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Abstract

The aim of this work is to deploy and experimentally validate a model-based strategy to estimate unmeasurable vari-
ables in a proton exchange membrane (PEM) fuel cell. First, a nonlinear PEM fuel cell dynamical model is implemented
and calibrated using an optimisation approach that takes real measurement data as input. Then, an advanced observa-
tion approach is developed to retrieve non-measurable data from the fuel cell. Two states are estimated in this work:
the fuel cell temperature and the internal liquid water fraction. To achieve this, a model-based high-order sliding mode
observer (HOSM) with chattering-free capabilities is deployed. The fuel cell temperature is measured in real time to
drive the estimation error to zero in a finite amount of time. Finally, the methodology is validated using experimental
data stemming from a laboratory test station, comparing the the HOSM observer with and without chattering-free gain.
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1. INTRODUCTION

As society advances towards a more technological and
automated future, energy consumption is increasing ex-
ponentially. Industry, governments, and individuals are
aware of the risks associated with the use of fossil fuels
and the need to invest in renewable energy solutions to
guarantee a sustainable future. Over the last few decades,
renewable energy generation systems have witnessed an
unprecedented increase in development. This growth is
expected to continue over years to come, motivated by
public and private investments on clean energy. It has
been documented [1, 2] that the use of hydrogen as an en-
ergy vector can aid to satisfy the current and future energy
demands without additional greenhouse gas emissions into
the atmosphere.

Proton exchange membrane (PEM) fuel cells [3] are elec-
trochemical devices that transform hydrogen into electric-
ity in a clean manner, only generating water and heat as
by-products. When compared to other fuel cell types (i.e.
solid oxide fuel cells), PEM fuel cells operate at lower tem-
peratures (usually between 40 and 80ºC), have shorter
start-up times, better transient response, and can reach
higher efficiency values. All of these advantages make
PEM fuel cells an excellent candidate for a broad range
of applications such as automotive, stationary combined
heat and power (CHP), and portable systems. PEM fuel
cells are the market leader when comparing total unit ship-
ments to other fuel cell technologies. However, PEM fuel
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cell technology still faces challenges. Such challenges in-
clude their relatively low durability [4], mainly caused by
improper operating conditions and the high cost of the
system, which is due to the associated cost of the plat-
inum catalysts used for electrolyte membrane manufactur-
ing. Further research needs to be done in order to address
these issues.

New technological advancements to increase fuel cell
durability have been achieved in the field of materials and
catalysts [5]. Researchers are proposing advanced con-
trol techniques to improve the performance of fuel cells
as well as improve their life expectancy [6]. For example,
it has been demonstrated that the internal conditions of
the fuel cell (i.e. internal water content) can affect both
[7, 8], which highlights the importance of collecting this
data when possible.

Fuel cell systems offer a wide set of measurements, such
as output voltage, demanded current, and stack tempera-
ture. However, due to the construction characteristics of
fuel cells, their internal parts are not accessible and sen-
sors cannot be installed to measure variables that directly
affect the operation of the system. In [9], evidence that
excessive amounts of water can severely reduce the perfor-
mance of a PEM fuel cell is provided. This reinforces the
need to estimate the amount of water in order to operate
the fuel cell efficiently. Various experimental approaches
have been used to indirectly measure the water content in
real time.

For example, in [9], the water content is determined
from pressure drops. In [10], the water uptake from both
the vapor and liquid phases is investigated experimentally,
comparing the relative humidity between input and output
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gasses. In [11] an apparatus for measuring the relationship
between air–water capillary pressure and water saturation
in PEM fuel cells gas diffusion layers (GDL) is described.
In [12] the methods of standard porosimetry and mercury
intrusion porosimetry are used to generate water capillary
pressure curves. In [13], water saturation is experimentally
determined by weighing the GDL after imbibing or drain-
ing. Nonetheless, all of these approaches require additional
sensors that can have slow and inaccurate readings, and it
is possible that they cannot provide a continuous measure,
invalidating their use for control deployment. Moreover,
additional sensors increases the cost of the system. Using
model-based observers allows for the estimation of the wa-
ter content using sensors that are already available in the
system.

