
[9, 10, 11]. In some sense, one cannot achieve one-way encryption with a level
of security equivalent to solve certain difficult problem, at the same time as the
cryptosystem being IND-CCA secure with respect to it.

Even though this paradox has been observed, it has not been formally proved
except in the case of factoring-based cryptosystems in which Pailler and Villar [8]
clarified the question reformulating the paradox in terms of key preserving black-
box reductions and proved that if factoring can be reduced in the standard model
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to breaking one-wayness of the cryptosystem then it is impossible to achieve chosen-
cyphertext security.

After this they introduce the notion of malleability of a key generator and, with
it, they are able to extend the result from key preserving black box reductions to
the case of arbitrary black box reductions.

Given the importance of both, one-wayness and CCA security, authors started to
search for ways to overcome this uninstantiability and two relevant papers appeared.
In [12] the authors propose a new public-key encryption scheme that is based on
Rabin’s trapdoor one-way permutation with equivalence between CCA security and
the factoring problem. Being aware of the work of [8], they had to modify the setting
to achieve their result. Then, in [13] the authors show that the widely deployed RSA-
OAEP encryption scheme of Bellare and Rogaway [14], which combines RSA with
two rounds of an underlying Feistel network whose hash (i.e., round) functions are
modeled as random oracles, meets indistinguishability under chosen-plaintext attack
(IND-CPA).

Both papers introduced modifications trying to avoid the paradox in the more
general setting of arbitrary black-box reductions, proved via non-malleability. So,
as the authors themselves stress in [8], it is very important to study non-malleability
of key generators and, in fact, they conjecture that most instance generators are
non-malleable, although no arguments are given to support this belief.

At this point let us give the more precise definition of malleability. It rests in
measuring the difference between suitable Game 0 and Game 1, as defined in [8]. In
Game 0 we factor a given number N with an oracle which can solve any problem that
can be reduced to factoring. On the other hand, in Game 1 the oracle has the extra
ability of factoring numbers which are relatively prime to N . If the probability of
factoring N increases significantly in Game 1, then we say that factoring is malleable.
(see [8], Section 4.1, for more details)

In [15] we address this question and notice that the freedom of selecting the
new number N ′ breaks the independent behaviour of prime numbers, and hence
we produce an explicit N ′ which makes factorization malleable. In other words,
given any RSA modulus N we prove the existence of a polynomial time reduction
algorithm from factoring N to factoring certain explicit numbers N ′, all relatively
prime to N .

The numbers given in [15] are very simple: given the RSA modulus n = pq, the
factorization of N ′ = mN − 1, where m is a primitive root of the smallest prime
dividing N , allows us to factor N in polynomial time. However, this does not give
a complete satisfactory answer for several reasons. First one could think of N ′ to
be of exponential size and then out of the scope of the question. However, as we
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mention in [15], one can think of N ′ as a collection of exactly N ones when it is
written in m-ary, and we just need the factors of N ′ modulo N , a data that has the
same size as the given number. In any case, it still persists the restlessness of not
knowing whether or not in a small interval centered in N we can find an explicit N ′

which can help to factor N .

In this paper we address precisely this question, and give an affirmative answer
to the malleability of the problem of factoring by showing a number of the same
size of N whose factorization allows us to factor N with a algorithm that runs in
polynomial time.

To achieve this goal we will use very basic facts from the theory of elliptic curves.
Concretely we will prove that given a random elliptic curve E defined modulo N ,
where N is an RSA modulus, and assuming that its number of points |E(Z/NZ)|
is known, by further knowing the factorization of |E(Z/NZ)| we can produce a
deterministic polynomial time algorithm that factors N . The key tool in our proof
will be the result of Coppersmith (see [16]) that allows to factor an integer by
knowing only certain bits of one of its prime factors.

This settles the question and proves that factoring is a malleable task. The first
consequence of the result is obviously that the impossibility results gotten in [8]
for key-preserving reductions, cannot be extended to arbitrary reductions, leaving
open whether a cryptosystem could be constructed such as its one-way security is
equivalent to factoring, and CCA at the same time. In particular, for example it is
known that onewayness of Rabin encription is equivalent to factoring, and it remains
unknown the existence of an instantiation in the standard model chosen-cyphertext
secure under the factoring assumption.

