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Abstract

We investigate the properties of self-bound ultradilute Bose-Bose mixtures, beyond the
Lee-Huang-Yang description. Our approach is based on the determination of the be-
yond mean-field corrections to the phonon modes of the mixture in a self-consistent way
and calculation of the associated equation of state. The newly obtained ground state
energies show excellent agreement with recent quantum Monte Carlo calculations, pro-
viding a simple and accurate description of the self-bound mixtures with contact type
interaction. We further show numerical results for the equilibrium properties of the fi-
nite size droplet, by adjusting the Gross-Pitaevskii equation. Our analysis is extended
to the one-dimensional mixtures where an excellent agreement with quantum Monte
Carlo predictions is found for the equilibrium densities. Finally, we discuss the effects of
temperature on the stability of the liquid phase.
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1 Introduction

In classical physics the formation of a liquid droplet, i.e. of a self-bound state, typically arises
from the interplay between the short-range repulsive and long-range attractive components
of the interatomic potential. In quantum fluids, the formation of self-bound droplets has been
intensively investigated in liquid Helium, with experimental observations of strongly inter-
acting nanodroplets in both 3He and 4He [1, 2]. Recently, it has been pointed out that an
ultradilute self-bound state of matter can be formed in mixtures of ultracold atomic gases,
though the underlying physics is different [3]. For binary mixtures of Bose-Einstein conden-
sates (BECs), mean-field analysis predicts the system to become unstable against collapse when
the attractive inter-species interaction overcomes the repulsive interaction between identical
atoms [4]. However, in the utradilute liquid phase, the mean-field collapse is avoided as quan-
tum fluctuations stabilize the system. The liquid droplets formed in ultracold atomic gases are
fundamentally different from those in classical or Helium fluids, since they arise from beyond
mean-field effects and exhibits extreme diluteness. The observation of such ultradilute liquids
has been first achieved in dipolar Bose gases [5, 6], where the formation mechanism is the
same, arising from an interplay between the attractive dipolar interaction and quantum fluc-
tuations [7]. More recently, the liquid phase has been also observed in attractive Bose-Bose
mixtures, both in free-space configuration [8] and confined only in one direction [9,10]. These
experimental works found overall good agreement with the theory developed in the seminal
work of Petrov [3].

Although the theory of Petrov [3] reckons success in explaining the stabilization mecha-
nism and providing the energy functional, it is known that the model suffers from a serious
conceptual problem. Indeed, in the relevant regime of droplet formation, the theory predicts
a purely imaginary phonon velocity for the low-lying excitation spectrum, and thus a complex
energy functional. In the original work [3], this problem is contoured by using the velocities
calculated at the threshold point, and explicitly putting to zero the value of the suspicious
phonon velocity. While such approximation is justified at the mean-field collapse point where
the droplet is yet to be formed, its validity for any finite droplet is questionable. As a mat-
ter of fact, quantum Monte Carlo (QMC) method from Ref. [11] showed that the accuracy of
predictions of Ref. [3] becomes worse as one increases the attractive inter-species interaction.
Another issue concerns the disagreement between experiment and theory for the critical num-
ber of atoms and the droplet size, as reported in Ref. [9]. In this regard, theoretical works
based on beyond mean-field variational [12] and QMC [13] approaches pointed out the cru-
cial role played by finite-range effects. Recently, many theoretical works have been devoted to
the investigation of the liquid phase in low-dimensional systems, motivated by the enhanced
role of quantum fluctuations [14–16]. In particular, one-dimensional (1D) binary mixtures
experimentally constitute a perfect playground due to enhanced stability, as the three-body
recombination rate is greatly suppressed, and accessibility of a wide regime of interactions,
as the coupling constant can even take infinite values without compromising the stability of
the system. Also theoretically, 1D geometry is appealing since the energy functional does not
suffer from the aforementioned imaginary part and pseudopotential interaction can be used
in QMC simulations.

The aim of this paper is to provide a description of the symmetric droplet in binary mix-
tures of bosons, going beyond the Lee-Huang-Yang (LHY) framework. This is achieved in
a phenomenological way, by explicitly including higher order corrections to the Bogoliubov
speed of sound in the LHY energy. Although calculated in an approximated way, the resulting
beyond LHY correction to the equation of state is found to deeply modify the equilibrium prop-
erties of the symmetric mixture. In particular, we find a strong dependence of the equilibrium
density on the value of interactions, in excellent agreement with available QMC simulations.
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We further investigate the equilibrium properties of the finite-size droplet within the local den-
sity approximation, and extend our analysis to the 1D mixtures. The existence of well-defined
phonon modes further allow for the thermodynamic description of the self-bound state at fi-
nite temperatures. By means of phonon thermodynamics, we show that the liquid evaporates
when temperature becomes comparable to the ground-state energy of the mixture.

