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Abstract
Diffusion refers to numerous phenomena, by which particles and bodies of

all kinds move throughout any kind of material, has emerged as one of the most
prominent subjects in the study of complex systems. Motivated by the recent de-
velopments in experimental techniques, the field had an important burst in the-
oretical research, particularly in the study of the motion of particles in biological
environments. Just with the information retrieved from the trajectories of particles
we are now able to characterize many properties of the system with astonishing
accuracy. For instance, when Einstein introduced the diffusion theory back in
1905, he used the motion of microscopic particles to calculate the size of the atoms
of the liquid these were suspended. Initially, most of the experimental evidence
showed that such systems follow Brownian-like dynamics, i.e. the homogeneous
interaction between the particles and the environment led to its stochastic, but un-
correlated motion. However, we know now that such a simple explanation lacks
crucial phenomena that have been shown to arise in a plethora of physical sys-
tems. The divergence from Brownian dynamics led to the theory of anomalous
diffusion, in which the particles are affected in a way or another by their inter-
actions with the environment such that their diffusion changes drastically. For
instance features such as ergodicity, Gaussianity, or ageing are now crucial for in
the understanding of diffusion processes, well beyond Brownian motion.

In theoretical terms, anomalous diffusion has a well-developed framework,
able to explain most of the current experimental observations. However, it has
been usually focused in describing the systems in terms of its macroscopic be-
haviour. This means that the processes are described by means of general models,
able to predict the average or collective features. Even though such an approach
leads to a correct description of the system and hints on the actual underlying
phenomena, it lacks the understanding of the particular microscopic interactions
leading to anomalous diffusion.

The work presented in this Thesis has two main goals. First, we will explore
how one may use microscopical (or phenomenological) models to understand
anomalous diffusion. By microscopical model we refer to a model in which we
will set exactly how the interactions between the various components of a system
are. Then, we will explore how these interactions may be tuned in order to recover
and control anomalous diffusion and how its features depend on the properties of
the system. We will explore crucial topics arising in recent experimental observa-
tions, such as weak-ergodicity breaking or liquid-liquid phase separation. Second,
we will survey the topic of trajectory characterization. Even if our theories are
extremely well developed, without an accurate tool for studying the trajectories
observed in experiments, we will be unable to correctly make any faithful predic-
tion. In particular, we will introduce one of the first machine learning techniques
that can be used for such purpose, even in systems where previous techniques
failed largely.
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Resumen
La difusión es el fenómeno por el cual partículas de todas formas y tamaños

se mueven a través del entorno que les rodea. Su estudio se ha convertido en
una potente herramienta a partir de la cual entender el comportamiento de sis-
temas complejos. Gracias al reciente desarrollo de increíblemente precisas técni-
cas experimentales, este fenómeno ha generado un enorme interés, tanto desde
el punto de vista experimental como teórico. En particular, dicha atención se ha
dado en mayor medida en el estudio del movimiento de partículas microscópicas
en entornos biológicos. Mediante el análisis de las trayectorias de estas partícu-
las, somos capaces de caracterizar no solo sus propiedades, pero también las de
su entorno. El mismo Einstein, autor junto con Smoluchowski de la teoría de la
difusión, mostró cómo era posible calcular el radio de los átomos de un líquido
simplemente mediante el análisis del movimiento de una partícula suspendida en
este. Dicha teoría, que dio pie a lo que hoy conocemos como movimiento Brown-
iano, consideraba que la interacción homogénea de una partícula con su entorno
provocaba el movimiento aleatorio de este última.

Aunque el movimiento Browniano haya sido utilizado para describir una enorme
cantidad de experimentos, sabemos hoy en día que existen sistemas particulares
que se desvían de sus predicciones. Esta divergencia ha dado pie al desarrollo de
la teoría de la difusión anómala, en la que, debido a las propiedades de las partícu-
las y sus entornos, la difusión difiere drásticamente de las predicciones de la teoría
Browniana. Algunos fenómenos como la ergodicidad, Gausianidad o el envejec-
imiento de difusión, particulares de la difusión anómala, son hoy en día cruciales
para el entendimiento del movimiento de partículas en sistemas complejos.

En términos teóricos, la difusión anómala tiene unas bases firmes, capaces de
explicar gran parte de las observaciones experimentales más recientes. Sin em-
bargo, esta teoría suele centrarse en la descripción de la difusión desde un punto
de vista macroscópico. Esto quiere decir, analizar un sistema mediante mode-
los generales, capaces de predecir propiedades colectivas o globales. Aunque las
teorías macroscópicas consiguen describir correctamente la mayoría de los proce-
sos de difusión, no tienen la capacidad de discernir qué tipo de interacciones dan
lugar a la difusión anómala.

El trabajo presentado en esta Tesis tiene dos objetivos principales. El primero
es explorar el uso de modelos microscópicos (o fenomenológicos) para entender la
difusión anómala. Un modelo microscópico, en contraposición al macroscópico,
describe el sistema a partir de sus propiedades específicas. En este caso, a partir
del tipo de interacciones que existen entre las partículas y su entorno. El objetivo
es entonces entender cuáles de estas interacciones producen difusión anómala.
Además, caracterizaremos los parámetros macroscópicos de la difusión, como el
exponente anómalo, y mostraremos como depende de las propiedades del sis-
tema. En el camino, exploraremos como fenómenos como la rotura débil de la
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ergodicidad (weak-ergodicity breaking) o la separación de fase aparecen en sis-
temas con interacciones complejas. Nuestro segundo objetivo consiste en el desar-
rollo de técnicas para la caracterización de trayectorias provenientes de procesos
de difusión. Aunque nuestro entendimiento teórico llegue a niveles insospecha-
dos en los próximos años, sin un análisis correcto y preciso de las trayectorias
experimentales, jamás podremos construir un puente entre teoría y experimen-
tos. Por tanto, el desarrollo de técnicas con las cuales analizar con la mayor pre-
cisión posible dichas trayectorias es un problema igual de importante que el de-
sarrollo teórico de la difusión. En este trabajo, estudiaremos como las técnicas de
aprendizaje automático (Machine Learning) pueden ser utilizadas para caracteri-
zar dichas trayectorias, llegando a niveles de precisión y análisis muy por encima
de las técnicas existentes.
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1 Introduction

1.1 Historical remarks

The world in our surrounding moves. No matter its scale, physical objects move
in very particular ways, driven by their properties and their interaction with the
environment. From the motion of black holes in the center of our own galaxy to
the dynamics of particles in atomic experiments, their speed, direction and ac-
celeration, among others, are widely used to understand their physical nature.
Indeed, many theories have been developed to study systems just by looking at
their motion. For instance, with the emergence of Newtonian mechanics and the
works of Galilei, we have been able to predict the mass of stellar objects by study-
ing their orbit. Understanding the diffusion of light through different materials
led to the main discoveries of classical optics, while the scattering of electrons
gave us insights on the structure of the atom.

Most physical theories are able to describe completely the outcome of an event,
given enough prior information. However, this is not always the case. In com-
plex systems, the degrees of freedom of the system increase so vastly that we can
longer describe its behaviour by a deterministic theory. In this case, physicist rely
on a statistical approach: the macroscopic behaviour of the system is described by
a small number of microscopical parameters, considered probabilistic and fluc-
tuating around a certain mean. This approach, known as statistical physics, has
been thoroughly studied in many scenarios, from mechanics to thermodynamics.
It was particularly well suited for the study of the physical systems, in which the
stochastic behaviour of micro and nanoscopic particles would give rise to some
macroscopic phenomena, as e.g. the temperature of a system being related to the
actual velocity of the particles it contains.

Lucrecius and the Epicurean philosophy Surprisingly, such ideas were already
conceived as early as in the times of the Roman empire. Our main source of
knowledge on this topic is the scientific poem ’On the nature of things’ (60 B.C.),
written by the philosopher and scientist Lucrecius (94 B.C. - ?). Considered as one
of the most important poems of the Roman age, Lucrecius explains to his contem-
poraries the main concepts of the Epicurean philosophy. During the Ancient age,
two main currents of thought existed: from one side, Epicurus and his followers,
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usually known as the atomists, considered that our surrounding is made of both
matter and void. Atoms, indivisible particles of different shape and sizes, would
fill some of this void and their combination give rise to everything we see. Op-
posite to them was Aristotle, who considered that matter was continuous, hence
you could divide it endlessly in even smaller pieces. Moreover, he consider that
all nature was formed by the four elements: earth, air, water and fire.

Due to its influence, the Aristotelianism persisted from the Greek’s time and
was considered as the main physical theory also by Romans. Nevertheless, some
philosophers still believed in Epicure’s vision of the world, being Lucrecius one
of them. Such believe motivated him to write ’On the nature of things’, in which
a very interesting idea is introduced, perhaps without him even figuring how im-
portant this was. It is summarized in the following verses:

[...] Another reason you should turn
Your attention to the motes that drift and tumble in the light:
Such turmoil means that there are secret motions, out of sight,
That lie concealed in matter. [...]

[...] For atoms are moving on their own,
Then small formations of them, nearest them in scale, are thrown
Into agitation by unseen atomic blows. [...]

The previous is an excerpt of the poem ’The dance of the atoms’, the second
volume of Lucrecius’ work. As a whole, the poem introduces very intriguing con-
cepts: atoms move due to a secret motion, which properties are concealed in their
matter. Moreover, ’atomic blows’ may cause the movement of even greater parti-
cles. As we will see later, these concepts are the basis of what we know now as the
theory of particle diffusion, which was not established until the beginning twen-
tieth century. Sadly, Lucrecius’ ideas were soon to be forgotten, mostly by two
reasons: in one hand, the rudimentary experimental techniques of that time were
far from giving any kind of judgment on the validity of his proposals; on the other
hand, the prestige of the Aristotelian current, contrary to the existence of atoms,
made it such that Lucrecius’ ideas were not seriously considered. Moreover, due
to its atheist nature, very few copies survived the Middle age and hence probably
never arrived to any of the other main characters of our particular story.

Before highlighting the importance of Lucrecius ideas and its influence on the
work related to this Thesis, let us briefly return to the history of the kinetic theory
of gases. Many centuries after the fall of the Roman empire, enormous advances
were made. From the seventeenth to the beginning of the twentieth century, works
from Bernoulli, Clausius, Boltzmann and Maxwell constructed the basis of statis-
tical thermodynamics. Nevertheless, while we are currently certain of the validity
of such theory, this was not so clear for its creators. Even if its macroscopic im-
plications were clearly understood, the lack of experimental evidences on its mi-
croscopical predictions made it more a theoretical construct rather than an actual
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contrasted theory. Indeed, most of the predictions involved atomic experiments,
which were far from doable even at the beginning of the twentieth century.

Brownian motion, a story of many Things were soon to be changed, mostly
due to the works of Albert Einstein (1879-1955) [1] and Marian Smoluchowski
(1872-1917) [2]. While the kinetic theory of gases focused on atoms and molecules,
hence nanoscopic particles, their work considered much bigger bodies, with sizes
of few microns. In its basis, the work by Einstein and Smoluchowski extends
the common knowledge in statistical thermodynamics about the random motion
of molecular gases or liquids. It is considered by some to be the most valuable
piece of work in such direction [3], as it finally introduced a feasible prove to the
microscopic predictions of all previous authors. Their critical contribution was to
consider that the atomic fluctuations, hidden to their contemporary experimental
techniques, could indeed affect larger bodies. More precisely, they considered
that the collisions of the atoms and molecules with larger bodies would heavily
affect the motion of the latter. Due to its fluctuating nature, the collisions were
completely stochastic and so was the motion of those larger bodies.

Luckily to both, neither had to convince their fellow experimental physicist to
perform any sort of experiments, as the prove had already been there for almost
80 years. It is 1826 and Robert Brown, renowned Scottish botanist, is back from
one of his multiple exploratory travels. While examining a recently discovered
plant, the Clarkia pulchella, he noticed that some particles, ejected from the pollen
grains when suspended in water followed an erratic yet continuous motion [4].
Initially, Brown thought that such effect was due to some kind of biological inter-
action between the particles and the water. In order to test such idea, he proceeded
with similar experiments, now with inorganic dust particles, just to find the exact
same behaviour. To enhance the historical narrative of such finding, he even ob-
served the motion of dust coming from Egypt’s Sphynx, proving that the stagger
was similar no matter the origin of the particles. It has to be noted that similar
experiments on inorganic particles had been done by Jan Ingenhousz (1730-1799)
already in 1784 [5]. However, such observations were somehow dismissed by the
community and had little effect on the development of Brownian motion.

While the common knowledge and usual narrative of the Brownian motion
history jumps from Brown’s experiment to Einstein’s diffusion theory, a series of
important contributions are found in between. Thought most of them incomplete,
each of these showed the importance on the understanding of this phenomenon.
Note that, at least from what is understood from their works, none or very few of
the following authors knew about the proposals of Lucrecius, or even maybe con-
sidered them to be purely philosophical. The first theoretical approach of this new
era is associated to Ludwig Christian Wiener (1826-1896), which in 1863 proposed
that the behaviour of Brownian particles was indeed produced by the ’internal
motion peculiar to the liquid’ in which they were suspended [6]. Few years later,
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FIGURE 1.1: Important contributions to the development of the theory of diffusion: a)
Opening of Pope Sixtus IV’s 1483 manuscript of On the nature of things by Lucrecius, scribed
by Girolamo di Matteo de Tauris. b) Reproduction of the first page of the original Brown’s
paper on the observation of Brownian motion [4]. c) Cover of Einstein’s paper on the

diffusion theory published in Annals of Physics in 1905 [1].

in 1879, William Ramsay (1852-1916) went beyond Wiener’s proposal and consid-
ered that it was in fact the motion of the liquid’s atoms causing such behaviour [7].
This is the first atomistic approach to the problem since Lucrecius’ ideas.

In 1880, while working in his paper on the method of the least squares, Thor-
vald N. Thiele (1838-1910) introduced some of the mathematical concepts that
later helped to establish the Brownian motion theory [8]. In the same spirit, Louis
Bachelier (1870-1946), father of mathematical finances, used in his Thesis similar
concepts to explain the evolution of the stock and option markets [9]. Interest-
ingly, such system is now widely studied as a diffusion problem, as the stock mar-
ket is considered to be one of the most random signals produced by humans. In
the experimental side, Louis George Gouy (1854-1926) investigated during 1888 if
Brownian motion could be caused by externals forces or fluctuations. For instance,
he explored if the jittering motion was due to vibrations, convection currents due
to the liquid not being at equilibrium or even the presence of artificial illumination
in the liquid [10]. Obviously, all those test failed and assured Gouy the internal
nature of the phenomena.

We are back in 1905 and Einstein and Smoluchosvki have their works ready for
publication. Similarly, the Australian physicist Willian Sutherland is also finish-
ing his work on diffusion [11]. All seem unaware of each others work. Moreover,
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they also seem unaware of the previous theoretical approaches to Brown’s exper-
iments. Nevertheless Einstein was, at least in the later stages of his work, familiar
with Brown’s observation, as he himself noted in the abstract of his paper: ’It is
possible that the motions to be discussed here are identical with so-called Brownian molec-
ular motion; however, the data available to me on the latter are so imprecise that I could
not form a judgment on the question.’. In physical terms, Einstein was the first to
develop a formal theory for the atomistic version of Brownian motion. As Lu-
crecius and Ramsay, he considered that the atoms in the liquid collided with the
suspended microscopical particles. With this concept, he derived the diffusion
of such particles and concluded that its motion was solely dependent on the vis-
cosity of the liquid and the size of the suspended particles. This was done by
introducing the concept diffusion coefficient, constant characterizing the random
motion of any microscopical particle in a given medium. Interestingly, Einstein,
and also Smoluchowski, showed that such coefficient was directly related to the
microscopical properties of the medium, as well as to various universal constants.
In fact, Einstein demonstrated in his article how these new phenomena may be
used to calculate the size of atoms of the medium, just by looking at the diffusion
of the particle.

Einstein finishes his paper with the following sentence: ’Let us hope that a re-
searcher will soon succeed in solving the problem presented here, which is so important
for the theory of heat.’. It took little time for physicists to relate Einstein’s theory
to Brown’s experiment. However, a thoughtful study of the phenomena in terms
of the new theory was lacking. Four years later, in 1909, Jean Perrin (1870-1942)
carefully reproduced Brown’s observations and finally concluded the history of
Brownian motion discovery [12]. His observations are reproduced in Fig. 1.2. See
that this discovery goes beyond the study of the diffusion of the suspended parti-
cles. As it was shown by Einstein in its study of the atom’s sizes, the phenomena
of Brownian motion opens the door to the microscopical study of the interactions
between particles and their environment. For instance, Perrin was able to calcu-
late Avogadro’s number by two means: the distribution of the particles over the
system and their fluctuations around their initial position. His results hence as-
sessed Einstein’s theory both quantitative and qualitatively. Similar experiments,
both having as goal the exact calculation of the Avogadro’s number, were con-
ducted in 1914 by Ivar Nordlund (1955-1937) [13] and in 1931 by Eugen Kappler
(1905-1977) [14].

An important contribution to the development of diffusion models, uncorre-
lated in its beginning to the diffusion theories, was made by Karl Pearson in 1905.
Pearson was deeply interested in the problem of the drunkard’s walk, i.e. the
walk of a particle whose steps have random directions. The problem was not yet
solved, even for a small number of steps. However, thanks to its persistence and
help from other fellows such as John G. Bennett and Lord Rayleigh, Pearson fi-
nally concluded that ’in open country the most probable place to find a drunken man
who is at all capable of keeping on his feet is somewhere near his starting point!’ [15].
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FIGURE 1.2: Reproduction of Perring observations: Left, we show the trajectories ob-
served by Jean Perring in Ref. [12]. In the right, we show the distribution of positions at a
given time, where the center of the circles shows the initial position of the particles. This

was used by Perrin to show the Gaussian nature of Brownian motion.

The connection between the drunkard’s walk (or just random walk) and Brown-
ian motion was later done by Smoluchowski. We will show such equivalence in
Section 2.1.1.

Beyond Brownian particles While in its initial formulations Brownian motion
was developed as an extension of the kinetic theory of gases, little by little scien-
tist started to realize the potential of such theory in the description of the diffusion
of particles in complex environments. That is how the focus started to be more on
the actual motion of the microscopical particle rather than in the actual properties
of the media. In that sense, both Einstein and Smoluchowski’s theories, as well as
Perrin, Nordlun and Kappler’s experiments, considered common assumptions.
For instance, the time scale at which the successive collisions between atoms and
microscopic particles happen had to be small enough, such that the displacements
of the particle were completely uncorrelated. Moreover, they considered that sin-
gle realization of the experiment, if conducted for a significant time, described the
average behaviour of many short realizations. Both conditions were key in finding
that Brownian motion was well described by a Gaussian distributed process, just
as the random walk and as shown in Fig. 1.2. By means of the diffusion equation,
one could also see that the variance of such Gaussian distribution, referred usually
as the mean squared displacement (MSD) of the particle, was a linear function of
time, whose slope is proportional to the diffusion coefficient.
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Some years later, the first deviations from such linear behaviour were found.
As always, controversy arises when trying to find the actual origin of this physical
concept. In this case, we usually associate the discovery of the first ’non’ Brown-
ian motion to Lewis Fry Richardson (1881–1953). Widely known for his pioneer-
ing work in weather forecasting by means of mathematical analysis, Richardson
found out that the relative motion between two particles in a turbulent flow was
not well described by the Einstein-Smoluchowski diffusion equation [16]. Instead,
Richardson proposed was is currently known as the four-thirds power law [17],
which introduced a power law correction to the Brownian motion diffusion equa-
tion. This led to the MSD no longer being a linear function of time, but rather hav-
ing a cubic scaling. This finding pave the way to what we know now as anomalous
diffusion.

The concept of anomalous diffusion is very broad and each year contains more
and more phenomena, just as the theory and experimental observations expand.
In general, we consider that it arises there where Brownian motion by itself is no
longer valid. This may happen in many different forms. For instance, we may
see cases in which the Gaussian distribution characteristic of Brownian particles
is no longer fulfilled. In other cases, even if Gaussian distributed, the scaling of
the MSD is no longer linear. Combinations of such phenomena, as well as the re-
cent appearance of many others, such as ageing or ergodicity, have given rise to a
plethora of diffusion models which aim to contain the strange behaviour that par-
ticles have when diffusing throughout complex media. While in its initials formu-
lation Brownian motion considered the diffusion of a particle with homogeneous
interactions with the media, we know now that such assumption is sometimes not
true and that the behaviour of the particle is heavily affected by the heterogeneous
interaction with its environment.

The rest of this Thesis will be devoted to the exploration of the confound-
ing world of anomalous diffusion. We will explore it from two points of view:
by studying precisely which particle-environment interactions may lead to their
anomalous behaviour but also by describing the various methods one may use to
characterize the arising of such phenomena. While Lucrecius was interested in
the nature of the atoms, this work will be directed to much bigger systems, such
as the motion of nanoscopic particles in biological environments. Nevertheless,
the beauty of such models is their possible generalisation to many other systems,
from physical oriented fields such as material science and transport phenomena,
to economy and the study of market fluctuations (just a Bachelier introduced) or
even and the study of information spread in social networks.

Looking back at the history of Brownian motion, it is very interesting to see
that way before the invention of the microscope, Lucrecius could already envisage
the arising of such phenomena. It is quite possible that what he was seeing while
looking at highly illuminated dust was far from actual Brownian motion. Nev-
ertheless, it is surprising that even in an era ruled by the Aristotelian current, he
could think that the existence of atoms and their motion could affect much larger
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bodies. The fact that Brown was unaware of such idea (and even myself until the
writing of this Thesis) shows the importance of not dismissing any scientific idea,
even if confronted with the established common knowledge.

1.2 Current state of anomalous diffusion

One of the beauties of diffusion models is their suitability to explain complex be-
haviour in a vast quantity of fields. However, while similar methods are used
by very different communities, theses are quite separated from each other and
have hard time sharing their knowledge. For instance, some of the most recent
advances in terms of the theoretical understanding of diffusion has been devoted
to the field of biophysics and have hard time to transcend to other communities.
Nevertheless, most of the understanding of such processes is mature enough, such
that the theoretical basis is already well constructed and contrasted. Of course,
this does not mean that everything is known about diffusion, but rather that the
foundations from where the new knowledge arises are robust and well under-
stood for quite some time already.

Since the discovery of anomalous processes by Richardson in 1926, mainly
three models have been used to describe anomalous diffusion. For subdiffusion,
i.e. processes for which the scaling of the MSD is smaller than Brownian Motion,
fractional Brownian motion (FBM) and continuous time random walk (CTRW)
have been at the basis of most of the recent development. The former was intro-
duced by Kolmogorov in 1940 [18] and later formalized by Mandelbrot and Van
Ness in 1968 [19] and the latter, CTRW, was introduced by Scher and Montroll in
1975 [20]. For superdiffusion, for which the scaling is bigger than Brownian mo-
tion, a particular extension of CTRW, the Lévy flights, proposed also by Mandel-
brot in 1982 [21], is the best known model. The mathematical and phisycal details
of these models will be described later in this Thesis, specially in Section 2.3.

Theoretical framework In terms of theoretical advances in the recent years, many
has been done in the understanding of anomalous diffusion. There exist many re-
search lines. From one side, there is a huge interest in the complete understanding
of the existing models. Even if introduced more than 50 years ago, we still have
much to learn from models such as CTRW and FBM. Moreover, in the last years
many different properties of anomalous diffusion have been introduced, never
known before. For instance ergodicity, concept we will explore in Section 2.2.4,
is now one of the most important features in anomalous diffusion. Studies of the
Gaussianity, step length correlations, first passage time,... have enlighten not only
the inherent properties of the various diffusion models, but also on how to differ-
entiate among them. There exist nowadays very extensive reviews on the topic.
For instance, a very nice introduction to the topic of diffusion can be done by read-
ing Ref. [22]. A complete description of the various diffusion models existing and
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their properties can be found in Ref. [23], which has recently been extended with
a more in depth look on Brownian motion [24]. In order to understand the differ-
ences that emerge between models, Ref. [25] reviews various metrics allowing for
that.

Another important line of research is related to the understanding of the mi-
croscopical interactions leading to anomalous diffusion. By this we refer to the
actual particle-environment interactions that take place in anomalous systems.
Note here that the term microscopical is here referring just as a counter part to
the macroscopic or effective behavior of the system. For instance, in the case of
Brownian motion, the effective model is the one of the stochastic motion of the
particle, while its microscopical model describes the collisions between the atoms
in the environment and the particle. While anomalous diffusion is understood in
terms of effective models as e.g. CTRW or FBM, the actual microscopical interac-
tions leading to such behaviors are elusive in many scenarios. Then, anomalous
diffusion arises as a tool to study physical systems, only by observing the motion
of particles. This is very much related to the study on the atoms size made by Ein-
stein when he discovered Brownian motion. With much more complex models,
we can now give a more detailed description of the actual interactions in stochas-
tic processes. Indeed, and citing explicitly the extensive review of Ref. [26], ’there
is clearly a need for theory and simulation of microscopic models that can make qualitative
and quantitative predictions of the transport behaviour in crowded environments, at least
in vitro.’

Diffusion in biophysical environments In both cases, i.e. the general study of
anomalous diffusion characteristics and of microscopical models, such theoretical
developments have been mainly motivated by the recent advances in experimen-
tal techniques, allowing for the tracking of micro and nanoscopical particle with
unprecedented accuracy. As we already commented, anomalous diffusion is a
very general framework, that can be applied in many different fields. Neverthe-
less, most of its recent advances have been related to the microscopical world,
where various kinds of cells, proteins and microscopical particles in general have
shown some of the most surprising behaviours associated to anomalous diffusion.
Such observations are mostly performed by means of single particle tracking (SPT)
techniques, i.e. methods allowing for the tracking, for a sufficient long time, the
path of a particle, usually beyond the diffraction limit.

Until some years ago, optical setups were limited in their resolution by the
Abbe diffraction limit, a function of the wavelength of the light used to illuminate
the sample and the numerical aperture of the microscope. In general, even the
most sophisticated instruments were limited to resolutions of ∼ 250 nm. Even if
many biological bodies such as cells are well beyond that range, viruses, proteins
and other molecules are below it. This meant the impossibility of directly char-
acterizing such particles. However, between 1980 and the early 2000s, various
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methods were introduced to circumvent such problem. Some of these develop-
ments were even awarded the Nobel prize of Chemistry in 2004 [27]. An exten-
sive review on these techniques can be found in Refs. [28, 29, 30]. Moreover, the
review in Ref. [26] details on the different biological systems, mostly focusing on
crowded environments, where anomalous diffusion arises.

