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Abstract

In this paper, a comprehensive numerical approach for modelling track/tunnel/soil

systems in the context of ground-borne railway-induced vibration problems

considering a full-space model of the soil is proposed. All the approach is

formulated in the wavenumber-frequency domain and it consists of a coupled
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finite element-boundary element model of the tunnel/soil system, a semi-

analytical model of the track, a multibody model for the vehicle and a model

for the vibration propagation in the soil based on semi-analytical solutions

of a cylindrical cavity in a full-space. This comprehensive approach has been

developed with the aim of computing the vibration energy flow radiated up-

wards by underground railway tunnels. An axisymmetric formulation to deal

with circular underground railway tunnels is included in the approach in order

to improve the computational speed of the methodology. This formulation

can also be used for other types of railway tunnels if a circular boundary of

the boundary element mesh is considered. Since this methodology uses finite

elements to model the tunnel structure, its modelling detail is higher than

the previously developed methodologies dedicated to compute the vibration

energy flow radiated by underground railway infrastructures, since they are

based on semi-analytical modelling of the tunnel structure. The present me-

thodology has been specifically designed to be used in general assessment

studies about ground-borne underground railway-induced vibrations where

decisions on the type of track and/or the application of mitigation measures

at the source, as soft rail-pads, under-ballast or under-slab mats have to be

made. Moreover, this methodology can be used for the study of the vibration

radiation patterns of railway tunnels.

Keywords: Railway-induced vibration, Railway tunnels, 2.5D, Coupled

FEM-BEM, Vibration energy flow
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1. Introduction

Noise and vibration pollution in urban areas is a major issue of concern

for governments and administrations due to the increasing preoccupation

by the general population about the effects on their comfort and quality of

life. One of the most important sources that cause this contamination is

railway traffic. Ground-borne vibration is perceived as mechanical vibration

of the human body in a relevant frequency range from 1 Hz to 80 Hz and

ground-borne noise (also known as re-radiated noise) is perceived as a sound

emitted by the building structure in a relevant frequency range from 16 Hz

to 250 Hz [1]. Since almost all developed regions of the world have laws to

regulate the maximum levels of noise and vibration to which the population

is exposed, predictions of these levels must be carried out in designing new

railway infrastructures or when new buildings are planned to be constructed

near existing railway tracks.

A comprehensive overview of the state of the art on railway-induced ground-

borne vibration concerning governing physical mechanisms, prediction meth-

ods and mitigation measures has been presented by Lombaert et al. [2]. These

prediction approaches are of three kinds: empirical, analytical and numerical

[3]. Empirical models are based on measurements performed on specific sites

and, thus, in the majority of cases, are not usually suitable for predictions

of noise and vibration induced by new infrastructures. In general, analytical

and numerical approaches are the most commonly used methodologies when

a medium/high level of accuracy is required. These modelling techniques are

commonly used for the design of vibration mitigation measures [4, 5, 6, 7, 8].
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Comprehensive models of the complete system related to underground railway-

induced vibration problems should account for the vehicle, the track, the tun-

nel, the ground and the building. A methodology that uses a two-dimensional

(2D) finite element (FE) model to predict train-induced vibrations in a build-

ing was first proposed by Balendra et al. [9, 10] and Chua et al. [11]. However,

2D models do not take into account the wave propagation in the direction

of the track and, even more important, they cannot account for the train

motion along the track [12]. Hunt [13, 14] presented an analytical-stochastic

methodology to calculate ground-borne vibration in buildings due to un-

derground railway traffic in a three-dimensional (3D) point of view. Weak

coupling between the incident wave field due to the railway traffic and the

building structure was assumed. This incident wave field was calculated con-

sidering a stochastic modelling of the vibration generation and propagation

mechanisms [15]. Fiala et al. [16] developed a 3D methodology to calculate

the ground-borne vibration and re-radiated noise on buildings for the case of

at-grade infrastructures, based on a FE model of the building structure cou-

pled with a boundary element (BE) model of the layered ground [17]. Later,

Fiala et al. [18], in order to take into account the track longitudinal variabil-

ity, used the well-established 3D periodic finite element method (FEM) and

boundary element method (BEM) model, previously developed by Clouteau

et al. [19], for the computation of the free field ground surface displacements

induced by the vehicle/superstructure/tunnel/ground system.

