
Mitigating Social Biases in Machine
Translation using Domain Adaptation

techniques

Master Thesis
submitted to the Faculty of the
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Abstract
Misrepresentation of certain communities in current datasets is causing serious disruptions in
artificial intelligence applications. Examples of this can be found from lower performance of
speech recognizers for women than for men to lower accuracy in face recognition for Asian
faces compared to American or European ones. It also amplifies stereotypes in Machine Trans-
lation. These challenges are at the core of natural language processing applications and, in
particular, there are many works focusing on trying to solve gender biases.

Previous research in the area of Machine Translation (MT) has proposed to either mitigate
biases by means of using debiased word embeddings and using contextual information or eval-
uating and measuring the amount of bias present in the translation. The closest work to ours is
one where authors generate a very small gender-balanced dataset and use techniques of Elastic
Weight Consolidation to perform transfer learning and mitigate the consequences of training
with unbalanced datasets. Differently from this one, we use a larger non-synthetic balanced
dataset to perform fine-tunning on an unbalanced-dataset and evaluate the reduction of pres-
ence of gender bias in the final translation. We also evaluate the gender bias in word embedding
models like in other works, and conclude that they can be successfully applied to downstream
systems in the case of the gender-balanced dataset.

Results show that the model that eliminates the gender bias to a greater degree is the model
that was fine-tuned with the balanced dataset mixed with a percentage of the original training.
This is due to the known difficulties that translation models have when adapting to a new and
totally different distribution of data, i.e. catastrophic forgetting, which means that the model
fits the new distribution but forgets the one which was trained on before. Some regularization
techniques like dropout or adaptive learning rate have been applied, without having a significant
improvement. Nevertheless, results show that even if the balanced dataset is from a different
domain than the training and the test of the NMT system, it does improve the translation quality
(up to 2 BLEU points) and it is able to mitigate the gender bias in a significant amount, up to a
12.5% accuracy.
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1 Introduction
Machine translation, is a sub-field of computational linguistics that investigates the use of soft-
ware to translate text or speech from one language to another. Solving this problem with corpus
statistical and neural techniques is a rapidly-growing field that is leading to better translations.
Machine Translation has proven useful as a tool to assist human translators and, in a very limited
number of cases, can even produce output that can be used as it is.

With the development of the technology, automated language conversion is expected to foresee
significant improvements in quality and productivity. Moreover, the industry is moving towards
the use of Bilingual Evaluation Understudy (BLEU) as a useful measurement of translation
quality. BLEU is adopted as a quality measurement standard that lies with a fully automated
way for measuring Neural Machine Translation (NMT) quality.

The Statistical Machine Translation (SMT) segment dominated the machine translation market
in 2016. The effectiveness of SMT over Rule-Based Machine Translation (RBMT) in terms of
cost and time has significantly increased its demand over the past few years. SMTs are easy to
build and maintain and can be adapted to multiple language pairs. SMT development reduces
costs of human resources; however, high computational costs are involved in the process.

The industry is experiencing a transition from Human Translation to Machine Translation as is
an efficient tool to deliver similar linguistic conversion with significantly lower time and cost.
This technology is highly adopted among language services providers, who use this service to
enhance their output. Furthermore, use of big data for social media data mining to gather infor-
mation about products and companies is providing growth opportunities to service providers.
Such translated data can prove to be vital for marketing decision-making.

This work has been presented to the 2on Workshop on Gender Bias in Natural Language Pro-
cessing at COLING 2020 in Barcelona on 13th December 2020 1

1.1 Motivation
In Neural Machine Translation, gender bias has been shown to reduce translation quality, partic-
ularly when the target language has grammatical gender. Gender bias is an important problem
for Neural Machine Translation (NMT) when dealing with gender-inflected languages. Gener-
ally, in NMT datasets, it exists an over-prevalence of some gendered forms in the training data,
which usually leads to identifiable and incorrect translations. Concretely, translations are better
for sentences containing stereotypical gender roles. For example, sentences with mentions of a
stereotypical gender role, such as man - computer programmer are more reliably translated than
those refering to a male hairdresser. This leads to a decrease in the systems’ performance and
exhibits gender roles that are not ethic nor fair.

Therefore, we propose to tackle this problem by trying to debias the machine translation system
via domain adaptation techniques, feeding a gender-balanced dataset that has the same samples
for both genders. In this way, we will be forcing the system to take the attention away from the
gender that accompanies the profession and relocate it to the context words.

1https://genderbiasnlp.talp.cat/
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1.2 Objectives
As previously mentioned, Machine Translation systems are currently very powerful and there
is a true competition on having the best system performance, as many services depend on them.
We want systems that do not have gender biases (badly associated article, name or adjective, or
even verb declinations) when it comes to translating, and therefore, improve the quality of the
translation at that level. The objectives of this thesis are the following:

1. Create a gender-balanced dataset.

2. Train a recurrent neural network to be used as a baseline that reaches state of the art
performance.

3. Use the gender-balanced dataset to finetune the previously trained network.

4. Analyze gender bias in word embeddings models created independently with both datasets
and make a comparison between them, assessing the value of said bias.

5. Analyze gender bias in all translation models and make a comparison between them,
trying to reach the conclusion that the model trained with data from the gender-balanced
dataset is the least biased.

1.3 Requirements
To achieve all the objectives previously described, certain requirements must be taken into ac-
count. These are the applications, source code and data used in this thesis:

• Own source code2, to perform the gender bias analysis on word embeddings, generate
plots and corpus formatting.

• Data from the European Parliament (EuroParl corpus), to train the baseline model and
reach the state of the art in terms of performance.

• Gebiotoolkit repository [1], to extract the gender balanced corpus. Some modifications
have been made to suit the needs of this project, such as extra functions and queries to the
wikipedia API.

• MT Gender repository [2], to analyze the gender bias in translation models, both those
developed in-house and commercially.