However, as previously said, anomalous diffusion, and the concept of diffu-
sion and random walks is not restricted to the microscopical world. For instance in
ecology, random walks are widely use to understand animal search strategies [31,
32]. Thanks to new telemetric data, fuelled by the improvement of animal GPS
tracking, biologist are now able to model statistically the movement of animals,
how they search they food, how they move in the season changes, ... [33, 34]. As
an example, many works have associated the animal (and also human) foraging
patterns to the Lévy walk model [35, 36]. Interestingly, such patterns can not only
be associated to animals but also to plants [37]. However, there is still debate if
this is really the case, or more realistic models need to be introduced [38].

Diffusion in other fields Away from the biological world, and following the
trend started by Bachelier in 1909 [9], diffusion models are use in social and eco-
nomic physics. There main goal is to study the fluctuations generated by human
interactions by means of the same stochastic methods used in anomalous diffu-
sion [39, 40]. Even models such as CTRW and Lévy walks find their use for the
study of finances [41, 42] and more precisely of the evolution of the stock market
[43, 44]. While also animals, us humans move sometimes in vary strange forms
and we are prone to our own diffusion models [45, 46], even when moving by
car [47].

Returning to the microscopical scale and going even beyond, we find the world
ruled by Quantum physics. Also there many of the concepts of anomalous diffu-
sion arise. For instance, the framework of Quantum Brownian motion is often
used to the describe the motion of impurities in open quantum systems [48]. Par-
ticularly, it has been very successfully used to investigate the motion of particles in
Bose-Einstein condensates [49]. Interestingly, there exist regimes in such systems
in which anomalous diffusion appears and can even be controlled [50]. Moreover,
anomalous diffusion has been detected in transport phenomena such Anderson
location [51], the diffusion of matter-waves in disordered systems [52] or quan-
tum walks [53, 54].

1.3 Plan of the Thesis

This thesis is structured as follows. In Chapter 1 we will introduce the basic the-
oretical framework first of anomalous diffusion. To begin, we will introduce the
main concepts of Brownian motion, such as the diffusion equation and the Gaus-
sian propagator. We will start reviewing the different features of diffusion models,



1.3. Plan of the Thesis 11

such as the mean squared displacements, and show how to calculate it analyti-
cally, but also practically in trajectories arising from experimental observations.
We will then relate Brownian motion with a discrete random walk. Then, we will
start our exploration of anomalous diffusion. By means of the continuous time
random walk (CTRW), the most recurrent diffusion model in the Thesis, we will
explore the main characteristics of anomalous diffusion models with special at-
tention to the concept of ergodicity. Then, we will present briefly other kind of
anomalous diffusion models and their main characteristics.

In Chapter 3 we will begin our journey in the world of microscopical mod-
els for anomalous diffusion. The model presented will consider the diffusion of
a particle in a crowded environment, were the interaction with its neighbouring
particles induces a tunable anomalous diffusion. The particle follows a normal
diffusing CTRW when moving freely. However, its interaction with other parti-
cles makes it such that the CTRW is drastically affected and is transformed into
a power law CTRW, hence anomalous. We will explore the effect of density and
also the presence of annealed and quenched disorder, both analytical and numer-
ically. We will show the difference between these and also analytically calculated
the time needed for the particle to reach its anomalous behaviour. The work of
this chapter is based on the original work of Ref. [55].

In Chapter 4 we will consider the motion of a particle in a critical environ-
ment, such as the one arising from Ising dynamics. The latter forms domains of
spins point either up or down. We consider here how the emergence of such com-
partmentalized environment affects the motion of the particle. More precisely,
we consider that the diffusion of the particles is closely related to the size of the
domain the particle is moving on. From here, we will explore how criticality af-
fects its motion. We show how in a critical system, the particle shows anomalous
diffusion, with an anomalous exponent related to the strength of the interaction
between the environment and the particle, but also to the difference between their
dynamics’ time scales. Then, away from criticality, no matter if it is in presence
of finite size effects or because of the departure from the critical temperature, the
particle subdiffuses only for a transient time, to then recover normal diffusion.
The work of this chapter is based on the original work of Ref. [56].

In Chapter 5 we consider yet another compartmentalized environment. In this
case we study the motion of particle following Brownian motion, through an en-
vironment made of compartments with varying size and whose boundaries are
porous. This means that, when reaching a boundary, the particle has comple-
mentary probabilities of either being reflected inside the same compartment or
transmitting to the contiguous. Our first contribution is directed at the approach
followed to study the diffusion of the particle. Instead of focusing in the micro-
scopical behaviour of the particular, i.e. studying each precise interaction with
the boundary, we show how it suffices to track the particle each time it crosses
a boundary. Then, the walk is transformed into a space-time coupled CTRW or
a Lévy walk with non-alternated rests, depending on the exact configuration of
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the system. With such approach, we explore which properties the compartments
need to have in order for the particle to show anomalous diffusion. The work of
this chapter is based on the original work of Ref. [57].

In Chapter 6 we focus in the phenomena of phase separation. In recent years,
this complex behaviour has captured a lot of attention, as many components in-
side living cells have been shown to compartmentalize without creating any bound-
ary with its surrounding. While there exists many models describing the appear-
ance of such phase, the particular interactions leading to this phenomena are still
elusive. Moreover, the actual models often lack a close connection with relevant
quantities accessible in single particle tracking experiments. In this chapter we
present a minimal microscopical model able to reproduce many of the observa-
tions of experimentally tunable phase separation. More precisely, we consider a
system in which particles have a certain transient binding probability. We will
show how the system overcomes a transition from a phase in which particles
move freely, even in the presence of binding, to a phase in which particles form
condensates and phase separate. We characterize the phase transition, show how
the condensate size distribution behaves in and out of the phase separated sce-
nario and proceed with numerical simulations to test the validity of our model.
The work of this chapter is based on the theoretical part of the original work of
Ref. [58].

In Chapter 7 we propose novel forms of characterizing anomalous diffusion,
based on machine learning techniques. In previous chapters we have focused in
study the source of anomalous diffusion from a theoretical point of view. In this
chapter we explore different forms of studying experimental trajectories, consid-
ering that we have access to a single trajectory from the system of study.We first
introduce basic concepts of machine learning, such as supervised and unsuper-
vised learning. Then, we review the existing literature on single trajectory charac-
terization. We show for instance that most of the techniques rely on the ergodicity
of the trajectories, which allow for the use of temporal averages. We propose that
machine learning architectures, such as the Random Forest, allow for the correct
characterization of trajectories even in the presence of ergodicity breaking. More-
over, we show how one may use a machine trained with simulated trajectories
to then study experimental trajectories. The work of this chapter is mainly based
on the work of Ref. [59]. Moreover, it contains crucial concepts explored and pro-
posed in Refs. [58, 60, 61, 62].
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2 Preliminaries

In this chapter we will briefly review the basics of diffusion, starting with an ex-
ploration of Brownian motion, to later discuss the properties of anomalous diffu-
sion and the various models used to describe it. As commented in the Chapter 1,
there exists nowadays extensive reviews and monographs covering many of the
topics discussed in below [22, 23, 24, 63]. Nevertheless, for the completeness of
this thesis, we will review now some of them, which will be recursively appearing
in following chapters. This chapter is organized as follows: first, we will introduce
the concept of diffusion just as introduced by Einstein and Smoluchowski. From
here we will present different ways of characterizing the diffusion, all by means of
the trajectory of the particle or system of study. We will briefly explain the analogy
between continuous and discrete walks. Then, we will introduce the continuous
time random walk (CTRW), one of the most important topics of this Thesis. We
will use it to introduce some of the key concepts of anomalous diffusion. Finally,
we will present other models giving rise to anomalous diffusion.

2.1 Brownian motion

Brownian motion (BM) was developed by Einstein [1, 64] and Smoluchowski [2]
as the motion of a particle due to its collisions with its smaller surrounding par-
ticles. Both understood that a deterministic theory would be completely over-
whelmed by the number of parameters (i.e. the degrees of freedom) to be con-
sidered. Hence, they developed the motion of Brownian particles as an stochastic
process whose probability density function (PDF) follows the diffusion equation

∂

∂t
P(x, t) = D

∂

∂x2 P(x, t), (2.1)

where x is the position of the particle at time t. Considering that the particles start
its motion at the origin, i.e. P(x = 0, t = 0) = 1, one can solve the previous
equation to find that the PDF governing the motion of the particle is Gaussian
distributed:

P(x, t) =
1√

4πDt
exp(− x2

4Dt
). (2.2)
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See here that D, the diffusion coefficient, is the only free parameter. This means
that it has to enclose all the physical properties of the system. It is interesting here
to note that the value of the diffusion coefficient found by Einstein, Smoluchowski
and Shuterland, while accounting for similar contributions, was substantially dif-
ferent. The relation between the diffusion coefficient and the physical parameters
of the system, known as the Stokes-Einstein-Sutherland relation, is currently ex-
pressed as

D =
kbT
mη

, (2.3)

where kb = 1.38 · 10−23 m2kg
sK is the Boltzmann constant, T is the temperature of the

medium, m the mass of the particle and η the friction coefficient.
It has to be noted here that the formulation of BM by means of Eq. (2.1) is

not unique. Pierre Langevin developed an analogous model based on Newton’s
second law in the presence of noise [65]. His approach considers that the position
of a particle follows

dx(t)
dt

= ξ(t), (2.4)

where ξ(t) is a random variable, Gaussian distributed, with zero mean. Its auto-
correlation function is given by 〈ξ(t)ξ(t′)〉 = 2Dδ(t− t′). As we will see later in
this work, Langevin’s formulation allows for a simpler interpretation of BM and
can easily be extended to different kinds of diffusion models. Anyhow, both for-
mulations yield to the same results, as expected. from the resulting PDF, Eq. (2.2),
we can calculate the mean square displacement (MSD) of a Brownian particle as〈

x2(t)
〉
=
∫ ∞

−∞
x2P(x, t)dx = 2Dt. (2.5)

This simple relation introduces one of the most important features of diffusion,
which will be largely explored during the rest of this Thesis, for a variety of dif-
ferent system. See for instance that in this case, the MSD has a linear depen-
dence with respect to t. We define such behaviour as normal diffusion. Conversely,
anomalous diffusion appears when such relation is no longer linear. The differences
between these two classes of diffusion, normal and anomalous, will be deeply
explored later.

While Eq. (2.5) is central in the theoretical study of diffusion, it is usually
not practical for the systematic study of trajectories arising from diffusion exper-
iments. This is because it is usually very challenging to extract P(x, t) faithfully.
To showcase the study of the MSD in a real scenario, let us consider the example
of the trajectories presented in Fig. 2.1 (a). We show here three trajectories with
different diffusion coefficients, D = 1, 5 and 10. The first analysis one can proceed
with is to check whether the particles follow Eq. (2.2). Note here that the proba-
bility of the particle being at position x in time t is analogous to the probability of
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FIGURE 2.1: Gaussian nature of Brownian motion: a) Example of three Brownian motion
trajectories, with different diffusion coefficient D. b) Distribution of displacements in an
interval of time ∆t = 1 for trajectories presented in a). The shadowed bar plot shows
the histogram calculated from the trajectories, while the bold lines show Eq. (2.2) for each

diffusion coefficient.

performing a displacement of length ∆x in a time ∆t.
In Fig. 2.1 (b) we plot the probability P(∆x, ∆t = 1) for each of the three tra-

jectories as a bar plot. The bold line show the value of P(x, t = 1) calculated from
Eq. (2.2) for each D. See here for instance how switching from positions and times
to their displacements allows to reformulate Eq. (2.5) in much practical form. Nev-
ertheless, as commented before, constructing a plot such as the one in Fig. 2.1 (b)
needs sufficiently long trajectories, such that we have enough points to construct
the distribution.

In the case in which P(x, t) can not be exactly calculated, and the MSD cannot
be retrieved from Eq. (2.5), other approaches exists. For instance, on may calculate
the displacement made by the particle in an interval ∆, averaged over the whole
length of the trajectory. This is known as the time mean squared displacement
(tMSD), which expression is

δ2(∆) =
1

t− ∆

∫ t−∆

0

[
x(t′ + ∆)− x(t′)

]2 dt′, (2.6)

where t is the length of the trajectory considered. The interval time ∆ is usually
referred as the time lag (tlag).

Similarly, one may consider now the displacements made in such interval t
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FIGURE 2.2: Brownian motion mean squared displacement: a) Time mean squared dis-
placement for the previous trajectories. Dashed is the fit done to each tMSD, whose slope
is presented in the legend. b) Same plot as b) but in log-log scale. See here that all the
bold lines have slope equal to 1, showing the behavior δ2(∆) ∼ ∆. The dashed line shows
the ensemble mean squared displacement averaged over 104 trajectories with D ∈ [0, 10].
Note that at the long time limit the ensemble and time averages show the same behavior.

averaged in this case over various realizations of the same walk. If one considers
N distinct and uncorrelated walks, the previous quantity, known as the ensemble
mean squared displacement (eMSD), can be calculated as

〈
x2(∆)

〉
N
=

1
N

N

∑
i=1

[xi(t′ + ∆)− xi(t′)]2, (2.7)

where in practical terms, we usually choose t′ = 0.
Considering now the positions, and most importantly the displacements aris-

ing from Eq. (2.2), one can show that δ2(∆) =
〈

x2(∆)
〉

N = 2Dt, just as predicted
by Eq. (2.5). From these two calculations, we can start to characterize the diffusion
of the particles. For instance, we can now use it to extract their diffusion coeffi-
cient. This is shown in Fig. 2.2 (a), where the tMSD was calculated for the three
trajectories of Fig. 2.1. Note that in order to perform a good average, ∆� t. Once
calculated the tMSD, we proceed to fit linearly the resulting line and extract from
it the diffusion coefficient. We see that even if in some cases, the linear fitting gives
rise to particulary good results (e.g. D f it = 0.97 compared to 1 and D f it = 9.85
compared to 10), this method may lead to poor results (e.g. D f it = 4.67). To
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solve this problem, and in general the problem of single trajectory characteriza-
tion, more sophisticated methods are being proposed, as we will see in Chapter 7.

If we now perform the logarithm to either the tMSD or the eMSD, it easy to
see that

log(δ2(∆)) ∝ log(∆), (2.8)

where the diffusion coefficient is now just an offset and the MSD has slope one.
We show this in Fig. 2.2 (b) for both the tMSD and eMSD, which coincide in their
slope in the long time limit. While in the case of Brownian motion we do not
gain excessive information from such evaluation, the slope of Eq. (2.8) is exactly
the anomalous exponent, hence a strong signature of the departure from normal
diffusion.

2.1.1 Discrete Brownian motion: random walks in a lattice

In general, the motion of particles in physical environments is continuous. This
means that while the sampling time (i.e. the time at which the position is recorded)
is usually regular, the position of the particle has continuous values. Similarly,
Brownian motion is also defined as a continuous process, where the step arising
from P(x, t) can take any value. However, when considering phenomenological
models for the diffusion of particles, it is often useful to consider a simplified, dis-
crete version of the problem. While the suitability of such approach will be clear
in the following chapters, we will prove that a discrete random walk converges to
Brownian motion, and more generally to a Wiener process.

In a discrete random walk, one considers the motion of a particle which at each
step has complementary probabilities of going in any of the allowed directions.
For instance, in a one dimensional case, the particle has p probability of going left
and 1− p probability of going right. The lenght of each step is considered to be
regular during all the walk. Let us take here a walk in which the particle performs
steps of size ∆x. A usual realization of this kind of walks is the motion of a particle
in a regular lattice, in which the particle can only move from vertex to vertex, and
their distance is ∆x. If the walk consist in n steps, the position at time t = ∆tn,
being ∆t the time taken to perform a step, is

y(t) = ∆x(x1 + x2 + · · ·+ xn), (2.9)

where xi = +1 when the particle moves to right and xi = −1 when it moves to
the left. From here we have that the expected value E[xi] = 2p− 1 and its variance
Var[xi] = 1− (2p− 1)2. Using these, we can calculate

E[y(t)] = n∆x(2p− 1) (2.10)

Var[y(t)] = n(∆x)2
[
1− (2p− 1)2

]
. (2.11)
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Considering for instance ∆x = σ
√

∆t and p = [1+ (µ/σ)2∆t]/2, we have E[xi]→
µt and Var[xi] → σ2t for ∆t → 0, which is equivalent to Brownian motion with
mean µ and variance σ. If one takes ∆x =

√
2D∆t and p = 1/2 we recover

the case presented in Eq. (2.2). See that the equivalence is a direct consequence
of the Central Limit Theorem, as the sum of independent variables in Eq. (2.9)
gives rise to a normal distribution with same mean and variance. Even though
many properties, such as fractality, are conserved in this analogy, others, such as
invariance against rotations, are not.

In general, in order to faithfully approximate a Wiener or Brownian process of
length L, one must consider a discrete random walk of length L/∆x2. This makes
the need to be in the regime ∆x � L, which is ensured by either considering
∆x → 0 or L � 1. In the case of the models presented in following chapters,
the latter will always be ensured, as we will always consider their long time limit,
where t→ ∞ and L→ ∞.

2.2 Continuous time random walks

In the previous section we have studied the motion of a particle which diffuses
freely in an unbounded space, both in its continuous and discrete limits. While
Brownian motion considers that the motion of the particle is due to the micro-
scopic interactions with the surrounding particles, it also considers them as ho-
mogeneous. However, in physical systems, one usually faces the presence of het-
erogeneities. This means that the particle may interact differently with different
parts of the systems. As a consequence, its motion is perturbed from the previous
Brownian (or normal) diffusion.

Such effects arise in very different forms in the statistics of the particle. One of
the most common is the departure from the linear scaling of the MSD, such that
we now have 〈

x2(t)
〉

∝ tα, with 0 ≤ α ≤ 2, (2.12)

where α is the anomalous exponent and signals arising of anomalous diffusion. Note
that this is just one of the traces of anomalous diffusion, as for example we now
know about anomalous system which show a linear scaling of the MSD but their
PDF is not Gaussian [66]. In terms of the anomalous exponent, there exist two very
distinct regimes: subdiffusion, where the anomalous exponent α is 0 ≤ α < 1 and
superdiffusion, where 1 < α ≤ 2. To understand the effect of such exponent, on
may think of the MSD as the radius of the circle, centered at the initial position
of the particle, whose perimeter marks the furthest point one expects to find the
particle at time t. In subdiffusion, the particles explore less space (the radius is
smaller) while the opposite occurs in superdiffusion.

In this Thesis we will mainly focus in the subdiffusive case. Its appearance
may be linked to very different phenomena. We will review in this chapter many
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FIGURE 2.3: Continuous time random walk and its characteristics: a) Schematic of the
walk: a particle moves in a regular lattice with waiting times ti. b) Waiting time distribu-
tion, given by Eq. (2.22), for different α. Dashed lines show the expected behavior t−1−α.
c) CTRW trajectories arising from these distributions. d) Ensemble MSD performed over
1000 trajectories for trajectories with the given α. Dashed lines show the expected behavior

tα.

of such. However, due to its importance in the rest of the Thesis, we will use as
vehicle for the exploration of anomalous diffusion the continuous time random
walk (CTRW).

Mathematically, the CTRW has a very simple formulation. Let us consider
here its discrete version. CTRW considers a random walker that moves through a
regular lattice, just as the one of Eq. (2.9). However, in this case the walker waits
a given time ti before performing each of the steps. We defined such times as the
waiting times, i.e. the time the walker has to wait before performing a step. In
general, we will consider that the waiting times have a certain distribution ψ(t).
CTRWs were first proposed in Ref. [20] and are now one of the main anomalous
diffusion used for instance to describe the diffusion of particles in very different
scenarios [67]. Specially, they are used to describe systems which present certain
traps, which immobilize temporarily the traced particles. Then, such trapping
times can be directly mapped to the waiting times of the CTRW framework.
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2.2.1 General features

One of the main advantages of the CTRW is that all its behaviour can be directly
related to ψ(t), which allows for a very simple derivation of its main features.
Note here that we are considering the case of a CTRW in a regular lattice, i.e. all
steps have equal size but random direction. One usually starts by defining the
survival probability, i.e. the probability of a particle to stay on a site for a time
longer than t,

Ψ(t) =
∫ ∞

t
ψ(t′)dt′ = 1−

∫ t

0
ψ(t′)dt′. (2.13)

Recall here that ψ(t) is the waiting time distribution. From here we can calculate
the probability of the particle performing exactly n steps up to time t as

χn(t) =
∫ t

0
ψn(t)Ψ(t− τ)dτ, (2.14)

which in the Laplace space takes the very simple form of

χn(s) = ψn(s)
1− ψ(s)

s
. (2.15)

The previous can be used to calculate the PDF of the position of the particle at
time t, analogous to Eq. (2.2), which in this case is given by

P(x, t) =
∞

∑
n

Pn(x)χn(t), (2.16)

where Pn(x) is the probability of reaching x at the n-th step of the random walk.
We consider here that such probability can written as a function of its character-
istic function λ in Fourier space, as Pn(k) = λn(k). The latter is defined as the
Fourier transform of the probability density p(x), i.e. the probability of travelling
a distance x in a single step, which in the case of a regular CTRW is just the delta
function. Performing the Laplace-Fourier transform of Eq. (2.16) we find that [63]

P(k, s) =
1− ψ(s)

s
1

1− λ(k)ψ(s)
. (2.17)

Note here that the previous equation is general for any CTRW and that not
all CTRW are subdiffusive. Such property will arise from particular definitions of
the waiting time ψ(t). The previous CTRW framework is general enough to ac-
commodate most of the uncoupled walks, i.e. the walks in which the step length
and the waiting time are not related. For instance, if one considers an exponen-
tial waiting time PDF, ψ(t) = τe−t/τ , and an exponential characteristic function,
λ(k) = exp(−σ2k2/2), we recover the exact Brownian motion PDF of Eq. (2.2).
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2.2.2 Moments of displacement

Of our particular interest is the calculation of the moments of displacement of
P(x, t), as the MSD is defined as its second moment. In general, they are defined,
in the Laplace space, as

Mn(s) = (−i)n dnP(k, s)
dkn

∣∣∣∣
k=0

. (2.18)

As said, we are interested in the second moment, which we can calculate as

M2(s) =
〈

x2(s)
〉
= −d2P(k, s)

dk2 =
ψ(s)

s(1− ψ(s))

〈
l2
〉
+

2ψ2(s)
s(1− ψ(s))

〈l〉2, (2.19)

where
〈
l2〉 is the variance of p(x) and 〈l〉 its mean. Note that in the case of an

unbiased walk, we have that 〈l〉 = 0, which means that the second term of the
previous equation vanishes. If we consider now the same exponential waiting
time PDF as before, we find that〈

x2(s)
〉
=

1
1 + sτ

1
s(1− 1/(1 + sτ))

〈
l2
〉
=

1
s2τ

〈
l2
〉

. (2.20)

Performing the inverse Laplace transform, we find the time dependence of the
MSD, 〈

x2(t)
〉
=

〈
l2〉
τ

t, (2.21)

i.e. a CTRW with exponential waiting time distribution shows normal diffusion.
Moreover, in one dimension the prefactor

〈
l2〉/τ is directly connected to the dif-

fusion coefficient D, with which we would recover Eq. (2.5).

2.2.3 Power-law waiting time distributions

While CTRW can give rise to normal diffusion, as shown in Eq. (2.21), it is mostly
known for its particular connection to anomalous diffusion. In the previous ex-
ample, we have considered a waiting time distributions with defined means, more
precisely 〈t〉 = τ. We will treat now the case in which the first moment of the dis-
tribution ψ(t) diverges. Particularly, we are interested in the case in which the
distribution has power law tails, also called long or fat tails. In its most simple
form, we consider here

ψ(t) ∝ t−α−1, (2.22)

with 0 ≤ α ≤ 1. We will now calculate the MSD using Eq. (2.20). A key difference
from the previous case is the need of the use of the Tauberian theorem [68] for the
correct calculation of the Laplace transform of ψ(t), mainly due to its divergence.
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The theorem states that at t→ ∞, a given function f (t) fulfils

f (t) ∼= tρ−1L(t) ⇐⇒ f (s) ∼= Γ(ρ)s−ρL(1/s), (2.23)

where Γ(·) is the Gamma function, L(t) is a slowly varying function of its ar-
gument and 0 < ρ < 1. Moreover, the previous theorem considers normalized
functions, i.e.

∫ ∞
0 f (t)dt = 1 and f (s→ 0) = 1. From its definition in Eq. (2.22), it

is easily seen that ψ(t) does not fulfil the previous condition, hence the Tauberian
theorem leads to incorrect results. To solve such problem, one considers instead
the survival probability Ψ(t) from Eq. (2.13) in the Laplace space,

Ψ(s) =
1− ψ(s)

s
. (2.24)

From the Eqs. (2.13) and (2.22) , we see that Ψ(t) ∝ t−α. Then, applying (2.24), we
have that the Laplace transform of the waiting time distribution is

ψ(s) ≈ 1− τ̃αsα, (2.25)

Inserting the previous in Eq. (2.19) and performing again an inverse Laplace trans-
form, we get that the MSD of a power-law CTRW is〈

x2(t)
〉

∝ tα. (2.26)

See that in the defined regime of α, i.e. 0 ≤ α ≤ 1, the MSD is subdiffusive.
Moreover, its degree of subdiffusivity, i.e. the value of the anomalous exponent, is
directly related to slope of the waiting time distribution ψ(t).

From a phenomenological point of view, the explanation for the subdiffusion
in CTRW is related to the divergence of ψ(t). Due to the later, there is a non zero
probability for the walker to be trapped in a given site for an infinite time. See
that this will never occur in an exponential distribution, in which infinite times
are exponentially unlikely. Interestingly, this feature has another very important
effect. As a walker may be trapped for an infinite time, it is not able to explore
the whole space during its walk, even in the limit t ∝ ∞. We refer to this as the
breaking of ergodicity, a central feature in anomalous diffusion.

2.2.4 Ergodicity breaking

The ergodic theorem, coined by L. Botlzmann in 1898 [69], states that a ’system
in some region of the phase space of microstates with the same energy is proportional to
the volume of this region, i.e. that all accessible microstates are equiprobable over a long
period of time’. The breaking of ergodicity is then related to the system not fulfil-
ing the previous theorem and hence not being able to visit the whole phase space.
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FIGURE 2.4: Weak ergodicity breaking in the CTRW: a) Schematic representation of er-
godic and non-ergodic processes. b) Time MSD for various CTRW with different α. Wider
lines show the tMSD of the trajectories presented in Fig. 2.3. We show the linear scaling,
as well as the random nature of the tMSD. c) Ergodicity breaking parameter for a set of
1000 CTRW trajectories with various α. Dashed lines show the theoretical prediction of

Eq. (2.30).

