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Abstract

In a fast-paced evolving world, everything is connected. Sooner than

later, our most basic daily routines will be examined. Grocery and drug

stores will keep track of all our purchases, smartphones will register how

much we walk, run and bike a day and our headphones will keep track

of the number of decibels we place our ears under. Despite sounding

far-fetched and frankly, a bit scary, all the information collected can be

used for our own benefit. There is no denying that the three types of

data aforementioned can give us a valuable insight on our health, study

possible hazards of our lifestyle and even contribute to finding possible

diseases. All that is done through Machine Learning.

The term Machine Learning (ML) was coined in 1959 by Arthur Samuel,

an American IBMer and pioneer in the field of computer gaming and

Artificial Intelligence (AI). Being nowadays on its prime, most experts

define ML as the study of computer algorithms that improve automat-

ically through experience. And don’t be fooled, by ‘experience’ they

mean data. Machine Learning requires huge amounts of data on which

to build their algorithms to later be able to predict uncertain outcomes.

Actually, some experts even point out that the amount – and quality –

of data available is far more important than the learning algorithm itself.

This thesis studies several ML algorithms and uses them to success-

fully predict the revenue and rating of movies by means of a Kaggle

movies dataset. Linear Regression (LR), Decision Trees (DT) and Ran-

dom Forests (RF) algorithms will be discussed and their performance

will be evaluated in terms of accuracy.
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Resum

En un món en constant canvi, tot està connectat. Tard o d’hora, els

elements més bàsics de la nostra rutina diària seran analitzats. Els mer-

cats i les farmàcies tindran constància de tot allò que hem comprat, els

nostres telèfons mòbils registraran quant caminem, correm i anem en

bici durant el dia i els nostres auriculars detectaran a quants decibels

hem sotmès les nostres öıdes. Tot i sonar surrealista i, francament, una

mica angoixant, tota aquesta informació pot ser utilitzada en el nostre

benefici. És innegable que els tres tipus de dades prèviament esmentats

poden proporcionar-nos una valuosa informació sobre la nostra salut,

estudiar els possibles riscos del nostre estil de vida o inclús contribuir

a detectar possibles malalties. Tot això es duu a terme mitjançant el

Machine Learning.

El terme Machine Learning (ML) va ser encunyat el 1959 per Arthur

Samuel, un Americà de IBM, pioner en el camp dels jocs d’ordinador

i Intel·ligència Artificial (AI). Estant actualment en ple auge, la majo-

ria d’experts defineixen el ML com l’estudi d’algoritmes d’ordinador que

milloren automàticament mitjançant l’experiència. I no us deixeu en-

ganyar, al dir ’experiència’ es refereixen a dades. el Machine Learning

requereix grans quantitats de dades sobre les quals desenvolupar els algo-

ritmes que s’encarreguen de predir resultats incerts. En realitat, alguns

experts asseguren que la quantitat – i qualitat – de dades disponible és

com a mı́nim igual d’important que l’algoritme d’aprenentatge en śı.

Aquesta tesi estudia diversos algoritmes de ML i els utilitza per predir

de forma exitosa els ingressos i la valoració de pel·ĺıcules mitjançant una

base de dades de pel·ĺıcules de Kaggle. Els algoritmes de Linear Regres-

sion (LR), Decision Trees (DT) i Random Forests (RF) son analitzats i

el seu rendiment és comparat en termes de precisió.
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Resumen

En un mundo en constante cambio, todo está conectado. Tarde o tem-

prano, los elementos más básicos de nuestra rutina diaria serán analiza-

dos. Los supermercados y las farmacias tendrán constancia de todo aque-

llo que hemos comprado, nuestros teléfonos móviles registrarán cuanto

andamos, corremos y pedaleamos durante el d́ıa y nuestros auriculares

detectarán a cuantos decibelios hemos sometido nuestros óıdos. Pese a

sonar surrealista y, francamente, una poco agobiante, toda esta infor-

mación puede ser utilizada en nuestro beneficio. Es innegable que los

tres tipos de datos previamente mencionados pueden proporcionarnos

una valiosa información sobre nuestra salud, estudiar los posibles riesgos

de nuestro estilo de vida o incluso contribuir a detectar posibles enfer-

medades. Todo esto se lleva a cabo mediante el Machine Learning.

El término Machine Learning (ML) fue acuñado en 1959 por Arthur

Samuel, un americano de IBM, pionero en el campo de los juegos de

ordenador e Inteligencia Artificial (AI). Estando actualmente en pleno

auge, la mayoŕıa de expertos definen el ML como el estudio de algoritmos

de ordenador que mejoran automáticamente mediante la experiencia. Y

no os dejéis engañar, al decir ’experiencia’ se refieren a datos. El Machine

Learning requiere grandes cantidades de datos sobre los cuales construir

los algoritmos que se encargan de predecir resultados inciertos. En real-

idad, algunos expertos aseguran que la cantidad – y calidad – de datos

disponible es al menos igual de determinante que el algoritmo de apren-

dizaje en śı.

Esta tesis estudia diversos algoritmos de ML y los utiliza para predecir

de forma exitosa los ingresos y la valoración de peĺıculas mediante una

base de datos de peĺıculas de Kaggle. Los algoritmos de Linear Regres-

sion (LR), Decision Trees (DT) y Random Forests (RF) son analizados

y su rendimiento es comparado en términos de precisión.
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1 Introduction

1.1 History

In 1952, Arthur Samuel joined IBM’s Poughkeepsie Laboratory and be-

gan working on what were later known as the very first machine learning

programs, first creating programs that played checkers [1].

In 1960’s, Bayesian methods were introduced for probabilistic inference

in machine learning.

After the decade of 1960, known as ‘AI Winter’ due to the growing pes-

simism about its effectiveness, Machine Learning experienced a resur-

gence thanks to the rediscovery of Backpropagation.

The 1990’s brought its final explosion. Work on Machine Learning shifted

from a knowledge-driven approach to a data-driven approach. Scientists

began creating programs for computers to analyze large amounts of data

and draw conclusions – or “learned” – from the results. Support Vector

Machines (SVMs) and Recurrent Neural Networks (RNNs) became pop-

ular.

In 2014, Facebook researchers published their work on DeepFace, a sys-

tem using Neural Networks that identified faces with 97.35% accuracy.

The results were an improvement of more than 27% over previous sys-

tems and rivaled human performance [2].

According to Forbes magazine, same-day shipping from Amazon is avail-

able thanks to Machine Learning. In fact, their current ML algorithm

has decreased the ‘click-to-ship’ time by 225%.

1.2 Project outline

This thesis reviews the basics of Machine Learning and implements three

of its most well-known algorithms. In a summary, the project goals are

the following:

• Review basic concepts of Machine Learning and its applications

• Perform a thorough Data Analysis on a dataset

• Implement a total of three Machine Learning algorithms and com-

pare their performance
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1.3 Organization

The development of this thesis has been organized in 4 work packages,

which are shown in Figure 1.

Figure 1: Work packages distribution

• Data Analysis: Data science techniques will be used to extract

valuable information from data. Incomplete data will be dealt with.

• Algorithms: The development of several Linear Regression models

will be carried out, together with their mathematical proof.

• Evaluation: The aforementioned algorithm’s performance will be

evaluated in terms of accuracy.

• Improvements: Decision Trees and Random Forests algorithms will

be implemented, and their results will be compared with those ob-

tained through the LR models.
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This thesis has implied a total time of 6 months. The time distribution

of the different tasks undertaken can be seen in Figure 2.

Figure 2: Project Time Planning

The Machine Learning course took 5 weeks and then the research phase

to study the State of the Art and project goals definition took 3 weeks.

The Exploratory Data Analysis (EDA) took 5 more weeks.

Later, 6 weeks were used to develop the algorithms and their mathemat-

ical proof.

After that, 2 weeks were spent on the algorithms performance evaluation

and the study of further improvements.

Finally, 2 weeks were used for developing the other algorithms and per-

forming the final evaluation.
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2 State of art

2.1 Introduction

What is Machine Learning?

Despite being pretty abstract concept, most ML developers would agree

that Machine Learning is a branch of Artificial Intelligence based on

the idea that systems can learn from data, identify patterns and make

decisions with minimum human intervention. Although a controversial

classification, most experts agree that the main areas of Artificial Intel-

ligence are:

• Machine Learning

• Deep Learning

• Natural Language Processing (NLP)

• Expert Systems

• Computer Vision

• Robotics

In [3], Machine Learning is defined as the programming of computers to

optimize a performance criterion using example data or past experience.

Deep Learning can be utilized for addressing some important problems

in Big Data Analytics, including extracting complex patterns from mas-

sive volumes of data, semantic indexing, data tagging, fast information

retrieval, and simplifying discrimination tasks [4].

Authors in [5] mention speech recognition, visual object recognition, ob-

ject detection and many other domains such as drug discovery and ge-

nomics as the main applications for Deep Learning.

NLP is defined as the function of software or hardware components in

a computer system which analyze or synthesize spoken or written lan-

guage [6], where the term ’natural’ refers to human language as opposed

to other languages such as mathematics notation or programming lan-

guages. NLP is usually used for automatic question answering, sentiment

analysis or even toxic comments detection.
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2.2 Types of Machine Learning

Machine Learning algorithms are divided into two main categories1:

• Supervised Learning: Includes the vast majority of Machine Learn-

ing algorithms. They are called supervised because they partially

require the solution to the problem they are trying to solve. In

Supervised Learning (SL) we can find input variables x and the

output variable Y , being:

Y = f(x)

The goal in SL is to approximate the mapping function f so well

that, when prompted with new data x, the algorithm can per-

fectly predict its corresponding output Y . Supervised Learning

algorithms and grouped into two major categories:

– Classification algorithms: the output variable is a category,

such as “cat”/“dog” or “disease”/“no disease”.

