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ABSTRACT 9 

RC slabs can be subjected simultaneously to transverse loads and in-plane tensile forces, as it 10 

happens in top slabs of continuous box girder bridges decks, in the regions of negative moments, 11 

or in flat slabs subjected to horizontal loads, produced by wind or earth pressure. Tensile forces 12 

can reduce the shear punching capacity of slabs. However, few studies have been carried out to 13 

quantify this effect. With this purpose, a mechanical model has been developed to capture the 14 

influence of in-plane tensile forces on the punching shear strength and verified with punching tests 15 

under different in-plane tensile load levels. The model, presented in this paper, consists of an 16 

extension of the Punching shear Compression Chord Capacity Model to account for the effects of 17 

tensile forces on the resisting actions. A linear reduction of the punching shear strength as a 18 

function of the external load applied has been obtained for moderate tensile forces, whereas high 19 

level of tensile forces may produce premature yielding of the reinforcement and further reduction 20 

of the punching shear strength. The proposed model accurately captures the available test results, 21 

including the effects of the premature yielding of reinforcement when the tensile force produces 22 

concrete cracking. In addition, predictions of punching-shear-tensile tests available in the literature 23 

were made with different theoretical models included in design codes, which yielded in general 24 

conservative results and showed high scatter. 25 
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NOTATION 29 

 30 

a: Shear span. For slabs floors in buildings subjected to distributed loads, the shear span a, to be 31 
used in the size effect parameter ζ, can be estimated as the average distance from the position 32 
of the line of zero radial bending moment to the edge of the column, l0 =�𝑙𝑙0𝑥𝑥 · 𝑙𝑙0𝑦𝑦 , where 33 
l0x ≈ 0.22·lx and l0y ≈ 0.22·ly. are the span lengths in the x and y directions. 34 

Ac: Concrete cross-sectional area of the slab 35 

b0: Shear-resisting control perimeter, according to Model Code 2010 36 

𝑏𝑏1′ ,𝑏𝑏2′ : Portion of the control perimeter considered in each orthogonal direction, according to ACI 37 
349-06 38 

bw: Width of the web on T, I or L beams. For rectangular beams or slabs, bw = b 39 

C: Compression force acting on the control section of the slab 40 

d: Effective depth of the cross-section 41 

d0: Effective depth of the cross-section d, but not less than 100 mm 42 

dg: Largest nominal maximum aggregate size 43 

dl: Effective depth of the cross-section subjected to tension 44 

dt: Effective depth of the cross-section not subjected to tension 45 

dv: Shear-resisting effective depth of the slab according to Model Code 2010 46 

fc: Concrete compressive strength 47 

fck: Characteristic concrete compressive strength 48 

fcc: Confined concrete compressive strength 49 

fct:  Tensile strength of concrete 50 

fy:   Yield stress of the reinforcement 51 

fy*: Reduced yield stress of the reinforcement due to tensile stresses 52 

h: Height of the slab’s cross-section 53 

kc: Relative neutral axis depth (x/d). No less than 0.2 54 

kdg: Factor to account for the maximum aggregate size on the shear strength 55 

kψ: Factor to account for the rotations of the slab on the shear strength 56 

mcr: Slab’s cracking bending moment per unit width considering T=0 57 

M: Acting bending moment on the control section of the slab 58 

m: Acting bending moment on the control section of the slab, per unit length 59 

mr: Bending moment per unit length producing radial stresses around the column 60 

mφ: Bending moment per unit length producing tangential stresses around the column 61 
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r0: Radial distance from the edge of the column to the point of zero radial bending moment 62 

rcrack: Distance from the starting point of the critical crack (due to bending) to the column axis  63 

rcrit: Distance from the control perimeter to the column axis 64 

rs: Distance between the point of zero radial bending moment and the column axis, according to 65 
Model Code 2010 66 

T: External tensile force 67 

Tcr: Tensile force associated to the section cracking in pure tension 68 

t: Design tensile force per unit length 69 

ucrit: Control perimeter, placed at a distance 0,5d from the column face 70 

VR: Punching-Shear resistance of the member considering T = 0 71 

vR: dimensionless form of VR 72 

Vc: Shear resisted in the un-cracked compression head considering T = 0 73 

vc: dimensionless form of Vc 74 

VR,t: Shear resistance of the member in the presence of in-plane tensile force 75 

vR,t: dimensionless form of VR,t 76 

Vct: Shear force resisted by the compression chord, in the presence of in-plane tensile force 77 

vct: dimensionless form of Vct 78 

VR,t/2: Shear resistance of the member in the presence of unidirectional in-plane tensile forces 79 

Vy: Punching strength associated to reinforcement yielding  80 

x0: Neutral axis depth considering T = 0 81 

x: Neutral axis depth 82 

z: Inner lever arm. The approximate value of z = 0.9d may normally be used 83 

β: Horizontal projection of the first branch of the critical crack 84 

ζ: Size effect, defined in (7) 85 

θ: Inclination of the critical crack 86 

ν: Poisson’s coefficient 87 

ρ: Reinforcement ratio. The neutral axis depth should be obtained using the average of the 88 
longitudinal reinforcement ratios ρl and ρt in the two orthogonal directions 89 

σ1: Maximum principal stress in the r-z plane 90 

σ2: Minimum principal stress in the r-z plane 91 

σcp: Average value of the normal concrete stresses in the critical section in the two orthogonal 92 
directions (positive in compression) 93 

σr: Normal radial stresses around the column produced by mr 94 



4 
 

σφ: Normal tangential stresses around the column produced by mφ 95 

σz: Vertical stresses in the slab in the vicinity of the column 96 

ψ: Rotation of the slab at failure, according to Model Code 2010 97 

1. Introduction 98 

RC slabs subjected to the simultaneous action of transverse concentrated loads and in-plane 99 

tensile forces can be found in continuous box girder bridges, at intermediate supports, where 100 

tensile stresses arise in top slab, as a result of hogging bending moments, and may act together 101 

with a heavy vehicle load. Another common situation where this phenomenon takes place is on 102 

floor slabs supported on columns and subjected to a horizontal load, due to wind or earth pressure, 103 

on one of their sides. Skew compression fields going from the loaded side to the restraining 104 

columns of the opposite side may generate tensile stresses in the perpendicular direction, as can 105 

be seen in Fig. 1. 106 

 107 

Figure 1 108 

 109 

In-plane axial forces may arise also from restrained imposed deformations, such as shrinkage of 110 

concrete or thermal strains, either due to cooling after setting or due to environmental thermal 111 

effects, which may produce cracks in the concrete and, therefore, reduce the punching shear 112 

strength of the slab. 113 

The phenomenon of punching shear has been extensively studied over the years, both theoretically 114 

and experimentally [1-15]. However, few studies have been carried out regarding punching shear 115 

when there are tensile forces in the mid-plane of the slabs, so that further research is needed to 116 

quantify the effects of such forces on the punching shear strength of the slabs. 117 

 118 

Two experimental campaigns were carried out at Cornell University [16-17] in the late ’70 and 119 

early ’80, in the context of an investigation for the U.S Nuclear Regulatory Commission, where 120 

several 1.2 x 1.2 x 0.150 m reinforced concrete slabs subjected to bi-axial tension (Fig. 2-c) were 121 

tested in punching. In the same period of time, P.E. Regan, in his report entitled “Punching shear 122 
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in prestressed concrete slab bridges” [18], presents the results of three 1.5 x 1.5 x 0.125 m slabs 123 

(BD Series) subjected to unidirectional in-plane tension and an out-of-plane concentrated load on 124 

its center, all of them with different support scheme (Fig .2-a), but only one of them can be 125 

considered a two way slab (BD-6). Experimental studies have been also carried out by Bui et al 126 

[19], regarding the influence of uniaxial tension on the shear strength of 2.6 x 4 x 0.3 m simply 127 

supported concrete slabs subjected to concentrated loads close to the support (Fig. 2-b). All these 128 

studies concluded that axial tensile stresses reduce punching and shear strength respectively. 129 

 130 

Figure 2 131 

 132 

Punching shear provisions included in the most frequently used design codes, such as EC-133 

2 [20], ACI [21-22] or Model Code 2010 [23], contemplate the effect of in-plane normal stresses 134 

in a different way. EC-2, in section 6.4.4, includes the effect of axial stresses on punching shear 135 

strength by including the term k1·σcp, in Eq. (1), with σcp = Nu/Ac, being Nu the axial load applied 136 

in the cross-section, with negative sign in the case of tension. However, EC-2 considers that the 137 

increment of punching shear strength due to a compression force C is equal to the reduction in 138 

punching shear strength due to a tensile force of the same magnitude. However, the response of 139 

concrete in one case or in the other one is radically different. 140 

𝑉𝑉𝑅𝑅𝑅𝑅,𝑐𝑐 = (𝐶𝐶𝑅𝑅𝑅𝑅,𝑐𝑐 · 𝑘𝑘 · �100 · 𝜌𝜌𝑙𝑙 · 𝑓𝑓𝑐𝑐𝑐𝑐
3 + 𝑘𝑘1 · 𝜎𝜎𝑐𝑐𝑐𝑐) · 𝑢𝑢1 · 𝑑𝑑 (1) 