Commonly, it was associated to infinite barriers which separated the different mi-
crostates of the system. Later on, Bouchaud showed how some systems may only
break ergodicity weakly, which means that the phase space is ’not broken into mutu-
ally inaccessible regions’ [70]. In Fig. 2.4 (a) we exemplify this behavior: the upper
trajectory will never visit the central part of the bounded space, while the lower
one is able to explore the whole space. Hence, in non-ergodic systems, a single
trajectory is unable to faithfully describe the features of the system, as it may only
visit some part of the phase space.

In terms of diffusion trajectories, ergodicity breaking is well represented by the
difference between the eMSD and the tMSD:

δ2(∆) 6=
〈

x2(∆)
〉

N
. (2.27)

See that this is directly opposed to what we saw in Section 2.1, where we proved
that these two averages were equal for Brownian motion. Indeed, the previously
defines two big families in diffusion processes: the ergodic and the non-ergodic.
Note that the breaking of ergodicity has a direct impact in the characterization
of experimental trajectories, as the tMSD differs from the eMSD and hence from
the MSD, and is no longer a correct measure for most of their features. We will
comment on this concept throughout this Thesis and specially in Chapter 7.

In the case of an unbiased CTRW, it has been shown that the tMSD of trajec-
tories with same α are indeed ’non-identical and the tMSDs remains a random vari-
able [71]. Thus, the tMSD is another stochastic feature of the system, for which we
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can study the mean and distribution. For the former, one can use Eq. (2.6) to find
that 〈

δ2(∆)
〉
∼ 2Dα

Γ(1 + α)

∆
t1−α

. (2.28)

Opposite to what we showed for the MSD in Eq. (2.26), the tMSD is linear with ∆.
We show this behaviour in Fig. 2.4 (b). We present there the tMSD calculated for
various trajectories, with different anomalous exponents. See there that not mat-
ter α, each δ2(∆) ∼ ∆. Moreover, their value varies from trajectory to trajectory,
showing its random value. Note also that in Eq. (2.28), we also have a non-linear
dependence with time. This effect is usually referred as ageing. This exempli-
fies the fact that the longer the process, the more probable it is to get trapped for
a long time, hence lowering the displacement of the particle (even stopping it at
all). Usually, one consider that the tMSD in the simple form δ2(∆) ∼ D(t)∆, where
D(t) accounts for the time dependence in Eq. (2.28).

Another interesting feature is the actual distribution of δ2(∆). More precisely,
one can calculate the distribution of the dimensionless variable ξ = δ2/

〈
δ2
〉

as [71]

lim
t→∞

P(ξ) =
Γ1/α(1 + α)

αξ1+1/α
lα

[
Γ1/α(1 + α)

ξ1/α

]
, (2.29)

where lα(·) is the one-sided Lévy stable PDF. While the distribution encloses the
complete behaviour of the process, in an experimental scenario it is usually dif-
ficult to access sufficient trajectories as to correctly fit any function. To solve
such problem, a much simpler measure of the ergodicity breaking can be done
by studying the fluctuations of tMSD and their variance. A particular form of
doing so is given by the ergodicity breaking parameter (EB) [71]

EB = lim
t→∞

〈
(δ2)2

〉
−
〈

δ2
〉2

〈
δ2
〉2 =

2Γ2(1 + α)

Γ(1 + 2α)
− 1. (2.30)

Importantly, the EB is independent of any scaling of ∆ or t and only depends
on the anomalous exponent α. The behaviour of the EB is as follows: for nor-
mal diffusion (i.e. α = 1), the EB decays asymptotically zero, while decreasing α,
hence enhancing subdiffusion, increases such asymptotic value. In Fig. 2.4 (c) we
present the values for the EB for various α. The bold lines show the EB calculated
over 1000 trajectories with same anomalous exponent. At long times, the value
approaches asymptotically the dashed lines, representing the theoretical value cal-
culate by means of Eq. (2.30). Note that in Fig. 2.4 (c) that the EB was calculated
as a function of the sampling time T, meaning that the trajectories where cut at
length T before calculating EB. Such measures shows the actual behaviour of EB,
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and proves that Eq. (2.30) is only valid at T → ∞, analogous in this case to t→ ∞,
but with closer connection to the numerical implementation.

2.3 Other anomalous diffusion models

While the main scope of this thesis is the study of phenomenological models lead-
ing to CTRW-like models, we will at some points explore their connection with
other diffusion models. Moreover, in the last chapter of the thesis we will present
a method to differentiate between these. In this section, we will review the main
characteristics of three families of models: coupled space-time random walks, dis-
ordered diffusion models and fractional Brownian motion. As we will show, the
first two are closely related to CTRW and tend in some regimes to the results pre-
sented in the previous sections. The latter has been for decades one of the main
examples of anomalous diffusion, due its rather simple definition by means of a
fractional Langevin equation (in contrast to Eq. (2.4)).

2.3.1 Coupled space-time random walks

Until now, we have considered walks in which the distribution of waiting times
and step lengths were completely uncorrelated. This was clear from the Eq. (2.16),
which could be simplified so that the generator of the walk is ψ(x, t) = p(x)ψ(t).
In previous sections, we have considered various forms of ψ(t), to finally study
the case of a power law distribution in more detail. For the step length distribu-
tion, we have mostly considered either a Gaussian distribution and their discrete
analogue (see for instance the end of Section 2.2.1). However, many other distri-
bution are possible. Of special importance are the Lévy distributions, which give
rise to the so-called Lévy flights. In its most general form, one considers a random
walk in which the step-lengths with a heavy-tailed PDF,

p(x) ∝ 〈x〉−1−α, (2.31)

with 0 < α < 2. Let us consider a generator of the form of ψ(x, t) and the usual
power-law waiting time distribution of Eq. (2.22). Then, we can use Eq. (2.16) to
find the PDF of the particle:

P(x, t) =
sβ−1

sβ + kα
. (2.32)

See that the previous PDF has a diverging second moment, hence its connec-
tion with real, in the sense of physically possible diffusion processes is very small.
Nevertheless, Lévy distribution have been widely observed in many experimental
scenarios. To solve such problem, one of the proposals has been to couple the step
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and waiting time distributions, i.e. ψ(x, t) = p(x)ψ(t|x) or ψ(x, t) = ψ(t)p(x|t).
These processes are commonly known as Lévy Walks. An extensive review on the
topic can be found in Ref. [72]. Further details on the characteristic of this walks
will be presented in Chapter 5.

2.3.2 Diffusion disordered models

For some time, CTRW has been one of the few diffusion models able to show
weak ergodicity breaking, phenomena that was widely seen in different experi-
mental scenarios. However, the presence of infinite trapping events, needed for
anomalous diffusion, is somewhat a very strong condition which does not usu-
ally arises in biological scenarios. To solve such issue, there has been some recent
developments in diffusion models which could accommodate many of the anoma-
lous features but could be easily connected to the experimental observations in
biological scenarios.

A prominent direction has been the study of the motion of a Brownian particle
for which the diffusion coefficient is non-constant. In 2014, two very conceptually
similar models were introduced: the diffusing diffusivity model [73] and the patch
model [74]. The former explains the motion of a particle which shows anomalous
yet Brownian diffusion, as seen experimentally in Refs. [75, 76]. This means that
while the MSD is still linear with time, the PDF of the walk is no longer Gaussian,
as it was for Brownian particles (see for instance Eq. (2.2)). This arises from the
diffusivity of the diffusion coefficient D. The particles are considered to perform
Brownian motion (or an unbiased random walk, in discrete formulation) but their
diffusion coefficient D changes over time. Originally, it was considered that D
was indeed performing its own random walk. Later, an analogous derivation was
introduced, for which it was demonstrated the ’equivalence of the diffusing diffusiv-
ity process with a super-statistical approach with a distribution of diffusivities, at times
shorter than the diffusivity correlation time’ [66].

While the diffusing diffusivity model answered some of the questions related
to the non-Gaussianity of the displacement distribution, it focuses mostly in cases
where the diffusion is normal. On the other hand, the patch model has as main
goal the study of anomalous diffusion with weak ergodicity breaking. There are
various versions of the model, we will focus here in the annealed transit time
case, which considers a particle moving with Gaussian displacements, just as in
Eq. (2.22). The particle starts by sampling a diffusion coefficient D1 with which
it will diffuse for a time t1. After this time, a new pair (D2, τ2) is sampled. In
general, the model considers that the pairs are drawn with distribution PD,τ =
PD(D)Pτ(τ|D), with PD(D) ∼ Dσ−1, σ > 0 and the expected value E[τ|D] = D−γ.
The particle then shows anomalous diffusion with exponent σ/γ for σ < γ <
σ + 1 and 1− 1/γ for σ + 2 < γ. Such behaviour has then been observed in the
motion of receptors in living cells [77].
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2.3.3 Fractional Brownian Motion

Fractional Brownian motion (FBM) is one of the most studied and used diffusion
model, mainly due to its simple formulation but also to its arising in many differ-
ent biological scenarios. Mandelbrot and van Ness introduced the model back in
1969 [19]. Nevertheless, Kolmogorov proposed an analogous formulation already
twenty years before [18]. FBM is usually formulated by means of the fractional
Langevin equation

dx(t)
dt

= ξ f Gn(t). (2.33)

See that its definition is analogous to the definition of the Brownian motion we
presented in Eq. (2.4). In that case, ξ was defined as an uncorrelated Gaussian
noise. In the case of FBM, ξ f Gn is defined as a fractional Gaussian noise, which is
normally distributed but shows power-law correlations in time〈

ξ f Gn(t1)ξ f Gn(t2)
〉
= α(α− 1)Dα|t1 − t2|α−2, (2.34)

where Dα is here the diffusion coefficient. Following the notation proposed in
Ref. [23], we will define FBM based on α, the anomalous exponent. However, note
that in its usual definition, FBM is studied in terms of the Hurst exponent H =
α/2. In the proposed way, the connection between diffusion and the Langevin
equation is made from the its initial formulation.

Coming back to Eq. (2.34), we see that for 0 < α < 1 the noise is negatively
correlated, while for 1 < α < 2 is positively correlated. To understand the im-
plication of this, let us first define the PDF of the free FBM, in close analogy to
Eq. (2.2), as

P(x, t) =
1√

4πDαtα
exp

(
− x2

4Dαtα

)
. (2.35)

From here, we can calculate autocorrelation of FBM displacements as

〈∆x(t1)∆x(t2)〉 = Dα(tα
1 + tα

2 − |t1 − t1|α). (2.36)

With this, the link between the noise correlation and diffusion can be easily ex-
posed. See that for negative correlation (0 < α < 1), the displacements ∆x1 and
∆x2 will have opposite sign, implying that the particle is effectively bouncing.
This effect has often been associated to the motion of a particle in a viscoelastic
medium, where the particle bounces while interacting with its environment [78].
In the case of positive correlations, the signs of the displacements will be equal,
i.e. displacements in one direction induce the next to be in the same direction.
This induces the appearance of superdiffusion, as the motion is now directed [79,
80].

The previous statements about the departure from normal diffusion are clear if
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one calculates the MSD of the walk, using Eq. (2.5) and Eq. (2.35) to find
〈

x2(t)
〉
=

2Dαtα. Now, from Eq. (2.36) we can also calculate the tMSD as

δ2(∆) = 2Dαtα, (2.37)

which implies that δ2(∆) =
〈

x2(∆)
〉
, i.e. FBM is an ergodic stochastic process.

This shows a crucial difference between the models we have previously described
and FBM. In this direction, ergodicity has usually been used to differentiate be-
tween these, while recently a plethora of new methods have been introduced [59,
81, 82, 83]. In Chapter 7 we will further comment on this, as we will explore there
a novel machine learning technique which may used for this end.
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3 Heterogeneous interactions
as source of subdiffusion

In this chapter we will begin the exploration of phenomenological anomalous dif-
fusion models. As we have widely commented, the arising of anomalous diffusion
has been understood for quite some time already. Nevertheless, its connection
with the actual microscopical interactions between the tracked particles and their
environments is still unclear. Moreover, such phenomena can vary significantly
from system to system. We want to focus here in a specific family of models, in
which the presence of spatio-temporal disorder leads to anomalous diffusion. We
present here a model in which such disorder appears due to the interactions from
a particle, defined as prey, with its neighbouring particles, defined as hunters. We
consider that the interactions are heterogeneous, meaning that the prey interacts
differently with each hunter. More precisely, we consider that the hunter-prey in-
teractions induce changes in the motion of the particle, which is by itself following
a continuous time random walk. We will show how these interactions lead to the
anomalous diffusion of the prey and how the distribution of heterogeneities affect
the anomalous exponent. We will also study the appearance of non-ergodicity
and non-Gaussianity in the diffusion of the prey. Moreover, we will show how
the density of hunters affects the diffusion of the prey. The latter gives a powerful
tool to test the validity of the model in real biological scenarios.

3.1 Theoretical framework

We consider a system in which a random walker, the prey, moves in a system sur-
rounded of N independent random walkers, defined as hunters. We consider that
both kind of walkers move in a d-dimensional regular lattice with m = Ld sites,
where d = 1, 2. Moreover, we consider that the system has periodic boundary
conditions to ensure: 1) that the density of hunters is constant over time; 2) that
the distribution of walkers in space is not affected by the finite size of the system.
An schematic of the system is presented in Fig. 3.1.

While the step length of all walkers is regular, given in this case by the lat-
tice site distance, the time between steps is considered irregular. This defines a
continuous time random walk (CTRW) [20], in which the times between steps are



30 Chapter 3. Heterogeneous interactions as source of subdiffusion
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H

FIGURE 3.1: Scheme of the model: the prey (P) and hunters (H) perform a random walk in
a regular lattice. Each time the coincide, the diffusion of the prey is affected as described

in Eq. (3.4).

usually defined as the waiting times of the walker. We consider here that the wait-
ing times of both prey and hunters are retrieved from an exponential distribution

ψ0(t) = (1/τ) exp[−t/τ]. (3.1)

Following the usual CTRW theory presented in Chapter 2, one can show that such
distribution, together with a step size distribution p(x) = δ(x − 1), leads to nor-
mal diffusion, i.e.

〈
x2(t)

〉
= 1

τ t. Additionally, we consider now that each time the
prey and one or more hunters coincide in a given site, the waiting time distribu-
tion of the former is transformed to

ψκ(t) = (1/κτ) exp (−t/κτ) . (3.2)

where κ is an stochastic variable drawn from a probability distribution

Pκ (κ) ≈ κ−σ with σ > 1. (3.3)

Note that κ is indeed the source of disorder in the model and will be shown to
be the cause of the departure from normal diffusion. Finally, we assume that the
change of the waiting time distribution only occurs for the prey, while the hunters
remain with the distribution of Eq. (3.1) at all times. This means that the hunters
will always diffuse normally.

We consider now two kind of disorders. First, one in which a new κ is drawn
for every prey/hunter coincidence. We refer to this as the annealed disorder. A
different disorder realization considers that each hunter is assigned a given κ since
the initialization of the system. Then, each time the particle interacts with that
hunter, it draws the same κ. We refer to this as the quenched disorder. In the case
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FIGURE 3.2: (a) Analytical (dashed line) vs numerically-calculated (solid line) waiting time
distribution for σ = 1.6. (b) Ensemble mean squared displacement calculated for different
values of σ, showing the subdiffusive behaviour in the asymptotic regime and the agree-
ment of the exponent α with the theoretical predicted values. The black solid thin line
indicates the exponent α = 1. These results correspond to N = 8 hunters and L = 20 sites.

of large density, common in most biological scenarios, the prey has a very low
probability of hitting the same hunter before having hitting many others. Hence, it
can be considered that at each encounter the prey is indeed sampling a new value
of κ. Therefore, in this scenario the annealed and quenched disorder converge to
the same behaviour. We explore the validity of this statement in Section 3.2.

3.1.1 Effective waiting time distribution

From the model defined above we have that the waiting time distribution of
the prey, ψ(t), has two contributions: one accounting for the free motion of the
prey, i.e. ψ(t) = ψ0(t), and one accounting for the prey-hunter coincidences, i.e.
ψ(t) = ψk(t). The latter has a probability pH (the probability of hitting a hunter),
while the former has probability pNH = 1 − pH (the probability of not hitting
hunters). Considering that the system has m sites, that the number of hunters N
is constant over time and that they occupy all the space with equal probability,
the not hitting probability is also constant during the evolution of the system and

equals to pNH =
(

m−1
m

)N
. From here, we can define the effective waiting time

distribution of the prey as

ψ(t) = pNH ψ0 (t) + pH
∫ ∞

0 Pκ(κ)ψκ (t) dκ. (3.4)
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See that in the case of hitting events, the waiting time ψk(t) is weighted by
the distribution probability of κ. The final waiting distribution of the prey is then
closely related to the disorder distribution. We consider for instance a power law
distribution of the disorder

Pκ (κ) = (σ− 1) · θ [κ − 1] κ−σ, (3.5)

where θ [·] represents the Heaviside step function. The previous considers that the
interaction between prey and hunters can only slow down the motion the former,
as it sets a minimum value of κmin = 1. Indeed the value of κ can be, by means
of the MSD, directly related to the diffusion of the prey as D = 1/κ. See then that
the higher the value of κ, the lower the diffusion coefficient of the prey. Setting the
range of κ ∈ [1, ∞) ensures that D ∈ (0, 1]. Using this change of variable, we can
now perform the integral of the second term of Eq. (3.4) to find

1
τ

∫ 1

0
Dσ−1 e[−

D t
τ ]d D =

1
τ

(
t
τ

)−σ

(Γ[σ]− Γ[σ, t/τ]) , (3.6)

where Γ[σ, t/τ] =
∫ ∞

t/τ rσ−1 exp[−r]d r is the upper incomplete Gamma function,
which converges to zero as t → ∞. Hence, we can neglect its contribution in the
long-time limit regime. Moreover, the first term of Eq. (3.4) exponentially decays
to zero in this regime, which means that it can also be neglected. In Section 3.2 we
will comment on the behaviour at short times. Combining all previous statements,
we have that the waiting time distribution of the prey is effectively described at
t→ ∞ by

ψ (t) ≈ pH
Γ[σ]

τ

( t
τ

)−σ
= 1

τ̃

( t
τ̃

)−σ , (3.7)

where ( τ̃
τ )

σ−1 = pHΓ[σ].

3.1.2 Mean squared displacement

Once we have defined the model and studied the waiting time distribution for the
CTRW performed by the prey, the next step to characterize diffusion is to calculate
the mean squared displacement (MSD), i.e. Eq. (2.5) from Chapter 2. Indeed, the
MSD gives us a powerful tool to compare the model with experimental observa-
tions, as it is usually easier to extract it, rather than, for example, the waiting time
distribution. For CTRW, we have shown in Chapter 2 that the MSD in the Laplace
space is a function of the waiting time distribution, with the form [22]

M2(s) =
ψ(s)

s [1− ψ(s)]
〈`2〉. (3.8)
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Using the theory developed in Section 2.2.3, applied in this case to the waiting
time distribution of Eq. (3.7), we find that its Laplace transform is

ψ(s) ≈ 1− τ̃αsα, (3.9)

where we have defined α = σ− 1 (recall that 1 < σ < 2, hence 0 < α < 1). Now
using Eq. (3.8) and performing the inverse Laplace transform, we finally find the
expression for the MSD,

M2(t) = L−1[M2(s)](t) ≈
1

Γ(σ)

(
t
τ̃

)α

. (3.10)

We see here two very interesting dependences. First, the scaling of the MSD
is directly related to the power law behaviour of the waiting time distribution
by means of the relation between their exponents, α = σ− 1. More importantly,
we see that when σ < 2 the anomalous exponent is smaller than one, α < 1.
From this, it is clear that the disorder introduced by the interactions between the
prey and the hunters can indeed produce anomalous diffusion in a system which
initially (i.e. the prey without interactions) was normally diffusing. Moreover,
depending on the distribution of the disorder introduced by the interactions, we
may see completely different behaviours of the MSD.

Another important factor is given by the appearance of τ̃ in the MSD. This
variable is indeed related to the density of hunters,

τ̃ ∝

[
1−

(
m− 1

m

)N
] 1

α

. (3.11)

We see then not only a dependence on the scaling behaviour of the disorder, but
also to its amount, in the sense of how many times the waiting time of the prey is
changed w.r.t its free form. Indeed, this establishes a relevant relationship between
the MSD (easily calculated from trajectories acquired in any SPT experiment) and
the presence and quantity of disorder. See for instance that in dilute system, in
which m � N, the prefactor τ̃ ∼ ρ, where ρ = N/m is the density of hunters.
The MSD is then a correct measure for the density of interacting hunters and their
disorder distribution.

3.1.3 Non-ergodicity

As stated in previous chapters, non-ergodicity implies that the time-averaged
mean squared displacement (tMSD) over a given trajectory is not equal to the
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FIGURE 3.3: (a) Time averaged mean squared displacement obtained for 20 representative
prey trajectories with σ = 1.8, N = 6 and L = 20. The curves show a linear behaviour
but large scattering of their amplitude at all time lags, as expected for weak non-ergodic
behaviour. Dashed lines correspond to linear behaviour and are meant as a guide to the
eye. (b) Ergodicity breaking (EB) parameter calculated as a function of total time of mea-
surement t for several values of σ and N = 10. At large t all the curves asymptotically tend
to the value predicted by Eq. (3.13), shown as horizontal dashed lines. As σ is reduced, the

system departs more from ergodicity and the EB shows larger asymptotic value.

average performed over a set of trajectories. We defined the latter as the ensem-
ble mean squared displacement (eMSD). To faithfully characterize the presence of
non-ergodicity, we use the Ergodicity Breaking parameter (EB), defined as [71]:

EB = lim
t→∞

〈(δ2)2〉 − 〈δ2〉2

〈δ2〉2
, (3.12)

where

δ2(t, tlag) =

∫ t−tlag
0

[
x(t′ + tlag)− x(t′)

]2
dt′

t− tlag
,

is the tMSD of the given trajectory x(t). The EB is zero for ergodic processes while
EB> 0 for non-ergodic. For CTRW, we showed in Section 2.2.4 that power law
waiting time distributions implied a linear tMSD w.r.t tlag while its amplitude

was random. From this, and considering that the distribution follows ψ(t) ≈
t−(1+α)/|Γ(−α)|, it was shown that the EB is [71]

EB =
2Γ2[σ]

Γ[2σ− 1]
− 1. (3.13)
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This result holds also exactly for the diffusion of the prey, as in the long time limit
its behaviour can be directly mapped into a CTRW with waiting time distribution
ψ(t).

3.1.4 Non-Gaussianity

To finish the theoretical study of the prey and hunters model we will study the
Gaussianity of the propagator P(x, t) of the prey. The latter, describing the prob-
ability of the prey being at time t in position x, gives the complete description of
its behaviour. While it is Gaussian for Brownian particles, most of the anomalous
models are now known to behave away from Gaussian distributions. Different
ways exist to study the non-Gaussianity of a function. In this case, we will use
so-called non-Gaussianity parameter, which compares the second and fourth mo-
ments of P(x, t) as [84]

ϑ(P(x, t)) =
〈x4〉

a(d)〈x2〉2 − 1, (3.14)

where d is the dimension of the walk and a(d) is defined as the ratio of the second
and fourth moment for a Gaussian propagator. To calculate a(d), we consider the
Gaussian propagator

P(x, t) = (4πρ(t))−d/2 exp[−x2/4ρ(t)], (3.15)

where x is the displacement in a d-dimensional spaceRd, x its modulus, and ρ(t)
is the variance and has dimensions of length to the square. Then, one can calculate
all even momenta as

〈x2n〉 =
∫
Rd

ddx x2nP(x, t)

=
(4ρ)n

(4πρ)d/2
∂n

∂kn

∫
Rd

exp
[
−k x2/4ρ

] ∣∣∣∣∣
k=1

=
(4ρ)n

(4πρ)d/2
∂n

∂kn

[
4πρ

k

]d/2
∣∣∣∣∣
k=1

= (−4ρ)n d
2

d + 2
2
· · · d + 2(n− 1)

2
. (3.16)

From here, it suffices to consider n = 2, 4 and use it to calculate

a(d) ≡ 〈x
4〉

〈x2〉2 =
d(d + 2)

d2 = 1 +
2
d

. (3.17)
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Being a(d) the ratio for a Gaussian propagator, ϑ(P(x, t) = 0 is a necessary but
not sufficient condition for P(x, t) to be Gaussian. Nevertheless, ϑ is zero for any
Gaussian process and ϑ 6= 0 implies the so-called non-Gaussianity.

To study non-Gaussianity in our model, we consider the effective picture of
the motion of the prey being a CTRW in d = 1 with waiting time distribution
given by Eq. (3.7). As our walk is considered discrete and with equal step size
throughout the whole walk, the step distribution is given by a delta distribution,
p(x) = δ(x, 1). Using ψ(t) and p(x) one can calculate P(x, t) in Laplace-Fourier
space as (see also Section 2.2.1)

P(k, s) =
1− ψ(s)

s
1

1− λ(k)ψ(s)
, (3.18)

where λ(k) =
∫

exp[−ikx]p(x)ds is the Fourier transform of the step size distri-
bution. From the previous, all moments can be obtained using

Mn(s) = (−i)n dnP(k, s)
dkn

∣∣∣∣
k=0

, (3.19)

and in particular the fourth moment M4(s) is

M4(s) =
ψ(s)

s

(
〈`4〉

1− ψ(s)
+

6〈`2〉ψ(s)
(1− ψ(s))2

)
. (3.20)

We already know from the previous section that ψ(s) ≈ (1− τ̃αsα). Moreover,
as we are interested in the long time behaviour, we are only concerned about the
leading terms when s→ 0. In such case, we have that

M4(s) ≈ 6〈`2〉2s−1−2ατ−2α. (3.21)

Performing the inverse Laplace transform, we see that

M4(t) ≈ 6M2(t)2, t� τ̃. (3.22)

As for d = 1 we had a(d) = 3, this equation leads to limt→∞ ϑ(t) = 1, which
proves the non-Gaussianity of the presented model.

3.2 Numerical results

Once we have set the theoretical framework of the prey and hunters’ model, we
will simulate its dynamics by means of Monte Carlo dynamics in 1D. We will con-
sider the case of a prey moving in an unbounded space surrounded by N hunters.
As we are interested in the long time behaviour, in which numerics and theory
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FIGURE 3.4: (a) Logarithmic derivative of the distribution of waiting times as in Eq. (3.4)
for σ = 1.6 and different values of the density of hunters ρ (L = 20). For large t, the
derivative tends to the expected value of −σ, corresponding to the exponent of Fig. 3.2(a)
at long times. (b) Time tmin at which the minima of the curve in panel (a) are reached, as a
function of the density. The larger the density, the quicker the logarithmic derivative of the
waiting time distribution tends to its asymptotic value σ (shorter tmin) . (c) Analytically
calculation of the time tsub at which the subdiffusive behaviour occurs as a function of ρ.

can be compared, we will consider that τ = 1, which means that the waiting
times arising from Eq. (3.7) will be three and four orders of magnitude higher.
Moreover, unless otherwise stated, we will consider the annealed version of the
model, i.e. the case in which a new κ is drawn at each prey/hunter coincidence.