• Fairseq repository [3], a library that provides many state-of-the-art NMT architectures
with useful functions such as preprocessing parallel data, training NMT models and gen-
erating translations.

• LASER repository [4], a library to calculate and use multilingual sentence embeddings to
extract parallel sentences.

• Sklearn PIP package to perform gender bias analysis on word embeddings, specifically,
Kmeans and SVM classes.

2Code can be found here: https://github.com/adridjs/thesis2020
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1.4 Chapters Structure
Based on the ideas presented above, the main part of this thesis is to build a Machine Translation
system that is less biased in terms of gender than the baseline one. It is not the goal of this
thesis to completely eliminate gender bias, as it has been proven that it is deeply rooted in
language [5] [6]. Following this frame of study, the thesis is structured in the following way:

• Chapter 2 - State of the art: Review the current state of the area of research to understand
the problem, keep up to date with recent advances in that research field and evaluate
possible methods to reach the objectives proposed in Section 1.2.

• Chapter 3: Methodology applied and experiments performed in order to solve the prob-
lem.

• Chapter 4: Results about the experiments performed in Chapter 3.

• Chapter 5: Conclusions about the results obtained in Chapter 4.

1.5 Gantt Diagram
• Planning: Objectives Definition (1), Requirements Definition (2)

• Process: State of the Art research (3), Balanced Dataset Generation (4), Gender Bias
Evaluation in Word Embeddings (5), Train Baseline (6), Domain Adaptation (7)

• Results: Translation Evaluation (8), Gender Bias Evaluation in NMT (9)

Now

Phases of the Project
2020

March Apr May Jun Jul Aug
Planning

100% completePhase 1
100% completePhase 2

Process
100% completePhase 3

100% completePhase 4
100% completePhase 5

100% completePhase 6
100% completePhase 7

Results
100% completePhase 8

100% completePhase 9

Figure 1: Gantt diagram of the project
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2 State of the art
In this section, we will review recent advances of the three fields that concur in the methods that
were used in this thesis: Neural Networks for Machine Translation, which is the application of
artificial neural networks to predict the likelihood of a sequence of words; Domain Adaptation
techniques applied to NMT, which consist of trying to transfer knowledge acquired from a
source data distribution to a different, but related, target data distribution; and Gender Bias
analysis in NMT, which tries to handle the problem of incorrectly translating from gender-
neutral words in a source language to gender-specific words in the target language.

2.1 Neural Networks for Machine Translation
Neural Machine Translation (NMT) is a new approach for Statistical Machine Translation
(SMT) that was proposed in 2013 [7]. This approach is inspired by the recent trend of deep
representational learning, which has impressed the whole word by reaching or even surpassing
human-life performance in various tasks: Chinese-English NMT [8]; Reinforcement Learning
such as in AlphaGo [9], which was the first computer program to defeat a professional human
Go player and world champion; and Image Recognition from ImageNet [10], which is a large
image database based on WordNet having hundreds of photographies per node.

Figure 2: Encoder-Decoder architecture. The encoder tries to condense the data into a
lower-dimensional space losing the minimum information. The decoder tries to reconstruct the

input from this low-dimensional space.

The neural network models being used in [7], [11] started with an encoder-decoder (see Fig. 2)
architecture, in which the former extracted a fixed-length representation from a variable-length
input sentence, and the latter generated a translation from this representation.
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A RNN works on a variable-length sequence

x = (x1,x2, . . . ,xT )

by maintaining a hidden state, h over time. At each timestep t, the hidden state h(t) is updated
by

h(t) = f (h(t−1),xt)

where f is an activation function. Pretty often, f performs a linear transformation on the input
vectors, summing them, and applying an element-wise logistic sigmoid function. An RNN can
then be used to learn a distribution over a variable-length sequence by learning the distribution
over the next input

p(xt+1|xt , . . . ,x1)

.

2.1.1 Memory in RNNs

A new activation function for RNNs was proposed in [12]. This new function augments the
capabilities of the usual sigmoid function

σ(x) =
1

1+ e−x =
ex

ex +1

with two gating units called update and reset gates, z and r respectively. Each of these gates
depend on the previous hidden state h(t − 1), while the current input xt controls the flow of
information. This is similar to the Long Short Term Memory (LSTM) introduced in [13], and
tries to combat the vanishing gradient problem by controlling, via the backpropagation signal,
the flow of information that goes into the nodes of the network.

The reset gate r j is defined as

r j = σ([Wrx] j +[Urht−1] j)

where σ is the sigmoid function, and the subscript [.] j denotes the j-th element of a vector. Then,
x and ht−1 are the input and the previous hidden state, respectively. The matrices, Wr and Ur,
are weight matrices that are learned through the backpropagation algorithm [14].

In the same manner, the update gate z j is defined as

z j = σ([Wzx] j +[Uzht−1] j)

The activation of h j is then computed as

ht
j = z jht−1

j +(1− z j)h̃t
j

where
h̃t

j = φ([Wx] j +[U(r�ht−1)] j)]
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2.1.2 Self-Attention in RNNs

An attention function can be described as a mapping of a query and a set of key-value pairs to
an output, where these three are all vectors. The output is computed as a weighted sum of the
values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

Self-attention, is an attention mechanism relating different positions of a single sequence in
order to compute a representation of that sequence. This mechanism has been used successfully
in a variety of tasks including reading comprehension [15], abstractive summarization [16] and
learning task-independent sentence representations [17]

The first step when applying self-attention is to obtain three vectors from each of the encoder’s
input vectors. For each word, a query q, key k and value v vector is created. These vectors are
created by multiplying the input vector by three matrices (WQ, WK and WV ) that were obtained
during the training process.