ACI 318-14 “Building code requirements for structural concrete” [21], in section 22.6.5 141 

(two-way shear) proposes two expressions to calculate the punching shear strength of a slab with 142 

an axial compression load due to prestressing, but it does not mention the case of axial tension. 143 

In section 22.7.5 (one-way shear), it proposes an expression for the shear strength of members 144 

subjected to “significant” axial tension, Eq. (2), but what “significant” means is left to the 145 

judgement of the designer. In Eq. (2), Nu is considered negative. 146 

𝑉𝑉𝑐𝑐 = 0.17 · �1 +
𝑁𝑁𝑢𝑢

3.5 · 𝐴𝐴𝑐𝑐
� · �𝑓𝑓𝑐𝑐 ·  𝑏𝑏𝑤𝑤   𝑑𝑑 (2) 
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However, ACI 349-06 “Code Requirements for Nuclear Safety Concrete Structures” [22], 147 

in section 11.12 provides a particular expression for the punching strength of slabs subjected to 148 

membrane stresses. According to this code, the punching strength Vc, is equal to the sum of the 149 

strength in each one of the two considered orthogonal directions Vc1 and Vc2. The expression for 150 

Vc1 and Vc2 are given in Eqs. (3a) - (3d), where βc is a constant depending on the shape of the 151 

column, fm is the membrane stress and 𝑏𝑏1 
′ and 𝑏𝑏2 

′ are the portions of the control perimeter 152 

considered in each direction. In the case of tensile membrane stresses, fm is considered negative. 153 

𝑉𝑉𝑐𝑐1 = �2 +
4
𝛽𝛽𝑐𝑐
� · �1 +

0.25 · 𝑓𝑓𝑚𝑚1
𝜌𝜌1 · 𝑓𝑓𝑦𝑦

� · �𝑓𝑓𝑐𝑐 · 𝑏𝑏1′ · ℎ     𝑖𝑖𝑖𝑖     𝑓𝑓𝑚𝑚1 ≤ 0.9 · 𝜌𝜌1 · 𝑓𝑓𝑦𝑦 (3a) 

𝑉𝑉𝑐𝑐1 = 0.5 · �𝑓𝑓𝑐𝑐 · ℎ        𝑖𝑖𝑖𝑖     𝑓𝑓𝑚𝑚1 > 0.9 · 𝜌𝜌1 · 𝑓𝑓𝑦𝑦 (3b) 

 

𝑉𝑉𝑐𝑐2 = �2 +
4
𝛽𝛽𝑐𝑐
� · �1 +

0.25 · 𝑓𝑓𝑚𝑚2
𝜌𝜌2 · 𝑓𝑓𝑦𝑦

� · �𝑓𝑓𝑐𝑐 · 𝑏𝑏2′ · ℎ     𝑖𝑖𝑖𝑖     𝑓𝑓𝑚𝑚2 ≤ 0.9 · 𝜌𝜌2 · 𝑓𝑓𝑦𝑦 (3c) 

𝑉𝑉𝑐𝑐2 = 0.5 · �𝑓𝑓𝑐𝑐 · ℎ        𝑖𝑖𝑖𝑖     𝑓𝑓𝑚𝑚2 > 0.9 · 𝜌𝜌2 · 𝑓𝑓𝑦𝑦 (3d) 

  

𝑉𝑉𝑐𝑐 = 𝑉𝑉𝑐𝑐1 + 𝑉𝑉𝑐𝑐2 (3e) 

 154 

Finally, Model Code 2010 [23], in section 7.3.5.3, presents the following expression for 155 

the punching strength of slabs, based on the Critical Shear Crack Theory [11] (Eq. 4):  156 

𝑉𝑉𝑅𝑅𝑅𝑅,𝑐𝑐 = 𝑘𝑘𝜓𝜓 ·
�𝑓𝑓𝑐𝑐𝑐𝑐
𝛾𝛾𝑐𝑐

· 𝑏𝑏0 ·   𝑑𝑑𝑣𝑣     (4) 

This equation includes the term kψ, which depends on the rotation of the slab, ψ. Therefore, 157 

it is different under compression or tension axial forces: 158 

𝑘𝑘𝜓𝜓 =
1

1.5 + 0.9 𝑘𝑘𝑑𝑑𝑑𝑑 𝜓𝜓 𝑑𝑑
≤ 0.6 (5) 

where kdg depends on the aggregate size, dg, whose value is kdg = 1 for dg ≥ 16mm and kdg = 159 

32/(16+ dg) ≥ 0.75 for dg ≤ 16mm. To obtain ψ, MC-2010 proposes four levels of approximation 160 

(LoA): levels I, II and III provide different analytical expressions to estimate the rotation ψ, while 161 
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level IV proposes to obtain the load-rotation curve by means of non-linear analysis including 162 

cracking, tension stiffening and yielding of the reinforcement. 163 

In this context, an experimental campaign was carried out by the authors at the Laboratory 164 

of Technology of Structures and Materials of the Universitat Politècnica de Catalunya (UPC) 165 

[24]. The main objective of this program was to identify and quantify the effect of unidirectional 166 

in-plane tensile forces on the punching shear strength of reinforced concrete slabs. On the other 167 

hand, it was intended to provide experimental results to contribute to extend the mechanically-168 

based punching shear resistance model “Compression Chord Capacity Model” (CCCM) [25], 169 

developed by some of the authors, to the case of in-plane tension. Results of this campaign showed 170 

a progressive reduction of the punching shear strength with an increment of the tensile stresses in 171 

acting in the slab cross section, which is in good agreement with the results of the above-172 

mentioned previous research. 173 

The main goal of this paper is to present the extension of the punching shear CCCM model 174 

to account for the effects of in-plane tensile stresses. The fundamentals of the modifications 175 

carried out are explained and new equations are derived and validated with the results of the 176 

experimental campaigns on punching shear tests carried out at Cornell University [16-17] and at 177 

UPC, [24] whose main characteristics will be briefly explained later in sections 3 and 4 of this 178 

paper. In addition, a comparison of the predictions of the available tests results using the proposed 179 

model and the above mentioned theoretical models is also presented. 180 

2. Proposed mechanical model for punching shear with in-plane tensile forces 181 

2.1 Brief summary of the Compression Chord Capacity Model for shear and punching 182 

shear 183 

The Compression Chord Capacity Model (CCCM) [26] is a shear strength mechanical model 184 

derived from a more general model called Multi-Action Shear Model (MASM), developed by 185 

Marí et al. [27]. As it is widely accepted, such model considers that the shear strength (VR) is 186 

composed by the shear resisted in the un-cracked compression head (Vc), the shear resisted across 187 

the web cracks, by aggregate interlock and residual stresses (Vw) [28, 29], the shear resisted by 188 

the longitudinal reinforcement, due to dowel action (Vl), and the shear resisted by the transverse 189 
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reinforcement (Vs), providing explicit expressions for each component. The CCCM model join 190 

the three first components into a single one, Vc, called concrete contribution.  191 

Distributions of normal and shear stresses are assumed by combining beam and arch 192 

effects, so that the compression chord is subject to a biaxial stress state. It is considered that failure 193 

occurs when the principal stresses at one point of the compression chord, at a critical section 194 

defined in [26] and [27], reach the Kupfer and Gerstle’s biaxial failure envelope [30], in the 195 

compression-tension branch. To obtain the beam shear strength, equilibrium of forces and 196 

moments is set between the internal forces (V, M) and the stress resultants (Fig. 3) at the concrete 197 

chord (C, Vc), along the crack (Vw), at the stirrups (Vs) and at the longitudinal reinforcement (T, 198 

Vl). The rigid body considered for the equilibrium is that placed above the critical crack, from its 199 

initiation to the section where the crack reaches the neutral axis depth. Then, relating forces with 200 

stresses and taking into account the failure criterion, the ultimate shear force is obtained.  201 

 202 

Figure 3 203 

 204 

This model was extended to punching shear [25], taking into account the main differences 205 

between both phenomena, in order to incorporate them into the mechanical model. First, the 206 

position and inclination of the critical crack were formulated, taking into account the shape of 207 

radial bending moments law mr(r), and the position of the control perimeter was obtained, 208 

resulting an average value of the distance to the column face of 0.5d, being “d” the effective 209 

depth of the slab (Fig. 4-a). The second important effect faced was the multiaxial stress state in 210 

the slab compressed chord, due to vertical stresses in the vicinity of the column, enhancing the 211 

concrete capacity to resist shear stresses in the radial-vertical plane (Fig. 4-b). In addition, normal 212 

compressive stresses in the tangential direction also take place, thus increasing concrete strength 213 

in the radial plane. This phenomenon was incorporated in the model by modifying the 214 

compression-tension branch of Kupfer and Gerstle’s biaxial failure envelope [30], using the 215 

confined concrete strength fcc, from the EC-2 [21] formulation, instead of the unconfined strength 216 

fc, so that a higher shear stress is needed to reach failure. Again, to obtain the punching shear 217 