– Regression algorithms: the output variable is a real value, such

as “dollars” or “weight”

• Unsupervised Learning: Refers to problems where only the input

data x is available and no corresponding output variables Y . The

goal for Unsupervised Learning (UL) is to model the underlying

structure or distribution in the data, in order to learn more about

it.

An example of UL could be an algorithm that, given a database of

animals’ pictures, identifies how many different animals there are

and creates groups with all the pictures of every animal. In that

case, the algorithm would put all dog pictures together, but would

have no idea on what label to put on that group. In other words,

the algorithm would not know what animal it is.

• Reinforcement Learning: In this type of ML, software gets rewards

for winning and punishment for losing. Reinforcement Learning

(RL) algorithms are typically applied to games and forgery detec-

tors.

1Sometimes Reinforcement Learning is also considered the third type of Machine Learning
algorithms, but that is out of the scope of this work.
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In Figure 3, an scheme showing the two major ML algorithms sub-types

is shown:

Figure 3: Machine Learning algorithms scheme

Then again, there are many ML SL algorithms that implement Classi-

fication and many others that implement Regression. Despite the list

being endless, the most relevant ones up to date could be summarized

in:

• Classification

– Support Vector Machines (SVM)

– Decision Trees (DT)

– Random Forests (RF)

• Regression

– Linear Regression (LR)

– Logistic Regression (LGR)

Similarly, the most common ML UL algorithms are:

• Unsupervised Learning

– K-Means Clustering

7



2.3 Applications

Machine Learning is growing at an extremely fast pace. Both the reason

and the consequence of that phenomenon is the large amount of interdis-

ciplinary applications that are discovered every year for this technology.

From home gadgets and computer games to health and cybersecurity,

Machine Learning is present in almost every aspect of our lives.

In [7], authors use protein biomarkers and microarray data to success-

fully detect cancer. In big companies like Facebook, nearly all aspects of

user experience make use of Machine Learning. Ranking posts for news

feed, speech and text translations and real-time video are just some of

the examples [8].

Ads in all cutting-edge websites leverage ML to determine what content

to display to a given user. Ads models are trained to learn user traits

and context, previous interactions and interests and many more. Thanks

to that, ML algorithms can predict the likelihood for a user to click on

an ad, visit a website, and/or purchase a product [9].

In [10], authors discuss the challenges derived from both Face Detection

(properly detecting a human face in a picture) and Face Recognition

(determining who the face corresponds to). In this work, the object-

detection algorithm proposed by Viola and Jones is used due to its high

accuracy and speed.

In [11], authors discuss the applications of ML in pattern recognition. In

that field, ML could be used to process handwritten characters, such as

zip codes on envelopes or amounts on checks.

Authors in [12] use Machine Learning techniques for forecasting short-

term loads and prices as well as very short-term wind power prediction

in power systems.
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3 Exploratory Data Analysis

3.1 Introduction

In this section, the IMBD Movies Dataset from Kaggle will be studied

which can be found on:

https://www.kaggle.com/kevalm/movie-imbd-dataset

Relevant data statistics will be displayed in order to have a general

overview of the data distribution and meaningful, hidden information

present on the dataset will be shown.

3.2 The dataset

The dataset used in this work is formed by 5043 rows (movies) and 28

columns (features).

The columns on this dataset are:

• color: either B&W or Color

• director name: name of the movie’s director

• num critic for reviews: number of official newspapers/critics that

have reviewed the movie on IMDB

• duration: length of the movie in minutes

• director facebook likes: number of likes the director’s profile has on

Facebook

• actor 3 facebook likes: number of likes the 3rd character’s profile

has on Facebook

• actor 2 name: name of the 2nd character

• actor 1 facebook likes: number of likes the 1st character’s profile

has on Facebook

• gross: gross revenue generated by the movie

• genres: all the genres present in the movie

• actor 1 name: name of the 1st character

• movie title: title of the movie

9



• num voted users: number of users that gave the movie a rating on

IMDB

• cast total facebook likes: sum of all cast Facebook profiles’ likes

• actor 3 name: name of the 3rd character

• facenumber in poster: number of faces that appear in the movie

poster

• plot keywords: list of key words on the plot description

• movie imdb link: link to the movie on IMDB site

• num user for reviews: number of users that gave the movie a review

on the IMDB platform

• language: original language of the movie

• country: country of origin of the movie

• content rating: type of public the movie is intended for

• budget: amount of money allocated for the movie

• title year: year the movie was released

• actor 2 facebook likes: number of likes the 2nd character’s profile

has on Facebook

• imdb score: rating over 10 on the IMDB site

• aspect ratio: dimensions of the screen used

• movie facebook likes: number of likes the movie has on Facebook

10



On Figure 4, a snapshot of the first 10 rows of the dataset can be seen,

showing the (a priori) most relevant features of the movies.

Figure 4: First 10 rows of the dataset

It’s worth noting that, even on the first 10 rows, there are already some

values missing, in this case, row number 4. Star Wars movie value for

some fields is Not a Number (NaN), a special value that will be dealt

with later on.

In relation to that, the feature with more missing values is the gross

revenue, with 4159 out of 5043 values, or just 82.47% of them.

On Figure 5, some stats are shown for the numeric features of the dataset,

the most significant ones (a priori) being the budget and gross revenue,

as well as the IMDB score.

Figure 5: Some stats for dataset’s numeric features
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For example, the average value for the movies budget is $39,752,620 and

the mean gross income is $48,468,410. That being said, we can con-

clude the average profit for a movie from this dataset is approximately

$8,715,790.

Similarly, the number of values (count), the standard deviation (std),

together with the min, max and quartiles values are shown.

3.3 Data distribution

Although Figure 5 shows a lot of useful metrics, it is difficult to get an

exact idea of the information it conveys. Do all the movies share more

or less the same duration, budget and gross revenue? How much spread

are their scores? Were they released around the same year?

To answer all these questions, let’s now take a look to the data in a more

graphical approach.

How old are movies in the dataset? To answer that question, the year

title of the movies is shown in Figure 6. Movies from this dataset were

released as early as 1916 and as late as 2016. Despite this 100-year span,

just 15% of the movies from this dataset were released before 1995 (79

years), and 85% from 1995 to 2016 (32 years). For that reason, the

average year of release for our movies is the year 2002.

Figure 6: Distribution of movies release year
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Another feature to look at is the movies color. That is, whether they are

Black & White movies or Color movies. In Figure 7, a pie chart shows

this distribution, with 4815 Color movies (95.84%) and 209 B&W ones

(4.16%).

Figure 7: Distribution of Color and Black & White movies
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In Figure 8, the distribution for the duration of the movies (in minutes) is

shown. It can be observed that most of the movies (88%) have a duration

between 80 and 140 minutes, what could be considered as standard movie

duration times.

Figure 8: Distribution of movies duration in minutes
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In Figure 9, the distribution for the budget of 4538 out of the 5043 movies

(90%) can be seen. There are 492 values missing (9.75%) on the dataset

and 13 of them (0.25%) have been left our of the histogram for being

outliers (having a budget greater than $390M), far from the rest of the

data.

Figure 9: Distribution of movies budget in M($)

To put the effect of this 13 outliers in perspective:

• The average budget for the movies shown on the histogram is

$33.38M and the maximum value is $267.3M.

• The average budget for the overall dataset is $39.75M and the max-

imum value is $12,215.5M, what is 307 times the dataset mean or

simply more than 12 billion dollars.

All in all, it is clear that the presence of outliers, despite representing

less than 1% of the data, constitute an issue that should be taken into

account, as all the metrics and, consequently, all the relations in the

data, are susceptible of being deeply affected by them.
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In Figure 10, the distribution for the gross revenue of 4124 out of the 5043

movies (81.78%) can be seen. There are 884 values missing (17.53%) on

the dataset and 35 of them (0.69%) have been left our of the histogram

for being outliers (having a gross revenue greater than $350M), far from

the rest of the data.

Figure 10: Distribution of movies gross revenue in M($)

It’s interesting to note the immense peak right next to the origin, that

represents a great deal of movies with a poor gross revenue. As revealed

on the stats in Figure 5, the 25-percentile of the gross revenue is $5.34M.

That means that 25% of this dataset movies had an income of $5.34M

or lower.
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In Figure 11, the distribution for the score obtained on IMDB by the

movies from the dataset is shown.

Figure 11: Distribution of movies score

The minimum score obtained is 1.6/10 and the maximum is 9.5/10. The

average score is 6.44/10 and most films (85.43%) fall in the range between

5/10 and 8/10, which could be considered acceptable movies.
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There is other data on the dataset can be analyzed and discarded with-

out the need to plot it.

In Figure 5, the number of movie likes’ 50-percentile is 166, while the

maximum is 349,000. This means most movies don’t have a strong pres-

ence on Facebook and, consequently, that is not a relevant metric to

consider.

That same pattern is appreciated in the actor 1 facebook likes feature

(50-percentile is 988 and maximum is 640,000), and actor 2 facebook likes

(50-percentile is 595 and maximum is 137,000).