Another relevant approach that is able to calculate the incident wave field

due to railway traffic in a 3D point of view is the two-and-a-half-dimensional

(2.5D) FEM-BEM modelling scheme [20], which reduces the meshing pro-
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blem to a 2D one but considers the track/tunnel system to be longitudinally

invariant. This methodology is being widely used nowadays, giving accu-

rate results in the prediction of ground-borne vibration [12, 21, 22]. Recent

investigations [23, 24] have proposed significant improvements of this me-

thodology by using a regularised boundary integral as an alternative to the

evaluation of the singular integrals which appear in the 2.5D BE formulation

and by considering the Green’s functions of a layered half-space [25] leading

the latter to very significant simplifications of the meshing problem. Jin et

al. [26] validated the 2.5D FEM-BEM approach with experimental measure-

ments. Lopes et al. [27] proposed a methodology using FEM and perfectly

matched layers (PML) to model the wave propagation in the soil to study

soil-structure interaction problem. An alternative methodology was proposed

by Amado-Mendes et al. [28], which uses the method of fundamental solution

(MFS) instead of PML. Yaseri et al. [29] proposed a method based on FE

coupled with scaled boundary finite elements, to study the ground vibration

of underground railways.

Rather than accounting for the complete system, considering only a model for

the vehicle/track/tunnel/soil system that accounts for the surrounding soil

as a full-space is a computationally efficient approach for the evaluation of

vibration mitigation measures applied on the source. In this regard, vibration

energy flow is a tool that can be used in designing effective countermeasures

for reducing the vibration generated by underground railway infrastructures.

Hussein and Hunt [30] proposed a power flow study based on the PiP model

of Forrest and Hunt [31] and Hussein and Hunt [32]. The model was later

improved by Hussein et al. [33] by replacing the initial full-space model of
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the soil with a layered half-space. In order to obtain vibration power flow

radiated by double-deck tunnel Clot et al. [34, 35] proposed a model of a

tunnel structure which couples a longitudinally infinite plate, as a model of

the interior floor, with the PiP model. A limitation of the methodologies

for computing power flow previously mentioned is that power flow can be

obtained from only simple geometrical configurations of underground tunnel

systems. This paper in contrast presents a methodology to compute the

vibration energy flow from underground railway infrastructures that allows

for a detailed modelling of tunnel structures.

In this context, this work proposes a computationally efficient method based

on a 2.5D FEM-BEM approach that allows for the prediction of railway-

induced vibration and vibration energy flow radiated by underground railway

infrastructures. With respect to PiP, the present approach is able to accu-

rately define the tunnel geometry since a 2.5D FEM-BEM approach is used

in the present methodology to model the tunnel/soil system. As a benifit

with respect to previously developed 2.5D FEM-BEM approaches intended

to deal with underground railway-induced ground-borne vibration problems

[20, 36, 23], the present approach is able to:

• Easily obtain the tractions on the soil, which are required to compute

the radiated energy flow.

• Efficiently compute the displacements and traction in a large set of

evaluation points (referred to as evaluators from here on) in the soil,

which is another requirement of the energy flow calculations. This is
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accomplished thanks to the use of the semi-analytical solutions of a

cavity embedded in a full-space as a model of the soil.

Moreover, the computational efficiency of the 2.5D FEM-BEM approach itself

is improved in the present methodology by the application of two strategies

for faster computation of 2.5D BEM matrices. Firstly, the axisymmetry

of most railway tunnel infrastructures is exploited in order to reduce the

amount of soil Green’s functions evaluations. This formulation can also be

used for other types of railway tunnels if a circular boundary of the BE

mesh is considered. Secondly, it is proposed to use a uniform distribution of

BE nodes which, combined with the assumption of homogeneous full-space

model of the soil, results in a significant reduction of the unique set of relative

distances at which the Green’s functions of the soil should be evaluated.

Finally, an efficient sampling strategy for obtaining an accurate response of

the system due to a train pass-by excitation is presented. A comparative

study of the energy flow radiated by a tunnel with a track based on direct

fixation rail fastening system (DFF) and a tunnel with a floating slab track

(FST) is presented as an application of this methodology.