Aside from the technical difficulties to measure the in-
ternal conditions of a fuel cell, another challenge these sys-
tems face is the high amount of uncertainties when being
operated. Uncertainty can originate from a varied array of
sources, such as the external power demand (i.e. automo-
tive applications with different driving profiles) or from the
fuel cell itself in the form of membrane ageing during time,
accumulated liquid water, and starvation scenarios, among
others. These uncertainties have to be taken into account
when selecting control and estimation strategies. In this
regard, sliding mode control (SMC) has been proved ac-
curate and robust with respect to internal and external
disturbances [14, 15, 16]. However, the main drawback of
classic SMC is its propensity to chattering along the sliding
surface when the measured variables have associated noise,
which is common in electric power generation applications.
To solve this, high-order implementations of classic SMC
schemes have been proved to reduce chattering [17, 18].

The motivation of this paper is to establish an exper-
imentally validated model-based estimation strategy that
can aid to obtain unmeasurable internal variables that af-
fect the performance of PEM fuel cells. Furthermore, un-
certainties in the form of measurement noise will be con-
sidered when analysing the proposed observer. To achieve
these goals, a nonlinear high-order sliding mode (HOSM)
observer will be developed to estimate the fuel cell tem-
perature and the internal liquid water fraction of an open
cathode PEM fuel cell. In addition, a chattering-free
HOSM (CHOSM) observer will be proposed to further im-
prove the chattering rejection capabilities of the standard
HOSM observer approach. Both observation strategies are
based on a PEM fuel cell model that has been experimen-
tally validated in the literature [19]. This model is cal-
ibrated to account for the possible ageing of the system
using experimental data. Finally, both observation ap-
proaches are validated using experimental data stemming
from a laboratory test station.

Thus, the main contributions of this paper can be sum-
marised as follows:

1. A model-based methodology to estimate the liquid
water fraction from measurable variables on an open

cathode PEM fuel cell.

2. Deployment of two observers with and without adap-
tive gain strategy enhancement to prove the reduction
of chattering due to noisy measurement data.

3. Experimental validation of the conceptual contribu-
tions presented in this paper.

The rest of the paper is organised as follows. The exper-
imental PEM fuel cell test station and the open-cathode
fuel cell simulation model are introduced in Section 2.
Then, the model parameters are calibrated using exper-
imental data in Section 3. The observation problem and
HOSM and CHOSM observers are developed in Section 4.
Experimental results for a given laboratory test study
are presented and discussed in Section 5, comparing the
HOSM and CHOSM observers with a conventional SMC
approach to show the improvements of the proposed strat-
egy. Finally, Section 6 summarises the results of this paper
and proposes research lines for future work.

2. EXPERIMENTAL SETUP

Fuel cell systems are supported by the balance of plant
(BOP) devices, such as compressors, humidifiers, and line
heaters. All of these elements allow the control of the
most relevant variables. However, they also make fuel cell
systems complex and expensive to operate. To minimise
these problems, open cathode fuel cells have been sug-
gested. These fuel cells do not use most of the aforemen-
tioned ancillary elements and therefore, are much cheaper
and simpler to operate. This fact makes open cathode fuel
cells ideal to test novel control and observation strategies.
One of these fuel cells is the Horizon Fuel Cells Technolo-
gies H-100, which has a nominal power of 100 W. This fuel
cell will be used in this work to perform the experiments
and validate the proposed observers.

2.1. System description

Figure 1 shows the experimental station used to run the
experiments. Figure 2 contains a scheme of the H-100
stack, which consists of 20 cells (ncell = 20). A speed
regulated fan is in charge of the temperature control and
also feeds the fuel cell cathode with oxygen, taken directly
from the air. The anode of the H-100 is fed with dry
hydrogen that comes from a pressurised tank. The supply
pipe is completed with a valve that allows to maintain
the pressure and to perform purges. Finally, an air speed
sensor, E75 E+E Elektronik, is included in the system.