Mathematically, having an input sequence of length N represented as a sequence of words

x = [x0, . . . ,xn−1]

In order to compute the self-attention score for each word in the input sentence, we take the
dot product of the query vector with the key vector of each of the input words’ key vector. For
example, if we want to compute the score for the word in the first position (x0) of the sequence,
the scores would be

z0 = [q0k0, . . . ,q0kn−1]

After having a vector with the scores, z, these scores need to be divided by the square root of
the dimension of the key vectors used,

√
dk

z̃ =
z√
dk

Then, the result has to be passed through a softmax operation. This operation has useful prop-
erties: normalizes the scores so they’re all positive and add up to 1, mimicking probability
distributions.

σ(z̃i) =
ezi

N−1
∑
j=0

ez j

= t

Each position of t will have the softmax score for the word in that position.

The last step is to multiply each value vector by the softmax score, and then summing up the
result. This follows the intuition of keeping intact the values of the words that the model is
going to focus on, and reducing the amount of signal that flows into the next layer for irrelevant
words.

a = [sum(t0v0), . . . ,sum(tn−1vn−1)]
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This vector a will hold the self-attention scores for the first word of the sequence. This algorithm
needs to be repeated with each of the input sequence’s words, where the only change compared
to the previous example is the definition of z, where, for a word in position i,

zi = [qik0, . . . ,qikn−1]

2.1.3 Transformers

The Transformer [18] is a deep learning model introduced in 2017. This is the architecture that
was used in this thesis to train a translation model for a given (source-target) language pair.
This architecture, unlike RNNs, does not need to process sequential data in order. For example,
if the input data is a natural language sentence, the Transformer does not need to process the
beginning of it before the end. Thus, due to this feature, the Transformer allows for much more
parallelization than RNNs and therefore, its training time is reduced drastically.

Figure 3: The Transformer architecture, with self-attention layers in each first layer of the
encoders and one attention layer for each encoder-decoder connection. There is also a residual
connection that passes information to the Add Normalize layer before each feed-forward pass.

Since their introduction, Transformers have become the model of choice for tackling many prob-
lems in NLP, replacing older recurrent neural network models such as the long short-term mem-
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ory (LSTM) [13]. Since the Transformer model facilitates more parallelization during training,
it has enabled training on larger datasets than was possible before it was introduced.

This has led to the development of pretrained systems such as BERT (Bidirectional Encoder
Representations from Transformers) [19] and GPT (Generative Pre-trained Transformer) [20],
which have been trained with huge general language datasets, and can be fine-tuned to specific
language tasks.

The function of each encoder layer is to process its input to generate encodings, containing in-
formation about which parts of the inputs are relevant to each other. It passes its set of encodings
to the next encoder layer as inputs.

Each decoder layer does the opposite, taking all the encodings and processing them, using
their contextual information to generate an output sequence. To achieve this, each encoder and
decoder layer makes use of an attention mechanism, which for each input, weights the relevance
of every other input and draws information from them accordingly to produce the output.

Each decoder layer has an additional attention mechanism too, which gets information from the
outputs of previous decoders. Both the encoder and decoder layers have a feed-forward neural
network for additional processing of the outputs, and contain residual connections and layer
normalization steps.

2.2 Domain Adaptation in Machine Translation
High quality domain-specific MT systems are in high demand. Due to its limited applications
and its usually poor performance, it is important to develop translation systems for specific
domains [21].

Leveraging out-of-domain parallel corpora and in-domain monolingual corpora to improve in-
domain translation is known as domain adaptation for MT [22, 23]. MT systems typically per-
form worse in a resource poor or domain mismatching scenario. Hence, it is important to lever-
age the spoken language domain data with the parent domain data. Moreover, there are mono-
lingual corpora containing millions of sentences for the spoken language domain, which can
also be incorporated to this leveraging. [24]

There are many studies of domain adaptation for SMT, which can be mainly divided into two
categories: data centric and model centric. Data centric methods focus on either selecting train-
ing data from out-of-domain parallel corpora based on a language model (LM) [25–27] or gen-
erating pseudo parallel sentences [28–31]. Model centric methods interpolate in-domain and
out-of-domain models in either a model level [26, 32, 33] or an instance level [34]. However,
due to the different characteristics of SMT and NMT systems, methods that were originally
developed for SMT cannot be directly applied to NMT systems.

2.2.1 Data Centric

Monolingual Corpora In-domain monolingual data cannot be directly used as a Language
Model for conventional NMT, unlike in SMT. Many studies have been conducted for this: In this
paper [35] propose using target monolingual data for the decoder with LM and NMT multitask
learning. [36] use source side monolingual data to strengthen the NMT encoder via multitask

14



learning for predicting both source sentences reordering and translation. [37] use both source
and target monolingual data for NMT through reconstructing the monolingual data by using
NMT as an autoencoder.

Out-of-Domain Parallel Corpora With both in-domain and out-of-domain parallel corpora,
it is ideal to train a mixed domain MT system that can improve in-domain translation while do
not decrease the quality of out-of-domain translation. These are categorized as multi-domain
methods, that have been successfully applied to NMT.

The multi-domain method in [38] is originally motivated by [39]. In this method, the corpora of
multiple domains are concatenated with two small modifications:

1. Appending a domain tag to the source sentences of the respective corpora. This makes
the NMT decoder to prioritize generating sentences for that specific domain.

2. Oversampling the smaller corpus so that the training procedure pays equal attention to
each domain.

In this paper, [40] they compare different methods for training a multi-domain system. They
find that fine tuning on the concatenated multi-domain corpora shows the best performance.

2.2.2 Model Centric

Training Objective The methods in this section change the training functions or procedures
for obtaining an optimal in-domain training objective.

For Cost Weighting, the NMT cost function is modified with a domain classifier [41]. The output
probability of the domain classifier is transferred into the domain weight. This classifier is
trained using development data.