9 
 

strength of the slab, the equilibrium between internal forces and stress resultants is taken in a 218 

portion of the slab placed under the critical crack, between the control perimeter (at a distance 219 

0.5d from the column face) and the perimeter where the critical crack starts in the tension face 220 

(Fig. 4-c). 221 

Solving the equilibrium equations, and assuming some simplifications explained in [25], 222 

the simplified expression for the punching shear strength, VR, Eq. (6) is derived, where ζ is the 223 

size effect given by Eq. (7), ucrit is the control perimeter placed at a distance scrit = 0.5·d from the 224 

column face, and x0/d is the relative neutral axis depth obtained assuming cracked concrete, zero 225 

tensile stresses and linear stress distribution in the compression chord.  226 

 227 

Figure 4 228 

 229 
𝑉𝑉𝑅𝑅 = 0.3 · 𝜁𝜁 �1.125 ·

𝑥𝑥0
𝑑𝑑

+ 0.425�𝑓𝑓𝑐𝑐
2/3 · 𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 · 𝑑𝑑 (6) 

 230 

𝜁𝜁 =
2 �𝑑𝑑𝑎𝑎�

0.2

�1 + 𝑑𝑑
100�

≥ 0.45 (7) 

Due to the internal redundancy of the slabs, yielding of the reinforcement and redistribution 231 

of moments may take place so that shear failure may occur without collapse. Assuming perfect 232 

plasticity, [25], for a point load, the punching strength associated to reinforcement yielding is 233 

given by Eq. (8). 234 

𝑉𝑉𝑅𝑅 ≤ 𝑉𝑉𝑌𝑌 ≈ 2𝜋𝜋𝑓𝑓𝑦𝑦𝑑𝑑2 �1−
𝜌𝜌𝑓𝑓𝑦𝑦
2𝑓𝑓𝑐𝑐

� (8) 

The ultimate punching shear strength should be the lowest value between those values 235 

obtained by Eqs. (6) and (8), but should not be lower than a minimum value punching shear 236 

strength, given by: 237 

𝑉𝑉𝑅𝑅,𝑚𝑚𝑚𝑚𝑚𝑚 =  0.3 �𝜁𝜁(1.125𝑘𝑘𝑐𝑐 + 0.375) +
10
𝑑𝑑0
� 𝑓𝑓𝑐𝑐

2/3 · 𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐 · 𝑑𝑑 (9) 

where kc = x/d ≤ 0.2, and d0 = max (d; 100mm). This minimum value corresponds to cases with 238 

very low longitudinal reinforcement ratio or depth, where the shear resisted along the cracked web 239 
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(Vw) is comparable to that resisted in the compression chord, since x0/d is very small and Vw 240 

increases as the effective depth decreases [25]. 241 

2.2 Extension of the punching-shear CCCM to account for in plane tensile forces 242 

To account for the influence of an in-plane tensile force on the ultimate load, the effects of such 243 

tensile force on the slab behavior and the equations affected by the force should be identified. 244 

These effects are at least the following: 245 

1) The crack width increases due to the presence of a tensile force, so the aggregate interlock 246 

in the critical crack and, therefore, the shear resisted by the web, decreases. Such effect 247 

does not affect the assumption of the model of a very small web contribution. 248 

2) The angle of inclination of the cracks, θ, may be affected by the presence of the tensile 249 

force, however this effect is considered to have little influence on the punching strength 250 

because it hardly affects the position of the control perimeter, and therefore, has not been 251 

taken into account in the proposed model. 252 

3) The presence of a tensile force reduces the depth of the neutral axis, thus reducing the 253 

contribution of the compressed chord.  254 

4) For a given bending moment, M, the tensile force decreases the compression stress in the 255 

un-cracked chord, thus reducing its ability to transmit shear stresses. 256 

5) The axial tensile force increases the tensile stresses in the flexural reinforcement. 257 

Therefore, it is possible that for a tensile force that produces concrete cracking, a 258 

premature yielding takes place in the longitudinal reinforcement parallel to the tension 259 

direction.  260 

The neutral axis depth x, in a section subjected to a bending moment, M, and an axial tensile 261 

force T, can be approached by the Eq. (10) [31]: 262 

𝑥𝑥 = 𝑥𝑥0 �1 − 0.1 
𝑇𝑇 · 𝑑𝑑
𝑀𝑀

� (10) 

Where d is the effective depth and x0 is the neutral axis depth in pure flexure, without tensile force. 263 

The influence of the tensile force on the compression stress on the un-cracked concrete chord can 264 
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be obtained by including the tensile force in the equilibrium equations of a slice of slab (Eqs. 11 265 

to 13), as indicated in Figure 5.  266 

 267 

Figure 5 268 

 269 

𝐶𝐶 = 𝑇𝑇𝑙𝑙 + 𝑉𝑉𝑤𝑤 · tan𝜃𝜃 − T (11) 

V = 𝑉𝑉𝑐𝑐𝑐𝑐 + 𝑉𝑉𝑤𝑤 (12) 

𝐶𝐶 · 𝑧𝑧 + 𝑚𝑚𝜑𝜑 · 𝑑𝑑𝑑𝑑 · 𝛽𝛽𝛽𝛽 = 𝑚𝑚𝑐𝑐𝑐𝑐
𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

+ 𝑉𝑉𝑐𝑐𝑐𝑐𝛽𝛽𝛽𝛽 + 𝑉𝑉𝑤𝑤𝛽𝛽𝑤𝑤𝑑𝑑(1 + tan2 𝜃𝜃) − 0.5 · T · 𝑧𝑧 (13) 

where the differential term mφ·dφ·βd due to the tangential moment can be neglected. The distance 270 

βd is the horizontal projection of the critical crack, in the tensile part of the slab, for which a value 271 

of 𝛽𝛽 =
0.5·�1−𝑥𝑥𝑑𝑑�

𝑥𝑥/𝑑𝑑
  (Fig. 4-a) has been adopted, as in the punching-shear model [25]. Vw is the 272 

vertical resultant of the residual tensile stresses through the critical crack, which are very small 273 

when the crack width is large. A horizontal lever arm of these forces βwd =2d/3 is conservatively 274 

adopted. Then, adopting as lever arm in flexure, z = d-x/3, the normal stress in the radial direction 275 

at the critical point of the un-cracked chord, located at a distance λ = 0.425x from the neutral axis 276 

is: 277 

𝜎𝜎𝑟𝑟(𝜆𝜆) =
2𝜆𝜆𝜆𝜆
𝑥𝑥𝑥𝑥

=
2𝜆𝜆(𝑚𝑚𝑐𝑐𝑐𝑐

𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

+ 𝑉𝑉𝑐𝑐𝛽𝛽𝛽𝛽 + 𝑉𝑉𝑤𝑤𝛽𝛽𝑤𝑤𝑑𝑑(1 + tan2 𝜃𝜃)− 0,5T �𝑑𝑑 − 𝑥𝑥
3�)

𝑥𝑥(𝑑𝑑 − 𝑥𝑥
3)

 (14) 

The fundamental equation of the model is the one that allows obtaining the shear stress at 278 

the critical point of the compressed chord where the damage is maximum. This corresponds to 279 

the point where the combination of principal stresses reaches the Kupfer failure envelope at the 280 

first time. Then, the shear force resisted by the compression chord, in the presence of in-plane 281 

tensile force, Vct, is obtained by integration of the shear stresses, what is straightforward since 282 

their distribution is assumed to be parabolic, and can be expressed in a dimensionless form by: 283 

𝑣𝑣𝑐𝑐𝑐𝑐 =
𝑉𝑉𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏

= 0.682𝜁𝜁 ·
𝑥𝑥
𝑑𝑑

·
𝜎𝜎1
𝑓𝑓𝑐𝑐𝑐𝑐

�1 −
𝜎𝜎𝑟𝑟 + 𝜎𝜎𝑧𝑧
𝜎𝜎1

+
𝜎𝜎𝑟𝑟𝜎𝜎𝑧𝑧
𝜎𝜎12

= 0.682𝜁𝜁
𝑥𝑥
𝑑𝑑
𝑅𝑅𝑡𝑡�1 −

𝜎𝜎𝑟𝑟 + 𝜎𝜎𝑧𝑧
𝑓𝑓𝑐𝑐𝑐𝑐 · 𝑅𝑅𝑡𝑡

+
𝜎𝜎𝑟𝑟𝜎𝜎𝑧𝑧
𝑓𝑓𝑐𝑐𝑐𝑐2 · 𝑅𝑅𝑡𝑡2

 (15) 
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where 𝜁𝜁 is the size effect given by Eq. (7), x/d is the neutral axis depth, and Rt is the ratio between 284 

the principal tensile stress and the tensile strength at the critical point, which is provided by the 285 

modified Kupfer and Gerstle’s envelope equation in the tension-compression branch: 286 

𝜎𝜎1
𝑓𝑓𝑐𝑐𝑐𝑐

+ 0.8
𝜎𝜎2
𝑓𝑓𝑐𝑐𝑐𝑐

= 1 → 𝑅𝑅𝑡𝑡 =
𝜎𝜎1
𝑓𝑓𝑐𝑐𝑐𝑐

= (1 − 0.8
𝜎𝜎2
𝑓𝑓𝑐𝑐𝑐𝑐

) (16) 