2. Numerical methodology

As previously stated, the aim of this paper is to present a new methodo-

logy for the computation of vibration energy flow radiated in the soil by

train traffic through railway tunnels. The global computation scheme of

the methodology is shown in Fig. 1. This computation scheme consists of
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four different models: the track/tunnel/soil model, the train/track interac-

tion model, the train pass-by response model and the vibration energy flow

computation.

’

Fig. 1: Schematic description of the methodology.

The track/tunnel/soil system consists of three models: a semi-analytical mo-

del of the track, a model based on a 2.5D FEM-BEM approach for the tun-

nel/soil system and the semi-analytical solutions of a cylindrical cavity in a

full-space as a model of the vibration propagation in the soil. In the semi-

analytical model of the track, the rails are modelled as Euler-Bernoulli beams

and the fasteners as longitudinally distributed linear viscous springs. Tun-

nel/soil modelling is accomplished by a 2.5D FEM-BEM wherein the tunnel

structure is modelled by FE and the local surrounding soil is modelled with

BE.
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A description of the 2.5D FEM-BEM model used in this work can be found in

[37]. The connection between the tunnel/soil model and the semi-analytical

solutions of the cylindrical cavity is made through displacements compatibil-

ity on the tunnel/soil interface, which are obtained with the 2.5D FEM-BEM

model of the tunnel/soil system. These displacements are used as boundary

conditions in the semi-analytical solutions of the cavity in order to obtain

the displacements and the tractions at arbitrary points in the soil. The semi-

analytical solutions of a cavity in a full-space can be found in [34, 31, 38].

The train-track interaction and the train pass-by models used in the present

study considers a fully 2D version of the models described by [39].

As shown in the Fig. 1, the coupled model of the train/track/tunnel/soil

system is solved in two steps. In the initial step, the track receptances in the

moving frame of reference obtained by the 2.5D FEM-BEM model are used

together with the train/track interaction model to compute the wheel/rail

interaction forces in the frequency domain. In the next step, the wheel/rail

interaction forces and the Green’s functions of the system for forces on the

rails and the responses on soil (or other points on the system where the

vibration response due to a train pass-by is desired to be computed) are used

together in the train pass-by response model to obtain the vibration and/or

tractions response in selected evaluators. Finally, the vibration energy flow

can be obtained in the soil by using the velocity and traction responses

in a set of points located in the soil around the tunnel. The train/track

interaction model mainly consists of a rigid multibody model of the vehicle

and a wheel/rail contact model based on Hertz contact theory.
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In this paper, vectors are denoted by upper case bold italic letters and matri-

ces and tensors are represented by upper case upright bold letters. Variables

in the frequency domain are denoted by capital letters, bar notation is used

to denote variables in the wavenumber domain and tilde notation is used

to denote variables in wavenumber-frequency domain seen from the point of

view of the moving frame of reference that follows the train motion.

2.1. Verification of the tunnel/soil model

In this section, the verification of the numerical methodology to obtain the

tractions in the soil is presented. The verification is done in the basis of a

system consisting of a cylindrical cavity in a homogeneous full-space. A cavity

radius rt of 1 m is considered and the mechanical parameters of the full-space

are presented in Table 1. Two models of this system are compared in this

verification: on one hand, the semi-analytical solutions of a cylindrical cavity

in a full-space provided by Gazis [38] constitute the reference solution; on

the other hand, an equivalent 2.5D FEM-BEM model of this cavity in a full-

space system has been constructed meshing a region close to the cavity with

finite elements and the rest with boundary elements. The region considered

for 2.5D FEM mesh is a circular ring of 0.2 m thickness meshed with linear

triangular elements. The outer boundary of the circular ring has been meshed

by 80 linear boundary elements. Displacements at the nodes of the boundary

elements are used as boundary conditions for the vibration propagation model

in the soil.
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Parameters Notation Units Value
Young’s modulus E [MPa] 108

Poisson ratio ν [−] 0.334
Density ρ [kg/m3] 1800

Damping Dp = Ds [−] 0.025

Table 1: Properties of full-space used in the verification.

rt



er

e

ex



x

y
z

Fig. 2: Cylindrical cavity in a full-space. Definition of the Cartesian and cylindrical
coordinate systems for both semi-analytical and 2.5D FEM-BEM models.