The small number of complementary elements makes
open cathode fuel cells sensitive to environmental condi-
tions and their performance can decrease in the presence
of internally accumulated liquid water. Thus, it is com-
pelling to be able to estimate the amount of liquid water
fraction in order to improve the fuel utilisation and global
efficiency of the system.
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Figure 1: Experimental station used to validate the observers

Figure 2: H-100 experimental set-up diagram

From the current measurement, an algorithmic approach
to estimate the liquid water fraction is developed in Sec-
tion 4 and deployed in Section 5. To accomplish this, a
suitable mathematical model of the experimental station
is needed for the analysis of the results and to validate
the observers. In the following section, the model for the
H-100 that will be used to develop and implement the ob-
servers is presented.

2.2. Open cathode fuel cell model

The literature contains open cathode fuel cell models
with multiple levels of complexity and detail. In this pa-
per, an experimentally validated H-100 model [19] is going
to be used. This model has been able to accurately re-
produce the behaviour of an open cathode PEM fuel cell
with a reduced number of states. Based on this, it will
be possible to design an observation strategy that is both
accurate and feasible to implement in real time.

The H-100 model in [19] is described by the next set of

equations:

Ṫfc = K1 · Ifc −K
′

1 · Ifc · Vfc
+ (K2 · Tamb −K2 · Tfc)uair, (1)

ṡfc = Fgen(Ifc)− Fevap(Tfc, sfc)− Fdiff (sfc),(2)

Vfc = K7 −K6 · Ifc
−K5 · Tfc · log(fa(Tfc, sfc, Ifc)). (3)

The model state variables are the fuel cell temperature
(Tfc) and liquid water fraction (sfc). This last variable
corresponds to the proportion of total volume of empty
space in the porous structure of the cathode catalyst layer
(CCL) that is occupied by liquid water [20]. The model is
described by a set of constant parameters, denoted by Ki

(i ∈ [1, . . . , 7]), that can be obtained from physical con-
stants and the construction standards of the fuel cell. Ap-
pendix A shows the equations required to calculate all of
these parameters. Additionally, the model has an output
variable, Vfc, which corresponds to the fuel cell voltage.

Equations (1)-(3) contain variables that are treated as
exogenous variables. These are the current (Ifc), the am-
bient temperature (Tamb), and the air velocity (uair). The
current is fixed by the load fed by the fuel cell. Note that
the provided electrical power is obtained as Pfc = Vfc ·Ifc.
The ambient temperature Tamb is usually treated as a mea-
surable disturbance, while uair takes the control action role
(it can be manipulated by changing the fan turning speed).

The liquid water fraction in Equation (2) is defined
as the equilibrium between generated (Fgen), evaporated
(Fevap), and diffused (Fdiff ) water in the PEM fuel cell
cathode. These terms can be computed as follows [19]:

Fgen(Ifc) = K3 · Ifc, (4)

Fevap(Tfc, sfc) = fp(Tfc) ·
sfc
Ks

, (5)

Fdiff (sfc) =
Jdiff
Ks

, (6)

being Jdiff the diffusive flux and Ks the water retention
constant in the CCL respectively. The full equations for
these terms are

Jdiff =
Kdiff

deff
· s3fc ·

(
3.79s2fc − 4.24sfc + 1.42

)
·
(
sfc − sopt

)
, (7)

Ks = εeff · ρl · dCCL ·Ksorp, (8)

where Kdiff is the diffusion time constant and deff the
effective thickness of the diffusion media. The CCL thick-
ness and effective porosity are described by dCCL and εeff
respectively. Finally, ρl is the liquid density of water and
Ksorp the sorption time constant.