Equation (15) is solved iteratively, since Rt depends on the principal stresses, and these 287 

depend on the shear stress, which is not known a priori. Once vct is obtained, its value is plotted 288 

in function of x0/d for different values of the ratio T/Tcr, where T is the in-plane tensile force and 289 

Tcr is the tensile force associated to the section cracking in pure tension (see Fig. 6). To calculate 290 

the total punching strength of the slab, VR,t, the shear transferred across the crack Vw must be added 291 

to Vct. As explained in [25], Vw is much smaller than Vct, and an average minimum value of vw = 292 

Vw/(fct·ucri·d) = 0.05 has been considered. 293 

Therefore, the total punching strength of a slab subjected to in-plane tension is very well 294 

approached by (17).  295 

𝑉𝑉𝑅𝑅,𝑡𝑡 = V𝑐𝑐𝑐𝑐 + 𝑉𝑉𝑤𝑤 = 0.3𝜁𝜁 ��1.125− 0.85
𝑇𝑇
𝑇𝑇𝑐𝑐𝑐𝑐

�
𝑥𝑥0
𝑑𝑑

+ 0.425� · 𝑓𝑓𝑐𝑐
2
3� · 𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 · 𝑑𝑑 (17) 

In this equation, the tensile strength of concrete fct, used in Eqs. (15) and (16) has been 296 

expressed in terms of the compressive strength fc, 𝜁𝜁 is the size effect given by Eq. (7), and  x0/d 297 

is the neutral axis depth of the section in pure bending. It is observed that the higher the tensile 298 

force, the lower is the shear resisted. In addition, for T = 0, Eq. (17) provides the same 299 

shear strength as Eq. (6) 300 

 301 

Figure 6 302 

 303 

In the case of slabs subjected to tensile forces in one direction, Eq. (17) must be applied only 304 

to the part of the control perimeter affected by the tensile stresses, which is approximately half of 305 

the total perimeter (see Fig. 7).  306 
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 307 

Figure 7 308 

 309 

In addition, in order to obtain the neutral axis depth under bending and tension (Eq. (10)), 310 

the following values of the tensile force T  and the bending moment per unit width, m, must be 311 

used:   312 

𝑡𝑡 =
𝑇𝑇

2𝑎𝑎
=  

𝑇𝑇
𝑇𝑇𝑐𝑐𝑐𝑐

·
𝑇𝑇𝑐𝑐𝑐𝑐
2𝑎𝑎

=  
𝑇𝑇
𝑇𝑇𝑐𝑐𝑐𝑐

·
𝑓𝑓𝑐𝑐𝑐𝑐 · 2𝑎𝑎 · 𝑑𝑑

2𝑎𝑎
=

𝑇𝑇
𝑇𝑇𝑐𝑐𝑐𝑐

 𝑓𝑓𝑐𝑐𝑐𝑐 · 𝑑𝑑   (18) 

𝑚𝑚 = 𝑚𝑚𝑐𝑐𝑐𝑐 =
𝑓𝑓𝑐𝑐𝑐𝑐ℎ2

6
=
𝑓𝑓𝑐𝑐𝑐𝑐𝑑𝑑2

6
�
ℎ
𝑑𝑑
�
2

≅ 0.2𝑓𝑓𝑐𝑐𝑐𝑐𝑑𝑑2   (19) 

where t is the design tensile force per unit width, T is the design total force uniformly applied to 313 

the slab, a is the shear span, which coincides with half of the width of the slab tested, Tcr is the 314 

value of the external tensile force that produces cracking of the cross-section, d is the effective 315 

depth and mcr is the cracking moment per unit width, computed without considering any applied 316 

tensile force, and assuming h/d = 1.1. Then, Eq. (10) can be rewritten as: 317 

𝑥𝑥
𝑑𝑑

=
𝑥𝑥0
𝑑𝑑
�1 − 0.1 

𝑡𝑡 · 𝑑𝑑
𝑚𝑚𝑐𝑐𝑐𝑐

� =
𝑥𝑥0
𝑑𝑑 �1− 0.1 

𝑇𝑇
𝑇𝑇𝑐𝑐𝑐𝑐

 
𝑓𝑓𝑐𝑐𝑐𝑐·𝑑𝑑2

0.2 𝑓𝑓𝑐𝑐𝑐𝑐·𝑑𝑑2
� =  

𝑥𝑥0
𝑑𝑑
�1 − 0.5 

𝑇𝑇
𝑇𝑇cr

 �  (20) 

The shear resisted along the control perimeter in the unidirectional tension case, VR,t/2, may 318 

be estimated as the mean value of the shear force resisted in the faces affected and non-affected by 319 

the tensile stresses, given by Eqs. (6) and (17), respectively [32].  320 

𝑉𝑉𝑅𝑅,𝑡𝑡/2 =
𝑉𝑉𝑅𝑅
2

+
𝑉𝑉𝑅𝑅,𝑡𝑡

2
= 0.3ζ��1.125− 0.425 ·

𝑇𝑇
𝑇𝑇𝑐𝑐𝑐𝑐

� ·
𝑥𝑥0
𝑑𝑑

+ 0.425� · 𝑓𝑓𝑐𝑐
2
3� · 𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 · 𝑑𝑑 (21) 

For values of T>Tcr, the contribution of the concrete to resist tension is not considered, being 321 

the tensile force resisted only by the reinforcement, whose stress increases considerably. If the 322 

longitudinal reinforcement yields, Eq. (8) applies. Then, the effect of in-plane tensile forces is 323 

considered by using a reduced steel strength in the tension direction, given by:  324 

𝑓𝑓𝑦𝑦∗ = 𝑓𝑓𝑦𝑦− 
𝑇𝑇
𝐴𝐴𝑠𝑠

 (22) 
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Due to this reduction, the punching strength associated to reinforcement yielding, Vy, may 325 

become dominant, diminishing even more the strength and stiffness of the slab. Then, the 326 

punching shear strength of slabs subjected to in-plane tensile forces is given by the lower of the 327 

following values: 328 

𝑉𝑉𝑅𝑅,𝑡𝑡 = 0.3 𝜁𝜁 ��1.125− 0.85
𝑇𝑇
𝑇𝑇𝑐𝑐𝑐𝑐

�
𝑥𝑥0
𝑑𝑑

+ 0.425�𝑓𝑓𝑐𝑐
2/3 𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  𝑑𝑑 (23) 

𝑉𝑉𝑅𝑅,𝑡𝑡 ≤ 𝑉𝑉𝑦𝑦 ≈ 2𝜋𝜋𝑓𝑓𝑦𝑦∗𝑑𝑑2 �1 −
𝜌𝜌𝑓𝑓𝑦𝑦∗

2𝑓𝑓𝑐𝑐
� (24) 

where fy
* is given by Eq. (22). Figure 8 shows the influence of the longitudinal reinforcement 329 

ratio on the reduction of punching shear strength as T/Tcr increases in the case of unidirectional 330 

in-plane tensile forces, obtained from Eqs. (21) and (24). In case of uniaxial tension, if Eq. (24) 331 

is satisfied, VR,t has to be replaced by Vy in Eq. (21). 332 

 333 

Figure 8 334 

 335 

Fig. 8 shows that, in the uniaxial tension case, for higher reinforcement ratios parallel to 336 

the tensile force (ρl ≥ 0.014), a linear reduction of punching shear strength takes place, since 337 

failure is governed by Eq. (23). However, as ρl decreases, for certain value of T/Tcr, the slope of 338 

the straight line (and the reduction of punching strength) is higher, since yielding of reinforcement 339 

takes place, prior to punching failure, being the punching strength governed by Eq. (24). This fact 340 

may happen even for T<Tcr, for low reinforcement ratios (ρl < 0.011). Furthermore, it can be 341 

observed that for T=Tcr, another change of slope takes place, since the slab is cracked under the 342 

tensile force, and a sudden increment of tensile stress in the reinforcement takes place. This fact 343 

occurs even for higher reinforcement ratios (ρl ≥ 0.014), although in these cases the increment of 344 

stress is not relevant. Finally, a minimum punching strength is reached (bottom horizontal line) 345 

of value VR,t/2/VR = 0.5, which corresponds to the shear resisted by the portion of the control 346 

perimeter parallel to the tensile forces, not affected by tensile stresses. In case of a slab supported 347 

on a circular column, the tensile force per unit length normal to the control perimeter, and the 348 



15 
 

neutral axis depth, both depend on the angle φ (see figure 7). Then, in that case, the punching 349 

strength should be obtained by integration of the shear per unit length obtained for each value of 350 

the angle φ along the control perimeter. However, parametric studies made by the authors show 351 

that the error made using the proposed equations, (21), (23), (24) for a square control perimeter 352 

of the same length is 1% for T/Tcr = 0.25 and 5% for T/Tcr= 1 353 

 354 

3. Verification of the model 355 

3.1 Experimental campaign 356 

A total of 5 slabs of 1650 x 1650 x 120 mm were cast and tested by the authors [24]. The 357 

supporting system consisted in 8 load cells placed at the vertices of a regular octagon, equidistant 358 