Other data that may seem irrelevant may end up playing a crucial row

on trying to predict the revenue and rating of a movie. In Figure 12,

the distribution of the number of users that reviewed a movie on IDMB

is shown for 4970 movies over 5043 (98.57%), as 21 values were missing

(0.43%) and 52 values (1.05%) were left out as outliers.

Figure 12: Distribution of the number of reviewing users for a movie

As seen on the image, the average number of users that review a movie

from our dataset on IMDB is 248.
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3.4 Stats and information

There is no doubt these columns (or features) provide valuable informa-

tion on the movies under study. It seems logical to think that a movie

with a well-known director, a higher budget or a famous actor is more

likely to generate a higher revenue and/or obtain a better rating on the

IMDB platform. But, is that so? To answer that question, let’s take a

look at the correlation between the different features.

For that purpose, the correlation matrix 2 in Figure 13 provides a bird

perspective of these relations for the numeric features.3.

Figure 13: Correlation matrix

2Although the numeric version is much more precise, this visual one is included for easier
interpretation. The numeric correlation matrix can be found on Annex 1.

3In this visual correlation matrix, yellow cells indicate positive correlations and purple cells
indicate negative (or inverse) correlations. In both cases, the darker the color, the stronger the
correlation in absolute value, as the legend shows.
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Being all the coefficients of the diagonal equal to 1 (maximum correla-

tion factor for a feature with itself), let’s now analyze other correlations

that are considerably high (yellow-ish).

In that sense, it can be observed that there is a high correlation betwen

the feature actor 1 facebook likes and cast total facebook likes (specifi-

cally a correlation factor of 0.95), which seems obvious, as the total cast

likes include the main actor’s ones.

Although not as elevated, some correlations that do convey some infor-

mation are, for example, the inverse correlation between the duration

and the title year (dark blue). This negative correlation implies that,

the newer a movie is (‘higher’ year), the shorter it is on average.

Figure 14 shows the evolution of the movies’ duration (and the greater

amount of movies) over time for both Color and B&W movies.

Figure 14: Duration of movies in minutes over the years
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Then, are movies granted a higher budget over time? In Figure 15, the

evolution of the allocated budget for movies over time us shown.

Figure 15: Evolution of allocated budget over the years

From the graphic, it can be seen that Color movies usually have a higher

budget, and that both Color and B&W movies’ budget has increased

over time, especially from the 1980’s onward.
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In Figure 16, the evolution of the gross revenue of movies over time can

be seen for both Color and B&W movies.

Figure 16: Evolution of gross revenue over the years

Again, Color movies generated a higher income than B&W ones consis-

tently over time, although somewhere around the 2000’s this gap started

closing, probably because the few movies that are currently recorded in

B&W have actually the same resources as Color ones do.
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In Figure 17, the profitability factor over time is shown for both Color

and B&W movies4.

Figure 17: Evolution of movies profitability over times

As shown in the image, movies from this dataset have became less prof-

itable over time. The main reason for that phenomena is probably the

fact that movies’ budget has tremendously increased over the last few

years, whereas their gross revenue (although higher), has not been able

to keep with that pace, probably due to the increasing amount of movies

released each year and the appearance of streaming platforms like Netflix

or HBO, which hinder movies revenue in cinemas.

4The profitability factor is not a default metric of the dataset. The profitability factor is
defined in this work as the relation between the gross revenue of a movie and its budget. This
means, if higher than 1, the movie was profitable and, if lower than 1, the movie had losses.
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In Figure 18, the evolution of the score obtained on the IMDB platform

by movies over time is shown.

Figure 18: Evolution of IMDB score over the years

It’s worth noting that, whereas the B&W movies score has being some-

what regular over time (despite several spikes), the Color movies started

with decent scores (7.5/10) around the 1940’s and have being doing worse

over time, with an average score of 6/10 in the last years.

From the 1990’s onward, B&W movies from this dataset have a higher

average score than Color movies, again probably due to their matching

resources and their uniqueness.
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And then, is there a relation between the movies’ duration and the gross

revenue they generate or the rating they get on IMDB?

Back to Figure 13, we can see there is in fact a positive-valued correla-

tion factor between movie duration and gross (precisely 0.25), as well as

between movie duration and IMDB score (0.20). Let’s now take a look

at these relations.

First of all, Figure 19 shows the relation between the duration of the

movies and the gross revenue they obtained.

Figure 19: Gross revenue as a function of movies’ duration

As seen on the graphic, long-lasting movies tend to do better both for

B&W and Color movies. Moreover, that relation is specially important

on the Color movies, as the linear equation hereby used to model that

relation presents a higher slope. However, the dataset under study has

way more examples of Color movies than it has of B&W ones, so it would

be interesting to compare this linear relation with a greater amount of

B&W movies.
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Similarly, Figure 20 shows the relation between the duration of the

movies and the score they obtained on the IMDB platform.

Figure 20: IMDB score as a function of movies duration

In this case, a second order polynomial has been used to estimate the

relation between the two features, resulting in Color movies having a

greater score for longer movies up to 250 minutes and falling then onward.

B&W movies, on the other hand, present a constant increase on their

rating with respect to their duration, although again, a greater amount

of data could affect that tendency.
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Finally, let’s analyze the two features we will later try to predict using

Machine Learning algorithms: IMDB score and Gross revenue. How tied

are they?

The correlation matrix on Figure 13 says not so much, with a (obviously

positive) but small correlation coefficient of 0.198.

But is this relation linear or polynomical?

In Figure 21, the gross revenue of movie is represented as a function of

their IMDB score, together with their linear relation.

Figure 21: Gross income as IMDB score (linear relation)

In this case, both Color and B&W have a higher revenue if their score is

higher (and vice versa), especially Color movies.
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In Figure 22, that same relation is shown, this time estimating it with a

polynomial of 2nd order.

Figure 22: Gross income as IMDB score (polynomial relation)

In this case, again both Color and B&W movies associate a greater

revenue stream with a higher IMDB rating and again this relation is

stronger in the case of Color movies.
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4 Methodology and project development

4.1 Introduction

In this section, the different algorithms under study will be discussed

and examined from a mathematical point of view.

Nevertheless, prior to using any ML algorithm, the dataset has to be

properly managed. The original dataset will be divided into two sets:

training and testing. Usually, ML algorithms use 80% of their data set

examples for training the algorithm and 20% for testing it.

Following that rule, our dataset (5043 examples) will be divided into a

training set of m=4034 examples5 to train the ML algorithm and 1009

examples to actually test its precision6.

Later, both training and testing sets are divided into two groups: the

input features (information available) and the output features (predic-

tion).

For that reason, the whole original dataset is finally divided into:

Xtrain, Ytrain, Xtest, Ytest

5We will later see that is not exactly true, as NaN values cannot be used.
6In this case, the term ‘precision’ is used in a generic way. The different metrics to evaluate a

ML algorithm’s performance will be further discussed on section Annex 2: Metrics.
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In Figure 23, an example of this partition is shown for a database of

m=10 examples and n=7 features.

Figure 23: Training and testing split example

In the dataset under study, Xtrain is composed of m examples with n

features each and Ytrain would be the output feature (i.e. gross revenue

or IMDB score) of those examples. Then Xtest would be the set of movies

for which we want to predict the output feature (to test the built model)

containing their corresponding input features and finally, Ytest would be

the actual output feature of those testing examples

What Machine Learning Regression algorithms do is, based on the ex-

amples from Xtrain and their available ‘solution’ Ytrain, build a model

which is later used to predict the output of Xtest (usually referred to

as Ypred) and compare them to the actual solutions Ytest to check the

performance of that algorithm.

However, the reasoning and the mathematical process behind every algo-

rithm to achieve this is completely different. In this section, the behind-

the-scenes of these algorithms is shown.
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4.2 Linear Regression

Linear Regression (LR) is one of the most used Machine Learning al-

gorithms. LR is a Supervised Learning algorithm, more specifically a

Regression algorithm. This means LR tries to model the relationship

between the dependent (or output) variable and one (or several) inde-

pendent (or input) variables. The case of one unique input variable (or

feature) is known as Simple Linear Regression (SLR), whereas the

case of several input variables (or features) is called Multiple Linear

Regression (MLR).

What LR does is come up with the linear equation that minimizes the

Mean Squared Error (MSE), also known as the average squared distance

of all training examples to that line.

Then, for any new example, the algorithms estimates the output it could

have by mapping it using the built equation.

But how does the algorithm come up with that estimator line?

The model builds a hypothesis hθ based on all the pairs of training

examples and their outcomes:

(x(i), y(i)) (1)

Being x(i) the ith training example and y(i) its corresponding output

feature. In a Linear Regression case, the hypothesis7 has the form:

hθ(x) = θ0 + θ1x (2)

Where θ0 is often referred to as the intercept and θ1 is known as the

coefficient. The goal is that the modeled hypothesis maps the training

examples (in vector x) to their output value as similarly as possible to

their actual value y. In mathematical terms, the optimization problem

is expressed:

minθ0,θ1 (hθ(x)− y)2 (3)

7For simplicity, the hypothesis hθ() is usually written down as simply h(). For that same
principle, in this work the sub-index θ will eventually fade into the dark abyss.
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Where vector y contains the output value of all the training examples.