This paper is organized as follows: in Sec. 2 we introduce the beyond LHY theory for the
droplet, based on the calculation of second order terms in the long wavelength modes of the
excitation spectrum. In Sec. 3 we report results obtained in the thermodynamic limit N →∞
and V →∞ with N/V = const. These results are compared with available QMC calculations.
Section 4 is devoted to the numerical analysis of the finite-size droplet, using a generalized
Gross-Pitaevskii equation. Extension of the analysis to the one-dimensional mixture is dis-
cussed in Sec. 5. In the last part of this work Sec. 6, we discuss the effects of temperature on
the stability of the liquid phase.

2 Theory

We consider a uniform binary mixture of bosons with equal masses (m1 = m2 = m). In
terms of the single-particle creation and annihilation operators in each component, â†

i,k and
âi,k (i = 1,2), the Hamiltonian including all two-body collisions takes the form:

H =
∑

i,k

εkâ†
i,kâi,k +

1
2V

∑

i,k,k′,q

gii â
†
i,kâ†

i,k′+qâi,k′ âi,k+q +
g12

V

∑

k,k′,q

â†
1,kâ1,k+qâ†

2,k′+qâ2,k′ , (1)

where εk = ħh2k2/(2m) and we have assumed a contact-type interactions between particles
characterized by coupling constants gi j , related to the s-wave scattering length ai j by
gi j = 4πħh2ai j/m. The ground state energy of the system is obtained by diagonalizing the
Hamiltonian (1). This is achieved by applying the Bogoliubov prescription and replacing âi,k

and â†
i,k by the total number of atoms in each component

p

Ni , as well as appropriate canoni-
cal transformations. The details of the calculation can be found elsewhere [17] leading to the
following form:

H = E +
∑

k 6=0

�

Ed,kα̂
†
kα̂k + Es,kβ̂

†
k β̂k

�

, (2)

where α̂†
k and β̂†

k are the creation operators for the quasiparticles obeying Bose statistics. The

excitation spectrum of the system reads Ed(s),k =
Ç

ε2
k + 2mc2

d(s)εk with cd(s) the sound ve-
locities in the density (d) and spin (s) channels, defined hereafter. The ground state energy
becomes

E =
∑

i, j

gi j

2V
NiN j +

1
2

∑

k

�

[Ed + Es − 2εk −m(c2
d + c2

s )
�

. (3)

The first term of Eq. (3) describes the mean-field internal energy, whereas the second one inside
the bracket corresponds to the contribution from quantum fluctuations and is often referred
to as the LHY term [18]. Within the Bogoliubov theory, the long wavelength modes of the
excitation spectrum are given by the linear phonons. For a symmetric mixture g11 = g22 = g,
the speed of sound is [4]

c2
d,B =

1
2m

�

g(n1 + n2)−
q

g2(n1 − n2)2 + 4g2
12n1n2

�

, (4a)

c2
s,B =

1
2m

�

g(n1 + n2) +
q

g2(n1 − n2)2 + 4g2
12n1n2

�

, (4b)
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with ni = Ni/V the atomic density of each component. The main idea of our work is to ex-
tend the LHY description in a perturbative way, by evaluating the sound velocities beyond
the Bogoliubov formula (4) in a self-consistent manner and to obtain the correction to the
ground state energy Eq. (3). The calculation of higher order terms for the excitation spec-
trum can be achieved either microscopically, by developing the second-order Beliaev theory
for the mixtures [19, 20], or by a much simpler macroscopic approach based on thermody-
namic relations. Indeed, it is known for a single-component weakly interacting Bose gas that
at T = 0, the velocity of the long wavelength phonon mode is related to the compressibility κ
as c =

p

(mnκ)−1 [21,22]. In an analogous way, one can relate the sound modes in the density
and spin channels of the symmetric Bose mixtures, to the compressibility κd and spin suscep-
tibility κs of the system, respectively: cd(s) =

Æ

(mnκd(s))−1, with n = n1 + n2 the total atom
density. The identity between the microscopic phonon velocity and the macroscopic speed of
sound is exact for the density mode, while for the spin mode an additional contribution known
as the Andreev-Bashkin effect is missing [23]. However, it has been shown in Refs. [24–26]
that for weak interactions, the Andreev-Bashkin drag has a negligible effect on the spin speed
of sound as compared to the contribution arising from the susceptibility, and one shall there-
fore neglect it in this work. The compressibilities are obtained from the energy (3) according
to the thermodynamic relation

n2κd =

�

∂ 2E/V
∂ (n1 + n2)2

�−1

, n2κs =

�

∂ 2E/V
∂ (n1 − n2)2

�−1

. (5)

In what follows, we evaluate both the speed of sound and the associated ground state energy
for the three-dimensional (3D) mixtures. The extension of LHY theory in lower dimension
follows essentially the same path and we will discuss as an example the one-dimensional (1D)
mixture in the last part of this paper.