Although a direct inspection of the proposed model can
lead to the conclusion that it is a simple 2-state model,
in fact, it is highly nonlinear [19]. This makes its analy-
sis quite difficult, as demonstrated by [21]. Appendix A
contains the highly nonlinear algebraic expressions fa and
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Table 1: Model parameters used in the calibration

Parameter Initial value Optimised value Units
Rohm 0.300 0.140 Ω
Ksorp 360.000 26.383 −
Kevap 1.400 · 10−2 1.733 · 10−2 −
Kdiff 2.127 · 10−4 1.081 · 10−4 −

fp.
To reduce complexity, the proposed model can be par-

tially linearised and simplified by using the following defi-
nition:

uair ,
ν

K2(Tamb − Tfc)
. (9)

Note that ν can be thought of as the thermal power ex-
tracted from the fuel cell.

Taking (9) into account, the fuel cell model can be
rewritten as follows:

Ṫfc = K1 · Ifc −K
′

1 · Ifc · Vfc + ν, (10)

ṡfc = Fgen − Fevap − Fdiff , (11)

Vfc = K7 −K6 · Ifc
−K5 · Tfc · log(fa(Tfc, sfc, Ifc)). (12)

3. EXPERIMENTAL MODEL CALIBRATION

Before designing the observers, the fuel cell model de-
scribed in Section 2.2 is adjusted using experimental data.
A multi-variable optimisation is used to match the output
voltage in (12) with the experimental value. The variables
to be tuned are selected from fuel cell parameters related
to the water dynamics described in Equation (11). The
variables chosen are the ohmic stack resistance Rohm, the
sorption time constant Ksorp, the evaporation time con-
stant Kevap, and the diffusion time constant Kdiff . The
selection of this set of variables is due to their relation with
the state-of-health of the fuel cell [19], varying with the
ageing of the system and resulting in a decreased output
voltage over time. Table 1 summarises the optimisation
variables, including the initial values, obtained from the
validated model presented in [19].

The output voltage given by the simulation model from
Equation (12) is assumed to be

Vfc,simulated , f(pk), (13)

where pk is the vector containing the optimisation param-
eters from Table 1. In order to solve the optimisation prob-
lem and obtain the set of pk parameters, a least squares
minimisation method is carried out. This strategy takes
the measured fuel cell voltage (Vfc,measured) from the ex-
perimental test station and compares it to the fuel cell
output voltage in Equation (13). This can be expressed as

a minimisation problem of the form

min
pk

√√√√ N∑
k=1

(
V

(k)
fc,measured − V

(k)
fc,simulated

)2
. (14)

An iterative procedure over N samples is used to find the
best-fitting pk value set. Once a minimum is found, the it-
erative procedure stops and updates the model parameters
with the set of optimal values. Figure 3 shows the exper-
imental data (in blue) used to calibrate the model. This
experimental data consists of two voltage steps distributed
over 3000 seconds in order to properly characterise the slow
temperature dynamic of the model.

As shown in Figure 3(a), before the calibration there is
a noticeable difference between the experimental data and
the simulated voltage. This is due to the ageing of the test
station, producing an outdated set of model parameters
that need to be updated. Once the optimisation problem is
solved and the parameters are recalculated, it can be seen
in Figure 3(b) that the fitting is significantly improved.
The updated set of parameter values is included in the
third column of Table 1.
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Figure 3: Simulated and measured fuel cell voltage output before (a)
and after (b) the calibration procedure

Even after calibration, some discrepancies between the
simulation model voltage output and the measured experi-
mental data can be detected. These differences come from
measurement noise and dynamics that are not included in
the fuel cell model. An example of dynamics not captured
by the model is the voltage drop that occurs in the exper-
imental data on the second voltage step around the 2250
second mark. Nevertheless, these fast dynamics do not
affect the long-term performance and accuracy of the sim-
ulation model, making the calibrated model suitable for
observers design. Therefore, the open cathode PEM fuel
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cell model will be used to design the observation strat-
egy in the following sections, providing additional robust-
ness against model uncertainties and measurement noise
thanks to the HOSM capabilities included in the proposed
approach.