We begin our comparison by studying the waiting time distribution of the
prey. The results are shown in Fig. 3.2(a) for various values of σ. We also plot
as dashed lines the theoretical prediction of Eq. (3.7), showing a great correspon-
dence between each other. In panel (b) we show the eMSD calculated with a set
of n = 1000 trajectories for each value of σ. This panels showcases the emergence
of subdiffusion, coinciding with the prediction∼ tα, plotted as dashed lines in the
figure.

With the same set of trajectories we calculate now the tMSD, shown in Fig. 3.3(a).
We see there the typical behaviour of CTRW trajectories, where the tMSD has a lin-
ear dependence with tlag while its amplitude is random. The latter is seeing as
the spread of each plotted tMSD. While this implies non-ergodicity, as the tMSD
is not equal to the eMSD presented in Fig. 3.2(b), a quantitative study of ergod-
icity breaking is presented in Fig. 3.3(b) by means of the EB parameter. We see
that the numerical calculation of the EB parameter for the simulated trajectories
converges to the value predicted by Eq. (3.13). We see also that as σ is reduced,
we get a larger value of the EB, implying that the systems increases its ergodicity.
It has to be noted that for σ = 2 we recover a normal diffusive CTRW, for which
the EB is then equal to zero, as expected in this kind of processes.

One of the main features of the model is that the long time behaviour of the
anomalous exponent and the ergodicity breaking do not depend on the density of
clusters ρ. However, it has contributions to the general behaviour of the system at
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shorter times. This is due to the dependence of Eq. (3.7) on pH . Indeed, one can
see that as we increase ρ, the second term in Eq. (3.4) becomes dominant at short
times. To study this behaviour, we calculate the logarithmic derivative of ψ(t) for
different densities and show the result in Fig. 3.4(a). Interestingly, all curves are
equal at t = στ with value log(ψ(t)

∂ log(t) = σ. The general behaviour is independent of
ρ, as all curves decrease until reaching a certain minima, to then increase to reach
asymptotically the value σ and remain on it for bigger t.

While all densities behave similarly, the time to reach the asymptotic value σ
is a function of ρ. While the converge to this point is not easily accessible, one can
indeed calculate the time tmin at which the logarithmic derivative reaches its min-
imum. In Fig. 3.4(b) we plot such value. We see there that for any σ, the smaller
the density, the bigger tmin. This means that the time at which the model reaches
its asymptotic behaviour, set in this case by long time limit eMSD

〈
x2(t)

〉
∼ tα,

increases as the density of hunters decreases.
In Fig. 3.5 (a) we present the eMSD for various densities at σ = 1.2, in one

dimension. As predicted, the smaller the density, the longer it takes to reach the
predicted anomalous exponent for the eMSD. We plot there both the annealed
model (continuous lines) and the quenched model (dashed lines). While the slope
reached by the two models is the same, we see that the smaller the density, the
bigger the difference in the eMSDs. In this low density scenario, a prey in the an-
nealed case has a larger time exploring the whole disorder distribution, as it has a
high probability of repeatedly coinciding with the same hunter and thus drawing
the same value κ many times. For high densities, such probabilities lowers con-
siderably, as many hunters, with different κ, surround the prey. A similar effect
happens when considering a 2D system, as shown in Fig. 3.4(e). There we see that
the difference between annealed and quenched fades away even a lower densities.

Returning to the asymptotic approach to the expected anomalous exponent,
we can now use the eMSD to estimate the time of such event. One can lower
bound the appearance of the subdiffusive behaviour by exploring at which time
the power-law behaviour of Eq. (3.10), dominant at longer times, intersects and
overcomes the linear behaviour, dominant at short times. Such event takes place
at tsub = 101−α

pHΓ(σ)2 . As expected and showed in Fig. 3.4(d) for the annealed case,

there is dependence between tsub and ρ, mediated in this case by the presence of
pH in the former. Note that, as described before, the behaviour of tmin and tsub
are closely connected.

Once we have characterized the appearance of the subdiffusive behaviour as
a function of time, we can relate the offsets in M2 due to such effect. Indeed,
we can calculate the distance between the two curves of the eMSD for different
values of ρ, once they have reached the subdiffusion. Considering that the num-
ber of sites m is the same, two different densities imply two different numbers of
particles Ni and Nj. Then, the distance between the two M2 curves is given by
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FIGURE 3.5: (a) eMSD for σ = 1.2 in 1D as obtained at different densities for annealed
(continuous lines) and quenched disorder (dashed lines). The long-time scaling exponent
of the eMSD is independent of the density and the type of disorder. In the asymptotic
regime, curves obtained for different densities and type of disorder are separated by a
distance ∆. (b) eMSD for σ = 1.2 in 2D for various densities and system sizes, for the
annealed (continuous lines) or quenched disorder (dashed lines). See that the convergence

of the two cases is even greater in higher dimensions.

∆ = log(pH(Nj, m)/pH(Ni, m)), which can be simplified to ∆ = log(Nj/Ni) in
the dilute limit.

3.3 Conclusions

In this chapter, we have studied the effect of disorder in the continuous time ran-
dom walk of a particle, defined as the prey. Such disorder appears due to the het-
erogeneous interactions between the prey and the surrounding particles, defined
as the hunters. Phenomenologically, the model shows the effect of the presence of
dynamic traps on the diffusion of the prey. We considered for instance that when
the prey coincides with a hunter, the waiting time of the former is affected, in
such a way that it is not longer drawn from an exponential distribution but from
one with heavy tail. In the mathematical approach, we have studied how the ef-
fective waiting time distribution of the prey, described as the sum of distribution
weighted with complementary probabilities (see Eq. (3.4)), leads to anomalous
diffusion in the long time limit. Moreover, we have seen how the anomalous ex-
ponent is directly related to the disorder distribution in the system.

We have considered two realizations of the system, i.e. in the presence of ei-
ther annealed or quenched disorder. While both show similar long time scalings,
we have seen how the correlations arising in the quenched scenario induces some
important changes in the diffusion of the particle, specially in the low density
regime. We investigated such differences both in one and two dimensions, with
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similar results: the more dilute the system, the bigger the differences in the be-
haviour. Due to the correlations, and mostly to the speed at which the disorder
distribution is explored, we see that in the quenched system the particles takes
longer to reach the anomalous, asymptotic behaviour.

Similarly, we have also studied how the density of hunters may affect the dif-
fusion of the prey. While again, the asymptotic behaviour is equal for all cases, we
see that the time taken to reach such value is clearly related to such density. We
see that the smaller the density, the longer the time to reach subdiffusion tsub. We
show this both analytically (Fig. 3.4) and numerically (Fig. 3.5). We also showed
that the density is the only important parameter, and not the size of the system.

The proposed framework relies on the assumption of a broad distribution of
the diffusion rates (or diffusion coefficients) of the interacting partners. We con-
sider this assumption rather reasonable since the hunters in our model might rep-
resent different chemical species and on the basis of broad diffusivity distributions
reported for chemically identical cellular components [85]. Moreover, our general
requirements for the distribution of rates include the particular case in which the
diffusivity is the sum of several squared Gaussian random variables, e.g. due to
the presence of a large number of degrees of freedom [86].

An important feature of the model is the possibility of being experimentally
tested, thus allowing one to distinguish its occurrence from other theoretical frame-
works. This is nowadays technologically possible by means of multicolour single
particle tracking techniques. As an example, in a dual colour single particle track-
ing experiment it is possible to simultaneously follow the motion of two closely
spaced particles with time resolution of few milliseconds and resolve their rela-
tive distance with a precision of the order of 10 nm [28, 87]. Analogously to sin-
gle particle tracking, these experiments provide trajectories from which the time-
and ensemble-averaged MSD can be calculated, thus allowing one to test the ap-
pearance of non-ergodicity In addition, the technical advantages afforded by dual
colour tracking make it possible to experimentally verify the occurrence of interac-
tions between diffusing species, measure the duration of such events, and check
whether they affect the diffusivity of the particles involved [88, 89, 87]. These
experiments can be carried out by labelling chemically identical components as
well as different species, thus testing the formation of both homo- and hetero-
oligomers. This technique has already been successfully used to study interactions
of several membrane components. In addition, other promising approaches to in-
vestigate interaction-dependent diffusion include hyper-spectral microscopy [90],
as well as the combination of single particle tracking with recent methods based
on advanced statistical tools [91] and on the spatio-temporal analysis of fluores-
cence fluctuations [92], which have been shown to provide a wealth of information
into dynamic molecular processes of biological relevance.

Moreover, while these experimental strategies allow one to discriminate on
the occurrence of the previous theory in a specific system, the model allows one
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to directly calculate microscopic parameters of the system under investigation. In-
deed, the timescale for the onset of subdiffusion in the eMSD curve provides an
estimation of the average density of hunters, thus quantifying the level of crowd-
ing experienced by the prey. In addition, the scaling exponent of the eMSD is
a proxy for the degree of heterogeneity of the environment. However, for a ro-
bust determination of these parameters one needs to collect a sufficient number
of eMSD data points over the appropriate timescale. For example, in order to pre-
cisely extract the time at which subdiffusion arises, one needs to collect a sufficient
number of eMSD data points spanning over at least two orders of magnitude cen-
tred around such a timescale. In typical SPT experiments, this range is bounded
by the time-resolution and the trajectory duration [28]. The time resolution (i.e.
the inverse of the recording frame rate), besides setting the shortest eMSD time
point, also determines the lag between successive points and thus the number of
data points within the measured range. The maximum trajectory length is instead
ultimately limited by the photon budget of the fluorescent emitter. Therefore, al-
though it is desirable to collect a large number of photons in each frame in order
to achieve the precise localization of the particle [28], this would limit either the
number of points or the maximum duration of the trajectory. Therefore, the ex-
perimental conditions must be finely tuned in order to obtain the best trade-off
between tracking precision, time resolution and trajectory length. Although it is
currently possible to obtain eMSD with hundreds of data points between a few
milliseconds to tens of seconds, new strategies have the potential to push these
bounds even further [93]. In this scenario, the model presented above might be a
useful tool to investigate anomalous transport and its implications, while provid-
ing an alternative interpretation to the causes of non-ergodic subdiffusion. More-
over, in combination with recently proposed techniques, many of them discussed
in Chapter 7, the model may help understand not only the arising of non-ergodic,
but also the properties of the environment where the particle is diffusing.
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4 Subdiffusion in critical
environments

In this chapter we will introduce a microscopic model in which a particle diffuses
through an environment which has different, heterogeneous regions or patches
which affect its diffusion. In general, and as we have seen in previous Chapters,
the diffusion of a particle is closely related to its own properties, but also to the
particularities of the environment. In this cases, we consider a very abstract and
general consideration: we will propose that the diffusion of the particle is related
to the size of each patch it visits. While it may arise as a purely theoretical pro-
posal, we will show in Chapter 5 that such behaviour may easily be reproduced
by compartmentalized environments. In this case, we are interested in how the
distribution of patch sizes may affect the diffusion of the particle. More precisely,
we will consider that the environment is generated via the Ising model, a spin
model with critical behaviour. The patches are then the connected domains of
spins pointing in the same direction. Depending on the its temperature, the Ising
model is known to show very distinct domain size distributions. We will explore
how the diffusion of the particle, which is by itself performing a continuous time
random walk (CTRW), is affected by the particularities of the environment. For
instance, we will show how the particle diffuses anomaly when the Ising system
is at critical temperature. Then, the environment can depart from criticality in two
ways: first, due to finite size effect; second, by the change of temperature. In both
cases, the particle will only diffuse anomaly for a transient time, which depends
on how far away the environment is from criticality. We will show that the par-
ticle’s motion shows weak ergodicity breaking at criticality, while at non-critical
environments the particle recovers ergodicity after a characteristic time.

4.1 Theoretical framework

4.1.1 Motion of the particle

We consider the motion of a particle in a discrete space, which is a lattice of di-
mension d and side length L in two dimensions. The results presented here can be
extended to more dimensions, but in such case, one has to do this generalization
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FIGURE 4.1: Schematic of the CTRW performed by the particle in an Ising environment.
(a) Squared Ising lattice close to the critical temperature, kBTc ≈ 2.2691J, with kB the Boltz-
mann constant, and side length of L = 500. White (black) pixels represent spins point up
(down). In yellow we highlight the biggest domain of the system, coinciding here with the
percolating domain. (b) An scheme of a particle’s motion through three different domains.
Here, κ is determined from the size of the domain in which it sits, according to Eq. (4.4).

carefully, and take care of some details, as we comment later. The particle is per-
forms a CTRW along the lattice. Being the latter evenly spaced, the walk consist
in regular steps of length `, i.e. the distance between to vertex of the lattice. This is
analogous to considering a delta step size probability distribution function (PDF),
p(x) = δ(`− 〈x〉). The waiting time distribution, i.e. the time the walker waits in
a given site before performing the next step, is given by an exponential PDF

φκ(t) =
1

κτ
exp [−t/κτ] , (4.1)

where τ accounts for the time scale of the walk. Similarly to Chapter 3, κ is con-
sidered here the source of disorder in the walk of the particle and will enclose the
effect of the environment to the diffusion of the particle. As we showed previ-
ously, κ is indeed the inverse of the diffusion coefficient D of the particle. With
this, depending of the values of κ, and more precisely its distribution P(κ), we
will see very distinct behaviour in terms of the diffusion of the particle. As shown
in previous chapters, distributions with infinite mean but finite variance, such as
P(κ) ∼ κ−σ with 1 < σ < 2, induce anomalous diffusion, i.e.

〈
x2(t)

〉
∼ tσ−1.

4.1.2 The Ising environment

extend? We consider now an environment described by Ising dynamics. This
means that at each site of the two dimensional lattice we consider a spin, which
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can point in two directions: up (si = 1) or down (si = −1). We consider that the in-
teractions of the spins with their neighbours is described with a two dimensional
Ising Hamiltonian

HIsing = −J ∑
〈ij〉

si sj. (4.2)

Here 〈ij〉 refers to the spins interacting only with their nearest-neighbors pairs
in the lattice. These systems have been widely studied, mostly to describe fer-
romagnetic materials [94]. Moreover, their general properties make them great
candidates to describe many kind of critical systems, as for example the hetero-
geneities present in plasma membranes [95, 96]. In two dimensions, the Ising
model is known to have a phase transition at a critical temperature Tc, where the
system changes from a phase in which all spins point in the same direction (ferro-
magnetic phase, T < Tc) to a phase in which the spins tend to align in the opposite
direction of their neighbours (antiferromagnetic phase, T > Tc).

It is usual in Ising systems to see the appearance of domains: connected areas
in which all spins point in the same direction. The size of such domains S, and
more importantly the distribution of domain sizes P(S), are connected with the
temperature. Close to the phase transition, the domain size distribution behaves
as

P(S) ∝ S−τ exp[−S/S∗], (4.3)

where τ = 187/91 ≈ 2.05 is a critical exponent [97, 98] and S∗ is the characteristic
size of a domain. As the system approaches the critical temperature, we see the
emergence of very large and even infinite domains, similar to what occurs in a per-
colation scheme. This is so due to the characteristic size being directly connected
to the correlation length of the system, which is known to diverge at criticality [97,
98]. In such case, S∗ → ∞ and the distribution P(S) becomes a power law. Note
that this behaviour is also seen in a three dimensional lattice, with τ = 2.53 [98],
such that the results presented below are then extendable to the three dimensional
walk of the particle.

In Fig. 4.1(a) we show a system of spins evolving under Ising dynamics at a
temperature close to the critical one, kBTc ≈ 2.2691J, for L = 1000. Dark (light)
pixels represent spins pointing down (up). In yellow we highlight the biggest do-
main, which under periodic boundary conditions can be considered to be infinite.
As it can be seen, such domain corresponds also to the percolating domain, i.e. a
region of connected sites which goes from one limit of the systems to the opposite
without breaking. In these, one can then consider that S∗ → ∞ and then recover
the power law behaviour in Eq. (4.3).

Nevertheless, in order to asses the validity of Eq. (4.3), we use Monte Carlo
simulations to evolve spins systems of various sizes (L = 200, 500 and 1000 spins)
near the critical temperature. In Monte Carlo simulation of spin systems, one
considers the flip of single or many spins, depending on the method, and only
accepts them if the total energy of the system has lowered. To avoid getting stuck
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FIGURE 4.2: Domain size distribution and average number of steps n in a domain of size
S (a) Distribution of domain sizes for 200 patterns calculated at the critical temperature,
kBTc ≈ 2.2691J, for L = 500. (b) Numerically calculated probability distribution of the
numbers of steps taken before exiting a domain of size S when the initial position is in
the border. To do the calculations we select all the patterns of a given size S, perform X
simulations of a particle starting at random positions in the border of the domain, and
retain the time at which the particle leaves the domain. Inset: average time n for leaving a
domain of size S in log-log scale, showing that n grows approximately as Sµ, with µ ∼ 0.3.

in local minima, it is usual to accept also flips that increase the energy with a
certain, small, probability. The systems are evolved for long times, in order to
attain an equilibrium state. Once reached, we numerically checked that P(S) is
indeed a good description of the domain size distribution, even for small S, as it
is shown in Fig. 4.2 (a).

4.1.3 Interaction particle-environment

Once we have defined the two players of the system, the CTRW walker and the
Ising environment, we consider a model in which the walk is affected by the en-
vironment in such a way that the disorder parameter κ of Eq. (4.1) is proportional
to the size of the domain the particle is at a given time step. Namely, we consider
that

κ = Sη . (4.4)

An schematic representation of the walk is presented in Fig. 4.1(b). As shown,
the particle moves for a number of steps in a domain of size S1. At each of these
steps, its disorder parameter is equal to κ1, just until it traverses to a new domain
of size S2 in which it will change to κ2. We consider here that the direction at
which the spins are pointing does not affect in any sort the diffusion of the par-
ticle. Moreover, we consider here that the Ising environment is at equilibrium,
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which means that its dynamics are much slower than the ones of the particle. For
simplicity, we will consider that the environment does not change at all during
the walk of the particle. Nevertheless, we will asses the effect of the dynamics of
the particles below.

The defined interaction makes it such that the motion of the particle is now
closely related to its probability of finding a domain of size S in its step j, P(s, j).
This probability will again be closely related to the dynamics and time scales of
both the particle and the environment. It is obviously also related to the distribu-
tion of domain sizes P(S). Moreover, it will also depend on the previous history
of the particle, i.e. P(S, j|S′, j− 1; S′′, j− 2; ...). The non-Markovian nature of this
probability increases its complexity in such a way that no analytical solutions may
be found for the motion of the particle. Nevertheless, there exists two limiting
cases in which one may assume that the behaviour of the particle is Markovian:
when its motion is either much faster or slower than the dynamics of the environ-
ment. We will deepen both cases in following sections.

4.1.4 Steps inside a domain

As commented previously, there exists two limiting regimes in which the de-
scription of the model is substantially simplified. We will focus now in the case
in which the particle moves much faster than the evolution of Ising environ-
ment. Practically, this means that while moving, the particle does not perceive
any change in the environment, hence we consider it to be static. In terms of the
mathematical description given in the previous section, we consider here that the
time τ in Eq. (4.1) is sufficiently smaller than the dynamical critical time ς of the
environment (see Sec. 4.3).

Even with the previous consideration, P(S, j|S′, j− 1; S′′, j− 2; ...) is still Marko-
vian, as the probability of visiting a domain of given size at step j depends of the
sizes of the domains already visited. Finding a analytically expression for such
probability is not a trivial task, and may be indeed impossible. To solve such dif-
ficulty, we will tackle the problem in a different way: we will consider that when
visiting a domain of size S, the particle performs n steps on it. Obviously, n will
be a function of the size S but also of its shape and the entrance and exit point of
the particle. Note here that we consider that the domain is not moving while the
particle explores it, due to the difference in evolution scales. To avoid excessive
complexity, we start by considering here the that average number of steps n̄ if a
domain of size S is proportional to the one done in a domain of circular shape, i.e.
n̄ ∝ S1/2.

To confirm the previous assessment, we perform a series of numerical simula-
tions for a system of L = 500 at the critical temperature. First, we evolve 200 dif-
ferent realizations of an Ising environment, until reaching their equilibrium state.
At this point, we extract all the domains formed and calculate what is the aver-
age number of steps a random walker may take to exit the domain, for various
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random initial positions in the boundary. We see that the distribution of the num-
ber steps for any given S follows an exponential distribution, as shown in Fig. 4.2
(b). We then proceed to calculate the mean number of steps as a function of the
domain size S and show this results in the inset of Fig. 4.2 (b). As it can be seen,
expected behaviour departs from the simplified case in which we considered that
the domains had circular shapes. Numerically, we perform a fitting to find that
n̄ ∝ S0.3.

All the previous is correct for a static environment. In the cases in which the
dynamics are not negligible, the relation between n̄ and S has to be reassessed. See
that in the opposite limiting case, i.e. the evolution of the environment is much
faster than the motion of the particle, in average only one step will be perform
at each domain. This is so because the environment evolves so fast that at each
new step of the particle it has effectively reset itself. See now that in any other
scenario, the rates between the two dynamics (particle and environment) must be
enclosed between these two limiting cases (the static and the resetting environ-
ments). We consider then that in its most general form, the mean number of steps
can be rewritten as n̄ ∝ Sµ, with 0 ≤ µ ≤ 0.3, where now µ is a free parame-
ter that accounts for the difference in the time scales between the particle and the
environment.

4.2 CTRW in a critical Ising environment

We will begin our study of the model by assessing the case in which the Ising
environment is close to criticality. As we will comment throughout this chapter,
criticality only exists in Ising systems when they have infinite size. Away from
this condition, finite size effects appear in the system, making such that its critical
properties may even disappear. To address such problem, we consider in this
section that the temperature of the system is close to Tc, but also that the Ising
environment is infinite.

With the considerations presented in previous sections, we can now derive the
probability Pnew(S) of entering a new domain of size S at every new step. This
probability has to consider first the probability of that domain to exist, namely
P(S). Then, taking into account that our environment has a finite size, we need to
account for the probability of being in such domain among all the available space.
In our case, we consider a two-dimensional lattice of side length L, which means
that the previous is just S

L2 . Finally, we need to account the mean number of steps
performed in that domain n̄ ∝ Sµ. Putting everything together, we have

Pnew(S) ∝ P(S) · S
L2 · S

µ ∝ S−ζ+µ, (4.5)
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where we have defined ζ = τ − 1. As the disorder parameter κ is directly re-
lated with S by means of Eq. (4.4), we can now use such relation to calculate the
probability of the particle to draw a new value κ at a certain step as

Pnew(κ) = Pnew(S)
dS
dκ

∝ κ−σ(µ), (4.6)

where
σ(µ) =

ζ − 1− µ

η
+ 1. (4.7)

We see now two different regimes. In the case where µ < ζ − 1, the dynamics
of the environment is very fast, as µ is close to zero. In such case, the particles sees
a completely new environment at each step, meaning that it is able to explore con-
veniently the distribution P(S) = S−τ . In the opposite case in which µ ≤ ζ − 1,
the evolution of the environment becomes much slower and it is difficult for the
particle to completely explore P(S). Indeed one sees that in terms of the distribu-
tion Pnew, the probability of sampling big κ’s increases exponentially in this case.
In the same spirit, the probability of entering an infinite domain and remaining
on it up to t → ∞ increases substantially, again preventing the correct sampling
from Pnew. Moreover, see that Pnew is no longer a normalizable probability. To
solve this, one needs to introduce a cut-off to the domain size, which solves both
problems: the diffusion in infinite domains and the normalization. Nevertheless,
we will see that in terms of diffusion, the cut-off has a very similar effect as to
the diffusion in an infinite domain. We will further discuss about this point in
Section 4.3.

4.2.1 Diffusion of the particle

We will focus now in the case of a well defined Pnew (i.e. µ < ζ − 1) and leave the
discussion of the opposite case for Section 4.3. In such case, we can use Eq. (4.1)
to calculate the effective waiting time distribution of the CTRW in the Ising envi-
ronment by performing the convolution

ψ(t) =
∫ ∞

1
Pnew(κ)φκ(t)dκ (4.8)

=
1
τ

(
t
τ

)−σ(µ)

(Γ[σ(µ)]− Γ[σ(µ), t/τ]) ,

where τ represents a characteristic time scale and Γ[·] (Γ[·, ·]) is the complete (up-
per incomplete) Gamma function. From here, one can use the usual CTRW theory
we developed in Chapter 2 to calculate the mean squared displacement of the
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FIGURE 4.3: Ensemble-averaged mean squared displacement at criticality. (a) eMSD for
different theoretical values of η and µ = 0 for infinite size Ising environments at critical
temperature. The movement is subdiffusive, that is M2(t) ∝ tα, with 0 ≤ α ≤ 1. Dashed
black line represents the Brownian motion limit. Coloured dashed lines show the theoret-
ical prediction of Eqs. (4.7) and (4.9) (same for (b)). Inset: The corresponding probability
distribution function Pnew(κ) used for the simulations. (b) eMSD obtained for different
values of µ and η = 0.05. The expected subdiffusive behaviour is observed. (c) Relation
between the eMSD exponent α(µ) and the time scale parameter µ. In this panel, symbols
represent the numerical calculations while lines are theoretical predictions. We see that for

µ > ξ − 1 = 0.05 normally diffusing Brownian motion occurs, i.e. α(µ) = 1.

particles (MSD) as

M2(t) ≈
1

Γ(σ(µ))

(
t
τ

)α(µ)

, (4.9)

with α(µ) = σ(µ)− 1. This show that the motion of the particle is closely related to
the behaviour of the particle-environment interaction. More precisely it is linked
to: the interplay between the time scales of the environment and the particle, by
means of µ; the distribution of domains, governed by ζ; the relation between the
domain size and the the disorder parameter, given by η. The various parameters
combine by means of Eq. 4.7. To our interest, there exists a regime in which 1 <
σ(µ) < 2, which implies the anomalous diffusion of the particle.

4.2.2 Numerical implementation

In order to test the accuracy of the predicted anomalous exponent of Eq. (4.9),
we perform a series of numerical simulations for the random walk of the particle.
Strictly, we should simulate a random walk in lattice of spins with Ising dynamics
and evolve the hole system by means of Monte Carlo methods. However, the
computational cost of such simulation is extremely high, mostly due to the Ising
lattice dynamics. Moreover, by simulating the Ising system we introduce the so-
called finite size effects. As the simulation of an infinite system is impossible,
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considering a computationally feasible introduces such effects on the system. To
avoid such problem and to faithfully simulate the walk of the particle in an infinite
Ising system, we propose an analogous implementation.