While proving the previous statement on malleability another interesting problem
treated widely in the literature, (see [17] and [18] for related results) showed up in
a natural way:

Problem Is factoring N equivalent to counting the number of points of elliptic
curves modulo N .?

In this paper we give a definite answer to this question by proving the following
theorem:

Theorem 1. Given N and the number of affine or projective points, M 6= N , of
any elliptic curve E and of one of its twists Ed modulo N , with (d,N) = 1, we can
factor N in deterministic polynomial time.

The proof of this result relies in proving a rather elementary new lemma, Lemma
3, that even though it is remarkably simple it was not in the literature so far.



FACTORIZATION, MALLEABILITY AND ELLIPTIC CURVES MODULO N 5

Remark 2. As we have already remarked, the previous problem has been addressed
in [18]. We should stress that the results in that paper are based in an assumption
on the distribution of the number of points on elliptic curves over finite fields which
is not accurate. Also, the reduction algorithm from counting the number of points
of the elliptic curve modulo N to factoring N in their case is probabilistic while
here it is proved to be deterministic. Moreover, in terms of malleability, what we
do in Section 3 involves taking a single elliptic curve, and succeeds with probability
1, while the results in [18] require considering many elliptic curves to have positive
probability to factor N . Finally the method used in that paper only works for the
number of projective points on the elliptic curve, not covering the affine case as we
do.

The structure of the paper goes as follows: In Section 2 we prove Theorem 1,
while Section 3 is dedicated to the problem of malleability of factoring.

2. Factorization

Let N ∈ Z. Given an elliptic curve E := {y2 = x3 + ax + b} over Z/NZ, we will
denote by Ed its quadratic twist Ed := {dy2 = x3 + ax + b}. E(Z/NZ) will be the
group of Z/NZ points, and E ′(Z/NZ) the set of affine points of the curve. In any
event, if C is a set we will let |C| to be its cardinal.

In the case when N = l is a prime number, then |E(Z/lZ)| = l+ 1− al, where al
is the trace of the Frobenius endomorphism of the curve E modulo l, |al ≤ 2

√
l| and

the curve has only one point at infinity. We will denote Il = {l+1−2
√
l, l+1+2

√
l}

the Hasse interval. Also, it is well known that if d is an integer coprime to l then
|Ed(Z/lZ)| = l + 1−

(
d
l

)
al.

In the case when N = pq, a product of two prime numbers, then we know that
E(Z/NZ) = E(Z/pZ)× E(Z/qZ) and hence

|E(Z/NZ)| = (P − ap)(Q− aq) = PQ− Paq −Qap + apaq,(1)

where P = p+ 1, Q = q + 1 in the projective case and P = p,Q = q in the affine
case.

Now consider and RSA modulus N and (d,N) = 1. There are three options for

Ed(Z/NZ) (or E ′d(Z/NZ)), depending on the Legendre simbols
(

d
p

)
and

(
d
q

)
. Let

us denote, by abuse of notation, E = |E(Z/NZ)|, and Ê, Ẽ, Ē to the following
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integers

Ê = (P + ap)(Q+ aq) = PQ+ Paq +Qap + apaq,

Ẽ = (P − ap)(Q+ aq) = PQ+ Paq −Qap − apaq,
Ē = (P + ap)(Q− aq) = PQ− Paq +Qap − apaq.

Then,

(2) E + Ê + Ẽ + Ē = 4PQ,

while

4PQ =
(E + Ẽ)(E + Ē)

E
= E + Ẽ + Ē +

(ẼĒ)

E
= 4PQ− Ê +

(ẼĒ)

E
,

so

(3) EÊ = ẼĒ.

Lemma 3. Knowing two among Ẽ, Ê, Ē and E, we know the four of them.

Proof. We split the proof in 2 cases.