In Fine Tuning methods, which are the conventional way for domain adaptation, a NMT system
is trained on a rich resource of out-of-domain corpus until convergence, and then its parameters
are fine tuned on a resource poor in-domain corpus.

Conventionally, fine tuning is applied on in-domain parallel corpora. To prevent performance
degradation of out-of-domain translation after fine tuning on in-domain data, [42] propose an
extension of fine tuning that keeps the distribution of the out-of-domain model based on knowl-
edge distillation [43]. Knowledge distillation is the process of transferring knowledge from a
large model with high knowledge capacity - even if it is not fully used - to a smaller one without
losing performance.

In Mixed Fine Tuning, they combine multi-domain and fine tuning approaches. The training
procedure is the following:

1. Train an NMT model on out-of-domain data until convergence.

2. Resume training the NMT model from step 1 on a mix of in-domain and out-of-domain
data until convergence.

Mixed fine tuning addresses the over-fitting problem of fine tuning due to the small size of the
in-domain data by oversampling this in-domain data. It is easier to train a good model with
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out-of-domain data, compared to training a multi-domain model.

Once the parameters for the out-of-domain data are obtained, we can use these parameters to
fine tune on the mixed domain data. In addition, mixed fine tuning is faster than multi-domain
because it is faster to train an out-of-domain model - because it convergences faster than a
multi-domain model - and it also convergences faster when fine tuning later.

In [38], mixed fine tuning is shown to perform better than multi-domain and fine tuning ap-
proaches. In addition, mixed fine tuning has the similar effect as the ensembling method in [42],
which does not decrease the out-of-domain translation performance.

Others There are other model centric approaches such as changing the NMT model archi-
tecture, training an in-domain RNN-LM for the NMT decoder and combine it with an NMT
model [44] or discriminating the domain, by adding a feed-forward network that acts as a dis-
criminator of the source sentence domain, to leverage the diversity of information in multi-
domain corpora [45].

2.3 Gender Bias in Machine Translation
Machine translation models are trained on huge corpora of text, consisting of parallel sentences
in a (source, target) language pair. These sentences are commonly extracted from news, weblogs
or even talk shows. These datasets have been shown to reflect social biases, commonly by the
under-representation in them of certain races or genders, when assessing racial or gender bias,
respectively.

In many cases, the bias of a NMT system is not caused by an active bias of machine learning
developers, but rather by the inherent societal biases that the data sources contain. This bias is
then manifested in datasets that are created from these types of sources. For example, if more
women than men have historically been nurses, the machine learning model trained on these
data will learn that nurses are more likely to be women than men, assuming that distribution
still holds nowadays.

Gender bias in Machine Translation tries to detect and correct wrongly translated sentences due
to a mismatch on the source and target words that are gendered. This has been shown to reduce
translation quality, particularly when the target language has grammatical gender. For example,
when translating from English to Spanish, there can be some gender-neutral words in English
that are gender-specific in Spanish.

Recent approaches have involved training from scratch on artificially created gender-balanced
versions of the original dataset [46,47], where in the former they use this dataset to evaluate the
gender bias in coreference systems, and in the latter, they propose a method to swap genders
in sentences of languages with rich morphology by using dependency trees, part-of-speech tags
and morpho-syntactic tags from Universal Dependencies.

Debiased word embeddings are also another approach that has been increasing its interest in the
recent years. In this paper [48], they use GloVe word embeddings and its debiased counterparts
(GN-GloVe, Hard-Debiased GloVe) by tweaking the first layer of the Transformer, which is the
one that learns the word representations. Then they compare the BLEU performance to that of
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the baseline, concluding that the model trained using the GN-GloVe embeddings reaches the
best performance. Regarding the gender bias evaluation, the Hard-Debiased GloVe performs
much better than any other system, reaching almost 100% accuracy at co-referent resolution
tasks. In this other paper [6], they firstly identify the direction of the embeddings where the bias
is present. Then, gender neutral words that have components in this direction are set to zero,
equalizing the sets by making the gender-neutral word equidistant to gender-specific words in
the given set.

Another approach which has been shown to mitigate gender bias is to treat it as a domain adap-
tation problem. In this paper [49], They first create a small, hand-crafted dataset with a list of
professions from US labour statistics, and then they perform counterfactual data augmentation.
This process is commonly used to handle data over-representation. In this case, it consists in
finding gendered sentences and switch genders in source and target languages. They compare
Elastic Weight Consolidation (EWC) [50] and Lattice Rescoring [51], showing that the latter
performs better and with the advantage of not requiring access to the original model.
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3 Methodology
In this section, we explain the procedure that has been followed to obtain an English-Spanish
gender-balanced dataset, which uses the available Gebiotoolkit [1] and extracts parallel corpus
at the level of sentence from the Wikipedia Biographies. Here in after, we refer to this dataset as
Balanced. We quantify the amount of gender bias in the collected dataset as a reflection of the
amount of gender bias in the words embeddings. This quantification of bias is also compared to
the case of words embeddings computed on the EuroParl corpus [52].

3.1 Balanced Dataset Generation
We used the available Gebiotoolkit [1] to extract the Balanced dataset. Gebiotoolkit is a tool for
extracting multilingual parallel corpora at sentence level, together with document and gender
information from Wikipedia biographies. In this sense, the collected data set is not synthetic.
The dataset can be generated from any of the languages available in the Wikipedia, in our case,
we have selected the English-Spanish language pair, which have considerable differences at
the morphological level, and exhibit gender bias issues in MT [48]. Gebiotoolkit requires three
inputs:

1. A list of the desired languages, which were set to English and Spanish.

2. A list of the article titles belonging to the category to extract - which in our case it is
’Living People’ - in English.

3. The wikipedia dump3 files for the languages that were set on (1) in order to extract the
articles requested in (2).

.

In order to retrieve the list of articles under an specific category, PetScan tool4 was used. The
corpus extractor module starts by looking for the equivalent articles to those input for the other
languages via the Wikipedia interlanguage links.