First, we will draw a a value of S by means of the distribution Pe(S) = (ζ −
1)S−ζ , which takes into account the probability of a domain of such size to exist
and the probability of the particle to land on it. In order to sample from this distri-
bution, we will use the inverse transform sampling distribution method. In such
method, one considers the sampling of a random whose cumulative distribution
function (CDF) is well described. In our case, we can calculate it directly from Pe
as

CS(S̄) = (ζ − 1)
∫ S

1
S−ζdS = 1− S1−ζ . (4.10)

Once defined the CDF, one needs to find its inverse, i.e. C−1
S . Defining U as a

random number drawn from a uniform distribution ∈ [0, 1], the method ensures
that the numbers arising from S = C−1

S (U) are distributed just as Pe. In our case,
we have

S = (1−U)1/(1−ζ) (4.11)

After sampling the size of the domain currently visited by the particle, we
calculate the corresponding value of κ by means of Eq. (4.4). The waiting times
for the CTRW of the particle are then calculated with Eq. (4.1). As the walk takes
place in a two dimensional lattice, four possible directions are possible for the
particle at each step. For each, we calculate its expected waiting time

tj =
ln(U)

wij
κ, (4.12)

where i is the actual site and j accounts for its four neighbours. The rate wij ac-
counts for the probability of jumping to each of them. As we defined the random
walk as unbiased, we will consider that wij = wi ∀ j. Then, the particle will jump
to the neighbouring site with shortest waiting time.

Finally, following the rationale of Section 4.1.4, we consider that the particle
performs n = Sµ steps inside each domain. Note that for each step, a new waiting
time has to be retrieve from Eq. (4.1). After these n steps, the process starts again
by calculating a new S by means of Eq. (4.11). From a collection of trajectories sim-
ulated with the previous recipe, we can now calculate the ensemble mean squared
displacement (eMSD) and compare it to the value given by Eq. (4.9).

We show the results of such simulations in Fig. 4.3 for various scenarios. In
Fig. 4.3(a) we show how the change of the exponent η, i.e. the one mediating
the relation between the waiting times and the size of the domains, affects the
diffusion. We consider here a fixed µ = 0. First, in the inset, we see the distribution
of κ extracted for each simulation. According to the theory a distribution P(κ) ∝
κ−σ causes the appearance of subdiffusion with anomalous exponent α = σ− 1.



52 Chapter 4. Subdiffusion in critical environments

Moreover, the bigger the effect of the size on the waiting times (i.e. the bigger η),
the more subdiffusive the motion of the particle is. We see such effect in the main
figure, were the exponent for each eMSD can be calculated analytically (dashed
lines) for each η.

In similar fashion, we explore in Fig. 4.3(b) the effect of the environment evolu-
tion to the diffusion of the particle with a fixed η = 0.05. Recall that the smaller µ,
the faster the evolution of the Ising system, causing the diffusion of the particle to
be normal. This is due to the resetting of the environment: in a static environment,
the particle has a high probability of entering a big domain and staying there for
many of steps. Because of the size, the waiting times of such steps are longer that
the ones expected for small domains. Hence, the particles moves much slower,
effect seen in the decrease of the anomalous exponent as we increase µ and get
closer to the static environment.

Finally, in Fig. 4.3(c) we summarize the previous results. We show there the
same effect of the previous figure: the slower the evolution of the environment,
the more subdiffusive the motion of the particle. This holds until we reach the
point µ = ζ − 1 at which the particle recovers Brownian motion. As commented,
this happens because the distribution Pnew(κ) is no longer normalizable. A cut-
off must be introduced in order to work with correctly behaving PDFs. As we
will see with more details in following sections, such cut-off causes the departure
from anomalous diffusion. The different markers show the fitted anomalous ex-
ponent of the simulations, while the bold lines represent the predicted behaviour
by Eq. (4.9).

4.2.3 Critical slowing down of the Ising model

An important feature arising in critical systems, as the one considered in this sec-
tion, is the exponential slowing down of its evolution. In the case of the Ising
model, it is known that the time correlation of a spin si is given by

〈si(t) si(0)〉 ∝ exp[−t/ς], (4.13)

where ς is the dynamical critical time, which diverges at the critical temperature.
It is then through the comparison between ς and τ from Eq. (4.1) that one can relate
the dynamics of the environment and the particle. As commented previously, two
regimes arise. When ς � τ, the evolution of the environment is much faster that
the one of the particle. This limit corresponds to µ = 0 and showcases the case in
which the environment is effectively reset at each of the particle’s step. Thus, the
subsequent visited domains are uncorrelated. The opposite case, in which ς � τ
(corresponding now to µ = 0.3), the environment is effectively static with respect
to the motion of the particle.

To understand the critical slowing down, it is useful to use the dynamical crit-
ical scaling hypothesis [99, 100], which states that the dynamical critical exponent
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FIGURE 4.4: Ensemble-averaged mean squared displacement out of criticality. (a) eMSD
for α = 0.05 and different deviations from the critical temperature, described by the typ-
ical size S∗. A transient subdiffusive behaviour occurs for intermediate times. As S∗ is
increased, the onset of diffusive dynamics occurs at a longer time. (b) eMSD for α = 0.2
and different values of the size N of the Ising environment at critical temperature. As
shown the movement is diffusive in the long term behaviour. In intermediate times, the
finite size cases show the same subdiffusive behaviour than the infinite size case (bottom
curve). The position at which it departs from subdiffusion is larger as the size is increased.

Dashed lines show the Brownian motion limit.

ς is given by
ς ∝ ξz, (4.14)

with z being the dynamical critical exponent. The calculation of the dynamical
exponent is in itself a huge challenge. Indeed, various numerical approaches have
found that z = 2.167 [101, 102]. Nevertheless, the problem is widely connected to
the correct simulation of the Ising model for very long times. Usually, such sim-
ulations are performed by Monte Carlo and need the use a large number of ran-
dom numbers. Hence, the quality of such random numbers, namely them being
uncorrelated, is key for the correct estimation of ς. To this aim, quantum random
number generators (QRNG) have been proposed [103]. Due to the true random-
ness of such generator, certified by the use of quantum systems, the numbers will
be completely uncorrelated, leading to much better Ising simulations and thus to
a better numerical estimation of ς.

In Eq. (4.14) we see the appearance of the correlation length ξ, defined as ξ =

|T − Tcrit|−1. See that at T = Tcrit, the correlation length diverges, and so does
ς. This implies that in the scenario of a real infinite, critical Ising model, one can
never find a time scale τ > ς, hence we must always have µ 6= 0. Nevertheless, in
practical terms we will always work for system which, even if close to criticality,
depart from it either by the finite size effect or by fluctuations in the temperature
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FIGURE 4.5: (a) Time-averaged mean squared displacement for α = 0.4 in the infinite size
Ising environment. As shown, the tMSD remains a random variable in time, as seen by the
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of the system.

4.3 Finite size Ising environment and deviations from
the critical temperature

We will study now the effect of the depart from criticality on the diffusion of the
particle. As commented previously, there are two ways a system becomes non-
critical: first, if its temperature is T 6= Tc and second, if the system is not infinite.
Of interest to us, in both scenarios the dynamical critical time no longer diverges.
In the case of non-critical temperatures, the correlation length no longer diverges.
We have then ς ∝ Lz. In the case of finite system, the correlation length is finite
too hence preventing too ς to diverge. See for instance that for certain values of
the time scale τ is now possible to recover µ = 0. For a finite system this happens
when τ � Lz while for non-critical temperature we must have τ � ξz.

In terms of the distribution of domain sizes, see that in Eq. 4.3 we have now
the appearance of an exponential cut-off. Away from criticality, the probability of
finding an infinite domain reduces exponentially. Thus, there exists a character-
istic size S∗ above which it is exponentially rare to find domains. In the case of a
finite system, it is clear that the biggest domain must have size S ≤ N. For non-
critical temperatures, we will consider S∗ to be the biggest possible domain. We
consider then that below such values, the distribution of domain sizes still follow
∝ S−τ while the probability of S > S∗ is set to zero.

This effect translate to the disorder parameter too, for which the PDF of Eq. (4.6)
is now transformed to

P(κ) =

{
∝ κ−σ(µ) if κ < κ

0 if κ > κ,
(4.15)
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Note that this solution also holds for the case µ ≥ ζ − 1, where the probability
distribution Pnew(κ) could be normalizable without the introduction of an expo-
nential cut-off (see Section 4.2.1). Following Eq. (4.15), the integral in Eq. (4.8) can
be written as

ψ(t) =
∫ κ

1 Pκ(κ)ψκ(t)dκ (4.16)

= 1
τ

( t
τ

)−σ [Γ(σ, t
κτ )− Γ(σ, t

τ )
]

.

We can notice that since Γ[σ, 0] = Γ[σ], Eq. (4.16) converges to Eq. (4.8) for κ → ∞.
On the basis of the timescales involved, we can identify two temporal regimes:
(I) τ � t � κτ, and (II) t > κτ. In the first regime, the times are very large but
still smaller than the cut-off in κ. In this limit, Γ(σ, t

τ ) tends exponentially to zero
and we can neglect its contribution. Contrarily, we can consider that Γ[σ, t

κτ ] =
Γ[σ, 0] = Γ[σ] . Therefore, the eMSD will behave as in Eq. (4.9). In regime (II), that
is, when time is larger than all the timescales τ and κ, we expect that both Gamma
functions tend exponentially to zero, thus giving normal diffusion at long times.

In Fig. 4.4(a) we show the numerically calculated eMSD for different values of
S∗, when α = 0.05. For finite values of S∗, a subdiffusive plateau occurs at inter-
mediate times. As S∗ is increased, thus getting closer to the critical temperature,
one gets a larger subdiffusive plateau. In Fig. 4.4(b) we show the eMSD for the
infinite and different finite size Ising environments. The time, at which the eMSD
departs from the slope corresponding to the infinite size environment and tends
to slope equal to one, is shorter as the lattice size decreases.

4.4 Ergodicity breaking

We will investigate now the presence of weak ergodicity breaking (WEB) in the
model. For that, we will use the theory developed in Section 2.2.4. Recall for
instance that WEB could be quantified by means of the Ergodicity breaking pa-
rameter EB, defined as

EB = lim
t→∞

〈(δ2)2〉 − 〈δ2〉2

〈δ2〉2
. (4.17)

We showed how normal diffusion processes showed EB → ∞, while the value
increase with the presence of non-ergodicity. Moreover, for a CTRW with heavy-
tailed waiting-time PDF (as in Eq. (4.8)), we showed that the EB parameter fulfils

EB =
2Γ2[σ]

Γ[2σ− 1]
− 1. (4.18)
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FIGURE 4.6: (a) Ergodicity breaking parameter for different values of α in the infinite size
environment case. This parameter tends asymptotically to the value predicted by Eq. (4.18)
[we indicate the asymptotic value of the ergodicity breaking parameter, E , for each α with
horizontal lines]. (b) Ergodicity breaking parameter for α = 0.4 both for the infinite and
finite size environment cases. For all finite cases the curves tend to zero asymptotically for
the maximum measurement time taken here, t = 106. This means that the behaviour is
ergodic at long times for finite size if the measurement time is large enough. The time at

which it reaches the zero value is larger as the size of the environment is increased.

Therefore, we used our simulations to determine the tMSD for several particles
and thus verify the occurrence of ergodicity breaking in our model. In the fast
environment limit at criticality and infinite size system, as shown in Fig. 4.5 (a), we
found that the tMSD exhibits linear behaviour at short time lags. Moreover, tMSD
curves corresponding to different trajectories are largely scattered, as expected for
non-ergodic dynamics. This observation is quantitatively reflected in the value of
the EB parameter measured at long times [see Fig. 4.6(a)], which moreover tends
to the corresponding non-zero values given by Eq. (4.18) (dashed lines), thus in
full agreement with the theoretical prediction. The EB parameter gives also a good
tool to study deviations from criticality studied in the previous sections. We see
in fact that as the particle departs away from the subdiffusive behaviour due to
finite size and off-criticality effects, the ergodicity of the system increases. We
plot in Fig. 4.5(b)-(d) the tMSD for α = 0.4 and different maximum size, and we
compare it with the infinite size Ising environment Fig. 4.5(a). The plots show the
dispersion is decreased as the size of the lattice is reduced. Also, the E reached
asymptotically for all finite size cases is zero, while the time at which this value is
reached is longer as the environment is made larger [see Fig. 4.6(b)]. Thus, for all
finite size environments, no ergodicity breaking is predicted asymptotically.
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4.5 Conclusions

In this chapter, we have introduce a model in which a particle performs a contin-
uous time random walk in a regular lattice, at which vertex are spins. These are
governed by Ising dynamics, i.e. a Hamiltonian evolution given by Eq. (4.2). Close
to the critical temperature, domains of spins are created, their sizes distributed as
a power law. In his walk, the particle is affected by such domains, in such a way
that its diffusion coefficient is proportional to the domain size, up to a certain ex-
ponent. These heterogeneities make it such that the diffusion of the particle is
anomalous in some regimes.

More precisely, we have shown that in the case of a critical environment, i.e.
when the system is at critical temperature and its size is infinite, the exponent of
power law behaviour of the domain size distribution can be directly linked to the
scaling of the diffusion of the particle. We have studied the system in two extreme
scenarios: when the dynamics of the particles is much faster than the evolution of
the spin system, and the opposite case. This contributes heavily on the diffusion
of the particle, as the slower the evolution of the system, the more anomalous
the diffusion. This is true until a certain threshold, at which the waiting time
distribution of the particle is no longer normalizable without the introduction of
an exponential cut-off and its diffusion becomes normal.

We have also studied how the departure from criticality affects the diffusion.
Non critical system arise in two scenarios: either when the system is no longer
at critical temperature or when it size is finite. Both cases, while intrinsically dif-
ferent, have a similar effect on the system. Effectively, we saw that both could be
described by the introduction of an exponential cut-off in the domain size distri-
bution. This makes such that the particle shows transient subdiffusion only for a
short period, while in the long time limit it diffuses normally.

Finally, we have studied the emergence of weak ergodicity breaking in the
particle’s diffusion. We have seen that, analogous to the existing CTRW theory,
the particle has a non-zero ergodicity breaking parameter for any case in which
subdiffusion was emerging in the eMSD. In general, we have seen that even if the
initial walk of the particle was defined as a normal diffusion CTRW with exponen-
tial waiting times, the presence of disorder in the system can cause the appearance
of anomalous diffusion and ergodicity breaking.
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5 Anomalous diffusion
through porous compartments

In Chapter 4, we presented a model where a particle was diffusing through a en-
vironment made of domains and whose diffusion coefficient was related to the
size of each domain. However, the exact rationale for the latter was never ad-
dressed, as it was presented as a phenomenological phenomena appearing in a
variety of systems. In this chapter, we will present a model, very similar to the
previous, in which now the size of the domains directly affects the diffusion of a
particle, without the need of an ad hoc definition. We consider here a particle per-
forming an unbiased random walk through a network of compartments separated
by porous barriers. As the particle reaches one of these boundaries, it transmits
or reflects with complementary probabilities. While the diffusion of the particle
is normal inside the compartments, the presence of barriers with heterogeneous
transmittances makes it such that the long time diffusion of the particle is indeed
anomalous. We will show how the distribution of sizes of the compartments and
the distribution of their boundaries transmittances affect the diffusion of the par-
ticle.

Due to the complexity of the interaction between the particles and the bound-
aries, the study is usually impossible by means of analytical methods. We will in-
troduce in this chapter a novel coarse-grain approach which maps the behaviour
of the particle to a space-time coupled random walk, in which successive step
lengths are connected to the time taken to perform them.

5.1 Microscopical model for a compartmentalized en-
vironment

We consider here an environment made of N compartments with various sizes
{Li}N

i=1, with N � 1 and Li ∈ [1, ∞). In general, we will consider that these sizes
are drawn from a probability distribution function g(L). The compartments form
a meshwork with high connectivity, which means that each of them is connected
with a big number of the others. In such case, a particle moving through the
meshwork has a very small probability of revisiting a given compartment. Their
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boundary is considered as partially reflective: a particle reaching the boundary
has non-zero probability of traversing the boundary and exiting the compartment.
Similarly, there is a complementary probability that the particle gets reflected back
to the same compartment. The transmittance probability of each of the N com-
partment is an stochastic variable drawn from the set {Ti}N

i=1, Ti ∈ (0, 1]. The
reflectance is then defined as R = T − 1. Similar to the compartment size, we
consider the transmittances to be drawn from a probability distribution function
q(T).

In the proposed scheme, the compartments can take any form in any dimen-
sion as our coarse-grain method can be adapted to deal with such situations. Nev-
ertheless, to showcase the validity of the method and for the sake of simplicity,
we will consider that the compartments are one-dimensional. This does not mean
that the meshwork needs to be too a one dimensional body. One can imagine for
example the case of a tubular system where different quasi one dimensional tubes
are connected with arbitrary angles between each other.

Given this environment, we introduce now a particle which performs an unbi-
ased random walk inside the compartments. Due to the partially reflective nature
of the system, the particle is confined in a compartment until it is able to transmit
to one of the colliding ones. The time the particle takes to exit a compartment is
then a function of its size L and boundary transmittance T. An schematic repre-
sentation of the system is presented in Fig. 5.1.

5.2 Mesoscopic description of the system

The diffusion through a compartmentalized environment has been widely stud-
ied, as it is usual to find such biological environments such as the motion through
cell membranes[104, 105]. However, from a theoretical point of view, it has always
been difficult to analytically characterize these systems due to their complexity.
Examples of such approaches consider the motion of the particle to be the solution
of a Langevin equation with various boundary conditions (e.g. Dirichlet, Neu-
mann, ...). In general, one considers the presence of the boundaries as an obstacle
in the path of the particle and studies their microscopical interaction. However,
the stochastic behaviour in the compartment sizes and boundaries transmittances
increases the complexity of the system in such a way that valid analytical solutions
are very hardly attainable.

To face such difficulty, we propose a coarse-grain description of the system. In
our approach, the system of compartments is transformed to an irregular lattice in
which the vertex correspond to the boundaries of the compartments. While in pre-
vious descriptions, defined in the microscopic scale, the position of the particle was
tracked at regular times << L2/D with D being the diffusivity of the particle, in
the new mesoscopic approach the particle is tracked only when crossing the bound-
ary of the compartments. Note that by construction, the asymptotic behaviour of
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FIGURE 5.1: Schematic of the system. (a) Example of a one dimensional compartmen-
talized environment, with compartment size L and boundary transmittance T. Higher
boundaries represent lower transmittance. For simplicity we plot the meshwork as formed
by the segments of a line. (b) Motion of the particle in such environment. The dark line rep-
resents the microscale description of the motion and the green one indicates its mesoscale
description, in this case a Lévy walk with steps given by their length and flight time (L, t).

the particle is equal in both approaches. Hence, the mesoscopic approach consists
in a simplified solution of the system valid in the long time limit.

In terms of the motion of the particle, the initial random walk defined in Sec-
tion 5.1, taking place in a regular lattice, has now been transformed in a random
walk in an irregular lattice. Moreover, while the flight times, i.e. the time taken to
make a step, where considered regular in the initial formulation of the problem,
in the coarse-grain approach such times are related to the exit time of the a given
compartment. The walk is then completely defined by the set of step lengths Li
(i.e. the set of compartment size), and the set of exit times ti, a function of both the
size of compartments Li and boundary transmittance Ti.

The initial problem has then been transformed into a coupled space-time con-
tinuous random walk: a walk in which the flight times and step lengths are cou-
pled, just as the ones described in Section 2.3.1. In our case, the time of a step
is given by the conditional probability of the particle to stay a time t in a com-
partment of size L and transmittance T, φ(t|T, L). From here, we can write the
joint probability for the particle to be in a compartment of length L and boundary
transmittance T for a time t as

ψ(t, L, T) = φ(t|T, L)g(L)q(T). (5.1)
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While the previous probability describes entirely the behaviour of the particle
inside the compartments, an important consideration has to be taken into account
while defining the mesoscopic approach. When a particle enters a compartment,
it can exit it from one of the two boundaries: the one through which it entered
and the opposite one. Considering that the position of the particle is only tracked
at the crossing of the boundary, these two lead to a very different result in the
mesoscale. In the former, the particle is seen while entering and exiting the com-
partment in the exact same boundary and thus not having moved at all. In terms
of the couple space-time CTRW, we will consider this feature as the rest of the
particle. When exiting from the opposite boundary, the particle is seen as hav-
ing moved a step of length equal to the size of the compartment. To summarize,
when entering a compartment, the particle has a probability of resting ϕr(L, T)
and a complementary probability of performing a step ϕw(L, T).

With the previous, we have transformed the initially complex motion of the
particle through the meshwork of compartments into a much simpler system.
Merging all previous considerations, the walk now takes the form of a Lévy Walk
with rests [106, 107] in which the joint probability of Eq. (5.1) can be considered the
propagator of the walk, as L is now transformed into the step length x at certain
time t, given a boundary transmittance T.

5.3 Mesoscopic motion as a Lévy walk

As explained in Chapter 2, Lévy walks are one of the most studied diffusion
models, due to their success at describing many physical scenarios. Moreover,
their framework accommodates very different behaviour, from subdiffusion to
superdiffusion. As commented, the model presented in Section 5.1, transformed
with the method of Section 5.2 gives rise to a Lévy Walk with rests. Usually, such
walks were defined either with equal walking and resting probabilities or by con-
sidering that the walker alternates between rests and steps. In our case such prob-
abilities are indeed a function of the parameters of the system. In the general Lévy
Walk framework introduced in Ref. [108], one starts by considering two popula-
tions: the population of particles at rest and the population of particles flying (or
walking). The system is then governed by the probability density functions (PDF)
of finding a resting or flying particle at position x at time t. To define them, we
need first to consider the walk (ψw(t)) and rest (ψr(t)) times distribution, i.e. the
time it takes for a particle to make a step and the time it rests in a given position.
Their form is analogous

ψw(r)(t) =
∫ ∞

1
dL
∫ 1

0
ϕw(r)(L, t)ψ(t, L, T)dT. (5.2)

Note that, from its definition, ψr + ψw = 1.
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Another important feature in this framework is the flux of particles finishing
their rest and starting to move from point x at time t. In our case, we will add to
such flux the fact that the particle is in a compartment of transmittance T. The flux
can be then defined via the self consistent equation

ν(x, t)T =
∫ ∞

−∞

∫ t

0
ψr(τ)

∫ t−τ

0
ψ(τ′, y, T)ν(x− y, t− τ − τ′)Tdτ′dτdy (5.3)

+ ψr(t)P0(x). (5.4)

From the previous, we can define the PDFs of the resting and walking particles as

Pr(x, t)T =
∫ t

0
Ψr(τ)

∫ t−τ

0
ψ(τ′, y, T)ν(x− y, t− τ − τ′)dτ′dτdy + Ψr(t)P0(x)

(5.5)
and

Pw(x, t)T =
∫ t

0
Ψ(τ, y, T)ν(x− y, t− τ)dτ, (5.6)

where Ψr(t) =
∫ ∞

t ψr(t′)dt′ is defined as the survival probability, i.e. the proba-
bility of a particle not walking until time t and Ψ(x, t, T) =

∫ ∞
t ψ(x, t′, T)dt′ is the

PDF of the displacement of the walker during the last uncompleted step. Note
that the total PDF of the walk fulfils PΣ = Pr + Pfly. In our case, we have that

PΣ(x, t) =
∫ 1

0
PΣ,T(t, x, T)dT. (5.7)

By means of a Fourier-Laplace transform, we can calculate the total PDF of the
particle as

PΣ,T(k, s, T) =
Ψr(s)P0(k) + {ϕw(x, T)Ψ(x, s, T)}k ψr(s)P0(k)

1− {ϕr(x, T))ψ(x, s, T)}kψr(s)
, (5.8)

where we defined { f (x)}k as the Fourier transform of f (x). If one considers the
case of equal resting and walking probabilities, i.e. ϕw = ϕr = 1/2, the general
Lévy walk with rests of Ref. [108] is recovered.

5.3.1 The osmotic approach

In general, the calculation of PΣ,T(k, s, T) is subordinated to finding an expression
for ϕw(L, T). The later is a challenging task and will depend heavily on the shape
of the compartment [109]. Even in the simplified one dimensional example, find-
ing such expression is not easily attainable. Nevertheless, there exists concrete
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examples in which an analytical solution can be found. For instance, in the limit-
ing case in which the boundaries are completely transmitting, i.e. T = 1, one finds
that

ϕw(L, T = 1) = ϕw(L) = 1− L
L + 1

∼ L−1, (5.9)

which implies that, the longer the compartment, the lower the probability of exit-
ing it from the opposite side the particle has entered (and analogously, the lower
the probability of making a step in the mesoscopic model).

Aside from such extreme cases, the difficulty of finding ϕw(L, T) remains. A
usual approach to such problems is to consider an annealed system [110], i.e. to
assume that the particle enters each new compartment at its center. Effectively,
this erases completely the rests from the walk, as the particle will always travel a
distance Li/2 before exiting a compartment of size Li. Hence, we now have that
ϕw(L, T) = 1 ∀L, T and the walk is transformed into a Lévy walk with flying times
depending on the jump length [111].

Physically, the previous assumption is motivated by the presence of osmotic
boundaries. These have the property of only allowing the particles to cross the
boundary in one direction. We will refer to this specific example as the osmotic
approach while the general case will be referred as the non-osmotic approach. See
that in the former, the particles will always travel a distance Li before escaping the
i-th compartment. With this consideration and eliminating the effect of the rests,
Eq. (5.8) can be largely simplified to find

P(OA)
Σ =

Ψ(k, s)
1− ψ(k, s)

, (5.10)

The motion of the particle can then be characterized by means of the mean squared
displacement (MSD), which takes the form of

〈
x2(t)

〉
= −P′′(k, s)|k=0. Using the

framework introduced in Ref. [74], the MSD can be rewritten as〈
x2(s)

〉
=
∫ 1

0
dT
[
−ψ′′(k, s, T)|k=0

s[1− ψw(s)]
+
−Ψ′′(k, s, T)|k=0

1− ψw(s)

]
. (5.11)

Throughout the following sections we will use the previous equation to solve the
motion of the particle. While the osmotic approach may seem at first glance an
important change in the statistics of the particles with respect to the general case,
we will show that, in the long time limit, both present a similar behaviour in terms
of the MSD. Thus, if the opposite is not stated, the osmotic case will be the one
considered for the rest of the Chapter.
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5.4 Diffusion of a Brownian particle in compartmen-
talized environments

In this section we will use the method proposed in previous sections to charac-
terize the motion of the particle in various scenarios. We will differentiate three
cases: first, the boundary transmittances will be stochastically drawn from a cer-
tain PDF while the compartment lengths are equal; second, we will comment
on the paradigmatic case of constant and equal boundary transmittances with
stochastic compartment length; third, we will consider the most general case in
which both the transmittances and lengths are drawn from their respective PDFs.
By means of numerical simulations of the microscopic walk of the particle, we will
show that the mesoscopic approach presented is indeed the suitable approach to
solve the walk of the particle in such systems.