In 3D, the LHY contribution in Eq. (3) exhibits an ultraviolet divergence, arising from an
approximate relation between the coupling constant gi j = 4πħh2ai j/m and s-wave scattering
length ai j in the first Born approximation. This is conveniently solved by a proper renormal-
ization of the coupling constant [27]: gi j → gi j(1+ g/V

∑

k m/(ħhk)2). Then, the momentum
sum in Eq. (3) can be turned into an integral which can be performed analytically resulting in

E
V
=

g
2
(n2

1 + n2
2) + g12n1n2 +

8
15π2

m4

ħh3

�

c5
d + c5

s

�

. (6)

The regime of interest corresponds to repulsive intra-species interaction g > 0 and attractive
inter-species interaction g12 < 0, with a small imbalance |δg|/g � 1 where δg = g+ g12. For
a system satisfying the inequality δg < 0, the mean-field field theory would result in energy
∝ n2 given by the first two terms of Eq. (6) and would predict a collapse of a homogeneous
state towards bright soliton formation. The beyond mean-field theory eliminates the mechan-
ical instability as the quantum fluctuations generate a repulsive term ∝ n5/2. The interplay
between such attractive and repulsive forces is at the heart of droplet formation.

However, energy (6) suffers from the presence of a dynamical instability. This can be easily
seen for the unpolarized mixture (n1 = n2 = n/2), for which the Bogoliubov phonon modes (4)
take the values

cd,B =

√

√(g + g12)n
2m

, cs,B =

√

√(g − g12)n
2m

, (7)

therefore providing a purely imaginary speed of sound for the density mode cd in the liquid
phase. In the original work of Petrov [3], this issue of imaginary sound is circumvented by
putting δg = 0 in Eq. (7):

cd,P = 0 , cs,P =
s

gn
m

. (8)
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Figure 1: Square of the speed of sound as a function of the gas parameter, evaluated
for the characteristic value δg/g = −0.2. The blue (bottom) and red (upper) lines
are the density and spin sound velocity, respectively. Dashed lines, Bogoliubov theory,
Eq. (7). Solid lines, improved theory, Eq. (11). Inset: zoom of the low-density region
in the vicinity of the spinodal point, shown by the black arrow.

The imaginary phonon in the Bogoliubov theory indicates that not only the equation of state (6)
needs the presence of a beyond mean-field LHY term to be stabilized, but also the sound veloc-
ity requires additional higher-order correction in order to be well defined. In the unpolarized
configuration, one immediately finds from Eqs. (5)-(7) the compressibility and susceptibility
of the mixture:

κ−1
d =

n2

2

�

δg + g
p

na3 4
p

2
p
π

�

�

1+
g12

g

�5/2

+
�

1−
g12

g

�5/2
��

, (9)

κ−1
s =

n2

2
(g − g12)

�

1+
δg
g12

p

na3 8
p

2
3
p
π

�

�

1+
g12

g

�3/2

−
�

1−
g12

g

�3/2
��

. (10)

While compressibility and susceptibility are both complex as the non-zero imaginary part nat-
urally arises in the perturbative approach, one notices that the imaginary component is of
order |δg|5/2 and can be safely neglected in respect to the real part for the experimentally
relevant parameter range |δg|/g � 1. This is equivalent to neglecting fluctuations in the
density channel, while preserving those in the spin channel. Therefore using the identity
cd(s) =

Æ

(mnκd(s))−1, we obtain the following beyond Bogoliubov expressions for the speed
of sound:

c2
d '

n
2m

�

δg + g
p

na3 4
p

2
p
π

�

1−
g12

g

�5/2
�

, (11a)

c2
s '

n
2m
(g−g12)

�

1−
δg
g12

p

na3 8
p

2
3
p
π

�

1−
g12

g

�3/2
�

. (11b)

We show in Fig. 1 a comparison between the Bogoliubov sound velocity Eq. (7) and higher
order sound velocity (11). One striking feature which our theory predicts is that the velocity
of the density mode becomes real above a certain density when beyond mean-field corrections
are included, while it is a purely imaginary quantity in the Bogoliubov description. Another
feature is that even in the higher order description, the speed of sound becomes imaginary
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in a small window of density na3 ® (δg/g)2 (see inset of Fig. 1). However, this instabil-
ity has a physical nature and it defines the spinodal point below which the uniform liquid is
unstable towards the formation of multiple droplets. That is, at zero pressure, the liquid is
self-bound and it stays at the equilibrium density which corresponds to the position of the
minimum in the equation of state. If positive (negative) pressure is applied, the density of the
liquid increases (decreases) with respect to the equilibrium density and the energy increases.
If the applied pressure is large and positive the energy eventually becomes positive, still the
homogeneous system remains stable. On the contrary, for large negative pressures the homo-
geneous shape can no longer be sustained and the liquid fragments into droplets each having
density close to the equilibrium one. Experimentally, the fragmentation instability below the
spinodal point can be investigated by applying an external field exerting a large enough neg-
ative pressure on the liquid. Alternatively, the spinodal decomposition can be experimentally
observed by quenching the scattering lengths in such a way that the system is brought fast
from the stable to the unstable region of the phase diagram. In addition, our predictions
for the speeds of sound can be verified from determination of the excitation spectrum using
Bragg spectroscopy [28, 29], or by observing the propagation of sound waves upon applying
density/magnetic excitation [30,31].