GeBioToolkit uses a modified version of the wikiextractor [53] software to retrieve and store
the different Wikipedia entries from each language. Finally, file selection generates a dictio-
nary similar to the one obtained before, but it only stores the entries for which the files were
successfully retrieved.

After the articles extraction step, the corpus alignment module makes use of the information
retrieved in the previous step and the LASER toolkit [54]. LASER (Language-Agnostic SEn-
tence Representations) allows to obtain sentence embeddings through a multilingual sentence
encoder. This system uses a single BiLSTM (see Fig. 4) encoder with a shared BPE vocabulary
for all languages, which is coupled with an auxiliary decoder and trained on publicly available
parallel corpora.

Sentences from all languages are mapped into the same embedding space, so embeddings from
different languages are comparable. The sentence in the source language is encoded by the

3https://dumps.wikimedia.org/
4https://petscan.wmflabs.org/
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Figure 4: LASER architecture. The encoder does not know the language which is being fed
while the decoder has this information appended to its input via the Lid tag

encoder, and then translated to the target language by the decoder. The encoder does not know
what the target language is, making the system language-agnostic. The target language is given
to the decoder through the input signal (see Fig 4). Translations can be found then as close pairs
in the multilingual semantic space.

After the alignment, data is stored by language and gender (see Table 1), for which each sen-
tence in every file has its parallel, translated sentence in the same line. The data is cleaned by
removing Wikipedia anchor tags .

Aligned Sentences
en es
Andrew Parrott : He was music director of the
London Mozart Players for several years until
September 2006.

Andrew Parrott : Posteriormente fue director
musical de los London Mozart Players durante
varios años hasta septiembre de 2006.

Paul Heyman : On the November 11, 2013
episode of ”Raw”, Heyman stated that he was
no longer with Ryback as Ryback never offi-
cially accepted his proposal to become a ”Paul
Heyman Guy”.

Paul Heyman : En el episodio del 11 de
noviembre de 2013 de ”Raw”, Heyman declaró
que ya no estaba con Ryback ya que Ryback
nunca oficialmente habı́a aceptado su propuesta
para convertirse en un ”Paul Heyman Guy”.

Richard Florida : Florida’s earlier work focused
on innovation by manufacturers.

Richard Florida : Los primeros trabajos de
Florida se centraron en la innovación industrial.

Table 1: Examples of aligned sentences.

The biographies dataset has approximately 27,000 female-related sentences and 47,000 male-
related sentences. These sentences are typically short and some are not perfectly written, In
order to have an equal probability of finding a male or female related sentence, the dataset was
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balanced by removing male-related samples until having the same amount of sentences between
genders.

After extraction, the biographies dataset has approximately 27,000 female-related sentences and
47,000 male-related sentences. In order to have an equal probability of finding a male or female
related sentence, we balanced the dataset by removing male-related samples until having the
same amount of sentences between genders. In total we end up with 54,000 parallel sentences
and the word embedding model has a vocabulary size of 17,277 English words.

Similarly, the Europarl corpus has 2,007,758 parallel sentences and its word embedding model
has a vocabulary size of 87,033 English words.

3.2 Gender bias Analysis through Word Embeddings
To evaluate the amount of bias in the Balanced dataset, we build word embeddings which is a
vectorization of words following the Word2Vec [55] technique and we assume that the presence
of bias in words embeddings is a kind of reflection of the biases in the dataset [56].

We use 128 as the number of dimensions for these vectors, a minimum count of 5 in order to
remove poorly represented words and a bidirectional window of 3 words, that is, given a word
x[n], its ”context” is

x[n−3], . . . ,x[n], . . . ,x[n+3]

To perform the gender bias analysis of these words embeddings, we use the measures proposed
in previous works [5, 6]. Inspired by these previous studies, we make use of the following lists
of words:

• Definitional Pairs List

• Biased List, which contains of 1000 words, 500 female biased and 500 male biased. (e.g.
diet for female and hero for male)

• Extended Biased List, extended version of Biased List (5000 words, 2500 female biased
and 2500 male biased)

• Professional List 319 tokens (e.g. accountant, surgeon)

The definition of gender bias and its evaluation is taken from [6], where they define the gender
bias of a word −→w by its projection on the gender direction, assuming all vectors are normalized

−→w · (
−→
he−

−→
she)

3.2.1 Gender Direction and Direct Bias

Following the previous study [6], we took the M gender pair difference vectors


−→w (he)−−→w (she)

−→w ( f ather)−−→w (mother)
· · ·

−→w (son)−−→w (daughter)
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from the Definitional List (see Table 2) and computed its principal components (PCs) in order
to identify the gender subspace. We then generate a random base of M units vectors of 128
dimensions for comparison. Figure 5 shows the PCA plots in both the gendered and the random
vectors.

In the case of the EuroParl dataset, there is a clear dominance of one gender direction in the
PCA from gender vectors. In the case of the Balanced datasets, the dominance is lower, but we
can see that the 2 PCs from the left image (our gender base) explain almost 65% of the variance
(information).

he - she boy - girl
father - mother male - female

his - her himself - herself
man - woman son - daughter

Table 2: Definitional List used in gender bias evaluation.

We take the definition of gender bias from [6], where they define the gender bias of a word −→w
by its projection on the gender direction −→g . The higher the magnitude of the projection onto
the previously defined base, the more biased the word is. We use the lists of neutral professions
in [57] in order to compute the direct bias of our Balanced dataset as follows.

1
|N| ∑

ωεN
|cos(−→ω ·g)| (1)

After filtering by words that exist in our word embeddings model, we get N=147 for the Europarl
dataset and N=140 for the Balanced dataset. Direct bias is 0.23 for the EuroParl and 0.10 for
the Balanced dataset. This measure confirms that most words still have some of its information
alongside the gender direction. These results are higher of what is reported in Bolukbasi’s work
(although it is not directly comparable). Having a lower N may interfere in the direct bias
measure.