Common to all cases is the conditional probability, which relates the exit times
of a compartment of size L and the transmittance T. Note that in the osmotic ap-
proach, the particle has to travel a distance L to exit a compartment. Considering
that the particle is performing an unbiased random walk, it will take in average
L2 steps to exit such compartment. In terms of the transmittance, it is clear that
the smaller it is, the longer the particle will take to exit the cluster. Numerically,
we find that the average time taken to exit a compartment is 〈t〉 ∝ (L/T)2. More-
over, in the limit of large L and small T, we see that the distribution of exit times
follows an exponential, i.e. φ(t|T, L) ∝ exp−tL2/T2. However, in other regimes
we see a departure from such behaviour. Nevertheless, the quadratic relation of
the average time and L/T is always maintained. Therefore, we consider here the
simplest form for φ whose average is in accordance with such statement. Namely,
we consider

φ(t|T, L) ∼ δ(t− (L/T)2). (5.12)

While there has been numerous attempts to find an exact form of the previous
distribution (see for instance Refs. [112, 113]), such solutions are always very in-
volved and not suitable for the analytical study we are proceeding with in this
chapter. Nevertheless, we will show by means of various numerical simulations
that even the simple function Eq. (5.12) is able to capture the behaviour of the
system and leads to satisfactory results in the long time limit regime.

5.4.1 Constant transmittance and stochastic length

We will start by considering the case of a constant distribution of transmittances,
i.e. q(T) = δ(T − T̄), with T̄ ∈ (0, 1], while the compartment length are drawn
from the power law distribution

g(L) = βL−1−β. (5.13)
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From here one can calculate the flight times by performing the convolution of
Eq. (5.1) over the previous PDF to find

ψL(t) =
∫ ∞

1
φ(t|L, T̄)g(L)dL ∝ t−1−β/2. (5.14)

The joint distribution from Eq. (5.1) is in this case given by

ψ(t, T, L) ∼ δ(t− (L/T)2)δ(T − T̄)βL−1−β. (5.15)

Inserting the previous two results in Eq. (5.11) we find that
〈

x2(t)
〉
∼ t ∀ T, i.e.

the particle performs normal diffusion. This shows how the absence of disor-
der in the boundary transmittance, while being at distributed randomly over the
system, makes it such that the original Brownian diffusion of the particle is not
perturbed. It has to be noted that such results hold for all cases but T = 0, for
which it was demonstrated in Ref. [114] that anomalous diffusion occurs. While
one may expect that fully reflecting boundaries may lead to confinement and thus
an anomalous exponent equal to zero, it was indeed demonstrated that the ex-
ponent is closely connected to the distribution of compartment sizes. For T > 0,
it may be argued that there exist some pathological cases in which the particle
may be confined for an infinite time in a certain compartment, hence erasing the
anomalous diffusion behaviour. The previous statement can be compared to the
one made in CTRW, where the absence of infinite trapping times leads to normal
diffusion.

5.4.2 Stochastic transmittance and constant length

We consider now the opposite case, in which the compartments have constant
length, i.e. g(L) = δ(L − L̄), while the boundary transmittance have a power
distribution, given in this case by

q(T) = α

(
1
T

)1−α

. (5.16)

We will refer to this as the spatially ordered case. See that being the compartments
all of equal size, the steps in the mesoscale are too of equal length. This makes it
such that the walk is transformed into a CTRW, where the waiting times corre-
spond to the exit times. The distribution of waiting times is then just given by

ψ(t) = ψw(t) =
∫ 1

0
φ(t|L̄, T)q(T)dT ∝ t−1−α/2. (5.17)

As described extensively in previous chapters, once we have the waiting time
distribution of a CTRW, it is straightforward to calculate the MSD. For the case of
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FIGURE 5.2: (a) MSD of a particle moving in a system of compartments of equal length
and boundary transmittances distributed following (5.16), with α = 0.2. All curves are cal-
culated for the microscale and tend to the predicted subdiffusive motion given by (5.18).
A larger L leads to a larger time for the onset of subdiffusion to occur. The dashed bottom
line corresponds to the mesoscale and coincides with the theoretical prediction. (b) Value
of the exponent of the MSD in a system with stochastic compartment sizes and bound-
ary transmittance, given by (5.20). (c) Comparison between the predicted results of the

previous case and numerical simulations of the microscopic walk (dashed lines).

study, we find that 〈
x2(t)

〉(SO) t→∞−−→ tα/2. (5.18)

The particle will then show subdiffusion for 0 < α < 2. This means that the pres-
ence of disorder in the system, in this case brought up by the distribution of T,
Eq. (5.16), induces a change from the original Brownian behaviour of the particle
towards subdiffusion. This is consonant to what we have seen in previous chap-
ters: any interaction between the particle and the environment inducing a power
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law behaviour to the waiting times distribution of a CTRW will lead to anomalous
diffusion. In order to prove such statement, which has obviously being done by
means of the mesoscopic method and in the osmotic approach, we simulate the
microscopic behaviour of the particle for various sizes L̄ and α = 0.4. We show
the results in Figure 5.2(a). As seen, the long time behaviour is independent of
the length of the compartments. However, the bigger they are, the longer it takes
for the particle to attain the expected value. This effect happens because in big-
ger compartments, the particle takes longer to reach the boundary and thus to
effectively sample the distribution q(T).

5.4.3 Stochastic transmittance and length

Lastly, we consider the case in which both the boundary transmittances and the
compartments length are stochastic, given by g(L) and q(T) and defined in Eqs. (5.13)
and (5.16), respectively. The walk is in this case truly a Lévy Walk, as now the step
lengths in the mesoscale, analogous to the compartments length, vary following
g(L). Opposed to the previous case, we refer to this as the spatially ordered case.
In a similar fashion, we can then calculate the flight times by performing the con-
volution of the walk’s propagator ψ(t, L, T) with Eqs. (5.13) and (5.16) as

ψw(t) =
∫ 1

0
dT
∫ ∞

1
dLφ(t|L, T)g(L)q(T) =∝ t−1−γ, with γ =

{
α if β > α,
β if β < α.

(5.19)

Using these results and the Laplace transform of Eq. (5.1), we can calculate the
MSD by means of Eq. (5.11). Performing the inverse Laplace transform we find
that 〈

x2(t)
〉(SD) t→∞−−→ t

1
2 (2−β+γ). (5.20)

As in previous cases, we see that there exists a regime in which the disorder,
now present both spatially and in the boundary transmittances, makes the particle
to switch from normal to anomalous diffusion. We show for instance in Fig. 5.2(b)
the value of the anomalous exponent for the range of α and β allowed (i.e. the
for which Eqs. (5.13) and (5.16) are normalizable). We see there two very distinct
regimes. When α > β, the motion of the particle is still normal. This means that
the presence of spatial disorder is able to compensate the disorder introduced by
the boundaries, in such a way that for values where the spatially ordered case
was subdiffusive, it is now normal diffusing. For values of α < β, the anomalous
exponent behaves linearly with respect to each variable, until reaching the lim-
iting value σ = 1. To check whether the successive approximations done in the
mesoscopic scale are valid for the description of the microscopic walk, we fit the
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exponent of multiple simulations of such walk. We plot the results as dashed line
in Fig. 5.2(c), while the bold lines represent the values predicted by Eq.(5.20).

5.5 Conclusions

In this chapter, we have introduced a coarse-graining method that we use to study
diffusion through complex environments. This method is useful to study systems
in which the microscopic behaviour of the particles is too involved to be described
analytically. To obtain a description of the motion in such cases, we propose a pro-
cedure that allows one to transform the microscopic walk into well-known theo-
retical models, such as Lévy Walks or continuous time random walks. The coarse-
grained transformation maps the original walk performed at the microscale into
a simplified movement at a larger scale (which we term mesoscale) that captures
the relevant properties of the environment. This allows for a complete analyti-
cal characterization of the diffusion in terms of its observables, such as the mean
square displacement.

To illustrate the use of the proposed method, we consider the diffusion in an
environment consisting of compartments with random sizes and/or transmit-
tances. To resolve the diffusion of the system at the microscale, one needs to
consider the complex interaction of the particle with the boundary of each com-
partment. For some simple systems, e.g. when all the compartments have the
same size, it is possible to get an analytical solution of the microscale motion. In
these cases, we show that a heavy-tailed distribution of boundary transmittances
is a necessary requirement to induce subdiffusion. However, for more intricate
spatially-disordered environments, it is often difficult to obtain an analytical so-
lution at the microscale. This is the scenario where our method allows to get
insights on the motion while neglecting microscopic details. As an example, we
demonstrate that when the compartments length is a stochastic variable, geomet-
ric disorder alone cannot generate subdiffusion. However, it can affect the one
generated by the heterogeneity in the boundary transmittance. Namely, increas-
ing the geometric disorder reduces the degree of subdiffusion, as it increases the
value of the anomalous exponent towards one. We thus fully characterize the
mean-square displacement exponent as a function of the parameters controlling
the heavy-tailed distributions of both the lengths and barrier heights.

The model presented in this article might be a useful framework to interpret
diffusion in a variety of systems composed of compartments of varying size and
barriers. A striking example of such kind of system is provided by eukaryotic
cells, highly compartmentalized at different spatial scales to provide optimal con-
ditions to perform specific functions [115]. The presence of compartments has
been shown to affect the diffusion of transmembrane proteins in the plasma mem-
brane, e.g. as a consequence of a self-similar actin network acting as semiperme-
able barrier [104].
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An interesting outlook of our model consists in the possibility of its further
generalization, as to include previously proposed models for diffusion in com-
plex environment. For example, our approach shares important features with the
previously proposed comb model [116]. In fact, the comb model can be considered
as a continuous-time random walk with stochastic waiting time, the latter derived
from first-passage time. This system can be analysed through our coarse-grained
approach upon conversion of the waiting time distribution into a stochastic trans-
mittance. The realization of the comb model including convective terms [117],
could be further implemented in our approach, e.g. through the use of asymmet-
ric transmittance.
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6 Phase separation in diffusing
interacting systems

The phenomena of phase separation has recently emerged as a key factor in bi-
ological transport. Physically, such phenomena consist on the separation in two
clearly distinguished phases from a previously homogeneous mixture. One com-
mon example is the one formed by two immiscible liquids as water and oil. Many
recent observations have shown how phase separation occurs at different levels
in biological environments such as the cell membrane, creating membrane-less
compartments which favour distinct biological functions [118, 119]. In terms of
its theoretical understanding, phase separation is in a very similar state as anoma-
lous diffusion: even if the macroscopic behaviour is well understood, it still lacks
of precise microscopical models, which will explain the actual interactions leading
to such phenomena.

In its most general form, phase separation has been widely studied in terms of
the heterogeneous mixing of two components. Two principal principles have been
shown to lead to it: spimodal decomposition [120] and nucleation [121]. These two
methods usually rely on macroscopic features of the system such as the entropy.
In this direction, one of the most used models in describing phase separation in
biological environments has been the Flory-Huggins model, originally proposed
to the study of the thermodynamics of polymer systems [122]. Nevertheless, as
with anomalous diffusion, it is usually hard to connect macroscopic features such
as entropy to the actual microscopical interactions of the systems. While there
exists works in such direction, they usually rely on very specific descriptions of the
models, heavy numerical simulations or experimentally inaccessible properties.

In this chapter, we will present a minimal microscopical model in which phase
separation emerges above a certain critical point. We consider here particles which
stochastically bind to each other, forming condensates. Moreover, the diffusion
of the particles is heavily affected by them being in condensates. We will show
how this simple model shows a transition from a phase in which, even in the
presence of binding, the particles move freely throughout the space to a phase in
which particles form condensates and hence phase separate. While in previous
chapters the focus has been mainly put in the motion of the particles, here we will
first study the dynamics of the condensates, i.e. how they are formed and how
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FIGURE 6.1: Scheme of the model In the left, we show the system below the critical point,
where even in the presence of binding events (happening with probability Pc) most of
the particles move freely. On the right, we show the system above the critical point, for
which the system phase separate. Even in the presence of unbinding events, condensates
are form. While particles show small diffusion inside the condensates, these also move as

individual bodies (big, light arrows).

their size evolves. We will characterize with it the phase transition, showing how
the critical point can analytically be calculated. Later, we will investigate on the
diffusion of the particles and showing how the diffusion coefficient can be used
as a tool to study phase separated systems.

6.1 Microscopical model of interacting particles

We consider a system of N particles moving in a bounded space of size L. The
model is indeed general for any dimension. Nevertheless, in one dimensional
systems, one needs to consider that particles can ’jump’ (i.e. a quasi-1D system)
or traverse each other, such that they can be found at any point in space. In the
opposite case, the solution of the model can be defined as the persistent exclu-
sion process (PEP)[123], commonly used in run-and-tumble dynamics and also
showing phase separation in some schemes [124]. For simplicity, the following
dissertation will be conceptually focused in a two dimensional system.

We consider that each particle has a radius of action r. If the distance between
two particles is smaller than 2r, they bind with probability Pc. Due to this binding,
they will start forming condensates whose size M is defined as the number of
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particles in the condensate. Then, given a condensate of size M, the probability of
n particles to escape from it, i.e. the probability of them to unbound is given by

Pesc(n, M) = (1− P′c)
nP′c

M−1−n
(

M− 1
n

)
, (6.1)

i.e. the probability that the n-th particle escapes times the probability of all the
other particles to stay. Note here that the minimal size of any condensate is 1, thus
the maximal number of particles allowed to escape is M− 1. We have defined here
P′c as the probability of a particle to stay in a formed condensate, while (1− P′c)
is the probability of escaping from it. The fact that Pc 6= P′c considers that in
a biological context, breaking a binding may be harder than creating it, which
means that particles already forming a condensate have a higher probability of
staying in them. In general, we will consider that P′c = ηPc, with 1 < η < 1/Pc.

Similarly, we can calculate the probability Pabs(n, M) of a condensate of size M
absorbing n new particles. First, the particle has to be in the radius of action of the
condensate Sc ≈ rM. To account for this, we need to consider the probability Ps
of a particle being in such radius. Considering that the particle follows a diffusion
model which explores space equiprobably in the long time limit (e.g. Brownian
motion, FBM, ATTM) and also that L� r so that the boundaries do not affect the
later, we have that Ps ≈ Sc/L. At last, Pabs(n, M) can be written as

Pabs(n, M)L,r = Pn
S (1− PS)

N−M−n
(

N −M
n

)
Pn

c +

Pn+1
s (1− PS)

N−M−(n+1)
(

N −M
n + 1

)
Pn

c (1− Pc)

(
n + 1

n

)
+ ... =

(6.2)

=
N−M−n

∑
k=0

Pn+k
s (1− PS)

N−M−(n+k)
(

N −M
n + k

)
Pn

c (1− Pc)
k
(

n + k
n

)
.

(6.3)

In words, the previous equation considers the cases when n particles are in the
vicinity of the condensate and n are absorbed, n + 1 are in the vicinity but only n
are absorbed, ...etc. Note here that if we consider an infinite space, i.e. L = ∞, the
probability of condensates of any size to absorb new particles is zero, while the
probability of particles escaping is non-zero. This implies that, in infinite systems,
there will not be condensates in the long time limit. This means that only bounded
systems will show the appearance of condensates. The latter has a closer connec-
tion with the biological systems of study, as the particles are usually diffusing
through compartmentalized environments.
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6.1.1 Average behaviour of the system

Once defined Pesc and Pabs, we can now calculate the average number of escaped
and absorbed particles for a given condensate size M. For the former, we have
that

〈nesc(M)〉 =
M

∑
n=1

nPesc(n) = (M− 1)(1− Pc). (6.4)

For the latter, due to the complexity of Eq. (6.3), we are not able to write a compact
analytical expression. Nevertheless, its calculation can still be done in an exact
form by means of

〈nabs(M)L,r〉 =
M

∑
n=1

nPabs(n, M)L,r. (6.5)

The behaviour of 〈nesc〉 and 〈nabs〉 for a system of N = 50 particles moving in a
box of size L = 5 is shown in Fig. 6.2, for different values of the binding probability
Pc and considering η = 1. See that nesc(M) is a linear function of M whose slope
is given by (1− Pc), as shown in Fig. 6.2 (c). For nabs(M), we get a more complex
behaviour. In Fig. 6.2 (a), we show such function for a radius of action r = 0.1. We
see that the mean number of particles absorbed increases non-linearly with the
size of the condensate. However, when the condensate size reaches M = N/2,
this number starts to decrease. This is because, as more particles are added to the
condensate, less are free to be absorbed, until we reach the maximum size of the
condensate M = N, in which nabs(M) = 0.

An interesting case arises when we increase the size of the radius of action,
until reaching the point M > L/r for which Sc > L . In such case, the probability
of any free particle to be in the radius of action of the cluster is set to PS = 1. This
transforms Pabs(n, M) into

Pabs(n, M)PS=1 = Pn
c (1− Pc)

N−M−n
(

N −M
n

)
. (6.6)

Then, we can recalculate the mean number of absorbed particles, which in this
case can be solved analytically to find:〈

nabs(M)PS=1
〉
= (N −M)Pc. (6.7)

In Fig. 6.2 (b) we show an example with r = 0.3. In such case, for a cluster of
size M = 16 we will have that Sc = 5.1 > L. It can be seen from that point that
〈nabs(M)〉matches exactly the linear dependence given by Eq. (6.7).
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FIGURE 6.2: Averaged behaviour of the model: a, b) Mean number of particles absorbed
by a condensate of size M, for system size of L = 1, with N = 10 particles, and a radius
of action r = 0.1, 0.3 respectively. c) Mean number of particles escaping of a condensate of

size M.

6.2 Transition to phase separation

With the previous definition of the condensate dynamics, we can now study what
is the mean number of particles in a condensate for the different free parameters
of the system. Indeed, each condensate has a flux of particles, which we define as

∆n(M) = 〈nabs(M)〉 − 〈nesc(M)L,r〉. (6.8)

If the flux is positive, the condensate grows its size, as there are in average more
particles getting absorbed than escaping. In the case of a negative flux, the oppo-
site occurs. In Fig. 6.3 (a) and (b) we show ∆n(M) for two values of the radius
of action, r = 0.1, 0.3, in a system of size N = 50 and L = 5. Note again that
due to the complexity of Eq. (6.3), we cannot find a compact analytical solution
for ∆n. Nevertheless, in the case in which PS = 1, nabs(M) was a linear function
that could be analytically solved. This linear behaviour expectedly also appears
in ∆n(M). Indeed, we can use Eqs.(6.4) and (6.7) to obtain

∆n(M)PS=1 = nesc(M = 1)− nabs(M = 1) = Pc(N − 1)−M + 1. (6.9)

See then that in Fig. 6.3 (b) ∆n(M) behaves linearly for M ≥ 17. We plot there
a dotted line whose slope is −M, showing the accordance between Eq. (6.8) and
Eq. (6.9).

There exists a particular value M, for which the flux is zero, ∆n(M) = 0. This
means that at M the number of particles escaping and getting absorbed are equal,
i.e. the size of the condensate stabilizes. Effectively, this implies that the conden-
sates will grow or diminish until reaching such value. Then, M gives also the
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between absorbed and escaped particles as a function of the cluster size M for system size
of L = 1, with N = 10 particles, and a radius of action r = 0.1, 0.3 respectively. Dotted
line in b) show the expected behaviour in the linear regime. c) Stabilized cluster size M̄
as a function of the clustering probability Pc for the same system and various values of
the radius of action r. The dotted line shows again the expected behaviour in the linear

regime, which fits exactly with the solution for the system with r = 0.3 for M > L/r.

average size of the condensates present in the system. See in Fig. 6.3 (a) and (b)
that ∆n crosses only one time the line equal to zero. By studying such crossing,
we can calculate what is the average (or stabilized) size of the condensates. We
show this result in Fig. 6.4 (a), for a system of N = 50 particles, L = 5 and various
radius sizes.

We see there two different phases: for low Pc, the average size of the conden-
sates is one, which means that most of the particles are moving freely. At a given
critical Pc, the condensates start growing until we reach Pc = 1, for which the
system completely collapses in a single condensate.

The fact that the average size is given by the crossing of ∆n at zero makes it
very simple to calculate where the phase transition will occur. We are considering
here that the transition occurs where the condensates have in average at least two
particles. Then, the critical Pc can be calculated by studying at which Pc the flux
at M = 2, i.e. ∆n(M = 2) crosses zero. We show this in Fig. 6.2 (c). We see that for
low Pc, such flux is negative, so the condensate of size 2 tends to loose particles.
Then, for bigger Pc, it becomes positive, meaning the possibility of creating bigger
condensates. The point at which it crosses zero marks the transition point.

While ∆n has not a compact form for all M, it still has quite a simple expression
for low M. It is the case for M = 2, for which we have

∆n(M = 2) = Pc
2r(N − 2) + ηL

L
− 1. (6.10)
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From here, solving the previous equation for ∆n(M = 2) = 0, we find that the
critical P∗c is

P∗c =
L

2r(N − 2) + Lη
. (6.11)

We plot such value as vertical lines in Fig. 6.4 (a). We see that while it correctly
describes the phase transition, this change is heavily affected by finite size effects,
i.e. the system is too small to capture sharply the transition. However, for much
bigger systems, as shown in Fig. 6.4 (b), the behaviour is much better reproduced.
Moreover, for such big systems, one can approximate Eq. (6.11) by

P∗c ≈
1

2rD + η
, (6.12)

where we have defined D = N/L as the density of the system. Note now that
the critical point depends solely on the density and radius of action. We show in
Fig. 6.4 (c) the behaviour of P∗c for a range of r and D. See that, for systems with
small r, the transition occurs at bigger values of Pc, as the particles have a harder
time for finding each other. A similar argument can be given for small D, where
the system is so dilute that the particles can not find each other and condensate.
As we increase any of the two variables, the critical point lowers, until we reach
regimes in which the system condensates at any Pc.



78 Chapter 6. Phase separation in diffusing interacting systems

6.3 Distribution of condensate sizes

In previous sections we have studied analytically the average behaviour of the
system. We are now interested in studying the probabilistic behaviour of it. This
helps us to get a better understanding of the condensate behaviour, but also allows
us to get features which may be easier to access in an experimental scenario. We
will focus our study in the probability distribution function (PDF) of condensate
size P(M).

In order to calculate it, we need to consider a recurrent system of equations.
To understand its construction, let us consider a small system of three particles.
Then, let us define En,M = Pesc(n, M) and An,M = Pabs(n, M). The probability of
finding a condensate of size M = 1 is then given by

P(1) = P(1)A0,1 + P(2)E1,2 A0,2 + P(3)E2,3 A0,1. (6.13)

Similar equations are then constructed for P(2) and P(3). The latter equation
considers then all possible ways of creating condensates of size M from all the rest
of sizes. Note here that Em,m = 0 and that we always consider, both in simulations
and in the theory, that escaping events take place before the absorbing ones.

In general, P(M) is found to be

P(M) =
N

∑
k=1

P(k)
k−1

∑
i=0

Pesc(i)Pabs(M− k− i). (6.14)

The previous defines a set of N equations with N variables P(M), for M = 1, ..., N.
In order to solve such system, we consider the usual approach in stochastic matrix
theory. An stochastic matrix (also called probability matrix) is a square matrix
with non-negative real elements, each of them representing a probability. They
are often used to describe the evolution of a Markov chain. See for instance that
the set of equations generated by Eq. (6.14) can be written in matrix form as

x11 x12 . . . x1N
x21 x22 . . . x2N

...
. . . . . .

...
xN1 xN2 . . . xNN




P(1)
P(2)

...
P(N)

 =


P(1)
P(2)

...
P(N)

 , (6.15)

where xij are given by Eq. (6.14). Now the matrix X, leftmost matrix in the previ-
ous equation, is an stochastic matrix. More precisely, it is a left stochastic matrix,
as each column is equal to one, i.e.

N

∑
i=1

xij = 1 ∀ j. (6.16)
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FIGURE 6.5: Condensate size distribution: a) Distribution of cluster sizes P(M) for system
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free/clustered particles for the previous system. Dashed vertical line corresponds to the
phase transition between the clustered/non-clustered phases. This results are retrieved
from 105 simulations of 100 time steps, sufficient long time for the system to reach its

equilibrium.

We can then use the stochastic matrix theory to solve the system of equations.
For that, we give an initial ansatz for the vector of probabilities ~P. Then, we mul-
tiply this vector by the matrix X. The fact that X is a left stochastic matrix makes
it such that the sum of the terms of ~P will always be equal to one. We perform this
procedure until convergence.

In Fig. 6.5 (a) we show this PDF for various Pc, for a system with N = 1000,
L = 15 × 160 nm and r = π15 nm2 (the same as in Fig. 6.4 (b)). We see two
very distinct regimes: for Pc < P∗c , P(M) is a Gaussian distribution with mean
zero and variance increasing as we increase Pc. Then, for Pc > P∗c we find a
similar Gaussian shape, with a longer left tail, but whose mean starts to increase
as we increase Pc. Indeed, one can calculate now the mean of P(M). As shown in
Fig. 6.5 (b) normalized by the total number of particles in the system, its behaviour
is exactly the same as the averaged value we calculated in Eq. 6.4 (b). Moreover,
we can now calculate the probability of finding free particles in the system, i.e.
P(1), as shown in Fig. 6.5 (b). We see how it follows the opposed behaviour to
the mean condensate size: before the phase transition, we find free particles in the
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system, with its probability lowering as we approach the critical point. Over it, all
particles condensate and then P(1)→ 0.

Size dependent binding probability While the previous explains the dynamics
of the very simple model proposed, it misses some important features observed in
biological phase separated systems. For instance, it is known that this system reg-
ulate their compounds in such a way that they do not condensate above a certain
size [125]. However, it is very easy to accommodate such behaviour in the model,
by considering that Pc is no longer constant for every particle, but depends on the
size of the condensate.

We consider here the case in which Pc(M) increases linearly with the size of the
condensate, until this reaches a given maximal size. From there, Pc(M) decreases
exponentially, preventing the formation of any bigger cluster. In Fig. 6.5 (c) we
show the PDF P(M) of such system. In the inset we showcase the form of Pc(M).
See that this new feature changes completely the distribution of condensate sizes,
which present now power law tails until reaching the maximal value at which
Pc(M) decreases exponentially.