This minimization problem is usually expressed as:

minθ0,θ1
1

2m
(hθ(x)− y)2 (4)

The 1
2m factor8 does not alter the solution of the minimization (optimiza-

tion of a constant) and is introduced to match the definition of Mean

Squared Error (MSE).

The function we are trying to minimize is usually often referred to as the

cost function, J(θ0, θ1):

J(θ0, θ1) =
1

2m
(hθ(x)− y)2 (5)

In the above equation, both hθ(x) and y are vectors. If we develop the

cost function in a non-vector formulation:

J(θ0, θ1) =
1

2m

m∑
i=1

(hθ(x
(i))− y(i))2 (6)

Which basically depicts the goal to minimize the difference between the

mapping of all the m examples h(x(i)) and their actual value y(i).

This minimization problem is usually solved using the Gradient Descent

algorithm. The mathematical expression of such algorithm is, for every

θ parameter on the hypothesis, simultaneously update:

θj := θj − α
∂

∂θj
J(θ0, θ1) for j = 0 and j = 1 (7)

Combining this parameter update with the expression of J(θ0, θ1) from

equation (6), we obtain:

θj := θj − α
1

m

m∑
i=1

(h(x(i))− y(i))2 x
(i)
j (8)

Being x0 = 1, as it multiplies the intercept θ0.

8Friendly reminder: m is the number of examples user for training the algorithm. For that
reason, dividing the total error by m provides the average error for every observation, also known
as MSE.
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Gradient descent simultaneously updates the value of all θj until conver-

gence (J(θ0, θ1) reaching its minima).

For the sake of simplicity, let’s take the case of just one θ parameter.

Figure 24 shows the evolution of an example cost function J(θ) as a

function of a unique θ parameter.

Figure 24: Cost function and learning rate analysis

The model first randomly selects an initial θ in order to minimize the

cost function. This θ could be the blue spot or the orange one or basi-

cally any point on the J(θ) curve from Figure 24.

From then, if the partial derivative of the cost function is negative (blue

case), θ updates to a higher value (remember negative sign in the equa-

tion). On the other hand, if the partial derivative of the cost function for

the current theta is positive (orange case), θ updates to a smaller value.

However, note that the partial derivative of the update function is also

multiplied by the α parameter. The term α is known as the learning

rate and determines the speed at which the Gradient Descent converges

to its minima (optimal solution).
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Learning rate

Back to Figure 24, we can see that a big learning rate (blue case) would

make every jump of the θ parameter considerably big, making the cost

function go from side to side of its global minima, taking a long time

to converge. Moreover, if the initial θ is close to the minima, a really

big α could even make the θ parameter run away from the cost function

minima.

On the other hand, and despite being a safe option, a small learning rate

(orange case), would require many θ updates to reach the cost function

minima, making the convergence process very slow.

Like everything in life, the key is in the balance. Normal values for the α

parameter fall in the range between 10−3 and 1. It’s interesting to note,

though, that even with a fixed value of α, the steps (or jumps) taken by

the Gradient Descent when approaching the global minima are smaller.

This is because, when approaching this minima, the slope of the cost

function curve (its partial derivative) is progressively smaller.

Finally, the way this convergence algorithm knows that it has reached

a decent solution is basically getting to a point of the cost function of

slope = 0 (null partial derivative). As this scenario (exactly 0) is seldom

reached, Gradient Descent usually stops when the step taken is suffi-

ciently small (i.e. 10−3) or after a certain number of iterations.

Multiple Linear Regression

As mentioned before, Simple Linear Regression is an extremely simple

ML algorithm. Nevertheless, it does not take full advantage of the wide

range of features available for the examples on many datasets. For that

reason, Multiple Linear Regression is usually a promising alternative to

consider.

So, what are the main differences between SLR and MLR? In MLR, the

hypothesis has the form:

hθ(x) = θ0 + θ1x1 + θ2x2 + ...+ θnxn (9)
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Where x1 corresponds to the value of feature 1 for all the training ex-

amples. Basically, there are n vectors of examples (one for every input

feature), each associated to a different θ parameter.

It is obvious that SLR is just a specific case of MLR in which only

one feature is considered. For that reason, in a more generic case, the

optimization problem of Linear Regression could be written as:

minθ J(θ)

J(θ) =
1

2m

m∑
i=1

(h(x(i))− y(i))2 (10)

Where the parameter θ represents the vector of all θ parameters (θ0, θ1, ..., θn).

Again, the Gradient Descent algorithm solves this minimization problem

by updating the θ parameters, that is:

θj := θj − α
∂

∂θj
J(θ) for j = 0, 1, ..., n (11)

Which again, using equation (6), can be re-written as:

θj := θj − α
1

m

m∑
i=1

(h(x(i))− y(i))2 x
(i)
j (12)
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Although the number of features a MLR can use is considerably high,

let’s take a look at the visual representation of the cost function for a

hypothesis with two θ parameters in Figure 25.

Figure 25: Cost function J(θ) for two θ parameters

Just as in the previous case, the minimization problem is solved using

the Gradient Descent algorithm, which, after a couple of iterations and

using the appropriate α parameter, is able to find the global minima of

the cost function and then uses its corresponding parameters θ0 and θ1

to build the linear model.

Nevertheless, not all features are equally weighted. If we were trying to

predict the price of a house by using the number of bedrooms (i.e. 1-10)

and the squared footage of the house (i.e. 1,000-4,000) as features, the

disparity in their range would cause the squared footage feature to have

an unfair, much higher weight in the model prediction9.

9On a similar note, a really small-ranged feature (< 10−2) such as the concentration of O2 in
the air would be in huge disadvantage against features in the aforementioned ranges
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For that reason, feature scaling is an important aspect to consider

when using several features.

Feature Scaling

Feature Scaling is a technique to constrain and standardize the inde-

pendent features present in the data to a fixed range, usually (-1, 1).

The main reasons behind feature scaling are to avoid the model being

unfairly balanced towards high metrics and also to help the Gradient

Descent algorithm converge faster.

Mathematically, feature scaling can be expressed as:

x
(i)
j :=

x
(i)
j − µj

maxj −minj
(13)

Which basically means that, for every ith example of the jth feature, its

value should be adjusted by subtracting the mean of the feature and

divided by the feature range10.

Another issue to consider when dealing with a large number of features

is how to deal with non-numeric features. This is usually done by means

of One-hot-encoding.

10Although sometimes its variance is used instead.
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One-hot-encoding

One-hot-encoding is a technique to express non-numeric ML features as

groups of bits where the legal combinations of values are only those with

a single high bit and all the others low.

For example, back to the houses data set example, common numeric fea-

tures would be the number of bedrooms, their square footage and their

age, whereas a non-numeric feature requiring one-hot-encoding would be

the name of the neighborhood. If the neighborhoods were, for exam-

ple, Lincoln Park, Lakeview, Chinatown and Ravenswood, the one-hot-

encoding would substitute the original feature by four separate ones, one

for each neighborhood, with their names as labels. Then, houses from

Lincoln Park would show a 1 in the Lincoln Park feature and 0s in the

rest of them, and so on.

By means of one-hot-encoding, and despite the binary sequence associ-

ated to each tag being usually meaningless, non-numeric features can be

used to build ML models.
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Polynomial Regression

Until now, we have seen the Linear Regression case for one or multiple

features, but always with a model with the expression:

hθ(x) = θ0 + θ1x1 + θ2x2 + ...+ θnxn (14)

Which, despite elapsing several dimensions, is still a linear expression.

The problem is, usually the feature we are trying to predict does not

relate linearly to the feature (or features) used as input.

Let’s take the example depicted in Figure 26. The training data (in blue)

is modeled first with a linear equation (in green), but is obvious that a

polynomial model (in red) better fits the data distribution.

Figure 26: Linear Regression vs Polynomial Regression

Thus, the model of a Multiple Polynomial Regression could have the

form11:

hθ(x) = θ0 + θ1x
2
1 + θ2x2 + ...+ θnx

3
n (15)

Where some features (i.e. x2) are still linearly related to the output

feature, while others (i.e. x1, xn) follow quadratic or cubic relations.
11Note there is absolutely no relation between the sub-index of the feature vector and the degree

of that feature in the polynomial.
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The problem with using a high degree polynomial to model the relation

between the output feature and input feature (or features) is that said

model could easily incur in overfitting.

Overfitting

Overfitting is a modeling error that occurs when the chosen function

is too closely fit to a limited set of data points. Overfitting the model

generally takes the form of making an overly complex model to explain

idiosyncrasies in the data under study.

When this happens, it is said that the model presents a low bias, but a

high variance.

The opposite case would be a model that is too simple to fit the data

distribution. That phenomena is known as underfitting, also known as

a high bias, low variance model.

Showing overfitting with an example, Figure 27 shows some data distri-

bution (in blue), together with a two12 θ parameters’ linear model (red),

a three θ parameters model (blue) and also a 301 θ parameters model

(green).

Figure 27: Overfitting example

12Note that the degree of the polynomial is always equal to the number of θ parameters used
minus one, as θ0 represents the intercept, and is not assigned to any feature.
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It can be seen that, whereas the red model does not perfectly map the

data to their correct outputs (underfitting), and the green model is way

more complicated than what the data suggests (overfitting).

For that reason, if we checked the accuracy of the green model with the

testing set, it would predict an example with x1 = −1.5 should have an

output feature y = 5, although taking a quick look at the distribution of

the data, it is obvious that a more accurate output prediction would be

approximately y = 2.