Case 1. We suppose E and Ê are known. The case in which Ẽ and Ē are known
is analogous. Then we compute its product, M = EÊ and its sum L = E + Ê, and
we have

ẼĒ = M

Ẽ + Ē = 4PQ− L
so Ẽ and Ē are the solutions of the quadratic polynomial X2 − (4PQ− L)X +M.

Ẽ =
4PQ− L+

√
(4PQ− L)2 − 4M

2
, Ē =

4PQ− L−
√

(4PQ− L)2 − 4M

2

Case 2. Suppose E and Ẽ are known. The cases in which the pairs (E, Ē), (Ê, Ẽ)

and (Ê, Ē) are known, are analogous. Then, compute the quotient E
Ẽ

= M and the

sum E + Ẽ = L. Hence, Ē

Ê
= M , or Ē = MÊ, and by (2) (M + 1)Ê = 4PQ−L, or

Ê =
4PQ− L
(M + 1)

, Ē =
M(4PQ− L)

(M + 1)
.

Theorem 4. Knowing either E(Z/NZ) and Ed(Z/NZ) or E ′(Z/NZ) and E ′d(Z/NZ)

for
(

d
p

)
= −1, we can factor N in polynomial time.

In the projective case, we compute the four integers E, Ê, Ẽ, Ē by Lemma 3 and
then its sum to compute PQ. With PQ and N we factor N .

In the affine case, we again compute the four integers E, Ê, Ẽ, Ē and then note
that E + Ẽ = 2q(p− ap), has q as a common factor with N , so if ap 6= 0, computing
the gcd with N , we factor N . On the other hand, if aq 6= 0, we do the same with
E + Ē = 2p(q − aq).
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In both cases observe that, in principle, we do not know which one is Ed(Z/NZ),
so we will have to make two computations.

Remark. The theorem obviously does not apply in the affine case if ap = aq = 0,
since then the number of affine points of the elliptic curve and its twists is simply
N , so we do not get new information. In this case, we just have to select another
curve.

Theorem 5. Under ERH factoring an RSA modulus N = pq is polynomial time
equivalent to counting the number of points, affine or projective, of any elliptic curve
E modulo N , non-supersingular for both primes p and q.

Proof. Let E be an elliptic curve. Then, knowing the factorization of N , we can
compute |E(Z/NZ)| by Schoof’s algorithm [19].

Now suppose we know |E(Z/NZ)|. Then, from [20], we know that under ERH
the smallest quadratic nonresidue modulo p, call it d, is of size O((log p)2). Hence,
apply the previous Theorem 4 to the pair E,Ed for every d up to this bound.

Recall that, as of today, we can compute the number of points modulo N by
baby step giant step, since E (mod N) has group structure, in O(N1/4+ε) which is
exponential.

3. Malleability

As in previous sections, let N = pq be an RSA modulus. We recall that in order
to prove that factoring is malleable we need to find a number relatively prime to N
and of the same size, which factorization will allow us to factor N in deterministic
polynomial time. We consider a random elliptic curve E (mod N), and we let
|E ′(Z/NZ)| be the number of affine points, while |E(Z/NZ)| will be the number of
points including the points at infinity. We can assume that we have at our disposal
an Oracle that computes any of these two numbers. Since this computation can be
reduced to the factorization of N thanks to Schoof’s algorithm, this corresponds to
Game 0 in the setup described in the introduction while defining malleability. Note
also that, as we have already observed, there is no known polynomial time algorithm
that can factor N using this information.

Assume now that we have access to an auxiliary Oracle that can factor any number
relatively prime to N . Using it, we factor the number |E(Z/NZ)| (or |E ′(Z/NZ)|)
and we will show in the following theorem that from this we can factor N in polyno-
mial time, thus concluding that Game 1 has solved the factorization problem that
was not achieved by Game 0, which shows that factorization of RSA modulus is
malleable.
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Theorem 6. Given N = pq where p, q are prime numbers, and an elliptic curve E
(mod N), uniformly at random, there exists a polynomial time algorithm in logN
such that with input N and the factorization of |E(Z/NZ)| or |E ′(Z/NZ)|, it outputs
the factors of N , p and q with probability one.