Once we have shown that higher-order corrections remove the unphysical instability asso-
ciated with the complex values of the speed of density mode, it is useful to investigate if the
predictions for the ground-state energy can be also improved.

3 Energy analysis

We now recalculate the LHY term using the beyond-Bogoliubov sound velocities Eq. (11) and
improve the equation of state (3). The resulting energy is shown in Fig. 2 with a red solid line.
It has a shape typical for a liquid with the minimum associated with the equilibrium density.
It is instructive to compare our results with the ones obtained using the original prescription
from Ref. [3], Eq. (8) (black dashed line) and the LHY ground state energy calculated with
the Bogoliubov sounds (7) (black dotted line). We remind that in the latter case, the energy
is complex, and we only show its real part in Fig. 2. Taking as reference the LHY energy
with the Bogoliubov dispersion law, one can see that inclusion of higher order terms in the
density sound (11a) (top green dashed line) changes only slightly the behavior of the energy.
Instead, the inclusion of higher order terms in the spin sound (11b) (blue dashed-dotted line)
strongly suppresses the energy. The contributions arising from different approaches can be
conveniently classified if one normalizes both the energy and the density, to their equilibrium
values obtained within the approach of Petrov [3]:

|E0|
N
=

25π2ħh2|a+ a12|3

49152ma5
, (12)

n0 =
25π(a+ a12)2

16384a5
, (13)

and expand the energy E/|E0| in series of the small parameter δg/g:

E
|E0|
' −3

n
n0
+ 2

�

n
n0

�3/2

+
5
2
|δg|

g

�

n
n0

�3/2

−
5
4

�

δg
g

�2� n
n0

�3/2
�

5
3

√

√ n
n0
−

3
2

�

. (14)

The two first terms are identified as the ones of the Petrov theory, and expressed in these
units, they do not depend explicitly on δg. The third term comes from the spin sound of the
Bogoliubov theory (7), and gives a positive shift of the energy, as one can verify on Fig. 2 (black
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Figure 2: Energy per particle as a function of density for δg/g = −0.2. The black
dotted line is the real part of the LHY result Eq. (3) with the Bogoliubov sound (7),
while the black dashed line is obtained by setting g12/g = −1 in the LHY term as
it was originally done in Ref. [3]. The green dashed and blue dotted-dashed lines
correspond, respectively, to the inclusion of higher order term in the density (11a)
and spin (11b) sound velocity. The red solid line includes both density and spin
corrections. The circle indicates the spinodal density.

dotted line). Finally, the last terms come from the corrections brought to the spin sound within
our new theory (11b). It is a negative contribution in the region where n/n0 ¦ 1, resulting
in a suppression of the energy (see the blue dotted-dashed line in Fig. 2). As for the density
sound (11a), the first contribution to the energy functional enters with a higher power as
(|δg|/g)5/2. Even though the speed of density sound is drastically modified in our theory, its
effect on the energy remains therefore tiny. Thus, we conclude that the main correction to the
equation of state arises from quantum fluctuations in the spin channel. It is worth noticing
that the inclusion of density sound leads to a spinodal point below which the uniform liquid
is unstable against density fluctuations (filled circle in Fig. 2).

Although our theory provides a higher-order correction to the speed of sound, still not
all second-order terms are taken into account as it would be in Beliaev theory [20]. Thus
it is important to verify the validity of our results through a direct comparison with available
Monte-Carlo calculations [11]. Figure 3 shows E/|E0| calculated for different values of interac-
tion disbalance δg/g, as a function of density n/n0. As mentioned before, in the rescaled form
the energies evaluated within the original Petrov theory collapse to a single curve (shown with
a black solid line in Fig. 3) which is independent of the specific value of δg/g. Predictions of
our theory are shown with color lines and should be confronted with QMC results taken from
Ref. [11]. The agreement between our beyond LHY theory and QMC results is surprisingly
good, especially in the most interesting region around the minimum of energy. This suggests
that although we do not perform a systematic calculation of the third-order terms of the per-
turbative theory, in practice the contributions which we miss are small in the considered case
of a symmetric mixture.