In other words, the green model, despite almost perfectly mapping all

the training examples with a very small error, would be far from properly

mapping the new examples from the test set, consequently providing a

huge test set error, which is the one we are trying to reduce.

What can be done to address overfitting?

• Reduce the number of features: Manually select only the most rel-

evant ones

• Use regularization

Regularization

Regularization consists on keeping all the available features, but reducing

the magnitude/values of the θ parameters. Regularization works espe-

cially well when the data set has a lot of features, each contributing a

bit to predict the outcome y.

To regularize the Linear Regression model, we need to ensure that the θ

parameters are kept small so that, despite using a high order polynomial

as a model, it resembles a low degree one while trying to map the data.

In mathematical terms, this condition is expressed as:

J(θ) =
1

2m

m∑
i=1

(h(x(i))− y(i))2 + λ

n∑
j=1

θ2
j (16)

Where λ is known as the regularization parameter. The bigger the

lambda, the more the minimization problem tries to keep the θ parame-

ters low.
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In Figure 28, we can see two polynomial regressions, both using 5 θ

parameters (degree = 5).

Figure 28: Regularization example

Despite both regression models fitting the training data perfectly, the

green one (no regularization) has a much higher variance than the blue

one (regularization) and is definitely overfitting the training data. Al-

though this is an over-simplified example, it can be conveyed that the

blue regression model is able to better map new testing examples thanks

to regularization.

As a summary, the different aspects to consider in Linear Regression are:

• Number of input features n

• Dimensions/degree of the model used

• Learning rate α

• Feature scaling

• One-hot encoding for non-numerical features

• Regularization parameter λ

In Section 5.1, Linear Regression algorithms will be used to predict rel-

evant features of the data set.
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4.3 Decision Trees

Decision Trees (DT) are a predictive modeling approach used in statis-

tics and ML. It is one of the most popular ML algorithms due do its

simplicity and intuitive approach.

DT use a tree structure as a predictive model to go from observations

about an item (in the branches) to the conclusion about that item’s tar-

get value (in the leaves).

DT where the target variable (output) can take only a discrete set of

values (genre, name of the director, etc.) are called Classification Trees.

On the other hand, DT where the target variable can take continuous

values (gross revenue, IMDB score, movie duration, etc.) are called Re-

gression Trees.

Decision Trees are specially useful when accommodating higher dimen-

sion datasets, like the one under study.

In Figure 29, an example of a DT is shown for the case of predicting the

target output using only the variable data as input feature.

Figure 29: Decision Tree example - data
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In the previous Figure, two different Decision Trees were used: one with

depth = 2 and one with depth = 5 (this parameter will be later dis-

cussed).

In a more intuitive way, Figure 30 shows the leaves of he Decision Tree

of depth = 2 from the previous Figure.

Figure 30: Decision Tree example - thresholds

The functioning of the tree is very simple. Once the depth13 is fixed to

2, the algorithm distributes the 70 samples in two groups, depending if

their value data is higher or lower than a certain threshold (data = 3.2

in this case). Later, each of these subgroups is divided into two, again,

depending on whether the value of data is higher or lower than certain

thresholds (data = 0.5 and data = 3.9 in this case).

Then, all the samples assigned to each subgroup will be predicted an

output value equal to the mean of the values from that subgroup. That

is, a test set value falling on the 2nd subgroup (0.5 ≤ data ≤ 3.9) will be

assigned target = 0.7.

However, if we were to analyze the case of depth = 5, we would have

many more leaves in the tree. But would that be a better solution? The

answer is maybe. When building a Decision Tree, several parameters

need to be tuned to reach the best result possible.

13A DT has depth+ 1 levels and 2depth leaves.
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Depth

Indicates how deep the decision tree can be or, in other words, how

many levels are allowed. The deeper the tree, the more splits it has

(splits = depth − 1) and the more information it captures about the

data. When the depth is too high (depth = 5 in Figure 29), the model

may perfectly predicts the training data (0 error), but then fail to gener-

alize to new examples. As mentioned in the LR model, this is an example

of overfitting.

Minimum samples split

Specifies the minimum number of samples required to split an internal

node. It can be specified with either an integer value (number of sam-

ples) or a decimal one (fraction of samples from training set). In Figure

30, if the minimum samples for split allowed was 30, the split on the right

branch would not be allowed, but still the tree would reach its maximum

depth allowed through the left branch.

Minimum samples leaf

Denotes the minimum number of samples that a leaf (base of the tree)

may have. If, after splitting a node, the leaf node has less samples than

the minimum samples leaf number, the splitting is undone (regardless

of if it was allowed by the minimum samples split parameter) and the

previous node becomes the leaf node. In Figure 30, if the minimum sam-

ples per leaf allowed was 15, neither of the second level splits would be

undertaken, as they both generate a leaf with 11 samples.

All in all, for a split to be allowed, it needs to be in accordance with

the maximum depth, the minimum samples per split and the minimum

samples per leaf hyperparameters.

Maximum features

Indicates the maximum number of features to consider when looking for

the best split. If specified with an integer value, it denotes the total

number of features allowed. If specified by a decimal number, it denotes

the fraction of features allowed over the total available. This parameter

plays an important role in preventing overfitting. In the example in

Figure 30, only one feature is being used (data), but more sophisticated

Regression Trees models use a higher number of features.
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As a summary, the hyper parameters to consider when building a Re-

gression Tree model are mainly:

• max depth

• min samples split

• min samples leaf

• max features

Once all these parameters have been established, what the algorithm

does is decide where to place the thresholds. To do that, the algorithm

basically finds the one that minimizes the MSE of all the samples to the

average of their subgroup. So, in a sense, it could be seen as a LR per

parts (although the linear equation is always y = constant, where the

constant is the average output of the elements of that subgroup).

In section 5, the Regression Tree model will be built and its results will

be compared to the ones obtained with all the Linear Regression models.
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4.4 Random Forests

Like DT, Random Forests or Random Decision Forests are an ensemble

learning method for classification, regression and other tasks. Random

Decision Forests combine the simplicity of Decision Trees with flexibility,

and also correct for Decision Trees’ habit of overfitting the training set,

all in all resulting in a vast increase in accuracy. The name Random

Forests is indeed a representation of the way they are built:

As mentioned in the previous section, Decision Trees are built using all

the examples available for training on the dataset and use all the features

provided to the algorithm. Instead, Random Forests start by randomly

selecting m examples14 from the dataset, constituting what is called the

bootstrapped dataset. This random selection occurs with replace-

ment, meaning the same example can be selected twice.

The examples that are not selected for the bootstrapped dataset are usu-

ally referred to as Out-Of-Bag dataset, and constitute the test set of

a Random Forest model.

Later, a Decision Tree is built using only the examples from the boot-

strapped dataset as training examples and some of the dataset features,

which are randomly selected from the complete list of features. The num-

ber of features that are used to build this tree is known as max features,

and it is a hyperparameter of RF.

Then, another DT is built using a different subset of features from

the complete list. This process is repeated n estimators times, where

n estimators is the number of trees that will be built, and should fulfill:

1 ≤ n estimators ≤ P (n,max features) (17)

Where P (n,max features) denotes the permutations of a subset of size

max features in the set of n features, and can be expressed as:

P (n,max features) =
n!

(n−max features)!
(18)

14Size of the training set previously established.
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Then, the first example from the test set (or Out-Of-Bag dataset) is

passed into every DT that was just built, obtaining nestimators different

outputs (either a tag if it’s a classification problem or a value if it’s a

regression problem), on for every tree built.

Finally, the predicted value for the first example of the test set is the

average of the output of all the DTs built (or the most outputed label

in the case of a classification problem).

This technique of Bootstrapping the data and using the AGGregate to

make a decision is called Bagging.

As a summary, the hyperparameters to consider when building a RF are:

• max depth: Like in a DT, defines the depth of the DT that will be

built.

• max features: Maximum number of features to be used in every DT

that will be built. Being n the total number of features available,

a typical start value for max features is
√
n and then some values

above and below are also studied.

• min samples split: Just like in DT models, this parameter defines

the minimum number of samples a node needs to have for a split

to be allowed.

• min samples leaf: Like in the DT model, establishes the minimum

number of samples a leaf of the tree may have.

• n estimators: Maximum number of DTs to be built. The higher,

the more precise the algorithm, but also the more computationally

expensive.
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5 System evaluation and numerical comparison

In this section, the performance of the different algorithms developed

will be compared in terms of the accuracy15 achieved when predicting

both the rating of the movie and its revenue. The different algorithms

under evaluation are:

• Linear Regression

• Decision Trees

• Random Forests

5.1 Linear Regression

5.1.1 Simple Linear Regression

Simple Linear Regression tries to predict a numeric, continuous feature

using just one input feature. Truth be told, this algorithm does not fully

take advantage of the wide range of features available for each movie,

but is very simple to implement.

We will first try to predict the movies’ gross income and then their IMDB

score, using the most appropriate input feature on each case.

Predict Gross income

To predict the gross income of a movie, we should find out what feature

presents the highest correlation with it. Taking a look at the corre-

lation matrix on Figure 13 we can see the most correlated feature is

num voted users16 with a coefficient of 0.637 (see numerical correlation

matrix on Annex 1).

The correlation between these two features implies that the greater en-

gagement (could be extrapolated to acceptance) generated by a movie,

the more money it generates. This relation makes sense, as the more

people watching a movie, the more money generated by it and also the

higher the number of reviews for that movie will be.