Similarly, the average size of condensates is also changed. However, while
its behaviour changes in terms of absolute numbers, we still find that the phase
transition takes place at the same point. In Fig. 6.5 (d) we see how the normalized
average size, M/N, now does not reach such big values compared to the case
with constant Pc. This effect is obviously related to the exponential cut-off on the
binding probability. In terms of the probability of free particles, we see now that
such value never reaches zero. This means that even above the phase transition,
there is a small probability of finding particles away from condensates. This has
indeed a better connection to very recent experimental observations [58].

6.4 Diffusion in condensed systems

In previous sections we exposed how the growth of condensates work. However,
we have not addressed how particle moves in the system. Our only consideration
has been that the particles have to diffuse in such a way that the explore all the
space with equal probability. This is true for all the models considered previously
in this Thesis. For the sake of simplicity, we will consider now that particles move
as Brownian particles. However, the results are equally valid for any diffusion
model, as far as the previous consideration is fulfilled.

We are interested in understanding if variations on the diffusion due to the
condensation may affect the previous discussion. In particular, we are interested
in the case in which the particles in condensate may move very differently than
when they are free. We will consider for instance the case in which free parti-
cles move with a diffusion coefficient D f much larger than the one of condensed
particles Dc.
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FIGURE 6.6: Dynamic behaviour of a phase separated system: Distribution of instan-
taneous diffusion coefficient for a system with L = 1, N = 1 and r = 1. This results
are retrieved from 105 simulations of 100 time steps, sufficient long time for the system
to reach its equilibrium. The number of particles per population correspond to the ones

presented in Fig .6.5 (a) and (b).

As one may expect, the diffusion of a particle inside a condensate is heavily
affected by the presence of many neighbouring particles. Moreover, one can con-
sider the condensate as a compartment, as the ones presented in Chapter 5. As
we show there, not only the diffusion coefficient, but the anomalous exponent
can also be heavily affected. Such compartmentalization may occur even without
the need of physical barriers, as it is the case in liquid-liquid phase separation
schemes. In its most general form, the higher particle density of the condensates
makes it such the the motion of the particle in it changes.

To test such behaviour, we simulate a system of Brownian particles with the
previously presented features, moving in a one dimensional system. To give a
closer description to any biological system, we also consider that only particles in
the boundary of the condensate can escape from it. Similarly, new particles will
adhere to the boundary of the formed condensates. While this was not taken into
account in the theory, we will use it as a stress test to prove the generality of the
model. While one may expect small quantitative variations, the final qualitative
behaviour should be the same.

In Fig. 6.6 we calculate the instantaneous diffusion coefficient of the particles
in the system, usual measure in experimental scenarios. As expected, we see a
bimodal distribution, whose peaks correspond to D f and Dc. We also see the
appearance of heterogeneity in the coefficient distribution due to the stochastic
nature of the system, and the fact that we are sampling for a finite time. The peaks
of each distribution are related to the fraction of free (P(M = 1)) and condensed
particles (P(M > 1)) and is in accordance to what was shown in the lower panels
of Fig. 6.5.
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6.5 Conclusions

In this chapter we have introduced a microscopical model able to reproduce some
of the features of phase separated systems. Phase separation occurs when a pre-
viously homogeneous system separate in two distinct phases. In our case, the
system is composed of particles, which interact with each other by means of a
binding process. Each time two particles get closer than a give distance, they have
a certain probability of binding Pc. Such probability is tunable and aims at rep-
resenting biological process such as the binding of transcription factors to DNA.
Importantly, the understanding of such processes and their effect of the dynamics
of the system may shed light in the regulation of gene expression.

We have demonstrated that the system undergoes a phase transition from a
free phase, in which particles move alone through the system, to a phase sepa-
rated scenario, in which particles form condensates. Surprisingly, even for non
zero binding probabilities, the particles form instantaneous condensates, which
fade almost immediately. Only when the biding probability overcomes the criti-
cal point, i.e. Pc > P∗c , condensates start to arise steadily. We have shown how the
average condensate size grows from one, i.e. a single particle, for Pc < P∗c to an in-
creasing value for Pc > P∗c . We have shown that the critical Pc value can be exactly
calculating by means of the average flux of particle of a condensate. Only when
such flux is zero, the condensate reach its steady size. Then, the critical point is
given by the value of Pc at which such event happens for sizes equal to two.

While the minimal model presented allows for a complete analytical study
of system, some of its components show very complex and convoluted expres-
sion. However, we have seen that there exists a regime in which most of them
linearised, allowing for a much simpler understanding of the phenomena. This
happens when the distance at which two particles are considered to interact in-
creases beyond the size of the system. We showed two ways of reaching such
feature: either by considering long range correlations between particles or by con-
sidering enormous particles. While such case may not be well connected by any
physical scenario, it’s interest relies on the simplicity of the resulting equations.

Another interesting feature of the model is the distribution of condensate sizes.
We have shown how this can be calculate by means of stochastic matrix theory. In-
terestingly, we see two very distinct behaviour, depending on the phase of the sys-
tem. In the free phase, the distribution shows an Gaussian behaviour with mean
zero (just as predicted by the averaged behaviour) and with variance increasing
as we increase Pc. Above the critical point, the mean of the distribution increases
until reaching a delta distribution at M = N for Pc = 1. This study allows for the
calculation of probability of finding a free particle in the system P(1). This allows
for a direct comparison to experimental observations such as the ones done by
means of cartography maps.

On the other hand, we have studied how introducing heterogeneous dynam-
ics may affect the previous results. In a biological context, condensed particles
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are known to diffuse much slower, mostly due to the extreme crowding of those
regions. Moreover, in terms of phase separation systems, condensates are usually
formed around regions with particular biological functions, which by themselves
may cause the slowing of the particles [58]. Taking this into account, we consid-
ered a system in which the particles in condensates have a much smaller diffusion
coefficient than those moving freely. In order to asses the validity of the model,
we proceeded with Brownian simulations of the systems, accounting for both the
binding probability and the diffusion variances. We have seen how the conden-
sate dynamics are not affected once the system reaches it steady state. In terms of
the diffusion coefficients, we show that they have a bimodal distribution, peaked
around the two mean values, one for the free particles and one for the ones in
condensates. By tuning the binding probability, we see how the two peaks vary
their size just in analogy to the distribution of free and condensed particles.

Finally, we have shown how the model may be adapted to account for different
phenomena may arises in biological systems. For instance, it has been observed
in in vivo system that the condensates formed in phase separated systems may
only reach a maximal size [126]. To account for this, and also for other effect such
Ostwald ripening [127], we have considered that Pc increases for bigger conden-
sates, enhancing even more their growth. However, after reaching a certain size,
Pc drops exponentially to zero, accounting for the dissolution of the condensates.
We have explored how this may affect the distribution of condensate sizes, show-
ing that below the phase transition, the effect is barely noticeable. Above the phase
transition, the distribution is transformed to a power law, with a cut-off, close to
the exponential cut-off of Pc.

In general, we have presented a model in which phase separation occurs with
only minimal considerations, hence paving the way for more complex models,
accounting for the particularities of the physical systems explored.
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7 Single trajectory
characterization via Machine
Learning

“This chapter is dedicated to the memory of Peter Witter, who show me that machine
learning and physics were not so far apart.”

In this chapter we will explore how Machine Learning (ML) techniques may
be used to characterize diffusion processes. Their input will be the trajectory aris-
ing from diffusion models and experiments (e.g. the ones showed in Fig. 2.1 or
schematically represented in Figs. 3.1, 4.1, 5.1 and 6.1). We will show how a pre-
cise ML architecture, the Random Forest, may be used to asses two problems: the
determination of the anomalous exponent and the determination of the theoretical
model that better describes the trajectory.

Due to the novelty of the ML, we will first introduce the topic, covering very
briefly its main features. Then, we will explore its suitability in diffusion char-
acterization, comparing it to previously known methods. Finally, we will bench-
mark the method with simulated data to finally show its power by characterizing
experimental datasets without any prior knowledge of their source system.

7.1 Machine learning as a scientific analysis tool

In this section, we will briefly review the main features of ML. In general, the
primary goal is to create an architecture such that, after a successful training, it
is able to succeed at the task it was trained for. These architectures are normally
made of a huge quantity of free parameters, which are tuned in order to minimize
a given loss function. The later is defined in such a way that solving the task is
analogous to the minimization of the loss function.

All ML tasks can be differentiated in three families: supervised learning, un-
supervised learning and semi-supervised learning. In this chapter, we will fo-
cus mostly on the first one, but will also briefly comment on the second. Semi-
supervised learning mainly contains reinforcement learning [128], an algorithm
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in which an agent is trained to perform a task in a certain environment by means
of trial and error. Each time the agent succeeds, it is given a reward. The final goal
of the agent is to get as many rewards as possible. This approach has seen a huge
interest after its superhuman performances in games like go or chess [129]. While
playing games may seem a unprofitable task, the algorithms presented set the ba-
sis for the use of RL in much more complex scenarios. For instance in Physics, RL
has been, among others, for the generation of new quantum experiments [130], its
optimal control [131], the study of the navigation of microswimmers in fluids [132]
or the optimal search of ground states in Hamiltonian systems [133].

The rise of ML is mostly due to two feats: first, the increase of computational
power and the improvement of the graphical processing units (GPU). While the
theory of ML start to be developed in during the 80s and 90s, with studies from
John Hopfield [134], Geoffrey Hinton [135] or Elizabeth Gardner [136], it is not
until twenty years latter that those techniques could be implemented in real life
scenarios. Second, the possibility of accessing huge amounts of data. In order to
train ML architectures, it is necessary to feed the machine with as many samples of
data as possible. Only since some years ago, with the start of the communication
age, humans are able to extract and collect huge amounts of data, to which latter
apply ML algorithms. Nevertheless, in science, such paradigm has always been
present. Hence, the suitability of using ML to study complex system from which
enormous amount of data arise. A large variety fields have successfully used
ML techniques, such as physics [137], biology [138] or chemistry [139]. Plenty of
reviews of more particular applications are available, and we have reached a point
in which any field is taking advantage of such powerful techniques.

In the rest of this chapter we will introduce both supervised and unsupervised
learning and show how they can be applied to the characterization of diffusion
processes, as the ones we have presented throughout this Thesis. These tech-
niques offer a very powerful tool to connect the large amount of theory developed
in the last years to the experimental observations. This connection is usually dif-
ficult, due to the stochastic nature of the physical systems of study. Moreover, in
a biological scenario, we are usually facing very noisy data, with samples which
contain much less information that the one needed to perform an accurate char-
acterization. The goal of the chapter is to show that ML can successfully perform
such link.

7.1.1 Supervised learning

We will start our journey into ML algorithms by introducing the concept of su-
pervised learning. In any ML, we will have access to a dataset. No matter what
this dataset contains, we consider that is possible to transform each sample of
data in a vector (or tensor) X of arbitrary dimension. The dataset is then the set
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~X = {Xi}i∈T , where T refers to the number of samples in the dataset. As an ex-
ample, on can consider that the dataset is a collection of images, of N × N pixels,
which in the case of RGB images defines a tensor of dimension 3× N × N.

Once given the dataset, we have to define the task that we would like to
achieve for the machine to proceed with. Let us continue with the example of the
images, and consider that each of them shows a hand-written digit. This dataset
is the renown MNIST dataset [140] and is shown in Fig. 7.1. Let us define here the
task as the classification of each image by the number shown. To further simplify,
let us consider only the images showing zeros or ones. This means that we have
2 different classes. In supervised learning, the machine has access not only to the
images, but also to the result of the task for every sample of the dataset. This
means that for each image, it is also given a label referring to its class.

The loss function is then defined by comparing the predicted class of the ma-
chine for every image, Ypred to the ground-truth value, Ytrue. Various loss func-
tions can be defined for such classifications problems. The most simple one is just
to consider the accuracy, defined here as the number of correct predictions over
the number of total predictions.

Note that until now, we have not entered into any discussion about the nature
of the machine. We have only considered that such entity has a number of free
parameters θ that we can tune at will in order to minimize the cost function. The
most used architecture are the neural networks, a set of neurons distributed in
layers and connected by weights. Its input are the samples of the dataset and
its output is, in the current classification scheme, the class of the input sample. A
different architecture used for the same purposes are the Random Forests. We will
further comment on those in Section 7.2.1, as it is the architecture we will consider
for the trajectory characterization problem. For more details on the training of
neural networks, Ref. [141] offers a very practical introduction to the topic, while
Ref. [142] is particularly directed to physicists.

7.1.2 Unsupervised learning

In unsupervised learning, a similar framework is set. However, in this case the
machine has only access to the samples, and not to their labels. In such setup, the
machines can be used for various applications. The most common is clustering,
where the particle tries to find patterns in the dataset and separate in clusters sam-
ples with common features. Note that this features may be completely different
from the ones we expect. For instance, in the case of dataset containing images
of dogs of various breads, the machine could cluster them by their coat’s colour,
and not their bread. For instance, such methods have been used to detect phase
transitions [143]. Interestingly, the authors also found that the machine was clus-
tering samples not only by their phase, but also by other experimentally relevant
parameters.
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learning: the machine is trained by minimizing some distance metric, in order to separate
and/or cluster the input data. (c) The machine, in this case a Boltzmann machine, is trained

in order to approximate the probability distribution of the training set images.
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Another application is anomaly detection, where the machine learns to differ-
entiate pathological samples which have very little in common with the rest of
the dataset [144]. In physics, such approach has been used to find new physics
beyond the standard model [145] or explore the phase space of unknown Hamil-
tonian systems [146]. While both clustering and anomaly detection have gained
a lot of attention in various fields of physics, they have not yet been explored in
terms of anomalous diffusion characterization. We will further on their feasibility
in following sections.

Machine learning with physical models

One of the most promising applications, but also the hardest, is the creation of
generative models. In such problem, a machine is given a dataset, with an as-
sociated probability distribution P(X). The goal of the machine is to mimic such
probability distribution and generate new samples according to it. In plain words,
given a dataset, the machine tries to create samples resemblant to the ones it has
already seen. The state-of-the-art in such problems are the generative adversar-
ial networks (GAN) [147]. However, in the first stages of the field, Restricted
Boltzmann machines (RBM) [148] captured the attention of both computer scien-
tist and physicist. For the former, RBM supposed one of the first trainable ML
architectures that could deal with generative models. For the latter, its construc-
tion is analogous to the one of a spin model and with so, they both share similar
features.

In general, the training of an RBM is not very distinct to the problem of solving
an Ising system, such as the one we presented in Chapter 4. The RBM consists
of two layers of neurons, with inter-layer connections. This means that a visible
neuron vi is connected to all the hidden neurons hj, but not to the rest of visible. In
the spin analogous, one considers that the neurons are spins. The system evolves
by means of a Hamiltonian H, in which the inter-layer connections are now the
couplings between spins. By defining H, using the usual statistical physics, we
can define the probability of finding a certain spin configuration given the current
set of weights. The goal of the training is to tune the weights of the couplings in
such a way that the probability of finding a certain visible configuration Prbm(v)
is equal to P(x).

One of the main drawbacks of RBM and of any energy based model, is that
the sampling of Prbm(v) is very hard, and in general an NP-hard problem. This
difficulty comes from the original definition of the machine as a Hamiltonian, or
more precisely, Ising model. Sampling from an Ising model requires the use of
Monte Carlo techniques, which are usually stuck in local minima. Specially in the
so-called spin glass phase, such sampling becomes prohibitively expensive. While
many techniques have been developed to train efficiently RBM, none have dealt
with the problem of the sampling difficulty [149, 150, 151, 152].
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Recently, we have proposed that the spin-glass phase is an unnecessary bot-
tleneck for the training of energy based models [60]. In its usual realizations
RBM are initialized with random weights, giving rise to an spin-glass Ising model
where the sampling is difficult. It has been shown how restricting the value of
the weights in order to avoid such phase increases in orders of magnitude the
training of RBM. While RBM were one of the most used ML architecture for gen-
erative purposes, due to the hardness of their training, they have been taken away
by GAN. Our recent work, presented in Ref. [60], sets the pace for a considerable
improvement of its training, but also the possibility of training deep Boltzmann
networks, shown analytically to be universal approximators of any distribution
function.

7.2 Single trajectory characterization as machine learn-
ing problem

Once introduced the basic concepts of ML, we will explore how these can be used
to characterize the motion of particles at the single trajectory level. In previous
chapters we have widely studied the trajectories arising from various diffusion
models. Their main characteristic is their stochastic behaviour. This means that
to faithfully characterize such trajectories one needs to proceed with statistical
approaches, mainly in the form of averages. As widely commented in previous
chapters, the most used feature to study diffusion is the mean squared displace-
ment (MSD), Eq. (2.5). As we have seen, to recover such metric from a set of
trajectories one needs to proceed either with an ensemble averaged MSD (eMSD),
Eq.(2.7), or a time averaged MSD (tMSD), Eq.(2.6).

While in theoretical studies both techniques are completely valid, taking ob-
vious care of the use of tMSD in non-ergodic systems, in experimental scenarios
such analysis is not so easy. In particular, the usual single particle tracking (SPT)
experiments, where diffusion models are mostly applied, give rise to very short
and noisy trajectories. In terms of the ensemble, it is usually experimentally chal-
lenging to get a big set of representative samples, while the presence of hetero-
geneities in the system can strongly affect its analysis. These two features makes
it such that the averages approach may fail without proper considerations.

Nevertheless, there has been in past years a huge effort to create algorithms to
correctly characterize trajectories by from their tMSD. For instance, in Refs. [153,
154, 155] the authors present methods for correctly fitting the tMSD, even in the
presence of noisy data. Many other works try to characterize various properties
of the trajectories by means of it, such as the anomalous scaling exponent [156] or
the change of diffusion modes [157]. Nevertheless, all these works mainly focus
on the fractional Brownian motion, i.e. an ergodic diffusion model for which the
tMSD gives significant information. In the presence of ergodicity breaking, it is an
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open question how many of these methods are indeed valid. In a similar fashion,
other works such as the ones based on Power Spectral Density [158] rely on the
possibility of being able to theoretically construct such feature, while methods
relying on Bayesian approaches [159, 82] need prior information on the system to
correctly asses its characteristics.

Considering the previous challenges, we have seen in the past year a huge ef-
fort in the use of ML techniques to characterize diffusion models. Such techniques
offer mostly two advantages: the ML algorithm should be model independent and
should have no need of previous information of the system where the trajectories
are collected from; It should be applied at the single trajectory level, where the
effects of ergodicity breaking will not affect its correct characterization. The latter
is of high importance, as it is still an open question if ML algorithms may perform
better in systems in which tMSD techniques are suitable. Indeed, there is currently
a common effort to assess which methods are better for trajectory characterization
and under which circumstances [61].

The first approach of trajectory characterization by means of ML methods was
done in Ref. [160], where the authors used a neural network to classify trajecto-
ries by its diffusion model: Brownian, confined and directed motion. A similar
study was done in Ref. [161], in which the authors also show that ML based meth-
ods were superior than feature-based predictions. Other works have focused in
determining the anomalous exponent of the input trajectories, either with convo-
lutional neural networks [162] or long short term memory neural networks [163].
Moreover, in the latter, the authors address the problem of the change point, i.e.
finding the point in which a trajectory switches from one exponent to another.
Nevertheless, all previous approaches focused their studies on FBM trajectories,
hence leaving as an open question the suitability of ML methods in non-ergodic
data.

In the following sections we will present the method proposed in Ref. [59],
which was developed to solve two problems: first, extracting the anomalous ex-
ponent of the input trajectories; second, classify them by their diffusion model. We
will show how the ML methods are indeed capable of dealing with non-ergodicity,
while maintaining state-of-the-art predictions for ergodic trajectories.

7.2.1 Machine learning method

We will now present the different pieces of the ML method, sketched in Fig 7.2.
We will focus first in the ML architecture of use, the Random Forest. We will then
comment on the dataset used to train such model and we will finally present a
method to preprocess the data in order to correctly normalize the data, no matter
from which system it is arising.
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Random Forest

Random forest is an architecture based on Decision Trees. A decision tree is an ef-
ficient non-parametric method widely used for classification and regression prob-
lems [164]. The basic idea consists in producing recursive binary splits of the input
space, so that the samples with the same label are grouped together. The criterion
to produce the splits is based on a homogeneity measure (usually, the information
entropy) of the target variable within each of the obtained groups. In regression
problems, a commonly used criterion is to select the split that minimizes the Mean
Squared Error (MSE); this recursive process continues until some stopping rule is
satisfied, e.g., a common one is to consider that a tree node can be split if it con-
tains more than a given number of samples; therefore, the minimum number of
samples required to split a tree node should be adjusted in order to control the
size of the tree, thus preventing overfitting. Once a decision tree is obtained, the
output for unseen samples is computed just passing them through the nodes of
the tree, where a decision is made with respect to which direction to take. Finally,
a terminal tree node is reached, where the output is obtained.

A RF is a tree-based ensemble method, which builds several decision tree mod-
els independently and then computes a final prediction by combining the outputs
of the different individual trees [165]. In particular, the ensemble is produced
with single trees built from samples drawn randomly with replacement (boot-
strap) from the training set. An additional randomness is added when splitting
a tree node because the split is chosen among a random subset of the input vari-
ables, selected in this case without replacement, instead of the greedy approach
of considering all the input variables. Due to this randomization, the bias of the
ensemble is slightly higher than that of a single tree, but the variance is decreased
and the model is more robust to variations in the dataset.

RF is a very powerful, state-of-the-art technique for both regression and clas-
sification problems, usually outperforming not only single decision trees but also
sophisticated models, as shown in a thorough comparison study [166].

Training and test datasets

The training dataset is built out of numerical simulations of trajectories from vari-
ous kinds of theoretical models. As a natural choice, we included three of the best-
known and used models that can give rise to anomalous diffusion: CTRW [20],
FBM [19] and Lévy walks (LW) [106]. Moreover, we included trajectories from
the annealed transient time model (ATTM) [74], which has been lately associated
with various experimental observations. Each of these models was presented in
Section 2.3, where more details can be found. Building a good dataset is key in ML
techniques. For instance, one needs to create them in such a way that they repre-
sent as faithfully as possible the problem as a whole. ML dataset have then to be
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FIGURE 7.2: Schematic of the method. An experimental trajectory is first transformed into
a time series and preprocesses according to the procedure described in Section 7.1. The
trajectory is fed to the algorithm for its characterization through a RF, previously trained
on simulated data. We show RF capability to extract two characteristics of the trajectory:
(A) the most likely theoretical model among the ones contained in the training dataset and

(B) the anomalous exponent α.

balanced (i.e. each class has to be equally represented). Then, for each ML archi-
tecture considered, the trajectories need to show similar features, so that one can
correctly compare the results. To standardize the creation of anomalous diffusion
trajectories, we have developed the python package andi, accessible in Ref. [167].
This accessible tool allows us to create datasets of trajectories from different mod-
els and exponents, helping us to correctly characterize the results of the ML algo-
rithm.

Preprocessing

Our aim is to design a method that can be used to accurately characterize hetero-
geneous trajectories without having to calculate other parameters or using a priori
knowledge. In order to be able to analyse data coming from any possible spatio-
temporal scale, we designed a preprocessing procedure that properly rescale the
data. In Ref. [59], the following procedure was implemented:

1. We use one of the models above to simulate the trajectory of a particle during
tmax time steps. The result is a vector of positions, X = (x1,x2, ...,xtmax).

2. This vector is transformed into a vector of distances travelled in an interval
of time Tlag, i.e., W = (∆x1, ∆x2, ..., ∆xJ−1)„ where J = tmax/Tlag. We
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define ∆xi as
∆xi =

∣∣∣xiTlag
− x(i+1)Tlag

∣∣∣ . (7.1)

3. To normalize the data, we divide W by its standard deviation (STD) to get
a new vector Ŵ .

4. Then, we do a cumulative sum of Ŵ to construct a normalized trajectory X̂ .

Summarizing, the previous procedure generates a new trajectory which is con-
structed via the normalized displacements of the original trajectory. While this
normalization showed great results, it did mostly in big enough trajectories. Note
that as one increases Tlag, the length of the resulting vector X̂ decreases. More-
over, considering big time windows erases the microscopical details of the trajec-
tories. We will see later how this affect the accuracy of the machine. Nevertheless,
different normalizations have been proposed lately, showing great success. An
example would be to create trajectories following

X̂ =
X − 〈X〉
〈X2〉 . (7.2)

In the following sections we will focus in the first procedure, as it gives insights
on the importance of the microscopical dynamics for the correct trajectory charac-
terization. Note that both procedures make that the magnitudes of the resulting
trajectories are comparable, no matter what were their original values. Moreover,
while the RF could be trained using Ŵ , our results show that training with X̂
gives indeed much better results. The same preprocessing is applied to both the
simulated and experimental trajectories used in Sections 7.2.2 and 7.3.

7.2.2 Benchmarking the model with simulated data

We will use our method to characterize single trajectories according to two dif-
ferent schemes: (A) discrimination among diffusion models; (B) prediction of the
anomalous exponent α, that inherently implies classification as normal or anoma-
lous diffusion. For each of these problems, we created a dataset of 1.2 · 105 tra-
jectories with tmax = 103, divided into a training and test set with ratio 0.8/0.2,
respectively. The results presented in all the figures and the values of the accuracy
discussed in the text correspond to the ones measured in the test set, ensuring
that the RF does not present overfitting in any of the problems considered. The
different classes considered in each problem have an equal number of trajectories,
hence allowing us to use the accuracy as a measure of the goodness of the RF.
For technical details and a practical example of the implementation, we refer the
reader to the repository in Ref. [62].
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FIGURE 7.3: Benchmarking the RF algorithm: (a) Accuracy of the RF when discriminating
among models as a function of the preprocessing parameter Tlag. Black triangles = CTRW
vs FBM, Red circles= CTRW, LW, FBM, ATTM, and Yellow squares= CTRW vs ATTM. (b)
Accuracy of the model discrimination as a function of the length of the trajectories tmax. (c)
Histograms of the error in the prediction of the anomalous exponent for different values of
the length trajectory tmax and noise variance σn. Y-axis is percentage of trajectories N̄ with
given error ε when predicting the value of α. (d) MAE of the anomalous exponent predic-
tion as a function of the length of the trajectories tmax. (e) MAE in anomalous exponent

prediction as a function of the variance of the normal noise variance.

Discrimination among diffusion models

In order to predict the diffusion model underlying a certain trajectory, we con-
struct a RF whose input is the normalized trajectory X̂ , and the output is a num-
ber between 0 and N − 1 corresponding to the different models, with N the total
number of models used in the training. Figure 7.3 (a) shows the accuracy of the
RF. Each line corresponds to a training dataset made up of different models. In the
absence of data preprocessing (point marked as ’Raw’ in the x-axis), the RF shows
large accuracy. The accuracy drops significantly as Tlag increases, likely as a conse-
quence of the removal of microscopical properties of the model, such as short-time
correlations, hence preventing the RF from learning important features of them.
This might lead to the conclusion that the filtering introduced by the preprocess-
ing steps only limits the time resolution. This is obviously true for simulated data,
obtained at the same scale, for which preprocessing is unnecessary. However,
when dealing with experimental data of unknown spatio-temporal scale, such a
preprocessing is of fundamental importance to be able to apply the same architec-
ture and training dataset, in spite of the little loss of performance.