3.2.2 Clustering

Are stereotypically-gendered words easy to cluster based on their word embedding represen-
tations? K-means is a clustering is a method of vector quantization that aims to partition n
observations into k clusters in which each observation belongs to the cluster with the nearest
mean (cluster centroid), serving as a prototype of the cluster. In order to perform this clustering,
Scikit [58] was used, which is a scientific python library that, among many other things, has a
K-means implementation.

As the purpose of this experiment was trying to cluster out male and female word embeddings,
k = 2 was set. Take into account that higher number of clusters can be set in order to gain more
insight of word distribution in the embedding space.

The clustering measure wants to evaluate if stereotypically-gendered words (Biased List) are
easy to cluster based on their word embedding representations. The higher the clustering accu-
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Figure 5: PCA Comparison between the gender base (left) and a randomly generated base
(right) of 128 dimensions from Europarl (top) and Balanced (bottom) datasets.

racy, the more bias the words embeddings have. We use Scikit learn [58] toolkit to perform an
unsupervised k-means clustering classification (with 2 clusters).

Figures 6 and 6b show the tSNE projections of the vectors for both Europarl and Balanced
datasets. The clustering model trained with the Europarl aligns with gender with an accuracy of
77.67% and Balanced dataset word embeddings aligns with gender with an accuracy of 68.47%.
Note that not all the words in the Biased List appear in our dataset, in fact, we were only able
to use 263 words and 512 words5 (out of 1000) from the original Biased List, respectively,

3.2.3 Classification

We want to know if stereotypically-gendered words (Extended Biased List) can be classified
into masculine or feminine based solely on their word embedding representations. We build a
RBF-kernel SVM classifier to discover if the model can generalize its predictions into other

5Words used can be found in https://github.com/adridjs/thesis2020/tree/master/gender_bias/
data/
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Figure 6: tSNE projection after K-means clustering on Balanced and EuroParl datasets.

stereotypically-gendered words. We perform the evaluation on the Balanced and EuroParl cor-
pus.

We start from the Extended Biased List of the 5000 most-biased words in [5] according to the
original bias (2,500 from each gender). We then split these into train and test sets, drawing
a 20% (255 words) for the train set and 1022 for testing the performance of the model. The
accuracy of the classifier for the Europarl dataset is 80.59% and for the Balanced dataset is
73.28%.

That is a good result as it means that the representation of words as vectors is not a good
discriminatory variable to take into account when trying to classify words by gender. This has
implications in the downstream systems that are going to be trained with these vectors (if any),
as it will incorporate little bias with these representations.

3.2.4 Discussion

The accuracy reported in Europarl and Balanced datasets is not comparable since both have dif-
ferent number of total and vocabulary words. We know that the word embedding representation
changes when having more word repetitions. Having said that, results in absolute terms tends
to report less bias in the Balanced dataset compared to the Europarl dataset. Moreover, these
results are also lower than the ones reported in previous studies [5].

3.3 Use of Domain Adaptation techniques for Gender Bias Mitigation
In this section we use the gender-balanced dataset described in the previous section to mitigate
the gender bias present in a standard MT system. We build the Neural MT system using the
standard Transformer [18] on a large dataset. Our idea is to use fine-tuning techniques with the
balanced dataset on this baseline system.
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3.3.1 Training Pipeline

The idea is that we have a parent translation model trained with unbalanced data and we want to
learn a child model taking advantage of the balanced dataset. To avoid catastrophic forgetting,
where the child model forgets everything that has been learnt from the parent, we use the mix
fine tunning strategy. This strategy which consists in initializing the child model with the parent
model and train it on a percentage of the unbalanced data set concatenated with the entire
balanced data set has been proven to mitigate the catastrophic forgetting problem. [59].

We train the parent model with a large dataset and then fine-tune it with 3 types of datasets:
Balanced, a Mix of the Large and Balanced dataset, having different proportions of the large
dataset into it, and Concat which contains the entire Large and Balanced datasets (see Figure
7).

Large Dataset

Transformer

Model

Mix Fine Tuning ConcatBalanced

Finetuned Model Finetuned ModelFinetuned Model

Figure 7: NMT training pipeline. The gray boxes represent the corpus used to train the model.

3.3.2 Experimental Framework

Generic Data To train the parent model, we used the English-Spanish EuroParl corpus [52],
which contains parallel data from the proceedings of the European Parliament. We extract a part
of the corpus that consists of 2 million parallel sentences. We applied a preprocessing step that
consisted of tokenizing, truecasing and filtering. All these steps were performed using scripts
from the well-known Moses [60] scripts.

1. The tokenizing step consisted of (A) punctuation normalization and (B) tokenizing the
text itself.

2. The truecasing step learns a model (which is a list of words and the frequency of their
different forms) from the training partition and only changes the words at the beginning
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of the sentence to their most frequent form. This model is later applied to all partitions,
i.e, train, test and dev.

3. The filtering step removed parallel sentences with length greater than 50, and sentence
pair ratio greater than 9:1.

After the preprocessing step, the corpus size reduces to 1.77 million parallel sentences.

Parameters The network is trained for an undefined number of epochs until convergence
with an early stopping policy. That policy consists of setting a patience, that is, if the validation
loss does not improve in patience epochs, stop the training. We set that to 5 as it gives good
results empirically. We used 512 embeddings dimention, 6 layers in the encoder and decoder, 8
attention heads. We used a batch size of 16, a dropout of 0.1 and a learning rate of 0.001. We
optimized with Adam. For a full list of used parameters, refer to Table 8 in the appendix.

Architecture We use the Transformer [18] as baseline NMT model architecture, an encoder-
decoder architecture which is entirely based on attention-based mechanisms that boosts the
performance in MT tasks compared to RNNs or CNNs architectures.