4. HOSM OBSERVER

Applying the observer structure described in [22] to the
fuel cell model presented in Section 2.2, the following ob-
server is obtained:

˙̂x1 = K1 · Ifc −K
′

1 · Ifc · Vfc + ν + g1(x̂) · u1, (15a)

˙̂x2 = K3 · Ifc − fp(x̂1) · x̂2
Ks
− Jdiff

Ks
+ g2(x̂) · u2, (15b)

ŷ = h(x̂) = x̂1, (15c)

being x̂ , [x̂1, x̂2], x̂1 , T̂fc, and x̂2 , ŝfc. The fuel cell
temperature is used as the measured variable as denoted
by (15c). Moreover, the output fuel cell voltage Vfc is also
measured. However, Vfc is not included in Equation (15c)
since it is not a state variable. Functions g1, g2, and the
corrective terms u1 and u2 need to be formulated in order
to make the observer converge in finite time to the ex-
pected state values [22].. To achieve this, an observability
analysis of the fuel cell model is conducted in the following
section.

4.1. Observability analysis

In linear systems, observability is a global property,
whereas in nonlinear systems it is a local property. This
can be verified in terms of the observability matrix O rank,
which is defined as follows [22]:

O(x) =
∂

∂x


h(x)

Lf(x)h(x)
...

Ln−1
f(x)h(x)

 , (16)

where n is the model order and Lf(x)h(x) stands for the
Lie derivative of the output vector h along the vector field
f(x) ∈ Rn. It can be computed as [23]:

Lf(x)h(x) =
∂h(x)

∂x
f(x). (17)

And the k-th Lie derivative:

Lk
f(x)h(x) =

∂
(
Lk−1
f(x)h(x)

)
∂x

f(x). (18)

Using Equations (17) and (18) in Equation (15), the
observability matrix is obtained:

O(x̂) =

[
1 0

ξ(x̂) γ(x̂)

]
, (19)

being ξ and γ state functions obtained using Lie algebra.
The rank of O depends only on γ(x̂) and the value of x̂
[22] at a given time. Note that the determinant of O is
equal to γ(x̂). According to (19) :

γ(x̂) = −0.01
Ifc ·K

′

1 ·K5 · x̂1 · exp
0.01·x̂2
sopt(

exp
0.01·x̂2
sopt −1

)
· sopt

, (20)

being sopt the optimal water content for the H-100 PEM
fuel cell (see Table A.2) [21].

For the system under study, the observability condition
becomes:

γ(x̂) 6= 0. (21)

As K
′

1, K5, and sopt are non-zero parameters (see Ap-
pendix A), the full-range condition for O is fulfilled when
x1, x2, and Ifc are not equal to zero.

Once the observability is guaranteed, functions g1 and
g2 in Equation (15) are obtained as follows [22]:

g(x̂) =

[
g1(x̂)
g2(x̂)

]
= O(x̂)−1

[
0 1

]T
, (22)

which results in

g1(x̂) = 0, (23)

g2(x̂) = −100
sopt ·

(
exp

0.01·x̂2
sopt −1

)
Ifc ·K

′
1K5x̂1 · exp

0.01·x̂2
sopt

. (24)

Finally, considering g1 and g2, the observer described in
Equation (15) is expressed as

˙̂x1 =K1 · Ifc −K
′

1 · Ifc · Vfc + ν, (25a)

˙̂x2 =K3 · Ifc − fp(x̂1) · x̂2
Ks
− Jdiff

Ks

− 100
sopt ·

(
exp

0.01·x̂2
sopt −1

)
Ifc ·K

′
1K5x̂1 · exp

0.01·x̂2
sopt

· u2, (25b)

ŷ =x̂1. (25c)

4.2. Corrective action design

The PEM fuel cell model in Equations (10)-(12) consid-
ers two measured variables: Tfc and Vfc and two derived
parameters, ν1 and Ifc. In this paper, the observation er-
ror ey is expressed as the difference between the measured

fuel cell temperature Tfc and the estimated variable T̂fc:

ey = Tfc − T̂fc, (26)

From Equation (26) the sliding surface is selected as:

σ = ey, (27)

1ν can be computed from uair, Tfc and Tamb
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and the sliding manifold ` is

` = σ̇ − kσ, (28)

where k is a positive parameter used to improve the con-
vergence to the sliding surface.