15The discussion on the metrics used can be found on Annex 2.
16Just as a reminder, this feature shows the number of users that gave a rating to the movie

on the IMDB platform.
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In Figure 31, the training set (in blue) has been used to come up with

a LR model (in green), using just two θ parameters (polynomial of 1st
degree).

The green points from the LR model show where the training points

would be matched if they were used in the test set. For example, the

example with the highest number of voting users (more than 1.5M) is

perfectly represented by the model, whereas examples around 1M votes

fall far from the model.

Figure 31: Linear Regression to predict Gross revenue - Training set

From this plot it can already be seen that most of the data is pretty

scattered and does not exactly follow a certain distribution. For that

reason, we can expect the test error to be considerably high.
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In Figure 32, the built model (in green) mapping the test examples pre-

dictions is shown. However, the red points constitute our actual test set

with their real mapping value. Although the mapping is decent for small

values, some examples with a high number of voting users fall extremely

far from the built model, especially the example with 1340 votes.

Figure 32: Linear Regression to predict Gross revenue - Test set

The indicative metrics17 for this simple LR model predicting the gross

revenue18 are:

Mean Absolute Error (MAE): 35.489

Mean Squared Error (MSE): 3330.051

Root Mean Squared Error (RMSE): 57.707

R2: 0.278

17Later, more robust metrics will be calculated by means of several realizations for all algorithms
and they will be compared in a visual format.

18These metrics are obtained using a single realization, achieved using the first 80% of the
examples from the sorted dataset as training and the last 20% as test set.
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Predict IMDB score

To predict the IMDB rating a movie can achieve, we should find out

what feature presents the highest correlation with it. Taking a look at

the correlation matrix on Figure 13 we can see the most correlated fea-

ture is again num voted users, this time with a coefficient19 of 0.411.

In Figure 33, the distribution of the training data (in blue) is shown,

together with the resulting LR model (in green), again with just two θ

parameters (1st degree polynomial).

Figure 33: Linear Regression to predict IMDB score - Training set

In this case, the data is extremely scattered20. for low number of voting

users (ratings from 1.6 to 9.5), whereas for high number of voters (more

than 750,000), scores are between 8 and 9.5.

19See numerical correlation matrix on Annex 1.
20Moreover, this model even predicts scores higher than 10 for movies with more than 1.2M

voters, another proof that 100% of the time, ML algorithms have no idea what they are actually
doing.
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In Figure 34, the regression model (in green) mapping the test set exam-

ples is shown together with the actual testing set and their mapping (in

red). In this case, both low voted movies and highly voted movies are

poorly predicted, whereas the score for movies with an average number

of voters (0.5-1M) is predicted reasonably well.

Figure 34: Linear Regression to predict IMDB score - Test set

The indicative metrics for this simple LR model predicting the IMDB

score are:

Mean Absolute Error (MAE): 0.733

Mean Squared Error (MSE): 0.889

Root Mean Squared Error (RMSE): 0.943

R2: 0.226
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5.1.2 Polynomial Regression

It has been shown that a simple LR does not fully represent the com-

plex data distribution, either for gross revenue or IMDB score. For that

reason, we will now try to model these features (again using the number

of voting users as input) by means of Polynomial Regression (PR).

Predict Gross revenue

In Figure 35, the distribution of the training data (in blue) is shown,

together with the resulting PR model (in green), this time with three θ

parameters (2nd degree polynomial).

Figure 35: Polynomial Regression (2nd degree) to predict Gross revenue - Train-
ing set

In this case, the model predicts reasonably well the gross revenue for low-

voted movies (considering the scattered data), but does not generalize

well for highly voted movies, again due to the extremely scattered data

available.
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In Figure 36, the regression model (in green) mapping the test set exam-

ples is shown together with the actual testing set and their mapping (in

red). In this case, the gross revenue for movies with a reduced number of

voters is reasonably well predicted, but the model starts to considerably

diverge from the actual output for more than 250,000 voters due to the

highly scattered data.

Figure 36: Polynomial Regression (2nd degree) to predict Gross revenue - Test
set
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The indicative metrics for this PR model predicting the gross revenue

are:

Mean Absolute Error (MAE): 33.810

Mean Squared Error (MSE): 2877.047

Root Mean Squared Error (RMSE): 53.638

R2: 0.376

From these metrics it can be seen that all four indicators show a much

better performance for the polynomial of 2nd degree with respect to the

simple LR case. This shows that a simple linear equation was a too

simple model to explain the data distribution we have.

In Figure 37, the test data is shown (in red) together with a PR model

using six θ parameters (polynomial of 5th degree).

Figure 37: Polynomial Regression (5th degree) to predict Gross revenue - Test
set
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The indicative metrics for this PR5 model predicting the Gross revenue

are:

Mean Absolute Error (MAE): 33.593

Mean Squared Error (MSE): 3061.483

Root Mean Squared Error (RMSE): 55.331

R2: 0.336

Taking a look at the metrics, we can see that all four of them are either

equal or worse than those achieved with the polynomial of 2nd degree.

This means using a polynomial of 5th degree overfits the data.
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Predict IMDB score

In Figure 38, the distribution of the training data (in blue) is shown,

together with the resulting PR model (in green), this time with three θ

parameters (second degree polynomial).

Figure 38: Polynomial Regression (2nd degree) to predict IMDB score - Training
set

In this case, the IMDB score for highly voted movies can be accurately

predicted (with the exception of the most voted movie), whereas low

voted movies are poorly predicted due to the highly scattered data.
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In Figure 39, the regression model (in green) mapping the test set ex-

amples is shown together with the actual testing set and their mapping

(in red). As we could expect, movies with low number of voters are not

accurately predicted, but from 500,000 voters onward, the model has a

low error.

Figure 39: Polynomial Regression (2nd degree) to predict IMDB score - Test set

The indicative metrics for this PR2 model predicting the IMDB score

are:

Mean Absolute Error (MAE): 0.719

Mean Squared Error (MSE): 0.860

Root Mean Squared Error (RMSE): 0.928

R2: 0.251

These numbers show that all four metrics are better for a 2nd degree

polynomial than for a simple LR equation. Again, this conveys that the

data idiosyncrasies cannot be explained with a simple linear equation.
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In Figure 40, the test data is shown (in red) together with a PR model

using six θ parameters (polynomial of 5th degree).

Figure 40: Polynomial Regression (5th degree) to predict IMDB score - Test set

The indicative metrics for this PR5 model predicting the IMDB score

are:

Mean Absolute Error (MAE): 0.713

Mean Squared Error (MSE): 0.851

Root Mean Squared Error (RMSE): 0.922

R2: 0.259

Taking a look at the metrics, we can see that using a polynomial of 5th
degree slightly improves all four metrics with respect to the polynomial

of 2nd degree. Although using this high degree polynomial does not cause

overfitting, we should ask ourselves whether or not is worth to increase

the degree of the polynomial to achieve such a minor improvement.
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5.1.3 Multiple Regression

As mentioned before, building a successful Machine Learning model to

fit the data with a simple LR is a risky task, even when using a high

degree polynomial. Luckily, this data set has a wide range of features

full of information ready to be exploited.

We already discussed that, for both the gross revenue and the IMDB

score of our movies, the most correlated feature was the number of users

that voted the movie on the IMDB website, or num voted users (0.64

and 0.41 correlation coefficients with gross revenue and IMDB score,

respectively). However, there are other numeric features with a pretty

decent correlation21 with these features, like:

• num user for reviews (0.56 and 0.29 correlation coefficients, respec-

tively)

• num critic for reviews (0.48 and 0.31 idem)

• movie facebook likes (0.38 and 0.25 idem)

Similarly, there are some non-numeric features that may possess hidden

information and could be key to improve our model. In this case, we will

use:

• color

• director name

• genres

• actor 1 name

• plot keywords

• country

• content rating

This non-numerical features will be hot-encoded to display information in

a numeric way and therefore be used together with the previous features

to come up with a more accurate model.
21Right next to each feature, their correlation with the gross revenue and the IMDB score are

provided, in that order.
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Although there is no way to display the graphical results for the Multi-

ple Regression model due to the fact that each feature would correspond

to a different dimension, the same metrics that have been used for the

previous models are provided below.

Multiple Regression with the aforementioned 11 features22 and a poly-

nomial of 1st degree will be used used.

Predict Gross revenue

The indicative metrics for this MR model predicting the Gross score are:

Mean Absolute Error (MAE): 35.794

Mean Squared Error (MSE): 2966.711

Root Mean Squared Error (RMSE): 54.468

R2: 0.454

All four aforementioned metrics are either equal or better than the ones

obtained on the simple Linear Regression model. However, all four met-

rics are either equal or worse than the ones obtained on the Polynomial

Regression of 2nd degree.

Predict IMDB score

The indicative metrics for this MR model predicting the IMDB score

are:

Mean Absolute Error (MAE): 0.698

Mean Squared Error (MSE): 0.885

Root Mean Squared Error (RMSE): 0.941

R2: 0.223

Comparing these metrics with the ones obtained in the simple LR case,

all four of them are pretty close. Similarly, when comparing them to the

ones obtained through the PR of 2nd degree, no significant differences

can be observed. However, on further results analysis, more realizations

will be taken into consideration, thus being the error metrics more rep-

resentative.