750 mm from the load application point which is on its center (Fig 9-a). The specimens were 359 

subjected to tension in their plane, in only one direction, using 10 bars of 25 mm in diameter of 360 

tensile strength fpu=1050 N/mm2 and 600 mm in length, partially embedded in two opposite faces 361 

(5 bars on each side) (Fig 9-b). These bars were connected to the tensioning system with the help 362 

of couplers and 1.5 m bar extensions that were stretched by hollow jacks, as can be seen in Fig. 363 

9-c, to apply the tensile force in the slab. Four out of the five tested specimens were subjected to 364 

different levels of tensile stresses, whilst the control slab was left un-tensioned. The value of the 365 

external load applied during each test was defined based on the tensile force producing the 366 

cracking of the slab cross section, (i.e. Tcr = Ac·fct,), with Ac being the concrete area of the cross 367 

section and fct the tensile concrete strength. Values of the applied force, support reactions, 368 

displacements at the slab center and at the supports, and strains in 32 points of the longitudinal 369 

reinforcement (24 parallel to the tensile force and 8 in the perpendicular direction at mid-span) 370 

were captured by the instrumentation during the test. The crack patterns were recorded throughout 371 

the loading process. 372 

 373 

Figure 9 374 

  375 
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The slabs were reinforced with two steel meshes arranged on the upper and lower faces. In 376 

the direction parallel to the external tension applied, the same amount of reinforcement was placed 377 

on both faces in all the slabs (A0, A1, A2, A3, B1). This longitudinal reinforcement consisted of 378 

12mm bars with an effective depth dl,A of 99 mm in type-A slabs (ρl,A = 0.0111) and 16mm bars 379 

with an effective depth dl,B of 97 mm in type-B slabs (ρl,B = 0.020). In the direction perpendicular 380 

to the applied tensile force, on the lower face, 12mm bars with an effective depth dt 85 mm (ρt = 381 

0.0129) was arranged in all cases. To cause the punching of the slab, a 145 x 145 x 30 mm steel 382 

loading plate was used. The rest of the details concerning the specimens, test set-up and 383 

instrumentation are fully described in [24], together with the description and analysis of results. 384 

3.2 Comparison of the tests results with the predictions of the proposed model  385 

3.2.1 Evolution of the punching shear strength 386 

The main interest of the experimental campaign was to observe the variation of the ultimate 387 

punching shear load as a function of the tensile force applied to the slabs. For this purpose, the 388 

experimentally obtained load-displacement curves of each test were analyzed, including that of 389 

the control slab.  390 

Predictions for punching shear failure load of each specimen have been made with the 391 

proposed model, according to Eqs. (21) and (24). The ratios between ultimate load for each test 392 

(T>0) and that of the reference test (T=0) are plotted in Fig. 10, both the experimental results and 393 

the model predictions. In addition, Table 1 shows the experimental results and the theoretical 394 

predictions of all tested slabs, using the concrete strength of each slab at the age of testing. As 395 

observed, there is only one specimen type-B which was tested with a tensile force of T/Tcr=0.44. 396 

 397 

Table 1 398 

 399 

Figure 10 400 

 401 

As can be seen, there is a remarkable and progressive reduction in the failure load with 402 

respect to the value obtained in the control slabs. The maximum reduction was 28% for T = 1.26 403 
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Tcr. It can also be observed that the extension of the theoretical model CCCM to the punching 404 

shear strength of slabs subjected to in plane tensile forces, and in particular its application to 405 

unidirectional tensile forces fits very well the experimental results.  406 

The decreasing trend is practically linear with the applied tensile force and is accentuated 407 

in cases where the applied force is greater or equal than Tcr. This may occur due to the fact that 408 

when Tcr is exceeded, cracking of the concrete occurs and, at the crack, the entire value of the 409 

applied external force is resisted by the reinforcement, which increases dramatically its stress, 410 

reducing its contribution to the punching shear strength. 411 

This effect is captured by the model, as explained in section 2 and in Figure 8. As observed 412 

in the theoretical curve calculated with the parameters of type-A slabs of Fig. 10, for values of 413 

the external force close to Tcr = 1, the punching shear strength associated to reinforcement 414 

yielding, Vy given by Eq. (24), becomes dominant over VR,t in the stressed direction, and for this 415 

reason the slope of the curve decreases from that point onwards. A similar analysis has been made 416 

for slab Type B, in which this effect is not observed, because after cracking, the remaining 417 

capacity of the reinforcement fy
*= fy-T/As is higher than in type-A slabs. Therefore, the 418 

contribution of the longitudinal reinforcement to the punching shear strength is enough to keep 419 

VR,t as the dominant failure load in the stressed direction.  420 

3.2.2 Strains in the reinforcement 421 

In order to study the evolution of the strains in the reinforcement at the central area of the slabs, 422 

a set of strain gauges was placed on both the reinforcement parallel to the external tensile force 423 

and perpendicular to it. Firstly, the data yielded by the gauges glued to the reinforcement parallel 424 

to the external force was closely monitored during the tensioning stage, to ensure a homogenous 425 

distribution of the tensile stresses along the mid-section of the slabs prior to the beginning of the 426 

punching test. 427 

During the punching test, the main goal of the strain gauges was to control the moment of 428 

yielding of the reinforcement parallel to the tensile force. If yielding takes place for a punching 429 

load close to the failure load, it may be assumed that yielding of the reinforcement is not 430 

influencing the punching strength, and thus and VR,t prevails over Vy. On the other hand, if yielding 431 
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of the reinforcement takes place in an early stage of the punching test, a flexural-punching failure 432 

occurs, and Vy prevails over VR,t. 433 

Figure 11 shows that yielding of the longitudinal reinforcement in all the type-A slabs. In the 434 

control slab (T=0), yielding occurred at a load level very close to the failure load.  For the case of 435 

T/Tcr = 0.69, the average strain in the reinforcement reached the yielding strain when the load 436 

applied was an 88% of the failure load. In the other two cases, where T/Tcr = 1.02 and T/Tcr = 1.26 437 

the average strain in the reinforcement reached the yielding strain when the load applied was a 438 

58% and a 42% of their respective failure loads.   439 

 440 

Figure 11 441 

 442 

Figure 12 shows the evolution of the average strains of the reinforcement located in the 443 

central part of the slab in both directions. In the control slab, both reinforcements presented similar 444 

values of strain during the whole test, reaching yielding for a punching load very close to the 445 

failure load. For the case of T/Tcr = 0.69, the slope of the force-strain curve of the perpendicular 446 

reinforcement increased a 14% when the parallel reinforcement reached yielding. This slope 447 

incremented by 11% for T/Tcr = 1.02 and by 14% for T/Tcr = 1.26. 448 

Finally, figure 13 shows the comparison between the mean reactions measured at the load 449 

cells closest to the sides of the slab perpendicular to the external force (longitudinal reaction) and 450 

at the closest ones to the sides parallel to the external force (transverse reaction). As can be seen 451 

for values of T = 0 and T/Tcr = 0.69, the evolution of the reactions barely changes after the yielding 452 

of the reinforcement parallel to the external force. However for T/Tcr = 1.02 and T/Tcr = 1.26 an 453 

increment in the transverse reaction and a decrement of the longitudinal reaction with respect to 454 

the mean reaction occurs, more accentuated in the case of T/Tcr = 1.26 455 

These behaviors may indicate that there was a moment redistribution process in the 456 

specimens subjected to high axial load levels, which may occur without collapse due to the static 457 

indeterminacy of two way slabs. In summary, the observed experimental behavior corroborates 458 
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the assumptions of the model related to the effects of the in-plane tensile forces on the punching 459 

shear strength. 460 

 461 

Figure 12 462 

 463 

Figure 13 464 

 465 

4. Predictions of the tests results using several design codes provisions 466 

Table 3 compares the punching-shear strength predictions of all slabs tested by the authors, the 467 

ones tested at Cornell University [16-17] and two of those tested by Regan (BD-6 and BD-8, 468 

control slab) [18], using the simplified proposal presented in Section 2 and three current structural 469 

codes. All safety factors have been removed from the original formulations, and reported mean 470 

values of the materials strength and the actual applied loads have been used. The main 471 

characteristics of Regan’s and Cornell’s slabs are summarized in Table 2 and Fig. 14. Regan’s 472 

specimens were 1.5 m square and 125 mm thick (Fig. 14-a) and have been considered simply 473 

supported on their four sides for the calculations, despite the testing set up may have introduced 474 

some restriction to the rotation at the supports. Cornell’s specimens were 1.2 m square and 150 475 

mm thick simply supported on their four sides (Fig 14-b). 476 

 477 

Table 2 478 

 479 

Figure 14 480 

 481 

EC-2 [20] predictions are made using the equation presented in section 6.4.4 (1), which 482 

accounts for the effects of normal stresses with the additive term σcp. Regarding ACI, the 483 

formulation presented in section 11.12.2.3 of ACI 349-06 [22] has been selected (3) rather than 484 

the formula of section 22.5.7 (2) of ACI 318-14 [21], which yielded highly conservative results. 485 