The purpose of the observer is to reduce the difference in
Equation (26) to null in the shortest time possible (ideally
a finite amount). To achieve this, a second-order quasi-
continuous term u2 is chosen as the corrective signal [24]:

u2 = −β ·
(
σ̇ + |σ|1/2·sign(σ)

|σ̇|+|σ|1/2

)
, (29)

being β the gain magnitude of the observer.
Any possible uncertainties in Equation (25) are assumed

to be compensated with the corrective input in Equa-
tion (29). A side effect of this implementation is chatter-
ing appearing on u2 [25], which can introduce additional
chattering to the estimation variable. In the next section,
a chattering-free solution for the observer gain β is devel-
oped. In Section 5, the results with and without chattering
will be compared and discussed.

4.3. HOSM observer with chattering-free gain

As mentioned, the design of the observer in Equa-
tion (25) can lead to chattering when using a fixed-gain
magnitude in the corrective input (29). To deal with this
issue, an adaptive gain is proposed in this section: as the
sliding manifold in Equation (28) approaches to zero, the
observer gain will also be reduced to minimise the effect
of chattering in the correction input u2.

The strategy of using an adaptive gain for SMC im-
plementations was introduced in [26], where the gain is
defined as a dynamic state of the form:

˙̂
β =

{
θ ·
(
−ρβ̂ + ||σ − ℘||

)
, if ` 6= 0,

0, otherwise.
(30)

Note that Equation (30) includes the sliding manifold in
(28) as the condition to choose between the two possible
gain outputs. If the sliding manifold is different than zero,
the derivative of the adaptive gain is a function of the
positive constants θ and ρ, which have to be properly tuned
to guarantee a meaningful settling time of the observer.
Moreover, ℘ is a small positive value, assuring that β̂ can
remain at a minimal value while maintaining certain state
estimation effectiveness even in the presence of model or
measurement uncertainties [26].

5. EXPERIMENTAL RESULTS

The observer with chattering-free capabilities uses the
adaptive β̂ gain described in Equation (30) with the pa-
rameters θ = 5 · 10−2, ρ = 1, and ℘ = 1 · 10−3. It will
be compared to the standard HOSM observer and a clas-
sic SMC estimator implementation [27], both with a fixed

gain β = 5 · 10−2. With the selected CHOSM parameters,
the time constant in Equation (30) is equal to 20 seconds,
which will result in a settling time of approximately 80
seconds, consistent with the measured temperature time
constant. The observers are initialised with the following
estimated state values: x̂(0) = [x̂1(0), x̂2(0)] = [298 K, 0].

5.1. Experimental case study

To test the proposed observation strategy, an experi-
ment scenario is planned on the test station. This experi-
ment consists of a constant demanded current of 4 A and a
given PWM duty cycle profile for the cooling fan, shown in
the right-axis of Figure 5. The relation between the PWM
duty cycle and the system input uair in Equation (9) is
described by a fourth degree polynomial [21]:

uair = −9.1685 · PWM4
fan + 17.711 · PWM3

fan

−9.1117 · PWM2
fan + 1.7135 · PWMfan

−0.1013. (31)

The change in the fan speed will affect the fuel cell tem-
perature and therefore the liquid water fraction and volt-
age output of the system. The experiment is performed
inside an environmental chamber (see Figure 2) at a con-
stant ambient temperature of 298 K.

5.2. Results and discussion

As introduced in Section 4, the measured temperature
of the PEM fuel cell is used to design the sliding surface in
Equation (27). Figure 4(a) shows the evolution of the fuel
cell temperature (Tfc) and the SMC, HOSM, and CHOSM

observers estimations (T̂fc,SMC , T̂fc, and T̂fc,cf ). In a
similar way, Figure 4(b) presents the dynamic response of
the modelled liquid water fraction (sfc) and the estimation
obtained from the observers (ŝfc,SMC , ŝfc, and ŝfc,cf ).