22The original, most correlated one (num voted users) and the complementary 10 discussed.
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5.1.4 Regression Results

In this section, the aforementioned regression models will be compared

in terms of R2 and RMSE. Using one table for each metric23, the models

from left to right correspond to:

• Linear Regression (LR)

• Polynomial Regression of 2nd degree (PR2)

• Polynomial Regression of 5th degree (PR5)

• Multivariate Linear Regression (MLR)

R2 LR PR2 PR5 MLR
Gross revenue 0.403 0.443 0.432 0.451
IMDB score 0.207 0.226 0.230 0.248

RMSE LR PR2 PR5 MLR
Gross revenue 53.23 51.50 52.03 50.46
IMDB score 0.935 0.923 0.921 0.911

23All results are obtained averaging 25 realizations. Every realization comes from a different
shuffling of the original data to randomly distribute training and testing examples on every
iteration.
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In a more visual way, Figure 41 shows the value of R2 for the four

aforementioned models trying to predict gross revenue.

Figure 41: R2 results for Gross revenue (LR)

The graphic shows that a Polynomial Regression of 2nd degree (R2 =

0.443) better models the data than a simple Linear Regression model

(0.403). However, using a Polynomial Regression model of 5th degree

(0.431) is a too complicated model for such data distribution, conse-

quently overfitting the training data. Finally, Multiple Regression presents

the highest R2 coefficient (0.451), meaning it better represents changes

in the output feature as a result of input features changes or, in other

words, better fits the data.
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Similarly, Figure 42 shows the value of RMSE for the same four models

when predicting Gross revenue.

Figure 42: RMSE results for Gross revenue (LR)

In this scenario, we can also observe the aforementioned tendency. Sim-

ple Linear Regression (RMSE = 53.230) presents a high error. The

Polynomial Regression of 2nd degree has a lower error (51.50), but the

Polynomial Regression of 5th degree (52.034) overfits the data. Finally,

the Multiple Regression model presents the lowest RMSE (50.458) and

is, therefore, the most suitable model for this data distribution when it

comes to predicting the gross revenue of new films.
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On the other hand, Figure 43 shows the value of R2 for the four models

when predicting the IMDB score.

Figure 43: R2 results for IMDB score (LR)

This graph shows a strong dependency between the complexity of the

model and the value of R2. The Simple Linear Regression algorithm (R2

= 0.207) models the data slightly worse than the Polynomial Regression

of 2nd degree (0.226). The Polynomial Regression of 5th degree (0.23)

is a little bit better then the 2nd degree one, what means there is no

overfitting in this case24. Finally, the Multiple Regression model presents

the highest R2 value (0.248).

24However, it could be argued that complicating the model from a 2nd to a 5th degree Polyno-
mial Regression to achieve such a small improvement on the R2 is not worth it.
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Similarly, Figure 44 shows the value of RMSE for the same four models

when predicting the IMDB score.

Figure 44: RMSE results for IMDB score (LR)

This graph also shows a strong dependency between the complexity of

the model and the error associated to it. More complicated models

present a lower RMSE. The Simple Linear Regression algorithm (RMSE

= 0.935) has a higer error then the 2nd order Polynomial Regression

(0.923). Then the 5th order Polynomial degree presents a slightly lower

error25 (0.921). Finally, the Multiple Regression algorithm obtains the

lowest error (0.248).

25Again, it could be discussed whether or not such a minor improvement is worth the increase
in complexity.
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All in all, the R2 coefficients for the models predicting the IMDB score

are much lower than those obtained when predicting the gross revenue.

This information, together with the constant growing of the metric in

most sophisticated models tells us that the data can give us even more

information. In other words, there is no overfitting and more compli-

cated models could be used to achieve a better performance.

On the other hand, the RMSE obtained on the two problems cannot

be compared in such a simple way, as the gross revenue case ($162-

$760,000,000) deals with way higher numbers than the IMDB score does

(1.6-9.5). However, it is interesting to note that, the constant decrease

in the RMSE metric seen in the IMDB score case does not show in the

gross revenue one. Being more specific, using a 5th degree PR is better

than using a 2nd degree one when predicting the IMDB score, but not

when guessing the gross revenue.

68



5.2 Decision Trees

5.2.1 Simple Regression Tree

Simple Regression Trees use only one feature to predict the output vari-

able. As mentioned in previous sections, the most correlated feature

with both the gross revenue and the IMDB score is the number of voting

users. For that reason, this is the feature that will be used in this first

one-feature-only model.

Predict gross Revenue26

Mean Absolute Error (MAE): 32.724

Mean Squared Error (MSE): 2706.906

Root Mean Squared Error (RMSE): 52.028

R2: 0.413

Despite this being the most simple Regression Tree model, all metrics

(except for R2) are better than the ones obtained in the best performing

Linear Regression model (Multiple Regression: 35.794, 2966.711, 54.468

and 0.454 respectively) and way better than those obtained on the Sim-

ple Linear Regression model (35.489, 3330.051, 57.707 and 0.278 respec-

tively). This means that the Regression Tree model using just one feature

is better than the Multiple Regression using 11 features.

Predict IMDB score27

Mean Absolute Error (MAE): 0.795

Mean Squared Error (MSE): 1.111

Root Mean Squared Error (RMSE): 1.054

R2: 0.189

In this case, all four metrics are worse than the ones obtained in the case

of Simple Linear Regression (0.733, 0.889, 0.943 and 0.226 respectively)

and, of course, worse than those from the Multiple Regression (0.698,

0.885, 0.941, 0.223 respectively), but when analyzing them using more

realizations, different results may appear.

26Hyperparameters for SDT predicting Gross revenue are: max depth = 6, mini-
mum samples leaf = 0.02

27Hyperparameters for SDT predicting IMDB score are: max depth = 5, minimum samples leaf
= 0.01
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The question here is if, despite the most simple DT model being worse

than the most basic LR model, whether or not its 11-features version of-

fers a better performance. In other words, whether or not the 11-features

Multiple Regression Tree is better than the 11-features Multiple Linear

Regression model or not.

5.2.2 Multiple Regression Tree

Multiple Regression Trees use several features to predict the output vari-

able. Just like in the Multiple Linear Regression section, the features

used will be:

• num voted users (0.64 and 0.41 correlation coefficients with gross

revenue and IMDB score)

• num user for reviews (0.56 and 0.29 idem)

• num critic for reviews (0.48 and 0.31 idem)

• movie facebook likes (0.38 and 0.25 idem)

Moreover, the same non-numeric features will be used, which were:

• color

• director name

• genres

• actor 1 name

• plot keywords

• country

• content rating
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Using all these features, the metrics obtained with the Multiple Linear

Regression Tree model are now:

Predict gross Revenue28

Mean Absolute Error (MAE): 28.098

Mean Squared Error (MSE): 2276.831

Root Mean Squared Error (RMSE): 47.716

R2 : 0.581

In this case of Multiple Regression Tree, all four metrics are better than

the ones obtained in the case of Multiple Regression (35.794, 2966.711,

54.468 and 0.454 respectively). This answers the question previously

formulated: Despite the Regression Tree’s most basic model being worse

than the LR’s most simple one, DT offer a higher degree of complexity

through its hyperparameters tuning that provides a better performance

in this particular dataset.

Predict IMDB score29

Mean Absolute Error (MAE): 0.686

Mean Squared Error (MSE): 0.828

Root Mean Squared Error (RMSE): 0.910

R2 : 0.273

Again, the Multiple Linear Regression Tree used in this section gives

better results than the Multiple Regression model in previous sections

(0.698, 0.885, 0.941 and 0.223 respectively), although the improvement is

not as remarkable as the one observed when predicting the gross revenue.

28Hyperparameters for MDT predicting Gross revenue are: max depth = 8, mini-
mum samples leaf = 0.02, max features = 9174

29Hyperparameters for MDT predicting IMDB score are: max depth = 10, mini-
mum samples leaf = 0.02, max features = 9174
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5.2.3 Decision Tree results

In this section, the aforementioned DT models will be compared in terms

of R2 and RMSE. Using one table for each metric30, the models from left

to right correspond to:

• Simple Decision Tree

• Multiple Decision Tree

R2 SDT MDT
Gross revenue 0.433 0.564
IMDB score 0.214 0.283

RMSE SDT MDT
Gross revenue 51.906 44.741
IMDB score 0.925 0.901

30Again all results are obtained averaging 25 realizations. Every realization comes from a
different shuffling of the original data to randomly distribute training and testing examples on
every iteration.
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In a more graphical way, Figure 45 shows the value of R2 for both the

Simple Decision Tree and the Multiple Decision Tree when predicting

the gross revenue of new movies.

Figure 45: R2 results for Gross revenue (DT)

As mentioned before, the Multiple Decision Tree (purple) offers a con-

siderably better modeling of the data than the Simple Regression Tree

(garnet), as their R2 value shows (0.564 vs 0.433 respectively).

Later in this work, these two values will be compared with those obtained

in all the LR models as well as in the Random Forest model.
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In Figure 46, the RMSE value for the SDT and MDT models when

predicting the gross revenue are shown.

Figure 46: RMSE results for Gross revenue (DT)

Again, MDT (purple) presents a lower error (44.741) than SDT (garnet,

51.906), although the difference is not as significant as in the R2 metric.
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In Figure 47, the value of R2 is shown for SDT and MDT when predicting

the IMDB score for new movies.