Proof. As we mentioned in the introduction, we will use a well known result of
Coppersmith, which allows us to find a factor of an integer by just knowing certain
part of its highest bits. For convenience we include this result now

Theorem 7. (Coppersmith) If we know an integer N = pq and we know the high
order (1/4)(log2N) bits of p, then in polynomial time in logN we can discover p
and q.

Observe that it would be sufficient by knowing the (1/4)(log2N) − O(log logN)
highest order bits, since we could try the rest up to (1/4)(log2N) one by one in
polynomial time.

Now, recall again that, by Hasse’s theorem the factor found q−aq+1 is at distance
|aq−1| ≤ 2

√
q+1 ≤ 2N1/4 +1 of q which is a factor of N . By bounding the distance,

we know certain of the highest bits of q from those of q − aq + 1.

In particular, let us suppose that two integers x < y are at distance y−x = 2t+R
where R < 2t. We can write x = Mx2t + Rx, y = My2

t + Ry with Rx < 2t, Ry < 2t

and −2t < Ry − Rx < 2t. Then, y − x = (My −Mx)2t + Ry − Rx, which gives
My = Mx + 1 or My = Mx + 2 and, hence, from the highest bits of y up to t of x we
know those of y and viceversa.

In our case, the distance is bounded by 2q1/2 so we know up to t = [log2 q/2] + 1
of the highest bits of q. By division, we also know up to t of the highest bits of p.
But
√
N ≤ p = Mp2

t + Rp ≤ (Mp + 1)2t, and so Mp ≥
√
N/(2t + 1) ≥ N1/4 and,

hence, we can apply Coppersmith algorithm to find p, thus factoring N .

The previous algorithm would not work if the number of factors of |E(Z/NZ)|
would not be logarithmic on the size of N . However, this event is negligible. Indeed,
Let CN be the set of elliptic curves modulo N , where two curves will be the same if
their reduction modulo p and q are isomorphic. For any set C ⊂ CN we will consider

the probability p(C) = |C|
|CN |

. Recall that |CN |
4N

= o(1), as can be seen in section (1.4)

of [21] by using the Chinese Remainder Theorem.

Now consider for each divisor l of N the set Sl = {E ∈ CN : d(|E(Z/lZ|) >
(log l)4}, where, as usual, d(n) denotes the number of divisor of the integer n. Note
that if N = pq, then by (1) if E ∈ SN then either E ∈ Sp or E ∈ Sq and so
p(SN) ≤ p(Sp) + p(Sq). Now, using Proposition 1.9 in [21] we see that for l = p or
l = q

p(Sl) ≤ c|Sl|
(log l)2

√
l

.
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On the other hand from the average of the divisor function∑
n≤x

d(n) = x log x+ (2γ − 1)x+ o(x),

we deduce that,

|Sp|(log p)4 <
∑

m∈Sp⊂Ip

d(m) ≤
∑
m∈Ip

d(m) = 4
√
p log p+O(

√
p)�,

and so

|Sp| �
√
p

(log p)3
,

which in particular gives

p(SN) = o

(
1

logN

)
which tends to zero as N goes to infinity. So with probability basically 1, the
number of factors of |E(Z/NZ)| is of order a power of the logarithm of N , and in
particular polynomial in N and, hence, once the auxiliary Oracle gives the factors
of |E(Z/NZ)|, we will apply Coppersmith one by one finding q in polynomial time
in log N .

Remark 8. The case in which |E ′(Z/NZ)| is given is similar and we leave the
details to the reader.

3.1. Small difference. Even though malleability is fully proved in the previous
section, we include this section as a small remark in the negligible case in which
|E(Z/NZ)| and |E ′(Z/NZ)| have an exponential number of divisors, but the two
prime factors p, q are not too far from each other.