The agreement of our theory with QMC results is further emphasized in Fig. 4 where we
show the calculated equilibrium density (corresponding to the minimum of energy in Fig. 3)
as a function of δg/g. In particular, for the largest value of |δg| our theory predicts a decrease
for the equilibrium density of about 50% in respect to the prediction from Ref. [3]. For com-
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Figure 3: Equation of state in units of the equilibrium density (13) and energy (12),
for different values of δg/g. The lowest black solid line is the universal result from
Ref. [3]. The color solid lines are the predictions from the beyond LHY theory, while
the color dots are QMC results from Ref. [11].

−0.5 −0.4 −0.3 −0.2 −0.1 0.0

δg/g

0

2

4

6

8

10

12

n
eq
a

3

×10−4

Figure 4: Equilibrium density of liquid phase as a function of δg/g. The black dashed
and dotted lines correspond to speeds of sound given by Eq. (8) and Eq. (7), respec-
tively. The red solid line is the calculation within the beyond LHY theory, relying on
Eq. (11), while the black dots are QMC results from Ref. [11].

parison, we also show the equilibrium density obtained using the Bogoliubov sounds(7) in the
LHY energy, which exhibits a lower value.

4 Finite size droplet

Following the success of the presented theory in removing the instability in the speed of
sound and significantly improving the equation of state of a homogeneous liquid, we aim
at an improved description of finite-size droplets. A common path to do so [3, 7, 11] is to
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improve the energy functional. Differently from single-component gas, there is a separation
of scales in the considered binary mixtures. That is, a finite-size droplet changes its shape
at the distances of the order of the “large” healing length defined by the chemical poten-
tial, ξ∝

Æ

ħh2/(m|µ|), while the main contributions to the LHY terms in Eq. (3) arise from
“short” distances ∝ 1/cs [3]. Under these specific conditions it is possible to incorporate
higher-order terms locally as non-linear terms in the Gross-Pitaevskii equation (GPE) for the
droplet. Following the notation of Ref. [3] we introduce the rescaled coordinate r̃ = r/ξ with
ξ =

Æ

6ħh2/(|δg|mn0), where the equilibrium density n0 is given in Eq. (13). Then, the en-
ergy functional associated to the equation of state (6) with the beyond Bogoliubov speed of
sound (11) is written as

ηE =
∫

d r̃

�

1
2
|∇r̃Φ|2 −

3
2
|Φ|4 +

1

4
p

2
|Φ|5

�

1−
g12

g

�5/2

×
�

1− |Φ|
5

24
p

2

g
|g12|

�

δg
g

�2�

1−
g12

g

�3/2
�5/2�

, (15)

where η= 6ξ3/(n2
0|δg|) and the classical field Φ is normalized as

∫

dr|Φ|2 = N/n0. We briefly
note that we consider Φ1 = Φ2 = Φ, and neglect therefore the internal dynamics between the
respective components [3,32]. In Eq. (15) we have assumed cd = 0 to hold, so as to avoid the
imaginary part of the energy functional. This is motivated from the analysis of the previous
section, in which neglecting the density mode was found not to alter greatly the behavior of
the equation of state. The energy functional Eq. (15) reduces to the one used in Ref. [3] in the
limit δg → 0.

The GPE can be obtained from the variational procedure iħh∂Φ/∂ t̃ = η∂ E/∂Φ∗ [4]:

iħh
∂Φ

∂ t̃
=

�

−
1
2
∆r̃ − 3|Φ|2 +

5

8
p

2
|Φ|3

�

1−
g12

g

�5/2

(1−α|Φ|)3/2
�

1−
3
2
α|Φ|

�

�

Φ , (16)

with α = 5
24
p

2
g
|g12|
(δg/g)2 (1− g12/g)3/2. In what follows, we solve numerically the station-

ary GPE (16) by propagating it in imaginary time [33].
Before discussing the numerical results, it is insightful to notice that the leading order

correction introduced by the beyond Bogoliubov sound in the energy functional is of attractive
three-body nature. Expanding the quantum fluctuations term in Eq. (15), the energy functional
yields term E∝ K3n3

0|Φ|
6/3!. Such cubic dependence can be interpreted as corresponding to

three-body interactions with the strength given by

K3

3!ħh
' −

256
9
ħha4

m
δa
a12

�

1−
a12

a

�4
. (17)

An estimate using typical experimental values for 39K with a = pa11a22 ' 48a0 where a0 is
the Bohr radius and a12/a = −0.115 provides |K3|/3!ħh ∼ 10−41m6/s, therefore being of the
same order as the three-body loss rate measured in real experiment [8]. Thus, the effective
three-body interactions (17) might be of the same order as the three-body terms which are
not included in the model Hamiltonian (1). It was proposed that inclusion of three-body
interactions on its own might lead to stabilization of a droplet [32,34].