For both the models, the traction Green’s functions due to a vertical force

applied at the inner boundary of the cavity and at θ = 0 are computed

for frequencies up to 100 Hz and for wavenumbers from −2π rad/m to 2π

rad/m. Tractions are computed by both models for evaluators located at a

radial distance of 2 m from the centre of the cavity and placed at angular

locations θ of 0, π/2 rad, π rad and 3π/2 rad. Figure 3 shows the results

of the radial tractions obtained by both models at all evaluators previously

defined. From these results, it can be concluded that there is a very good

agreement between the results obtained with the proposed numerical metho-

dology and the reference theoretical solution. This implies that the numerical
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methodology used in the framework of this article is properly verified. There

is, however, a slight mismatch in the results between the two methods at

certain frequencies. Apart from the intrinsic errors related to the nature of

mesh, the slight mismatch comes from the number of ring modes considered

[31] and the approximation done in the context of the 2.5D FEM model of

the tunnel to approach a theoretical point load.
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Fig. 3: Green’s functions of the radial tractions obtained by the numerical methodology
presented in this paper (dashed black line) and the semi-analytical model of a cavity in a
full-space (grey solid line). The results are obtained at evaluators placed at a radius of 2
m and at angular positions of 0 rad (i) π/2 rad (ii) π degrees (iii) and 3π/2 rad (iv). The
results are associated to the wavenumbers of 0 (a), π/2 rad/m (b) and π rad/m (c).
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2.2. Track model and its coupling with the tunnel structure

In the methodology used in this paper, it is proposed to use a semi-analytical

model of the track coupled with a 2.5D FEM-BEM model of the tunnel/soil

system. In this semi-analytical model of the track, the rails are modelled as

two identical Euler-Bernoulli beams of infinite length and the fasteners are

modelled as continuously distributed linear massless viscous springs. Both

rails and all the fasteners are considered to have the same mechanical pa-

rameters, being Er the Young’s modulus of the rail material, Ir the second

moment of inertia of the rail cross section, ρr the density of the rail material,

Sr the rail cross-sectional area and kf and cf are the stiffness and viscous

damping of the fasteners, respectively. Thus, the expression that defines the

dynamic behaviour of the rails excited by moving harmonic vertical point

loads with the same excitation frequency ω̃ and the same speed vt can be

expressed in the wavenumber-frequency domain as

[ErIrk
4
x − ρrSrω2]Z̄r + (kf + iωcf )(Z̄r − Z̄tr) = 2πδ(ω̃ − (ω + kxvt))F̄r, (1)

where Z̄r = {Z̄r1 Z̄r2}T are the vertical displacements of the first and second

rails and Z̄tr = {Z̄tr1 Z̄tr2}T are the equivalent vertical displacements of the

tunnel below the first and second rails. These equivalent vertical displace-

ments are obtained by averaging the direct and cross responses of the FE

nodes of the tunnel that are virtually in contact of the base plates of the

physical rail fasteners. The response of the tunnel below the rails is given by

Z̄tr = H̄tr
trF̄tr, (2)
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where F̄tr = {F̄tr1 F̄tr2}T are the equivalent vertical forces applied on the

system below first and second rails and H̄tr
tr are the Green’s functions that

relate the equivalent vertical displacements of the tunnel below the rails with

the equivalent vertical forces applied also there. These Green’s functions can

be obtained by the 2.5D FEM-BEM model of the tunnel/soil described in

the previous section. Moreover, the forces F̄tr can be expressed in terms of

the displacements of the rails and the equivalent vertical displacements of

the tunnel below the rails as shown in Eq. (1) as

F̄tr = (kf + iωcf )(Z̄r − Z̄tr). (3)

Combining Eqs. (2) and (3), the relation between the displacements of the

rails and the equivalent vertical displacements of the tunnel below the rails

can be written as

Z̄tr =

(
1

kf + iωcf
I + H̄tr

tr

)−1
H̄tr
trZ̄r. (4)

Inserting Eq. (4) in Eq. (1), the response of the rails can be written as

[
(ErIrk

4
x − ρrSrω2)I + K̄ft

]
Z̄r = 2πδ(ω̃ − (ω − kxv))F̄r, (5)

where,

K̄ft = (kf + iωcf )

[
I−

(
1

kf + iωcf
I + H̄tr

tr

)−1
H̄tr
tr

]
. (6)
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Thus, the Green’s functions of the vertical displacements of the rails due

vertical forces on them in the moving frame of reference H̃r
r are given by

H̃r
r =

[[
ErIrk

4
x − ρrSr (ω̃ + kxvt)

2] I + K̃ft

]−1
, (7)

where K̃ft = K̃ft(kx, ω̃) = K̄ft(kx, ω̃ + kxvt).