3.3.3 Fine-tuning

The Baseline model is fine-tuned using dropout set to 0.3. This is used as a regularization
technique together with the mixed fine tuning approach to handle the catastrophic forgetting
problem.

Balanced We hypothesize that fine-tuning on a corpus which is balanced in gender will im-
prove the accuracy in gendered translations. We use the corpus extracted by Gebiotoolkit as
reported in Section 3.1 - which is balanced in gender - in order to test this hypothesis. Note that
the Balanced data is from a different domain than the training and test data.

Mix This approach is building a dataset based on a mix of EuroParl and Balanced datasets.
We study the influence in gender bias and MT performance by having more or less in-domain
data being fed in the fine-tuning step. More percentage means more EuroParl data.

Concat This approach consists of concatenating the whole EuroParl corpus with the Gender-
Balanced biographies dataset.

Note that Balanced and Concat could also lie into the mix fine-tuning strategy, being 0% and
100%, respectively, the percentage of sentences from the Europarl corpus.
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4 Results
Findings are presented from Table 3 to 6. Two baseline models are reported: one trained with
the EuroParl corpus and another trained with the concatenated dataset (Base-Concat) composed
by EuroParl and Gebiotoolkit dataset. An evaluation in terms of translation performance and an
evaluation in terms of gender bias accuracy are reported.

We use BLEU [61] to evaluate the performance of our translation models. We use the gender
bias evaluation pipeline from [2], also known as WinoMT to evaluate the gender bias in these
models.

4.1 Translation Evaluation
Our baseline model is the one trained with the EuroParl corpus. We trained the same Trans-
former model with a concatenated dataset composed by EuroParl and Gebiotoolkit dataset,
which shows an increment of 1.5 points in the english-to-spanish model and almost the same
increment in the reversed model.

Translation Performance
Corpus Test Set

NewsTest2013 Gebiocorpus
en2es es2en en2es es2en

EuroParl 26.87 25.50 44.04 40.95
Base-Concat 28.37 26.91 45.82 43.05
FT-Balanced 27.51 27.80 46.60 45.63
FT-Mix 5% 28.51 28.71 46.17 44.44
FT-Mix 10% 28.52 28.76 46.32 44.10
FT-Mix 20% 28.72 28.78 46.28 44.86
FT-Mix 30% 28.76 28.95 46.35 45.12
FT-Mix 40% 28.61 29.05 46.43 45.37
FT-Concat 28.68 28.29 46.56 45.52

Table 3: BLEU results for the different trained systems. Bold numbers represent best
performance column-wise.

All the fine-tuned models surpass these two in both test sets, except the FT-Balanced in the
en2es model for the NewsTest2013 set. The best performance achieved on the en2es model is
the one where 30% of EuroParl data is present, whereas in the es2en model, this is achieved by
the model that was trained with a 40% of the data from EuroParl.

Regarding the Gebiocorpus test set, which are manually selected and translated sentences from
Wikipedia biographies, the best performance in both languages is achieved by the system fine-
tuned on the Balanced dataset. This is normal as the sentences from train and test set share the
same domain, which makes it easier for the system to generalize.
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4.2 Gender Bias Evaluation
The dataset consists of 3888 sentences. In each of these sentences, there is a primary entity
which is coreferent with a pronoun, and a secondary entity, that tries to trick the translation
system. The scripts provided by the authors extract the grammatical gender of the primary entity
from each translation by automatic word alignment and followed by morphological analysis.
Then, it compares the translated primary entity with the annotated gender. The objective is to
have a translation where the primary entity’s gender matches the gold annotated one.

The metrics reported in the gender bias part are the overall system accuracy, i.e Acc., which is
the percentage of instances in which the translation preserved the gender of the entity from the
original sentence, and ∆g, which tracks the difference between male and female F-scores.

All systems perform quite poor on the accuracy metric, where the best performing model does
not achieve better than random guessing in order to get the correct gender inflection. For the ∆g
measure, we can see an strong deviation by the FT-Concat model, which indicates that it is by
far the least biased model. Note that all models perform better on male instances than on female
ones, caused by the unbalanced distribution between genders in the training set.

4.2.1 General Bias

For the general bias measures, the best performance is achieved with FT-Concat, getting 49.8%
accuracy at identifying the correct gender when translating into spanish. It doesn’t have the
highest F-score for males, but it does for females, and the difference between the scores, ∆g is
much higher in the latter than in the former, thus giving a lesser biased performance, as reported
here [2].

General Gender Bias
Corpus Acc. F-Score ∆g

M F
EuroParl 46.6% 59.8% 31.3% 28.5
Base-Concat 47.3% 60.3% 32.4% 27.9
FT-Balanced 48.3% 60.4% 33.8% 26.6
FT-Mix 5% 47.5% 60.2% 32.0% 28.2
FT-Mix 10% 47.9% 60.4% 32.6% 27.8
FT-Mix 20% 48.2% 60.7% 33.3% 27.4
FT-Mix 30% 48.8% 60.8% 35.2% 25.6
FT-Mix 40% 49.0% 61.1% 35.5% 25.6
FT-Concat 49.8% 59.9% 41.7% 18.2

Table 4: Accuracy in the General WinoMT test set. Bold numbers represent best performance
column-wise.

4.2.2 Pro-Stereotypical Bias

In this setup, FT-Concat performs much better than any other model. Its accuracy is 10 points
higher than the best baseline model. Its F-score differences are also the lowest, meaning that
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there’s less bias than in any other trained model.