As shown in Figure 4(a), the three observers are ca-
pable of estimating the temperature with minimum er-
ror throughout the experiment, even in the presence of
changes in the cooling fan speed. This was to be ex-
pected, since Tfc is the measured variable used to obtain
the observation error ey in Equation (26). Convergence is
achieved after 50 seconds, mainly due to the slow temper-
ature dynamics. In Figure 4(b), the chattering problems
that arise from the SMC approach are clearly noticeable.
While both the HOSM and CHOSM observers are able to
reduce the chattering after convergence to sfc, the obser-
vation error introduced by the SMC makes it unsuitable
for future control strategies, justifying the use of higher
order approaches. Subsequently, from this point forward
the analysis of the experimental results will only consider
the HOSM and CHOSM implementations.

Using the estimated temperature and liquid water sat-
uration, an estimation of the fuel cell voltage V̂fc can be
derived using Equation (12). The left-axis of Figure 5
shows the measured output voltage and the estimated fuel
cell voltage for the HOSM and the CHOSM observers (V̂fc
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Figure 4: Temperature (a) and liquid water fraction (b) evolution
and observer estimations

and V̂fc,cf ). The output voltage shows the dynamic re-
sponse to the cooling fan speed changes. Moreover, after
t = 1000 s, the fuel cell anode is purged at a constant fre-
quency. These purges generate voltage drops of unknown
values that affect the observed variables, as seen previously
in Figure 4.

Figure 5 shows that both observers achieve convergence
to the measured voltage value. As previously discussed,
the convergence time is governed by the time constants on
the corrective inputs. Once the sliding manifold reaches
` ≈ 0, both the HOSM and CHOSM observers main-
tain convergence, until the anode purges begin to happen.
When this occurs, the HOSM observer is not capable of
recovering the value of the voltage due to the chattering
effect in the estimated states. Meanwhile, the CHOSM
observer chattering effect is reduced due to the better es-
timation of Tfc and sfc.

Figure 6 shows the evolution of the state estimation er-
ror for the fuel cell temperature and the water content.
Both states quickly converge to the vicinity of zero and
remain there during the rest of the experiment, even when
the fan speed changes. Slight deviations can be observed
in both observation approaches, mainly due to the non-
modelled purges present in the output voltage measure-
ment and other modelling errors of the observer. To solve
this, in future stages of the research, an additional voltage
state can be included in the observer to take into consid-
eration new dynamics that affect the fuel cell output.

The behaviour of the HOSM (u2) and CHOSM (u2,cf )
corrective inputs during the experiment are represented in
Figure 7(a). These corrective actions drive the temper-
ature measurement estimation error in Equation (26) to
zero in the shortest amount of time possible. As it can be
noticed, u2 maintains a sliding dynamic bounded by the

0 1000 2000 3000 4000 5000 6000

Time [s]

12

12.25

12.5

12.75

13

S
ta

ck
 V

ol
ta

ge
 [V

]

15

16

17

18

19

20

21

F
an

 P
W

M
 d

ut
y 

cy
cl

e 
[%

]

Figure 5: Voltage output and estimation (left) and cooling fan PWM
duty cycle (right) during the experiment
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Figure 6: State estimation errors for the temperature (a) and the
liquid water fraction (b)

maximum value of β. In the case of the CHOSM observer,
the corrective action u2,cf is limited by the adaptive gain
law from Equation (30). This guarantees the tracking of
the sliding surface while maintaining the chattering to a
minimum. The value of the adaptive gain β̂ is shown in
Figure 7(b) and compared to the constant value β for the
HOSM observer. As it reaches the sliding surface σ, the
gain β̂ decreases to reduce the chattering effect, and reacts
to the presence of the non-modelled purges by increasing
the gain to reduce the effect of these perturbations in the
estimation process.