Then, the Green’s functions that relate the response of the tunnel/soil system

coupled with rails due to the vertical forces on the rails in the moving frame

of reference H̃r
s are given by

H̃r
s = H̃tr

s K̃ftH̃
r
r, (8)

being

H̃r
s =

{
H̃r1
s H̃r2

s

}
, H̃tr

s =
{
H̃tr1
s H̃tr2

s

}
, (9)

where H̃tr
s are the Green’s functions of the tunnel/soil system due to forces

applied below the rails, which can be obtained using the 2.5D FEM-BEM ap-

proach presented in the previous section considering that H̃tr
s = H̃tr

s (kx, ω̃) =

H̄tr
s (kx, ω̃+kxvt). In case that external mitigation measures are desired to be

applied on the system, they can be coupled to the tunnel/soil system in the

same way that rails are. For these cases, the Green’s function of the system

due to external forces applied at any arbitrary position of the tunnel/soil in

the presence of the rails H̄er
s can be written as

H̄er
s = H̄e

s + keftH̄
tr
s H̄

e
tr, (10)
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where the sub-index or super-index e represents the external loading and

keft = (kf + iωcf )

(
kf + iωcf

ErIrk4x − ρrSrω2 + kf + iωcf
− 1

)
, (11)

where H̄e
s are the Green’s functions of the tunnel/soil system due to external

forces in the absence of the rails and H̄e
tr are the Green’s functions of the

response of the tunnel below the rails due to the external loads in the absence

of the rails. Finally, the Green’s functions associated to the response of the

rails due to external loading can be written as

H̄e
r = kefrH̄

e
tr, (12)

where

kefr =
kf + iωcf

ErIrk4x − ρrSrω2 + kf + iωcf
. (13)

Eqs. (10) and (12) are not defined in the moving frame of reference because

the external loads are not usually moving with the train. Again, the Green’s

functions H̄tr
s , H̄e

s and H̄e
tr can be computed using the 2.5D FEM-BEM

approach presented in the previous section.

2.3. Wavenumber-frequency sampling strategy

The accuracy of the train pass-by response simulated in the basis of the

present methodology is strongly dependent on how the Green’s functions

of the system are sampled in the wavenumber and frequency domain. In

the present section, a sampling scheme is proposed in order to obtain a

more accurate response of the system on account of the train pass-by. This
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sampling scheme proposes a linear sampling for moving frequencies and a

non-uniform sampling scheme along the wavenumber that varies with the

frequency. Note that, in this section, the frequency seen from the fixed

frame of reference ω is called static frequency and the frequency seen from

the moving frame of reference ω̃ is called moving frequency.

As a first step of the sampling strategy, the moving frequencies of the system

are determined. Initially the required maximum static frequency ωmax and

the length of the sampling vector for the frequency Nω are defined. The

maximum moving frequency ω̃max is computed using the relation ω̃max =

ωmax(1 + vt/cmin) [21], where vt is the train speed and cmin is the minimum

wave speed of the system. Theoretical wave speeds of corrosponding ideal

systems are used to obtain and approximation of cmin for the specific model

studied. The sampling for the moving frequency is then obtained by consid-

ering a linear distribution of Nw discrete values of the frequency from 0 to

ω̃max.

In the second step of the sampling strategy, the sampling for the wavenumber

kx is determined. Initially, a pre-sampling process is performed, where the

Green’s functions of the system are obtained for two moving frequencies: π/2

rad/s and ω̃max. Dense sampling vectors of Nps
kx

samples for the wavenumber

are used for these two frequencies. Considering those frequencies and the

approximated wave speeds used in the cmin evaluation, a wavenumber limit

for each of those two frequencies and for the i-th subsystem can be computed

as klimxi = ω̃/ci, where ci is the approximated wave speed of the i-th subsys-

tem. The number of sub-systems existing in the model is Nss. For each
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sub-system and each frequency, a wavenumber sampling vector of Nps
kx
/Nss

samples is constructed. Half of these samples are linearly distributed from

−2klimxi to 2klimxi (always considering the 0), and the rest are logarithmically

distributed from 2klimxi to 105 rad/m and from −2klimxi to −105 rad/m. Then,

all sampling vectors associated to the same frequency are combined in only

one pre-sampling vector of Nps
kx

samples. Finally, the two pre-sampling vec-

tors obtained are used to compute the Green’s functions of the system at

both frequencies.