We show in Fig. 5 the density profile of the self-bound mixture obtained by solving Eq. (16),
in two characteristic regimes. The GP equation is governed by dimensionless parameter
Ñ = N/(n0ξ

3)which is linearly proportional to the number of atoms N and as well depends on
the interaction strength. Once expressed in the chosen units, the density profiles of different
systems with the same value of Ñ reduce within the approach of Ref. [3] to a single curve,
shown with the top black solid line. The density profiles predicted by our theory strongly
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(a) (b)

Figure 5: Density profile of the self-bound droplet obtained from the GPE (16) for
(a) N/n0ξ

3 = 3000 (b) = 30. The upper black line is the universal result of Petrov’s
theory [3], whereas the color lines are results from our beyond-LHY approach, cal-
culated for different values of interaction strength. Color guides are the same for the
upper and lower panel and are ordered in increasing the disbalance δg/g from top
to bottom. The inset in the lower panel reports the mean-square size of the droplet,
normalized to the value σ0 coming from Petrov’s theory, as a function of δg/g.

depend on the interactions and are shown with color lines. The two characteristic examples
shown in Fig. 5 are calculated for (a) N/n0ξ

3 = 3000 where a bulk region is formed in the cen-
ter which is a hallmark of a liquid, and (b) N/n0ξ

3 = 30 corresponding to typical experimental
conditions [8]. The most crucial effect is that the central density of the droplet is decreased
while its size is simultaneously increased, in agreement with diminishing equilibrium density
found in a homogeneous liquid, see Fig. 4. It is interesting to note that also in the experiment
of Ref. [9], the measured data for the droplet size was found to be larger than the prediction
from Ref. [3]. For a sufficiently small number of atoms, the density profile of the liquid phase
is well described by a Gaussian function, and one can extract the width of the droplet from a
fitting. The obtained result is shown in the inset of Fig. 5(b), where the size of the self-bound
mixture is found to be systematically larger than the value σ0 predicted from Petrov’s theory.
At the same time, σ0 increases when δg → 0, so the actual droplet size is larger for a smaller
disbalance.

Another experimentally relevant quantity is the critical atoms number for the droplet for-
mation. Below a certain number of atoms, the droplet state becomes unstable and it evapo-
rates. The critical number of atoms for the unstable phase can be conveniently investigated
by means of variational approach. Close to the critical number, one can indeed safely use the
Gaussian ansatz and assume the density profile of the gas to be [32]

Φ=

√

√

√ Ñ
n0π3/2σ3/2

exp

�

−
1
2

r2

σ2

�

, (18)

with σ the waist. Then for a fixed value of N , the equilibrium state corresponds to the value
of σ for which the energy functional Eq. (15) is minimized. We have verified that while for
sufficiently large number of atoms there is a global minimum in E(σ) at finite value of σ,
corresponding to the droplet state, the later becomes a local minimum with E(σ) > 0 as one
crosses the metastable point N ≤ Nmeta. Further decreasing N one reaches the critical number
Nc below which the energy minimum at finite σ vanishes and the ground state corresponds
to a gas, σ→∞. The metastable number as well as the critical number of atoms as a func-
tion of δg/g is reported in Fig. 6. We briefly note that within the variational approach, the
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Figure 6: Critical number of atoms as a function of δg/g. The solid and dashed
lines are the predicted atom numbers for the unstable (Nc) and metastable (Nmeta)
droplet solution, respectively. The top red curves are evaluated within our theory,
while the bottom black curves are calculated using the universal approach of Ref. [3]
(Ñmeta = 24.03 for the black dashed and Ñc = 19.61 for the black dotted lines,
respectively).

theory of Petrov predicts Ñmeta = 24.03 and Ñc = 19.61, thus slightly larger than the values
Ñmeta = 22.55 and Ñc = 18.65 reported in Ref. [3], calculated from GPE (16). We find that the
inclusion of beyond LHY terms in the energy functional is responsible for shifting the critical
number to higher values. Experimentally, the critical number of atoms for the droplet state of
Bose mixtures in both confined geometry [9] and free space [8] configuration has been mea-
sured. While in the free space measurement Nc was found to lie near the prediction of Ref. [3]
for the metastable state (= 22.55), the confined geometry measurement showed a deviation
of Nc to lower value. Recently, this deviation was accounted for the effects of finite-range in
the interaction potential, which is neglected in the contact type s-wave description [12,13].