5.3. Robustness analysis

An important aspect to study in an observer is its ca-
pability to return precise estimations even in the presence
of uncertainties. While it can be argued that the inclusion
of the non-modelled purges in the experimental analysis is

7



0 1000 2000 3000 4000 5000 6000

Time [s]

-0.2

-0.1

0

0.1

0.2

C
or

re
ct

iv
e 

ac
tio

n 
[-

]

a)

0 1000 2000 3000 4000 5000 6000

Time [s]

0

0.02

0.04

0.06
b)

Figure 7: Corrective action (a) and observer gain evolution (b) dur-
ing the experiment

sufficient proof of robustness, in this section an additional
robustness test of the HOSM and CHOSM observers is
evaluated. In particular, to test the proper convergence
with the experimental data, the measurement noise of the
fuel cell measured temperature is increased with a band-
limited white noise with noise power equal to 0.01. Fig-
ure 8 shows that the observers are still able to track the
states satisfactorily with only a slight increase in the liq-
uid water fraction estimation noise. This is an expected
outcome as the estimated value uses the measured tem-
perature as the sliding surface for the correction action.
While the CHOSM observer estimation noise is lower, due
to the chattering-free capabilities of its adaptive gain, it
is worth mentioning that the convergence time is delayed
when compared to the HOSM observer.

6. CONCLUSIONS AND FUTURE WORK

In this paper, a nonlinear chattering-free HOSM ob-
server to estimate the temperature and internal liquid wa-
ter fraction in the cathode catalyst layer of a PEM fuel
cell has been developed. The original HOSM strategy was
enhanced using an adaptive gain approach. Both solu-
tions were deployed and validated using experimental data
from a test station, comparing the results with a SMC
approach and showing improved chattering rejection ca-
pabilities. Moreover, the robustness of the HOSM and
CHOSM observers was verified introducing additive noise
to the measured variables, obtaining satisfactory results on
the estimation of the fuel cell temperature and liquid wa-
ter fraction. The estimation of the internal water fraction
is of special relevance to characterise the fuel cell state-of-
health as it is an unmeasurable parameter of the system.
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Figure 8: State estimation for the temperature (a) and the liquid
water fraction (b) with increased voltage measurement noise

Future work includes deploying the validated observers
in stationary and mobile fuel cell applications, such as mi-
crogrids and fuel cell powered vehicles, among others. The
first stage of the implementation will be to test the be-
haviour and robustness of the observation strategy under
real world conditions. After this, the proper tuning for
the observer parameters will be performed for real-time
deployment. Then, using the additional system informa-
tion given by the observer, advanced control strategies will
be designed to achieve optimal reference tracking of the
internal fuel cell conditions (such as cell temperature and
humidity) which are hardly measurable in-situ. By means
of using the proposed observation strategy along with ad-
vance control solutions, fuel cell applications will be able to
operate with a set of adequate internal conditions in order
to achieve application-individual lifetime and performance
goals.
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Appendix A. FUEL CELL MODEL

Appendix A.1. Model constants

Ks = εeff · dCL · ρl ·Ksorp (A.1)

K1 =
Vth · ncell
mfc · Cp,fc

(A.2)

K
′

1 =
1

mfc · Cp,fc
(A.3)

K2 =
ρair ·Ainlet · Cp,air

mfc · Cp,fc
(A.4)

K3 =
MH2O

2 · F ·Ageo ·Ks
(A.5)

K4 =
Kevap ·MH2O

R ·Apore ·Ks
(A.6)

K5 =
ncell ·R
α · n · F

(A.7)

K6 = ncell ·Rohm (A.8)

K7 = ncell (A.9)

Appendix A.2. Model nonlinear functions

fa(Tfc, sfc, Ifc) =
Ifc

Ageo · iAECD
0

(A.10)

fd(Tfc) = exp

(
∆G∗

R

·
(

1

T ref
− 1

Tfc

))
(A.11)

fp(Tfc) =

(
psat0 · exp

(
− Ea

kB · Tfc

)
− pv

)
· Kevap

101300
(A.12)

iAECD
0 = 0.21 · iref0 · ac · exp (fd)

·
(

exp

(
sfc · 0.01

sopt

)
− 1

)
· 101

exp (sopt)
(A.13)
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