The wavenumber limit until where most of the spectral content is confined

is obtained for the each pre-sampling frequencies and each evaluator in the

system. For specific evaluators, four wavenumber limits are computed: two

with a tolerance of 10%, klimu
xlin

and klimd
xlin

, and another two with a tolerance of

0.1% klimu
xlog

and klimd
xlog

. Subscripts u and d are referred to the maximum and

minimum frequencies used in the pre-sampling. The wavenumber limits klimu
xlin

,

klimd
xlin

, klimu
xlog

and klimd
xlog

of only three evaluators are considered. These evaluators

should be selected ensuring that they are representing high, medium and low

wavenumber limits of all the evaluators of the system. It is assumed that the

wavenumber limits klimxlin and klimxlog vary linearly along the moving frequency

and, therefore, they can be expressed as a function of ω̃ as

klimxlin(ω̃) =

(
ω̃ − π/2

ω̃max − π/2

)(
klimu
xlin
− klimd

xlin

)
+ klimu

xlin
(14)

and

klimxlog(ω̃) =

(
ω̃ − π/2

ω̃max − π/2

)(
klimu
xlog
− klimd

xlog

)
+ klimu

xlog
(15)
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For each selected evaluator, a wavenumber sampling vector with a linear dis-

tribution of samples between −klimxlin and klimxlin (always considering the 0) and

a logarithmic distribution from klimxlin to klimxlog and from −klimxlin to −klimxlog is con-

structed for each frequency. Half of the N s
kx
/3 samples of this sampling vector

(since Nkx is the sampling vector length for the three evaluators combined)

are used in the linear distribution and the other half in the logarithmic one.

Finally, the non-uniform wavenumber sampling is obtained by combining the

wavenumber samplings of the three selected evaluators.

3. Fast computation of elastodynamic BEM matrices

The computation of the stiffness matrix of soil involves the computation of

the BEM matrices related to traction and displacement. In order to obtain

these matrices, the computation of traction and displacement Green’s func-

tions for a set of source and evaluation points is required. For a BEM mesh,

the source points are placed on the BE nodes and the evaluators are given

by the Gaussian integration points along all the BE. Thus, the computa-

tion of BEM matrices involves the computation of the Green’s function for

all source/evaluator combinations. It is important to note that an increase

in the number of BE increases the number of source points and evaluators

and, thereby, the computational time of the BEM matrices calculation. In

the method of François et al. [23] the Green’s functions are computed on

a grid of points and then an interpolation procedure is used to obtain the

response at the required evaluators. However, interpolation could induce in-

accurate results (with a sparse grid) or become computationally expensive
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(with a dense grid). In the present work, all required Green’s functions are

computed in a computationally efficient way, avoiding the need of interpola-

tion. Two strategies to accomplish this are discussed here. The first strategy

can be applied to any problem geometry. It involves fast computation of

Green’s function and it is discussed in Sec. 3.1. The next strategy, discussed

in Sec. 3.2, is only valid for a special class of problems encountered in un-

derground railway infrastructures, specifically underground circular tunnels

where the geometry of the BE mesh is axisymmetric.

3.1. Fast computation of the Green’s functions in a full-space

As discussed previously, the computational time associated to the calcula-

tion of the tractions and displacements Green’s functions depends on the

amount of source and evaluators and on the number of discrete values for

the wavenumber and the frequency. In a homogeneous full-space, the Green’s

functions are not a function of particular locations of the source and the

evaluator: they are only a function of the relative distance between them.