Finally, Level of Approximation II has been used for MC-2010 [23] predictions. In this case, the 486 
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effects of tensile stresses have been introduced in the calculation of the slab’s rotation ψ, Eq. (25), 487 

through term mRd, which has been calculated taking account of the applied tensile force.  488 

𝜓𝜓 = 1.5 ·
𝑟𝑟𝑠𝑠
𝑑𝑑
𝑓𝑓𝑦𝑦
𝐸𝐸𝑠𝑠

· �
𝑚𝑚𝐸𝐸𝐸𝐸

𝑚𝑚𝑅𝑅𝑅𝑅
�
1.5

 (25) 

To calculate the term mEd, the equation (7.3-71) of MC-2010 has been used, considering no 489 

eccentricity of the resultant of the shear forces with respect to the centroid of the control perimeter. 490 

Therefore, mEd = VEd/8, being VEd actually the punching strength of each slab (VEd = VRd). Thus, 491 

Eq. (26) has been solved iteratively for each value of the external applied load. 492 

𝑉𝑉𝑅𝑅𝑅𝑅 =
1

1.5 + 0.9𝑘𝑘𝑑𝑑𝑑𝑑 · 𝑑𝑑 · 1.5 · 𝑟𝑟𝑠𝑠𝑑𝑑
𝑓𝑓𝑦𝑦
𝐸𝐸𝑠𝑠

· �
𝑉𝑉𝑅𝑅𝑅𝑅

8
𝑚𝑚𝑅𝑅𝑅𝑅

�

1.5 �𝑓𝑓𝑓𝑓 · 𝑏𝑏0 · 𝑑𝑑 
(26) 

Regarding the ultimate load prediction using the codes provisions, in uniaxial tension, best 493 

results are yielded by EC-2, followed closely by MC-2010, whereas for biaxial tension, best 494 

results are yielded by MC-2010, followed by EC-2, whereas ACI 349-06 yields more conservative 495 

results in both cases. As far as CCCM concerns, it seems to be the best prediction method for 496 

uniaxial tension. Unfortunately, the available database of this type of tests is scarce, and needs to 497 

be extended with future research on this topic. For biaxial tension both CCCM and MC-2010 498 

yield similar average results ( 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒
𝑃𝑃𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

= 1.26 and 1.21 respectively), but CCCM has a slightly 499 

lower coefficient of variation than MC-2010 (9.76 % and 12.72 % respectively). Globally, best 500 

results are given by the CCCM with an average value of 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒
𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

=1.11 and a coefficient of 501 

variation of 9.32%, with a minimum value of 0.939 and a maximum value of 1.498. Table 3, 502 

along with Fig. 15 summarize the results of the comparison.  503 

 504 

Table 3 505 

 506 

Figure 15 507 

 508 

5. CONCLUSIONS 509 
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A mechanical model for the shear punching strength of RC flat slabs subjected simultaneously to 510 

concentrated loads and in-plane tensile forces, has been described and verified with the results of  511 

previously carried out experimental campaigns. The developed model has been derived from the  512 

Compression Chord Capacity Model for punching shear, by identifying the main effects of in-513 

plane tensile forces on the punching shear resisting mechanisms and failure modes, and 514 

incorporating them into their governing equations. The following main conclusions can be drawn 515 

from the studies performed: 516 

1.  The following main effects of in-plane tensile forces on the punching shear strength of 517 

slabs, have been identified:   518 

a. A reduction of the neutral axis depth, and the corresponding reduction of the 519 

contribution of the compression chord to the shear strength. 520 

b. An increment of the tension in the longitudinal reinforcement and, by 521 

equilibrium, a decrement of compression stress in the un-cracked concrete chord, 522 

thus reducing its shear transfer capacity. 523 

c. A possible premature cracking of concrete, due to a high level of pure tension, 524 

that considerably increases the tensile stress in the longitudinal reinforcement. 525 

d. An increment of the critical crack width, that reduces the transfer capacity of 526 

shear and residual tensile stresses, along the crack. 527 

2. Simple and accurate design equations have been derived, showing that the shear transfer 528 

capacity of the compressed chord linearly decreases as a function of the ratio T/Tcr, where 529 

T is the applied tensile force and Tcr is the force that produces cracking in the concrete. 530 

3. The model has been able to accurately reproduce the results of an experimental campaign 531 

carried out by the authors, on 5 slabs subjected to a concentrated load and different levels 532 

of unidirectional in-plane tensile forces. The experimentally observed behaviour has been 533 

captured both qualitatively and quantitatively, with an average error on the prediction of 534 

the ultimate load of 5%. 535 

4. When a high tensile force T is applied, the increment of tensile stress in the longitudinal 536 

reinforcement due to the tensile force may be such that yielding of the reinforcement 537 
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under increasing concentrated load may occur prior to punching failure, thus reducing the 538 

punching strength. Such phenomenon usually occurs for T>Tcr. However, for low 539 

reinforcement ratios, it can also occur for T<Tcr. 540 

5. The above described phenomenon is captured by the model, in which such failure is 541 

associated to the load that produces yielding in the flexural reinforcement in both 542 

directions, when yielding takes place. The relationship between the ultimate load and the 543 

ratio T/Tcr results approximately bilinear, with higher slope when premature yielding of 544 

the longitudinal reinforcement takes place. 545 

6. If additional reinforcement is placed to resist the applied tensile force, even in case that 546 

the section cracks (T>Tcr), the increment of stress in the longitudinal reinforcement may 547 

not be enough to produce yielding prior to the punching failure, thus contributing to avoid 548 

the “extra” reduction of punching strength.  549 

7. Predictions of punching-shear-tension tests results, available in the literature, were made 550 

with the proposed CCCM model and with different theoretical models included in design 551 

codes (EC-2, ACI 349-06, MC-2010 (LoA II)). It was showed that the best results are 552 

yielded by the proposed model (mean error of 5.3% (CoV=2.85%) for the case of uniaxial 553 

tension and 12.6% (CoV=9.76%) for biaxial tension. Among the Codes provisions, EC-554 

2, provides the best predictions for uniaxial tension (mean error of 13.5% (CoV=4.71%) 555 

whereas MC-2010 provides the best results for biaxial tension (mean error of 12.1% and 556 

CoV=12.72%). Mostly all the predictions of the ultimate load are conservative, being the 557 

ACI 349-06 predictions the most conservative ones. 558 

 559 

Acknowledgements 560 

This work was developed in the framework of Research Project BIA-2015-64672-C4-1-R, 561 

financed by the Ministry of Economy and Competitiveness (MINECO) of Spain and the European 562 

Funds for Regional Development (FEDER). The authors want to thank Mr. José Romo, from 563 

FHECOR Engineering, for transmitting his experience in bridge design that helped to set the 564 



23 
 

problem and to the director and technicians of the Structural Technology Laboratory of UPC, for 565 

their help in carrying out the experimental campaign. 566 

 567 

 568 

 569 

 570 

References 571 

 572 

[1] Kinnunen S, Nylander H. Punching of concrete slabs without shear reinforcement. 573 

Transactions No. 158; Royal Institute of Technology; Stockholm: 1960. 574 

[2] Braestrup MW, Nielson MP, Jensen BC, Bach F. Axisymmetric Punching of Plain and 575 

Reinforced Concrete. vol. 75. Structure Research Laboratory, Technical University of 576 

Denmark: 1976. 577 

[3] Regan PE, Braestrup MW. Punching shear in reinforced concrete: a state-of-art report. 578 

CEB Bulletin d’Information 168, Lausanne: Comité euro-international du béton; 1985. 579 

[4] Bazant ZP, Cao Z. Size Effect in Punching Shear Failure of Slabs. ACI Struct J 580 

1987;84:44–53. doi:10.14359/2785. 581 

[5] Broms CE. Punching of flat plates. A question of concrete properties in biaxial 582 

compression and size effect. ACI Struct J. 1990;87:292–304. doi:10.14359/2624. 583 

[6] Bortolotti L. Punching Shear Strength in Concrete Slabs. ACI Struct J 1991;87:208–19. 584 

doi:10.14359/2717. 585 

[7] Hallgren M. Punching shear capacity of reinforced high strength concrete slabs. KTJ 586 

Stockholm, TRITA-BKN. Bull.9, 1994. 587 

[8] Fédération Internationale du Béton (fib). Punching of structural concrete slabs. Bulletin12. 588 

Lausanne: International Federation for Structural Concrete; 2001. 589 

[9] Menétrey P. Analytical Model for punching strength prediction. Int. Work. Punching 590 

Shear Capacit. RC Slabs, Stockholm: 2000, p. 190–9. 591 



24 
 

[10] Polak MA. SP-232: Punching Shear in Reinforced Concrete Slabs. Am. Concr. Institute, 592 