Pro-stereotypical Gender Bias
Corpus Acc. F-Score ∆g

M F
EuroParl 53.5% 67.7% 35.9% 31.8
Base-Concat 56.2% 69.1% 38.8% 30.3
FT-Balanced 59.3% 70.0% 47.7% 22.3
FT-Mix 5% 57.3% 69.3% 43.2% 26.1
FT-Mix 10% 57.8% 69.4% 44.1% 25.3
FT-Mix 20% 58.2% 69.9% 44.6% 25.3
FT-Mix 30% 58.9% 70.3% 46.0% 24.3
FT-Mix 40% 59.0% 70.8% 45.5% 25.3
FT-Concat 66.3% 74.1% 62.0% 12.1

Table 5: Accuracy in the WinoMT test set. Pro-Stereotypical translations. Bold numbers
represent best performance column-wise.

4.2.3 Anti-Stereotypical Bias

Lastly, the best model performance is obtained on the FT-Mix40% model, which has an accu-
racy of 45% (lowest for all the setups). The minimum F-score difference is 28’9%, which is very
high. In general, we can see that in this setup the models do not perform very well. This reveals
that the systems are still biased, as we have low anti-stereotypical and high pro-stereotypical
translation performance.

Anti-stereotypical Gender Bias
Corpus Acc, F-Score ∆g

M F
EuroParl 44.3% 57.1% 28.2% 28.9
Base Concat 39.0% 52.3% 21.5% 30.8
FT-Balanced 43.1% 56.7% 22.9% 33.8
FT-Mix 5% 43.1% 56.6% 23.5% 33.1
FT-Mix 10% 43.4% 57.1% 23.2% 33.9
FT-Mix 20% 44.1% 57.4% 24.7% 32.7
FT-Mix 30% 44.3% 57.1% 26.6% 30.5
FT-Mix 40% 45.0% 57.4% 28.6% 28.8
FT-Concat 44.5% 57.0% 26.3% 30.7

Table 6: Accuracy in the WinoMT test set. Anti-Stereotypical translations. Bold numbers
represent best performance column-wise.
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4.3 Generated Translations
Some of the translations generated by the model with best performance in terms of gender bias
and an explanation of the phenomena ocurrying in each case can be seen in the following Table
7. The sentences are taken from WinoMT test set, which were used to compute the gender bias
of the NMT system.

Source Language (en) Predicted Translation (es) Case

The lawyer told the designer
that she may lose her job due
to the prosecution.

El abogado le dijo a la
diseñadora que podı́a perder
su trabajo debido a la
acusación.

Good coreference resolution
with a female stereotypical
profession.

The editor asked the guard to
leave the room and asked her
to say nothing.

El editor pidió a la guardia
que abandonara la sala y le
pidió que no dijera nada.

Good coreference resolution
with a female antistereotypi-
cal profession.

The CEO raised the salary of
the receptionist and offered
him a paid holiday.

El director ejecutivo elevó el
salario del recepcionista y le
ofreció unas vacaciones re-
muneradas.

Good coreference resolution
with a male antistereotypical
profession.

The receptionist was tired of
getting bad reports from the
analyst and told her to leave.

El recepcionista estaba
cansado de recibir informes
negativos del analista y le
dijo que se marchara.

Bad coreference resolution.
The system outputs del anal-
ista, which is masculine-
gendered.

Table 7: Examples of translated sentences by the FT-Concat model. The cursive words
represent the entity which the word in bold is refering to.
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5 Conclusions
The experiments presented in the previous sections have revealed a systematic bias in MT sys-
tems and - in a lesser degree - in word embeddings models.

Our first hypothesis was that giving a closed, in-domain, gender-balanced dataset would di-
minish the gender bias in NMT systems. It has been proven that it does in word embeddings
representations, meaning that these representations could be used by downstreams systems with
the ability of having little to no gender bias.

On the other hand, from these results, providing an small, gender-balanced dataset does not
improve performance on NMT systems regarding gender bias metrics. The best performance is
achieved on the fully concatenated EuroParl + Balanced dataset, which arises two questions:
Is this a problem on the difference of corpus size between both datasets? Is this a problem of
the type of fine-tuning approach that was taken?

It is indeed clear that more data implies more richness in its probability distribution, as it is
more probable to find extreme cases or cases that did not appear in a subset of said data. Getting
gender-balanced datasets which are not synthetic and large enough to be compared to the exist-
ing parallel datasets is difficult, thus making the task of gender debiasing on the training step
a challenge: you either adapt the model too much to the new data distribution, which is more
compact and constrained, making the model lose its ability of generalization on more common
translations, or you restrict the update of the model parameters and do not debias at all, which
was the primary task to be pursued.

Translation quality was improved up to 2 BLEU points and gender bias was mitigated by a
significant amount, up to a 12.5% accuracy with the FT-Concat model. We think that there’s
still a lot to improve regarding gender bias in MT systems, as the anti-stereotypical translation
performance - which plays an important role in measuring gender bias - was considerably lower
than the other two setups.
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Appendices
Transformer Parameters The full list of parameters that were used in the training of the
baseline model. In the finetuning step, the dropout was changed to 0.3 in order to have a better
generalization and avoid adapting too much to the gender-balanced corpus.

Parameter Value
Adam Betas (0.9,0.98)
Adam Epsilon 10−8

Attention Dropout 0.1
Clip Norm 0.0
Criterion Label Smoothed Cross Entropy
Label Smoothing 0.1
Encoder Input Dim=512, Output Dim=512, Layers=6, Attention

Heads=8, Embed Dim=512, FFN Embed Dim=2048
Decoder Input Dim=512, Output Dim=512, Layers=6, Attention

Heads=8, Embed Dim=512, FFN Embed Dim=2048
Warmup Policy (10−7,4×103)
Dropout 0.1
Learning Rate 0.001
Learning Rate Scheduler Inverse Square Root
Max Source Positions 1024
Max Target Positions 1024
Max Tokens 3584
Min Learning Rate 1−9

Momentum 0.99
Batch Size 16

Table 8: Parameters used for training. These were the parameters that gave the best
performance on the baseline model.
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