In addition, the accuracy heavily depends on similarities among the models to
be discriminated. For example, the accuracy obtained with a RF trained only with
trajectories reproducing conceptually different models such as FBM and CTRW
(triangular markers in Fig. 7.3 (a)) is higher than the one obtained when includ-
ing in the training models with similar characteristics, such as CTRW and ATTM,
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independently of Tlag (red circles and yellow squares in Fig. 7.3 (a)).

Anomalous exponent estimation

A first approximation toward the characterization of the anomalous exponent can
be based on a regression problem, in which the output of the RF is the value of
the anomalous exponent α. The nature of the regression algorithm makes that the
output of the RF is the continuous value which better satisfies the constraints learn
during training.

To characterize the performance of the method, we calculate the prediction er-
ror ε of a trajectory as the absolute distance between the predicted exponent and
the ground truth value. The percentage of trajectories N̄(ε) with a given error ε
is represented in the bar plots of Fig. 7.3 (c) for three different cases and a subd-
iffusive dataset including trajectories obtained from FBM, CTRW and ATTM. The
case (i) considers trajectories with tmax = 103 without noise, while the case (ii) and
(iii) show results for shorter and noisy trajectories (see discussion below). For case
(i) the calculated mean absolute error (MAE) of the prediction of the anomalous
exponent gives a value of 0.11. Moreover, the histogram showed in Fig. 7.3 (c)(i)
shows that for ∼ 80% of the trajectories, the output exponent lies within 0.1 from
the true value.

7.2.3 Experimental scenario: short and noisy trajectories

A remarkable feature of the method is the possibility to correctly characterize very
short trajectories. In Fig 7.3 (b) and (d), we show the ability of the RF to character-
ize short trajectories. In Fig 7.3 (b), we plot the accuracy in model discrimination
as a function of the length of the trajectories, tmax. In Fig 7.3(d), a similar study
is done, now tracking the MAE of the RF trained to predict α. Although we ob-
serve an expected decrease of performance for short trajectories, both plots show
that the RF is able to characterize trajectories as short as only 10 points. Quantita-
tively, when comparing trajectories of 10 points with larger ones, of 1000 points,
the model discrimination accuracy only decreases by a factor of 8.2%, while the
MAE decreases by a factor of 18%. Panel (ii) in Fig 7.3(e) shows the error distribu-
tion when predicting α for tmax = 100.

Importantly, one has also to take into account that the experimental trajectories
have a limited localization precision, that results into Gaussian noise. Therefore,
it is necessary to test the robustness to noise of the RF. To this end, we trained
the RF with trajectories simulated as described before and then we try to predict
the anomalous exponent of trajectories belonging to the same dataset, but whose
positions X were perturbed with noise to obtain the dataset X(n)

x
(n)
i = xi + µi(µ, σn), (7.3)
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where µi(µ, σn) is a random number retrieved from a Normal distribution with
mean µ = 0 and variance σn. The results obtained for training with FBM, CTRW
and ATTMs are presented in Fig. 7.3(d). The RF shows a great robustness against
noise. For σn < 1, the MAE appears almost unaffected. When increasing σn, we
see that the MAE increases, as expected, but even for large σn the MAE is still
reasonable.

7.3 Transfer learning in simulated and experimental
data

To further show the advantages of our Machine Learning algorithm, we applied
it to three sets of trajectories different from those included in the training/test
dataset. This is often referred as transfer learning, as certain architecture is trained
in one setting and then applied to a different one. For this, we will consider three
datasets:

(i) Simulated data coming from a recently presented model presented in Chap-
ter 5, describing the movement of a diffuser in a network of compartments
of random size and random permeability, both drawn from universal dis-
tributions. This model shares the same subordination as the quenched trap
model, i.e. a CTRW with power-law distributed trapping times and recapit-
ulates the complexity and heterogeneity found in some biological environ-
ments. This choice allows to test the algorithm over a conceptually different
model with respect to the training dataset, while having the advantage of
tuning the value of anomalous exponents.

(ii) Experiment 1, reporting the motion of individual mRNA molecules inside
live bacterial cells [168]. The tMSD shows anomalous diffusion with α ∼ 0.7;
this behaviour has been associated to FBM [81, 169].

(iii) Experiment 2, corresponding to a set of trajectories obtained for the diffusion
of a membrane receptor in living cells [77]. Although the time-averaged
MSD shows a nearly linear behaviour, the data present features of ergodicity
breaking due to changes of diffusivity [170] and have been associated to the
ATTM model.

Following the scheme presented in Fig. 7.2, first we train the RF with simulated
trajectories obtained with different theoretical frameworks. It should be noted that
for this section, since we deal with trajectories that do not show superdiffusive
behaviour, we do not include the Lévy walks process in the training dataset.
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FIGURE 7.4: Transfer learning: predicting the anomalous exponent for experimental
trajectories. Labels (i),(ii) and (iii) refer to the datasets discussed in Section 7.3. For dataset
(i), we plot the percentage of trajectories N̄ where the predicted value of α has an absolute
error ε. As it is a simulated dataset, exponents from 0.2 to 1 are considered. The input to the
RF were the raw trajectories, with no preprocessing. For datasets (ii) and (iii), we present
the percentage of trajectories predicted to have an anomalous exponent α. The trajectories
were preprocessed with Tlag = 1. For dataset (ii), we present results two training datasets:

dark yellow for a mixed dataset and light yellow for a FBM dataset.

7.3.1 Results

Following the same structure of the previous section, we start by discriminating
the diffusion model that can be associated to datasets (i)-(iii). The results are re-
ported in Table 7.1, showing a high rate of correct classification for the dataset (i).
For the experimental data in datasets (ii) and (iii), we do not dispose of ground
truth values, thus we compare our results with those of previous analysis, per-
formed with alternative methods. For the trajectories of Experiment 1, we found
that the algorithm largely assign them to the FBM, in strong agreement with pre-
viously reported results based on the concept of variation [81]. The data of Ex-
periment 2 are mainly assigned to the ATTM model. This model was shown to
reproduce features observed in these data, such as subdiffusion and weak ergod-
icity breaking [77]. Moreover, a little fraction of trajectories are classified as CTRW.
As previously mentioned, CTRW and ATTM share similar features (such as time
subordination), increasing the difficulty in discriminating between them. This ap-
pears to be the main source of error in the results.

To obtain further insights on the study of the diffusion, we used the RF to ex-
tract the anomalous exponents. For the first dataset (i), based on simulations, we
generated trajectories having a broad range of subdiffusive trajectories, namely
α ∈ [0.2, 1]. Then, we used the trained RF to predict the value of the anomalous
exponent and evaluated the error as the absolute value of the difference between
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TABLE 7.1: Process discrimination for the datasets considered in section 7.3. Shown is the
percentage of trajectories classified as associated to each model. The results for (i) were

done with Tlag = 0 and for datasets (ii) and (iii) with Tlag = 1.

Dataset Predicted Model
CTRW FBM ATTM

(i) Compartments model 89.2% 0 10.7%
(ii) Experiment 1 4.5% 86.6% 8.9%
(iii) Experiment 2 16.4% 33.2% 50.4%

the actual and predicted α. The results are reported in the histogram of Fig. 7.4
(i) and display a distribution similar to the one obtained for the training/testing
data. Thus, we run the same procedure on the experimental data. For the two
datasets, in Fig. 7.4 (ii)-(iii) we report the values obtained for the anomalous expo-
nent α. The histogram of the α obtained for the trajectories of Experiment 1 (dark
yellow) shows mainly subdiffusive values, peaked in the range 0.6− 0.8. This is
in good agreement with the original paper [168], where α was estimated by means
of two different approaches as 0.7 and 0.77. However, the method also classifies
a percentage of the trajectories as having α = 1. Importantly, the performance
of the method can be further improved by taking advantage of the results of the
model discrimination discussed above and shown in Table 7.1. In fact, when the
latter classification indicates that most of the trajectories follow a specific diffusive
model, one can train the algorithm with a dataset composed only of trajectories
simulated with that model. This kind of training produces exponent values in the
same range, but largely reduce the fraction of those associated to α = 1, as shown
in Fig. 7.4 (ii) (light yellow).

Last, in Fig. 7.4 (iii) we plot the distribution of exponents obtained for the Ex-
periment 2. The subdiffusive values show a large number of occurrences in the
0.8 − 0.9 range, compatible with the exponent 0.84 calculated in previous stud-
ies [77]. Noteworthy, due to the non-ergodic nature of the data, in the original
paper α could only be calculated from the ensemble-averaged MSD, whereas the
RF is able to determine this exponent from single trajectories.

7.4 Conclusions

During this Thesis, we have widely commented on the stochastic nature of anoma-
lous diffusion and used various statistical approaches to study its features. From a
theoretical point of view, it usually possible to either find them analytically or sim-
ulate the system in order to do so. However, in a experimental scenario, we face
many problem: the arising of noise coming from the experimental techniques, the
difficulty of tracking certain particles for long enough times,... Recently, various
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approaches have been proposed to solve this problem. In this chapter we have
proposed how one may use machine learning (ML) techniques with such aim.

More precisely, we have presented a machine learning method, based on a
Random Forest architecture, which is capable to analyse a single trajectory and
to determine the theoretical model that describes it at best. Moreover the same
method is used for predicting its anomalous exponent with high accuracy, and
thus classify the motion as normal or anomalous. The method does not need
any prior information over the nature of the system from which the trajectory is
obtained. It acts as a blackbox, which we train with a dataset of simulated trajec-
tories, and then it is used to characterize the trajectory of interest. In particular, its
spatial scale is not of any relevance, as we devised a preprocessing strategy which
rescales trajectories to obtain comparable estimators from very different systems.
The method requires a minimal amount of information. First, because it performs
extremely well even with surprisingly short trajectories. Second, because it is ro-
bust with respect to the presence of a large amount of thermal noise, and can thus
be applied even with low localization precision.

In order to test the validity of the method, we have first created a series of
benchmark tests, all performed by means of simulated data. For instance, we have
studied how the appearance of noise or the shortening of the input trajectories af-
fects both problems. While we observe a decrease in the accuracy, we have shown
how the RF may still robustly characterize trajectories of only ten points. Most
importantly, the method is able to characterize trajectories even for non-ergodic
models, for which no previous methods existed asides from numerical fittings.
Note that in the case of ergodicity breaking, an ensemble average over multiple
samples is needed to faithfully retrieve the anomalous exponent. We have shown
how the RF overcomes such problem with surprising accuracy.

Finally, we showcased the suitability of our method by applying it to two ex-
perimental datasets by means of transfer learning. In both cases, even if the two
datasets show very distinct behaviour, the RF is able to correctly asses both the
theoretical prediction of the model and the anomalous exponent. Of our interest,
one of the datasets contains non ergodic trajectories, hence giving another proof
of the suitability of ML for single trajectory characterization.

While the results presented in this Thesis show that it is possible to study some
features of diffusion by means of ML, it also pave the ways for even more impor-
tant questions. In terms of the anomalous exponent prediction, we believe that an
increase in the accuracy is for sure possible by means of more complex ML archi-
tectures. In this direction, an important step would be to create a method which
is non size dependent, i.e. that we can train with trajectories of certain size but
then can use for any other input size. Methods such as the one of natural lan-
guage processing (NLP), where sentences of various sizes are analysed by means
of recurrent neural networks, may be of great use in this scenarios.

Another even more important question is related to the classification of the
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theoretical model. For instance, what happens when we try to characterize a tra-
jectory from a model that was not previously known? We showed in the case of
transfer learning with the trajectories of Chapter 5, the method usually assigns the
trajectories to the closest model of the training dataset. However, this may not al-
ways be true. There exists different ways of tackling this problem, as e.g. solving
and N + 1 problem, where N models are considered and an extra label is assign
to ’Not known model’.

Following the trend of recent advances in ML applied to physics, one could
instead work in an unsupervised scenario and more generally in the interpretabil-
ity of the trained methods. This will lead to various advantages. For example,
one could investigate which features are more important for the machine while
learning to predict the anomalous exponent. In the case of model prediction, this
problem is even more relevant, as we know from their theoretical framework than
most of the model share features. It would be interesting to understand until
which extend the information used by the machine is related to the actual param-
eters and metrics used in diffusion problems and even discover new properties
that were hidden to previous statistical methods.
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8 Conclusions

The concept of diffusion plays a key role in the understanding of our surround-
ing, specially in those systems in which the motion of particles cannot be com-
pletely described by a determinist theory. For a long time, most stochastic pro-
cesses where associated to a Brownian (or normal)-like behaviour. However, in
recent years, we have seen how many of the systems of study diverge from it. In
order to explain such divergence, physicist have proposed a plethora of models
that currently form what we now know as the anomalous diffusion theory. In-
spired and closely related to Brownian motion, these contain crucial features, as
e.g. crowding, correlations, ageing,... which help us understand the phenomena
arising in different experimental observations.

There exist nowadays various ways of observing the departure from normal to
anomalous diffusion. In practical terms, the easiest is related to the mean squared
displacement (MSD) of a moving particle, as given in Eq. (2.5). For Brownian mo-
tion, the MSD is linear with time. When such linear dependence is broken, we
consider the particles to be anomaly diffusing. In this case, the MSD is propor-
tional to time up to a certain exponent, defined as the anomalous exponent. We
differentiate then two regimes: when the exponent is smaller than one, we say that
particles subdiffuse, while they superdiffuse for exponents bigger than one. The
anomalous exponent is currently the main feature used to study anomalous diffu-
sion in experimental scenarios, as it very easily calculated by means of the MSD
of sampled trajectories. In practical terms, one proceeds either to perform an en-
semble averaged MSD (eMSD), Eq. (2.7), over a set of trajectories coming from the
same experiment, or by performing a time averaged MSD (tMSD), Eq. (2.6), over
a single, usually long trajectory.

An important feature appearing in anomalous diffusion cases is the concept of
weak ergodicity breaking. In non-ergodic systems, a single trajectory is not able to
explore the whole phase space (see e.g. Fig. 2.4). Then, the approach of using the
tMSD to characterize diffusion fails, as it will depend on which part of the phase
space the particle has ’visited’. In statistical terms, we know now that in non-
ergodic systems the tMSD is a random variable usually with linear dependence
with time. Lately, the study on the fluctuations of the tMSD has been shown to be
a powerful tool to study anomalous diffusion, as e.g. with the use of the ergodicity
breaking parameter [71].
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If one studies Brownian motion directly from the Einstein-Smoluchowski dif-
fusion equation, Eq. (2.1), it is easy to see that the probability distribution function
(PDF) of such process is a Gaussian with zero mean and variance directly related
to the diffusion coefficient. Another widely studied departure from the normal
diffusion occurs when such PDF is no longer Gaussian. This may or may not be
followed by the MSD diverging from its linear behaviour [66]. A good measure of
this behaviour is given by the non-Gaussianity parameter, i.e. the comparison be-
tween the second and fourth moment of the PDF of the particle, just as we showed
in Sec. 3.1.4.

All the previous measures show that anomalous diffusion is currently well
understood macroscopically. However, there is still a lot to be understood micro-
scopically. This means the exploration of which particular interactions between
the particles and its surrounding lead to anomalous behaviour. Such study often
leads to microscopical models, i.e. a model in which the focus relies on the par-
ticular behaviour of each component of a system, in contrast to its macroscopic
behaviour. These are usually motived by experimental observations, as the goal is
to understand the specific patterns particles or any stochastic process follow when
anomaly diffusing. More importantly, one may use such ideas in the completely
opposite direction: once the microscopic model is understood, we can study it
just by studying the diffusion of the particles and relate its properties to the actual
microscopical behaviour of the system.

With the previous context, the work presented in this Thesis has focused in two
main directions. The first one, related to Chapters 3, 4, 5 and 6, aims at proposing
new microscopical models, inspired by recent experiments, giving rise to many
of the anomalous diffusion features and other complex behaviour such as phase
separation. The second direction, presented in Chapter 7, focuses at proposing
new techniques for the characterization of anomalous diffusion without the need
of neither ensemble and time averages and any prior information on the system
of study. We briefly review now the main conclusions of each of the chapters,
summarizing what was presented at the end of each of them.

Heterogeneous interactions as source of non-ergodic subdiffusion In Chap-
ter 3, we proposed a model in which a particle moves in a crowded environment.
While moving freely, the particle performs a CTRW with exponential waiting time
distribution, hence analogous to Brownian diffusion. However, when encounter-
ing one of its neighbouring particles, the motion of the particle is affected in such
a way that its diffusion coefficient is altered. We argued how such changes in dif-
fusion coefficients may be seen as the introduction of a disorder parameter in the
waiting time distribution of the particle. Moreover, we showed how the precise
distribution of the disorder, considered in this case as a power-law distribution,
could change the diffusion of the particle drastically, switching from normal to
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anomalous. Once derived the analytical relation between the disorder distribu-
tion and the resulting anomalous exponent, we focused in other features of the
diffusion. For instance, we showed how the motion of the particle showed weak
ergodicity breaking, similarly to what is expected in a power-law CTRW. More-
over, we also proved the non-Gaussianity of the model.

In terms of the microscopical model, we showed how the system could present
two different disorder realizations, i.e. annealed or quenched disorder. While
conceptually different, we showed how they converge to the same behaviour at
certain regimes, for instance, when the density of surrounding particles is big
enough. At low densities they have both significant difference in terms of absolute
values, but show nevertheless the same scaling. In general, we have seen how the
density of the system affects the motion of the particle. Even if the asymptotic limit
is equal in all cases, the time the particle takes to reach the subdiffusive behaviour
is highly dependent on the density, as we show both numerical and analytically.
The previous result opens the door for the direct calculations of microscopic pa-
rameters of the system under investigation. For instance, one may use the offset
in subdiffusion to study the crowding of the system. As a whole, the model pro-
posed is able to show very interesting anomalous diffusion features, while also
offering an interesting playground for the understanding of their microscopical
source.

Subdiffusion in critical environments In Chapter 4, explored a very different
microscopical model, in this case it was closely related to the critical properties of
the widely known Ising model. We considered the motion of a particle, perform-
ing a discrete CTRW through a regular lattice, just as in Chapter 3. At each of the
vertex of such lattice we considered to be a spin. The collection of spins forming
the system followed Ising dynamics. Importantly, these spins could point in two
directions, up or down. When neighbouring spins point all in the same direction,
they form a domain. The size distribution of such domains is related to the tem-
perature of the Ising environment. For temperatures below the critical one, the
environment tends to form a single infinite domain. Above the critical tempera-
ture, no domains are usually formed, as the spins point in random directions, with
any correlation with their neighbours. Interestingly, at criticality the distribution
of domain sizes follows a power-law distribution.

Returning to the motion of the particle, we considered that its disorder emerges
from the environment itself, rather than the interaction with other particles. With
this, the model mimics the spatio-temporal heterogeneities known to be the source
of anomalous diffusion in a plethora of experimental observations. More pre-
cisely, we proposed that the waiting time distribution of the particle is heavily
affected by a disorder parameter, directly connected to the size of the domain the
particle is visiting. Another important factor affecting the diffusion of the particle
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is the interplay between the time scales of the particle’s motion and the environ-
ment’s dynamics. We showed how the system could be explained thanks to two
limiting regimes: 1) when the environment dynamics are much faster than the
time scale of the particle, which effectively means that the particle sees a new en-
vironment at each step (analogous to a annealed system); 2) the opposite case, in
which the particle effectively perceives the environment as static.

Thanks to these two limiting cases we were able to find the exact relation be-
tween the anomalous exponent and the various features of the environment. Let
us first review the results for a critical environment. In this case, the particle sub-
diffuses with an exponent related to the ratio between the two timescales. We
have seen that in quasi static environments the particle is not able to completely
explore the domain size distribution. Moreover, it has a non-zero probability of
entering an infinite cluster a remaining there forever. This shows that the slower
the environment dynamics, the smaller the anomalous exponent. This happens
until reaching a certain value at which the dynamics are so slow that the particle
recovers normal diffusion.

The environment has two ways of departing from criticality. The most trivial
is when the system is no longer at critical temperature. We showed how this
affected the domain size distribution, inserting an exponential cut-off. Effectively,
this produces that the probability of finding infinite domain goes exponentially to
zero. The environment can also depart from criticality due to its finite size. Both
cases lead to the similar behaviour: for a transient time, temperature and size
dependant, the particle subdiffuses. After this time, the particle recovers normal
diffusion. To summarize, the model presented aims at understanding which kind
of spatial heterogeneities may lead to anomalous subdiffusion, specially inspired
by the recent observations of critical biological systems [96, 95].

Anomalous diffusion through porous compartments The work presented in
Chapter 5 was directly motivated by the findings of the previous chapter. We set
there a relation between the disorder parameter and the size of the domains, but
the actual source of such connection was not explicitly explored. Our goal in this
chapter was to understand if anomalous diffusion may be directly related to the
heterogeneities of the environment, without the need of an explicit connection. In
this case, the environment is made of compartments, just as the previously men-
tioned domains. As a particularity, this compartments have porous boundaries,
i.e. the particle has a certain probability of transmitting to the next compartment
or being reflected back to the initial one. Our first contribution is related to the
actual method for studying diffusion in such systems. Usually, the microscopical
walk studies how each of the interactions between the particle and the boundaries
affects its behaviour. In our case, we consider a much bigger scale, in which we
only track the particle when exiting a certain compartment.
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We showed how this approach, completely analogous to the real microscopical
behaviour of the particle, leads to a much simpler model of the system. This al-
lows for a complete analytical description of the walk, given in this case by a Lévy
walk (LW) with rests. Even if close to previous descriptions of this walk, we ex-
tended the theory to consider the particularities of this model, as for instance the
fact that rests and walks have now complementary probabilities. With this new
framework, we studied how heterogeneous distributions of compartment sizes
and boundary transmittances affect the diffusion of the particle. For instance,
in the case of equally long compartments but with stochastic transmittances, the
walk reduces to a subdiffusive CTRW. Interestingly, when the compartments have
also stochastic sizes, the motion of the particle can be reverted to normal diffusion.
In general, we have studied how the interplay between the probability distribu-
tion functions of compartment sizes and boundary transmittances play a key in
the emerging anomalous diffusion of the particle, all thanks to a novel analytical
description of the system.

Phase separation in diffusing interacting systems Contrary to what was done
in all previous chapters, in Chapter 6 our focus was not in the emergence of
anomalous diffusion but of another crucial phenomena: phase separation. Lately,
this process has been associated to the efficient transport of various components in
cellular environments. The model presented aims at finding the actual microscop-
ical interactions leading to a phase separated system, with a focus on simplicity
and modularity. We consider a system of particles that have a certain probability
of binding Pc to each other if they get closer than a distance r. The system then un-
dergoes a phase transition from a phase in which particles move freely to a phase
separated scenario, in which particles form condensates of varying size. We have
analytically shown at which critical binding probability the phase transition takes
place, showing it dependence of the distance r and the density of the system.

Interestingly, even in the presence of a non zero binding probability, but below
the critical point, the particles do not form steady condensates. This was shown
by calculating the average flux of particles per condensate size. Below the crit-
ical Pc, the flux shows how in average more particles escape than get absorbed
by the minimal condensate, i.e. the one with only two particles. Only above the
phase transition, the flux is positive, hence arising as a perfect tool to study the be-
haviour of the system. The difference between the two phases can also be studied
by means of the distribution of condensate sizes. In the free phase, the distribu-
tion is Gaussian, with mean one, as was also predicted by the flux’s study. The
variance increases as we increase Pc. Above the phase transition, the mean starts
to increase, but the Gaussian form is maintained. Trivially, at Pc = 1, all particle
merge at a single condensate, hence the distribution being a delta function.

For the previous study, only few assumption need to be taken related to the
actual motion of the particles, being one of the advantages of the model. To test
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the suitability of the model to describe actual physical systems, we consider that
the particles may see changes in the diffusion coefficient, related to whether they
are or not in a condensate. By studying the distribution of diffusion coefficient in
actual dynamic simulations, we see the arising of a bimodal distribution, whose
peaks correspond to the average value of the diffusion coefficient of the condensed
and free particles. The latter gives us a powerful tool to compare the theoreti-
cal model with actual experimental observations, and thus the understanding of
phase separation by means of microscopical interactions.

Diffusion characterization with Machine Learning In order to understand how
anomalous diffusion arises in physical systems, two aspects are needed: first, hav-
ing the appropriate theoretical framework, as the ones proposed in the previous
parts of this Thesis. Second, and even more importantly, we need tools with which
correctly characterize experimental trajectories. Without the correct extraction of
the various parameters considered, having a perfect theory is useless, as its fitting
to wrong data will lead to the incorrect understanding of the phenomena. Due
to its stochastic nature, anomalous diffusion processes have always been hard to
study, and one often relies on averages. However, this may not always be possible,
either because one cannot gather enough samples to perform a correct ensemble
average, or because of the presence of weak ergodicity breaking, for which time
averages failed to correctly characterize trajectories.

In Chapter 7 we proposed a novel approach for the correct characterization of
diffusion trajectories based on Machine Learning (ML) techniques. In last years,
ML has proven as a powerful tool to study systems in which theoretical or sta-
tistical techniques have failed. More precisely, we have focused in two problems.
First, in the prediction of the anomalous exponent of single trajectories. See that,
for instance, in non-ergodic system this has never been assessed, as we always
relied on ensemble averages. We have shown that ML can produce accurate re-
sults for such parameter in the presence of noise, short trajectories and even non
ergodic processes. Similarly, we have also studied the problem of model clas-
sification. This is, given a pool of known theoretical models, the machine has
to classify an input trajectory to the one that better describes it. This novel ap-
proach paves the way for the systematic characterization of trajectories even with-
out prior knowledge of the system from which the trajectories arise.

Nevertheless, much work is still needed to understand until which extend this
techniques may help to increase even more our understanding of stochastic pro-
cesses. One of the big open question is about interpretability: what information
is the machine using to make predictions? Is it related to our current knowledge
of anomalous diffusion? Can this lead to new theoretical features that we did not
know before? On the other hand, in terms of model classification, another im-
portant question: what happens when the input trajectory comes from a model
that has no relation with the ones in the training set? By the same interpretability



Chapter 8. Conclusions 109

techniques, can we asses which features is the machine using to different between
models? Can this help to discover never seen models from experimental data?
As showed by all this open problems, ML paves the way to a much better un-
derstanding of stochastic physical process, where the amount of data is never a
problem, as one can often easily simulated these systems, but the complexity of
the system does not allow for their analytical understanding.
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