Spec. Publ., vol. 232, 2005, p. 302. doi:10.14359/14960. 593 

[11] Muttoni A. Punching shear strength of reinforced concrete slabs without transverse 594 

reinforcement. ACI Struct J 2008;105:440–50. 595 

[12] Park H-G, Choi K-K, Chung L. Strain-based strength model for direct punching shear of 596 

interior slab–column connections. Eng Struct 2011;33:1062–73. 597 

doi:10.1016/J.ENGSTRUCT.2010.12.032. 598 

[13] Koppitz R, Kenel A, Keller T. Punching shear of RC flat slabs – Review of analytical 599 

models for new and strengthening of existing slabs. Eng Struct 2013;52:123–30. 600 

doi:10.1016/J.ENGSTRUCT.2013.02.014. 601 

[14] Guandalini S, Burdet OL, Muttoni A. Punching Tests of Slabs with Low Reinforcement 602 

Ratios. ACI Struct J 2009;106:87–95. doi:10.14359/56287. 603 

[15] Kueres D, Siburg C, Herbrand M, Classen M, Hegger J. Uniform Design Method for 604 

punching shear in flat slabs and column bases. Eng Struct 2017;136:149–64. 605 

doi:10.1016/J.ENGSTRUCT.2016.12.064. 606 

[16] Abrams, J.H. The Punching Shear Strength of Pre-cracked Reinforced Concrete in Biaxial 607 

Tension”, M.S. Thesis Cornel University, May 1979. 608 

[17] Jau, W.C, White. R.N, Gergely, P. Behavior of reinforced concrte slabs subjected to 609 

combined punching and biaixal tension. Report for U.S. Nuclear Regulatory Comission, 610 

1982 611 

[18] Regan, P.E. Punching shear in prestressed concrete slab bridges. Engineering Structures 612 

Research Group, Polytechnic of Central London, 1983. 613 

[19] Bui TT, Nana WSA, Abouri S, Liman A, Tedoldi B, Roure T. Influence of uniaxial tension 614 

and compression on shear strength of concrete slabs without shear reinforcement under 615 

concentrated loads. Construction and Building Materials 2017:147;86-101 616 

[20] European Committee for Standardization. Eurocode 2: design of concrete structures: Part 617 

1: general rules and rules for buildings. Brussels, Belgium: European Committee for 618 

Standardization; 2002  619 



25 
 

[21] ACI 318-14. Building code requirements for structural concrete and commentary. 620 

American Concrete Institute, 2014 621 

[22] ACI 349-06. Code Requirements for Nuclear Safety Concrete Structures. American 622 

Concrete Institute, 2007 623 

[23] Fédération international du Béton. Fib Model Code for Concrete Structures 2010 vol. 1. 624 

Lausanne: Ernst & Sohn; 2013 625 

[24]  Fernandez, P.G., Marí A, Oller E. ” (2020) “Punching shear strength of reinforced concrete 626 

slabs subjected to unidirectional in-plane tensile forces,  Structural Concrete, FIB, 627 

Accepted for publication. DOI: 10.1002/SUCO.202000112 628 

[25] Marí A, Cladera A, Oller E, Bairán JM. A punching shear mechanical model for reinforced 629 

concrete flat slabs with and without shear reinforcement. Engineering Structures 630 

2018:166;413-26 631 

 [26] Cladera, A., Marí, A., Bairán, JM. Oller, E., Duarte, N. (2016) “The compression chord 632 

capacity model for the shear design and assessment of reinforced and prestressed concrete 633 

beams” Structural Concrete (FIB), Wiley, 18-2, pp1017-1032, ISSN 1464-4177 634 

[27] Marí A, Bairán J, Cladera A, Oller E, Ribas C. Shear-flexural strength mechanical model 635 

for the design and assessment of reinforced concrete beams. Struct Infrastruct Eng 636 

2015;11:1399–419. doi:10.1080/15732479.2014.964735. 637 

[28]  Walraven, J.C. Fundamental analysis of agreggate interlock. Journal of the structural 638 

division-ASCE, 1981; 107(11), 2245-2270. 639 

[29]  Vecchio, F.J., Collins, M.P. The modified compression field theory for reinforced-640 

concrete elements subjected to shear. Journal of the American Concrete Institute, 1986; 641 

83(2), 219-231. 642 

[30]  Kupfer, H. B. and Gerstle, K. H. Behavior of concrete under biaxial stresses. J Eng Mech 643 

Div, 1973; 99, 853–866. 644 

[31] Marí A, Cladera A, Bairán JM. Effects of axial forces and prestressing on the shear 645 

strength of structural concrete member . Proceedings, VII International Structures 646 



26 
 

Conference, Spanish Ass. of Structural Engineering, ACHE, A Coruña, Spain. June, 647 

2017. 648 

[32] Sagaseta J, Muttoni A, Fernández Ruiz M, Tassinari L. Non-axis symmetrical punching 649 

shear around internal columns of RC slabs without transverse reinforcement. Magazine 650 

of concrete research, Paper 1000098, Nº3, 17p, 2011 651 

  652 



27 
 

List of Figures 653 

 654 

Figure 1. Common situations where in-plane tensile stresses and a concentrated load may act 655 

together. 656 

Figure 2.  Set-up of the tests carried out by a) Regan [19] b) at the University of Lyon [20] c) at Cornell 657 

University [16-17]. 658 

Figure 3. Shear transfer mechanism and scheme of equilibrium of the considered forces in the 659 

shear model. 660 

Figure 4. Shear transfer actions and scheme of equilibrium of the considered forces in the 661 

punching model.  662 

Figure 5. Equilibrium of forces in a differential slice of slab, including in-plane tensile forces. 663 

Figure 6. Dimensionless shear carried by the un-cracked chord vct for different values of T/Tcr. 664 

Figure 7. Parts of the control perimeter affected and non-affected by tensile stresses. 665 

Figure 8. Influence of ρl on the reduction of shear punching strength as T/Tcr increases. 666 

Figure 9. Position of the bars used to introduce tensile forces in the slab, tensioning system and support 667 

scheme. 668 

Figure 10. Theoretical and experimental punching shear strength vs. relative tensile force 669 

applied T/Tcr  670 

Figure 11. Evolution of strains in the longitudinal reinforcement: a) T=0; b) T=0.69Tcr; c) 671 

T=1.02Tcr; d) T=1.26Tcr. 672 

Figure 12. Relation between strains in the reinforcement parallel and perpendicular to the tensile 673 

force. a) T=0; b) T=0.69Tcr; c) T=1.02Tcr; d) T=1.26Tcr. 674 

 675 

Figure 14. Regan’s and Cornell’s slabs dimensions. 676 

Figure 15. Comparison of ultimate loads obtained with each design method. a) Uniaxial tension b) 677 

Biaxial tension 678 

 679 

 680 

     



28 
 

List of Tables 681 

 682 

Table 1. Test results and theoretical predictions with the proposed model. 683 

Table 2. Regan’s and Cornell’s slabs characteristics (Figure 14). 684 

Table 3. Comparison of the ultimate load predictions. (Figure 15). 685 

  686 



29 
 

 687 

Fig. 1. Common situations where in-plane tensile stresses and a concentrated load may act together. 688 

  689 



30 
 

 690 

Fig. 2. Set-up of the tests carried out by a) Regan [18] b) at the University of Lyon [19] c) at Cornell 691 

University [16-17]. 692 

  693 



31 
 

 694 

Fig. 3. Shear transfer mechanism and scheme of equilibrium of the considered forces in the shear model. 695 

  696 



32 
 

 697 

Fig. 4. a) Position of the control perimeter. b) Vertical stresses in the vicinity of the column c) Shear 698 

transfer actions and scheme of equilibrium of the considered forces in the punching model. 699 

  700 



33 
 

 701 

Fig. 5. Equilibrium of forces in a differential slice of slab, including in-plane tensile forces. 702 

  703 



34 
 

 704 

Fig. 6. Dimensionless shear carried by the un-cracked chord vct for different values of T/Tcr. 705 
  706 



35 
 

 707 

Fig. 7. Parts of the control perimeter affected and non-affected by tensile stresses. 708 

  709 



36 
 

 710 

Fig. 8. Influence of ρl on the reduction of shear punching strength as T/Tcr increases for the unidirectional 711 

tension case. 712 

  713 



37 
 

 714 
Fig. 9. a) Support scheme. b) Position of the bars used to introduce tensile forces in the slab. c) 715 

Tensioning system 716 
 717 

  718 



38 
 

 719 

Fig. 10. Theoretical and experimental punching shear strength vs. relative tensile force applied T/Tcr  720 

  721 



39 
 

 722 

Fig. 11. Evolution of strains in the longitudinal reinforcement: a) T=0; b) T=0.69Tcr; c) T=1.02Tcr; d) 723 

T=1.26Tcr. 724 

  725 



40 
 

 726 

Fig. 12. Relation between strains in the reinforcement parallel and perpendicular to the tensile force. a) 727 

T=0; b) T=0.69Tcr; c) T=1.02Tcr; d) T=1.26Tcr. 728 

 729 
  730 



41 
 

 731 
Fig. 13. Evolution of the longitudinal and transverse reaction during the tests. a) T=0; b) T=0.69Tcr; c) 732 

T=1.02Tcr; d) T=1.26Tcr. 733 

  734 



42 
 

 735 

Fig. 14. a) Regan’s and b) Cornell’s slabs dimensions.  736 

  737 

a) b) 



43 
 

 738 
Fig. 15. Comparison of ultimate loads obtained with each design method. a) Uniaxial tension b) Biaxial 739 

tension 740 

  741 

a) b) 



44 
 

Table 1. Test results and theoretical predictions with the proposed model 742 

Slab  T/Tcr  
fc,cyl  

(MPa) 

fct 

(MPa) 

Experim. 