5 1D Mixtures

Although the true Bose-Einstein condensation associated with an off-diagonal long-range order
does not exist in one-dimensional geometry, it is known [35] that the Bogoliubov theory is
quantitatively correct for predicting the energy in the regime where the coherence is sustained
for distances large compared to the mean interparticle distance [36]. Thus, one can still use
the Bogoliubov theory Eq. (2) to study the mixture, and the momentum sum in Eq. (3) can be
evaluated straightforwardly, yielding the result

E
V
=

g
2

�

n2
1 + n2

2

�

+ g12n1n2 −
2

3π
m2

ħh
�

c3
d + c3

s

�

, (19)

with the interaction coupling constant related to the s-wave scattering length according to
gi j = −2ħh2/(mai j). It is worth noticing that in the 1D mixture, quantum fluctuations have
opposite contribution (notice the negative sign) as compared to the 3D case Eq. (6). Conse-
quently, droplets are formed in the dominantly repulsive regime [14] where δg = g+ g12 > 0.
Therefore the beyond mean-field energy functional (19) does not suffer from any complex
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(a) (b)

Figure 7: (a) Energy per particle of a 1D liquid as a function of density for
δg/g = 0.3. (b) Equilibrium density of the liquid phase as a function of δg/g.
The black dashed line corresponds to prescription (8) of Ref. [3] while the dotted
line is the beyond mean-field result with the Bogoliubov speed of sound Eq. (7). The
red solid line is the prediction from our theory. Black dots are the QMC results from
Ref. [15]. The dashed and solid vertical lines in panel (b) indicate the critical values
for δg/g above which the liquid becomes metastable in respect to the molecular gas
and atomic gas states, respectively.

sound velocities, in contrast to what happens in the 3D geometry. Nevertheless, it is instruc-
tive to obtain higher order corrections to the speed of sound, following a similar procedure as
in the 3D case. After evaluating the compressibilities from Eqs. (5) and (19), we obtain the
following expressions for the sound velocities:

c2
d =

n
2m

�

(g + g12)−
g

2π
1

p

n|a|

�

�

1+
g12

g

�3/2

+
�

1−
g12

g

�3/2
��

(20a)

c2
s =

n
2m
(g − g12)

�

1−
1
π

1
p

n|a|
δg
g12

�√

√

1+
g12

g
−
√

√

1−
g12

g

��

. (20b)

One can see that in 1D, higher-order corrections to the Bogoliubov speed of sound are respon-
sible for a dynamic instability as n|a| → 0. However, a peculiarity of 1D geometry is that the
mean-field regime corresponds to the large density, n|a| � 1. In other words, the instability
is predicted in the regime where the Bogoliubov theory is not applicable. It has been found in
QMC simulations [15] that the liquid evaporates for δg/g > 0.54, in agreement with threshold
value where effective interaction between dimers becomes attractive [37] while three-dimer
interaction is still repulsive [38].

We show in Fig. 7(a) the equation of state of a one-dimensional Bose mixture for
δg/g = 0.3 as predicted from our new theory and compared with QMC calculations from
Ref. [15]. The energy is normalized by the binding energy of dimers composed from atoms
from different components, εB = −ħh2/(ma2

12). Finally, Fig. 7(b) shows the equilibrium density
in the liquid phase, obtained from the minimum of the ground state energy. Surprisingly, we
find that our theory essentially coincides with the QMC results up to extremely strong interac-
tions, δg/g ' 0.5. By increasing δg/g, we find that the liquid phase becomes first metastable
with respect to a molecular gas composed of N/2 free dimers, E(neq) > NεB/2, with the
threshold value (δg/g)Meta,1 = 0.356 indicated by the dashed vertical line in Fig. 7(b). Fur-
ther increase in interactions make the liquid metastable in respect to the atomic gas state,
E(neq) > 0, with the threshold value (δg/g)Meta,2 = 0.626 shown by a solid vertical line.
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Figure 8: Free energy per particle of a 3D liquid Eq. (22) as a function of density for
δg/g = −0.2 at different temperatures.

Eventually the minimum in the energy of the liquid disappears for δg/g > 0.64 making the
liquid phase mechanically unstable. The exact threshold value is δg/g > 0.54 as found from
QMC [15] and few-body calculations [37]. In other words, our predictions for the equilibrium
density turn out to be very precise up to almost the threshold value where the liquid state
disappears.

6 Effects of finite temperature

Finally, we discuss how the temperature affects the stability of the liquid phase. In the low
temperature regime where kB T � |µ|, the thermodynamic behavior of a weakly interacting
Bose gas is well described in terms of non-interacting phonons [4]. The Helmholtz free energy
of the mixtures, both in three and one dimension, is therefore given by

F = E + kB T
∑

k

�

ln
�

1− e−βħhcd k
�

+ ln
�

1− e−βħhcsk
��

, (21)

with E the ground-state energy as given by Eq. (3).
Let us first discuss the 3D case. In a large system the sum over momenta in Eq. (21) can

be approximated by an integral, and one finds the well-known T4 law for the free energy:

F
N
=

E
N
−
π2

90
(kB T )4

nħh3

�

1

c3
d

+
1
c3
s

�

. (22)