Figure 47: R2 results for IMDB Score (DT)

As expected, the R2 value for SDT (yellow) is very low (0.214) as com-

pared to the MDT value (orange, 0.283), which is not very high either.
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Finally, Figure 48 shows the RMSE obtained through SDT and MDT

when predicting IMDB score.

Figure 48: RMSE results for IMDB Score (DT)

As expected, the RMSE for the SDT model (yellow) is slightly higher

(0.925) than the error obtained through the MDT model (orange, 0.901),

although the difference in this case is small enough not to be considered

a ‘better’ model per se31.

31Using a bigger dataset or even just some more iterations (and consequently different training-
testing distributions) could make the difference even smaller or even reverse it.
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5.3 Random Forests

Using all these features, the indicative metrics obtained with the Ran-

dom Forests model are now:

Predict gross Revenue32

Mean Absolute Error (MAE): 27.237

Mean Squared Error (MSE): 2143.827

Root Mean Squared Error (RMSE): 46.301

R2 : 0.605

When comparing these metrics with the ones achieved when using the

DT model, it can be observed that all four metrics are better than the

ones obtained with MDT. Needless to say, all metrics are way better

than the LR ones.

Predict IMDB score33

Mean Absolute Error (MAE): 0.640

Mean Squared Error (MSE): 0.729

Root Mean Squared Error (RMSE): 0.854

R2 : 0.360

Regarding the prediction of the IMDB score for new movies, again all

four metrics are better than the ones obtained when using the MDT

model and, of course, any other model we have studied so far.

After analyzing the model’s metrics using 25 realizations, the results are:

R2 RF
Gross revenue 0.611
IMDB score 0.335

RMSE RF
Gross revenue 42.541
IMDB score 0.859

32Hyperparameters for RF predicting gross revenue are: max depth = 10, mini-
mum samples leaf = 0.01, n estimators = 200

33Hyperparameters for RF predicting IMDB score are: max depth = 100, mini-
mum samples leaf = 0.01, n estimators = 75
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5.4 Overall results

In this section, the performance of all the models under study will be

compared in a visual way. On the below tables, the R2 and the RMSE

value for all the algorithms is shown when predicting gross revenue and

IMDB score:

R2 LR PR2 PR5 MLR SDT MDT RF
Gross revenue 0.403 0.443 0.432 0.451 0.433 0.564 0.611
IMDB score 0.207 0.226 0.230 0.248 0.214 0.283 0.335

RMSE LR PR2 PR5 MLR SDT MDT RF
Gross revenue 53.23 51.50 52.03 50.46 51.906 44.741 42.541
IMDB score 0.935 0.923 0.921 0.911 0.925 0.901 0.859
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In Figure 49, the value of R2 in the case of predicting the gross revenue

is shown for all the algorithms.

Figure 49: R2 results for Gross revenue (all algorithms)

This graphic shows the tendency that has already been mentioned before

in this work. Linear Regression models, although being fast and easy to

implement, cannot offer the same modeling of the data as other more

sophisticated algorithms do. The best performing LR model (Multiple

Regression) presents a value of R2 = 0.451, whereas the Random Forest

model reaches a much higher R2 = 0.611.

Nevertheless, the biggest jump is observed between the Simple Decision

Tree (R2 = 0.433) and the Multiple Decision Tree (R2 = 0.564), con-

veying that, in the case of this dataset, using a high number of features

allows for a much more precise mapping of new data, especially under

the right model.
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In Figure 50, the value of RMSE in the case of predicting the gross

revenue is shown for all the algorithms.

Figure 50: RMSE results for Gross revenue (all algorithms)

As it could be expected, the last models discussed offer a much lower

RMSE value. LR models go as low as RMSE = 50.460, whereas RF

reach RMSE = 42.541.

Again, the biggest difference appreciated is between the SDT and the

MDT models, which present an error or RMSE = 51.906 and RMSE =

44.741, respectively.

To put these values in context, our RF model could predict the amount

of money a new movie would generate with an average error of $44M.

This error may not seem much for high-revenue movies, but it becomes

a problem for movies in the range of $0− $100M gross. For that reason,

Section 6 discusses possible algorithm enhancements and new develop-

ment options to reduce the predicting error and more accurately predict

the output features under study.
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In Figure 51, the value of R2 in the case of predicting the IMDB score

is shown for all the algorithms.

Figure 51: R2 results for IMDB score (all algorithms)

In this case, the value of R2 grows even more for the last models, being

R2 = 0.207 for the most simple LR model and R2 = 0.335 for the RF

model, almost twice as good a modeler for new data.

Once again, there is a considerable improvement in the DT models be-

tween the SDT (R2 = 0.214) and the MDT model (R2 = 0.283)
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Finally, Figure 52 shows the value of RMSE in the case of predicting the

IMDB score for all the algorithms.

Figure 52: RMSE results for IMDB score (all algorithms)

In this case, the RMSE value is pretty stable for all algorithms, but only

because the output range is much more limited (scores may go from 0 to

10).

The simplest LR model could predict the IMDB score for a new movie

with an average error of RMSE = 0.935, whereas the RF model could

do that with RMSE = 0.859.
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6 Future Work

Once this work is finished and its ML algorithms have been studied, sev-

eral future enhancements come around.

First and foremost, we have seen that more complicated algorithms bet-

ter model the dataset under study, probably due to its highly scattered

characteristics. With that in mind, it should be studied whether or not

a Deep Learning algorithm would be appropriate for this dataset or, on

the contrary, would be too sophisticated of a model.

Moreover, more data could be gathered to improve the results. The

dataset under study was published 2 years ago, being its most recent

movies from the year 2016. Being nowadays a highly marketed sector,

it should not be complicated to collect thousands of examples of new

movies with the features present on this dataset and even new ones.

Moreover, additional features could be used. With today’s NLP tech-

niques, the number of words per minute of movies could be counted, as

well as how much their characters swear, the Spotify and Apple Music

downloads for every song on their soundtrack, the number of news re-

garding the movie filming and many more.

Despite some of these features striking as seemingly irrelevant, they

might later be proven to hold a considerable correlation with the movie’s

success, both in terms of revenue and IMDB score.

Finally, a lot of work could be done on the already existing features. Is

a movie with a gross revenue of $50M in 2020 equivalent to a $50M one

from 1990? Of course not. Money-related features could be modified

to take into account the year’s inflation, or the average gross for movies

on that time. The profitability factor mentioned in this work could also

be exploited, and the effect of streaming platforms like Netflix or HBO

could be studied in relation to movies’ gross.

In a nutshell, there are many things that could be done in a ML project

like this, and that is probably the uniqueness of this field of study: the

possibility of tackling a specific area of development from an infinite

range of options.
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7 Conclusions

In this piece of work, the foundations of Machine Learning have been dis-

cussed, together with some of the most promising applications for this

cutting-edge technology.

Later, a movies’ dataset from Kaggle has been studied using data sci-

ence techniques, displaying hidden patterns in the data and gaining a

bird perspective of the complexity of the information it contains.

Later, several ML algorithms have been discussed in detail and then used

to predict the Gross revenue and the IMDB score for new movies.

In the last section, the performance of al the ML algorithms has been

compared, reaching some important conclusions:

• Always the more data the better: datasets usually contain null val-

ues, outliers and even repeated values. Having a huge amount of

data allows us to use sophisticated algorithms to study the idiosyn-

crasies in the data without incurring in overfitting.

• Not always the more features the better: Using too many features

when trying to map new data may sometimes generate overfitting,

consequently increasing the prediction error.

• Choose ML algorithm that best fits data: Not all datasets are equal.

Some may contain a clear data distribution or have input/output

features highly correlated. Others may not. Finding the most suit-

able algorithm for every dataset is a key aspect of Machine Learn-

ing.

• Parameter tuning: Once an appropriate ML algorithm has been

chosen, its complexity and performance is deeply affected by the

hyperparameters associated to it. These parameters are different

for every algorithm, and it’s an essential duty to properly tune them

to get the most out of every algorithm depending on the data under

study.

All in all, Machine Learning is a powerful and accessible, decision-making

tool that, if used properly, will lead the coming technological revolution

and, hopefully, make our lives a little easier.
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8 Annexes

8.1 Numeric Correlation Matrix

Figure 53: Numerical version of the Correlation Matrix
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8.2 Metrics

Mean Absolute Error (MAE)

MAE is used to express the difference between the predicted output of

the test set examples and their actual output, weighing all differences

equally.

In mathematical terms:

MAE =
1

K

K∑
k=1

|yk − ypred,k| (19)

Where K is the size of the test set, yk is the actual output of the kth test

exampleand ypred,k is its predicted output.

Mean Squared Error (MSE)

MSE is used to express the squared difference between the predicted

output of the test set examples and their actual output, weighing a large

difference higher than several small ones.

In mathematical terms:

MSE =
1

K

K∑
k=1

|yk − ypred,k|2 (20)

Root Mean Squared Error (RMSE)

RMSE is simply the squared root of MSE. In mathematical terms:

RMSE =

√√√√ 1

K

K∑
k=1

|yk − ypred,k|2 (21)

Coefficient of determination (R2)

This metric expresses the sensitivity of the dependent variable (y) in

relation to the variance on the independent variable (x). The higher

the R2 is, the better the dependent variable adapts to (or models) the

independent variable.

In mathematical terms:

R2 = 1− SSres
SSmean

= 1−
1
K

∑K
k=1(yk − ypred,k)2

1
K

∑K
k=1(yk − y)2

(22)

Where y is the average of vector y.
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