Pu (kN) 

Theoret. 

Pu (kN) 

Puexp/Ptheo Experim. 

Pu/Pcontrol 

Theoret. 

Pu/Pcontrol 

A1 0.00 37.6 3.38 249.1 242.1 1.029 1 1 

B1 0.44 37.7 3.41 240.4 233.2 1.031 0.911 0.915 

A2 0.69 35.9 3.05 215.2 210.6 1.023 0.864 0.870 

A3 1.02 37.4 3.13 198.4 196.1 1.012 0.796 0.813 

A4 1.26 36.7 3.36 179.4 171.9 1.044 0.720 0.710 

 743 

  744 
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Table 2. Regan’s and Cornell’s slabs characteristics (Figure 14) 745 

 Slab fc,cyl 
(MPa) 

fct 
(MPa) 

B 
(mm) 

dX 
(mm) 

dY 
(mm) 

ρX 
(%) 

ρY 
(%) 

T/Tcr 
X T/Tcr Y 

R
E

G
A

N
 BD-6 38.9 3.2 100 95 107 1.360 1.208 1.00 0 

BD-8 39.7 2.7 100 95 107 1.360 1.208 0 0 

C
O

R
N

E
L

L
 

00B8 22.3 NR 200 108.7 116.6 1.585 0.720 0.00 0.00 
08B8 22.6 NR 200 108.7 116.6 1.585 0.720 1.37 0.69 
00C4 21.7 NR 100 115.1 116.6 0.680 0.380 0.00 0.00 

08C4 23.4 NR 100 115.1 116.6 0.680 0.380 0.69 0.41 
00D8 22.9 NR 200 108.7 116.6 1.585 0.720 0.00 0.00 
09A 28.3 NR 100 108.7 116.6 1.585 0.720 0.76 0.38 

09B 28.3 NR 100 108.7 116.6 1.585 0.720 0.76 0.38 

09C 28.3 NR 100 108.7 116.6 1.585 0.720 0.76 0.38 
09D 28.3 NR 100 108.7 116.6 1.585 0.720 0.76 0.38 

06A 22.1 NR 100 108.7 116.6 1.585 0.720 0.79 0.40 
06B 22.1 NR 100 108.7 116.6 1.585 0.720 0.79 0.40 
06C 22.1 NR 100 108.7 116.6 1.585 0.720 0.79 0.40 
06D 22.1 NR 100 108.7 116.6 1.585 0.720 0.79 0.40 
06E 24.1 NR 100 108.7 116.6 1.585 0.720 0.95 0.48 
06F 24.1 NR 100 108.7 116.6 1.585 0.720 0.95 0.48 

00A 31.0 NR 100 108.7 116.6 1.585 0.720 0.00 0.00 
00B 31.0 NR 100 108.7 116.6 1.585 0.720 0.00 0.00 
09E 31.0 NR 100 108.7 116.6 1.585 0.720 1.12 0.56 
09F 31.0 NR 100 108.7 116.6 1.585 0.720 1.12 0.56 
00C 28.3 NR 100 108.7 116.6 1.585 0.720 0.00 0.00 
02A 28.3 NR 100 108.7 116.6 1.585 0.720 0.30 0.15 

04A 28.3 NR 100 108.7 116.6 1.585 0.720 0.59 0.30 
06G 28.3 NR 100 108.7 116.6 1.585 0.720 0.86 0.43 
00D 29.7 NR 100 108.7 116.6 1.585 0.720 0.00 0.00 
02B 29.7 NR 100 108.7 116.6 1.585 0.720 0.28 0.14 
04B 29.7 NR 100 108.7 116.6 1.585 0.720 0.56 0.28 
06H 29.7 NR 100 108.7 116.6 1.585 0.720 0.84 0.42 

02C 22.7 NR 100 108.7 116.6 1.585 0.720 0.33 0.17 
04C 22.7 NR 100 108.7 116.6 1.585 0.720 0.66 0.33 
08A 22.7 NR 100 108.7 116.6 1.585 0.720 1.29 0.65 
08B 22.7 NR 100 108.7 116.6 1.585 0.720 1.36 0.69 

NR: Not reported 746 

 747 

 748 

 749 

 750 

 751 

 752 
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Table 3. Comparison of the ultimate load predictions. (Figure 15) 753 

Type Slab T/Tcr  
X 

T/Tcr 
Y 

fc,cyl 
(MPa) 

Pu,exp 
(kN) Pexp/PCCCM Pexp/PEC2 Pexp/PACI Pexp/PMC10 

U
N

IA
X

IA
L

 
T

E
N

SI
O

N
 

A1 0 0 37.6 249.1 1.048 1.205 1.423 1.280 
BD-8 0 0 39.7 251.0 1.048 1.119 1.482 1.176 

B1 0.44 0 37.7 240.4 1.052 1.147 1.409 1.181 
A2 0.69 0 35.9 215.2 1.008 1.145 1.265 1.160 

BD-6 1.00 0 38.9 225.0 1.038 1.108 1.196 1.098 
A3 1.02 0 37.4 198.4 1.105 1.178 1.427 1.108 
A4 1.26 0 36.7 179.4 1.074 1.040 1.102 1.019 

B
IA

X
IA

L
 T

E
N

SI
O

N
 

00B8 0.00 0.00 22.3 400.8 1.283 1.534 1.786 1.506 
08B8 1.37 0.69 22.6 306.0 1.498 1.539 1.503 1.290 
00C4 0.00 0.00 21.7 223.3 1.139 1.155 1.290 1.244 
08C4 0.69 0.41 23.4 185.0 1.098 1.145 1.209 1.189 
00D8 0.00 0.00 22.9 375.1 1.201 1.436 1.671 1.410 
09A 0.76 0.38 28.3 279.5 1.280 1.418 1.753 1.228 
09B 0.76 0.38 28.3 267.4 1.225 1.357 1.678 1.175 
09C 0.76 0.38 28.3 267.9 1.227 1.359 1.680 1.177 
09D 0.76 0.38 28.3 233.6 1.070 1.186 1.466 1.026 
06A 0.79 0.40 22.1 200.7 1.081 1.099 1.415 0.978 
06B 0.79 0.40 22.1 211.4 1.138 1.158 1.490 1.030 
06C 0.79 0.40 22.1 178.4 0.961 0.977 1.258 0.870 
06D 0.79 0.40 22.1 199.8 1.076 1.094 1.408 0.974 
06E 0.95 0.48 24.1 199.8 1.067 1.104 1.369 0.949 
06F 0.95 0.48 24.1 211.8 1.131 1.171 1.452 1.007 
00A 0.00 0.00 31.0 296.8 1.068 1.255 1.675 1.196 
00B 0.00 0.00 31.0 310.2 0.977 1.312 1.750 1.250 
09E 1.12 0.56 31.0 245.2 1.077 1.320 1.524 1.069 
09F 1.12 0.56 31.0 256.3 1.126 1.380 1.593 1.117 
00C 0.00 0.00 28.3 298.2 0.939 1.300 1.761 1.251 
02A 0.30 0.15 28.3 289.3 1.180 1.336 1.749 1.234 
04A 0.59 0.30 28.3 255.9 1.121 1.253 1.583 1.111 
06G 0.86 0.43 28.3 218.1 1.028 1.133 1.380 0.965 
00D 0.00 0.00 29.7 285.2 1.053 1.224 1.644 1.172 
02B 0.28 0.14 29.7 267.0 1.052 1.209 1.574 1.114 
04B 0.56 0.28 29.7 245.2 1.035 1.176 1.479 1.041 
06H 0.84 0.42 29.7 243.4 1.106 1.241 1.504 1.055 
02C 0.33 0.17 22.7 233.6 1.097 1.162 1.575 1.098 
04C 0.66 0.33 22.7 233.2 1.191 1.234 1.608 1.115 
08A 1.29 0.65 22.7 189.1 1.165 1.144 1.366 0.943 
08B 1.36 0.69 22.7 194.0 1.223 1.192 1.408 0.972 

Mean Uniaxial 1.053 1.135 1.329 1.146 
CoV Uniaxial (%) 2.847 4.706 10.705 7.150 

Max. 1.105 1.205 1.482 1.280 
Min. 1.008 1.040 1.102 1.019 

Mean Biaxial 1.126 1.245 1.535 1.121 
CoV Biaxial (%) 9.757 10.480 10.283 12.718 

Max. 1.498 1.539 1.786 1.506 
Min. 0.939 0.977 1.209 0.870 

Total Mean 1.113 1.225 1.497 1.126 
Total CoV (%) 9.320 10.380 11.577 11.808 
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