It is worth noticing that in the above expression, the speed of sound enters in the denominator,
as 1/c3

d(s). Thus for the description of thermodynamics, it is of fundamental interest to have a
finite speed of sound, since approximating cd ' 0 as in Eq. (8) would result in a droplet which
becomes unstable at any small but finite temperature. We show in Fig. 8 the free energy of
the mixtures calculated at different temperatures. For the chosen parameter δg/g = −0.2,
we find that finite temperature has little effect as far as kB T ® |Eeq|/N , where Eeq/N is the
ground-state energy of the liquid, given by the minimum of the energy functional at T = 0. In-
creasing further the temperature, the liquid is predicted to evaporate at kB Tc ' 10−4ħh2/(ma2),
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(a) (b)

3D 1D

Figure 9: Critical temperature for the dynamical stability of the liquid phase, in (a)
3D and (b) 1D geometry. The inset shows the ratio of the critical temperature to
the ground state energy of the liquid phase. In panel (b) the blue solid line is the
prediction from our theory, whereas the black dotted line is the calculation using the
Bogoliubov speed of sound Eq. (7).

slightly larger than the value |Eeq|/N = −2.66 · 10−5ħh2/(ma2). Figure 9(a) shows the estima-
tion for the critical temperature Tc in a 3D mixture as a function of δg/g. While the critical
temperature decreases with decreasing |δg|, we find that in general kB Tc is of the same order
as the ground-state energy of the liquid (see inset of Fig. 9(a)), apart from the region where
δg → 0. However, in this region, the critical temperature is found to be too large for apply-
ing the phonon thermodynamics, kB Tc � |µ|, and one needs to develop a finite-temperature
theory which takes into account the excitation of single-particle states [39].

In the one-dimensional mixture, Eq. (21) for the free energy provides the result [40]:

F
N
=

E
N
−
π

6
(kB T )2

nħh

�

1
cd
+

1
cs

�

. (23)

As we have already mentioned in Sec. 5, Bogoliubov theory in 1D geometry does not suffer
from an imaginary speed of sound. We therefore show in Fig. 9(b) the calculated evaporation
temperature, using both the beyond LHY approach Eq. (20) (blue solid line) and the Bogoli-
ubov sound velocity Eq. (7) (black dotted line). We find that both approaches give the same
qualitative behavior, with Tc decreasing as one increases δg. This is the opposite behavior to
the 3D case (see panel (a)) and it is understood as the fact that the ground-state energy of
the liquid in 1D scales as∝ 1/δg [14], in contrast to the 3D scaling∝ |δg|3 (see Eq. (12)).
Indeed, the evolution of the ratio kB Tc/(|Eeq|/N) shown in the inset of Fig. 9(b) confirms this
picture, giving a behavior close to that of the 3D case. It is observed that for larger values
of |δg| the liquid becomes more unstable with respect to temperature as both quantum and
thermal fluctuations destabilize the liquid. To summarize, we find that both in 3D and 1D
geometry, the typical temperature leading to the instability of the liquid is given by the en-
ergy per particle (or the chemical potential) corresponding to the excitations of the soft mode,
rather than dimer energy ħh2/ma2

12 corresponding to the hard mode.

7 Conclusions

In conclusion, we have developed beyond-LHY theory for the description of self-bound quan-
tum droplet in attractive mixtures of BECs. Our theoretical approach is based on self-consistent
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inclusion of higher order terms in the sound velocities, calculated in a perturbative way. The
corrections brought to the speed of sound in the density channel is shown to yield a real part,
in contrast to the prediction of Bogoliubov theory which is purely imaginary, with a dramatic
consequences in the thermal properties. The new sound velocities are used in turn to improve
the energy functional. For the mixtures in three dimensions, our approach is found to describe
accurately the equation of state in the liquid phase, predicting an equilibrium density in close
agreement with available ab-initio calculations. We further investigate finite-size droplets by
means of Gross-Pitaevskii equation, and calculate experimentally measurable quantities such
as the size of the droplet and the critical number of atoms. As well, we construct beyond-
Bogoliubov theory for 1D geometry. We find an excellent agreement with quantum Monte
Carlo values for the equilibrium density while predictions of the Bogoliubov theory are rather
imprecise. Finally, we study the thermal effects which are dominated by the excitations of
the soft mode, for which our theory is needed to cure the imaginary values obtained in less
accurate theories. We show that the minimum in the free energy disappears at temperatures
of the order of the chemical potential thus making the liquid state dynamically unstable.

A natural extension of this work consists in investigating the asymmetric mixture. In-
deed, on-going experiments use mixtures of 39K atoms in different hyperfine states, with
g11 6= g12 [8, 9]. Recently the realization of self-bound Bose mixtures with different atomic
component m1 6= m2 has been also reported [41]. On the other hand, the theory devel-
oped in this work can also be extended for the dipolar [5,6] and coherently coupled [42,43]
gases, which have attracted much interest these last years, due to the richness of its phase
diagram [44–48].

Note added.-Recently, we became aware of related papers [49,50] that examine the effects
of bosonic pairing on the formation of self-bound quantum droplet, both at zero and finite
temperature.
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