In order to construct an RSA modulus we tipicaly search for a couple of prime
factors of the same number of bits, i.e. q < p < 2q. However, if the two primes
are very close to each other, the scheme is easy to break since the modulus can be
factored in polynomial time. Indeed, It is well known that if ∆ = |p − q| < N1/4

Fermat’s factorization algorithm enables to find both factors of N in polynomial
time and there has been an effort of the community to improve the exponent 1/4
in ∆ for the factorization of N . It is worth to mention that if the objective is
breaking the RSA scheme, rather than factoring the modulus, then the exponent
can be increased all the way up to basically 1 by means of an improved version
of the attacks done by Wiener or Boneh and Durfee, (see [22]). However, for the
factorization of N not too much more is known. In [23] the authors claim in an
apparently unpublished work that are able to factor an RSA modulus N = pq even
when the difference is of order |p− q| < N1/3.
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We devote this section to recover ∆ < N1/3 using malleability techniques: in
particular the factorization of the number of points of a random elliptic curve mod-
ulo N , together with a simple application of an argument of elementary geometry
attributed to Heron of Alexandria which says that in any triangle, the product of
the length of its three sides equals four times the area times the radius of the cir-
cumscribed circle. We will assume from now that ∆ = |p − q| < c′N1/3 for some
suitable constant c′.

In our case given three points (x0, y0), (x1, y1), (x2, y2) of integer coordinates in
the hyperbola xy = |E ′(Z/NZ)|, we see that the radius of the circumscribed circle
is

R =
((x0x1)2 + (|E ′(Z/NZ)|)2)((x0x2)2 + (|E ′(Z/NZ)|)2)((x2x1)2 + (|E ′(Z/NZ)|)2)

4(|E ′(Z/NZ)|)2(x0x1x2)2
,

and taking max{x0, x1, x2} ≤
√
|E ′(Z/NZ)|, we get

R ≥ |E
′(Z/NZ)|

4
.

On the other hand, by Hasse’s theorem

|E ′(Z/NZ)| ≥ (
√
p− 1)2(

√
q − 1)2

and
(
√
p− 1)(

√
q − 1) =

√
N −√p−√q + 1 ≥

√
N/4,

for N sufficiently large, and so

R ≥ N

64
.

Hence, by Heron of Alexandria’s theorem, in an arc of the hyperbola xy = |E ′(Z/NZ)|
of lenght less than (N/32)1/3 we can only have two points of integer coordinates.

Now recall that the lenght L of an arc of the hyperbola xy = T with a ≤ x ≤ b
is given by

L =

∫ b

a

√
1 +

T 2

t4
dt ≤

∫ b

a

1 +
T 2

t4
dt = (b− a) +

T 2

3

(
1

a3
− 1

b3

)
=

= (b− a) +
(b− a)T 2

3

(
b2 + ab+ a2

(ab)3

)
≤ (b− a) +

(b− a)T 2

a3b
.

Consider T = |E ′(Z/NZ)|, b ≥ N1/2 and b − a ≤ cN1/3 for suitable c. Hence, by
noting that

|E ′(Z/NZ)| ≤ (
√
p+ 1)2(

√
q + 1)2 = (

√
N +

√
p+
√
q + 1) ≤ N + 7N3/4,

since the primes are very close, we get from a simple computation that the arc on
the hyperbola has lenght

L ≤ 3cN1/3,
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In particular, we can select c small enough so L ≤ (N/32)1/3 and hence it can only
have at most two points of integral coordinates. Hence we can ask the auxiliary
Oracle to factor E∗N and output the at most two factors of it lying in the interval
[a, b]. This Oracle will give back the factor a ≤ N1/2−c′N1/3 ≤ q−aq+1 ≤ N1/2 ≤ b,
for aq ≥ 0 or a ≤ N1/2 ≤ q − aq + 1 ≤ N1/2 + c′N1/3 ≤ b if aq ≤ 0 for some c′ ≤ c.
In practice c = 1

3(32)1/3
and c′ = 1

6(32)1/3
are enough. Using it we can factor N with

Coppersmith’s algorithm, as we did in the previous subsection.

Remark 9. Again the case in which |E(Z/NZ)| is given is similar and we leave the
details to the reader.
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