Relative distances between all source/evaluator combinations are contained

in a smaller set of unique source/evaluator relative distances. Exploiting this

fact, computing the Green’s functions for this unique set of source/evaluator

relative distances and then mapping them in order to obtain the Green’s func-

tion for the complete set of source/evaluator combinations results in a faster

procedure. This mapping also requires multiplying the Green’s function with

a transformation matrix that is described below. If all the BE of the BEM

mesh have the same length, the number of unique set of source/evaluator
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combinations distances is the smallest. Thus, in order to exploit all the ben-

efits of the present methodology, it is proposed to design the BEM mesh

ensuring that all the elements have the same length.

In order to perform the proposed procedure, it should be noted that the

dependency of the displacement and tractions Green’s functions on radial and

angular coordinates can be separated into two functions: one only dependent

on the relative radial distance and the other one only dependent on the

relative angle. Taking this into account, the procedure to obtain the Green’s

function for any source/evaluator from the ones obtained at the unique set

of source/ evaluator combination is as follows. Initially, the relative angles

of all the source/evaluator combinations θ and the angles of the normals

associated to all the evaluators φ are computed by

φ = arctan(ny/nz), θ = arctan(y/z), (16)

where ny and nz are the normals and y and z are the relative distance in y

and z directions. The normal are redefined as:

ny = cos (φ− θ), nz = sin (φ− θ), (17)

The displacement and traction Green’s functions for the unique set source/evaluator

relative distances, which are represented by H̄us and T̄us, respectively, are

obtained using the Green’s function provided in [40] considering z = 0. Then

the displacement Green’s functions for the complete set of source/evaluators
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can be obtained as:

H̄ = T−1θ M(H̄us)Tθ (18)

where Tθ is defined in Eq. (20) andM(.) represents the operation of the map-

ping from the unique set to complete set of source/evaluator combinations

only in terms of relative distances. Similarly, the traction Green’s functions

can be obtained as

T̄ = T−1θ (M(T̄us) ◦Tφ)Tθ (19)

where

Tφ =


ny ny nz

ny ny nz

nz nz ny

 Tθ =


1 0 0

0 cos θ − sin θ

0 sin θ cos θ

 (20)

and where ◦ represents the Hadamard product. In this paper, the Cartesian

coordinates system considered is presented in Fig. 2.

3.2. Axisymmetric formulation

The axisymmetric nature of the soil/structure boundary in circular tunnels

can be used to take advantage in reducing the computation costs related to

the calculation of the BEM traction and displacements matrices. To exploit

the axisymmetry of the boundary geometry, the BE must have the same

length. In this case, the elements of the BEM matrices associated with all

combinations of the sources and evaluators can be obtained from the elements

associated with only one source. This is possible because each source sees the

same pattern of evaluators locations, with relative rotation between them.

Thus, if the elements associated to a reference source are computed, the
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response for all the other combinations of source/evaluator distances can be

easily obtained by multiplying these reference elements with a transformation

matrix that takes into account the rotation between this reference source and

the other ones. After this, appropriate mapping of the resulting elements

should be performed. The transformation matrix having the relative rotation

of the load points with respect to the axis of axisymmetry has the same form

as Tθ (mentioned in section 3.1) with angles θ that in this case are defined

as the relative rotation between the required source points and the reference

source point with respect to the axis of axisymmetry. The axisymmetric

formulation is summarised as:

1. In a first step, all the BEM matrix elements for the reference source

position and for all the evaluator locations are computed.

2. The elements for other source/evaluator locations for all wavenumbers

are obtained from the elements obtained in the first step by multiplying

the elements with a transformation matrix.

3. The transformation matrix is Tθ in Eq. (20) with angles θ defined as the

relative rotation between the required source points and the reference

source point with respect to the axis of axisymmetry.

4. In the final step, appropriate mapping and assembly of the elements is

performed to obtain the final required BEM matrices of tractions and

displacements.

In cases of axisymmetric boundary geometries, the displacements and trac-
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tions Green’s functions are required to be computed only for the source points

located on just one element, and then the mapping introduced in the Eq. (18)

and Eq. (19) is required to performed once. Thus, the proposed axisymmet-

ric formulation is further reducing the computation time required for BEM

matrices evaluation.

4. Application example

In this section, the methodology described in the paper is applied with the

aim of compare the vibration energy flow radiated by two different under-

ground tunnel infrastructures. The underground railway infrastructures con-

sidered in this paper are a simple tunnel with a single track where the rails

are directly attached to the tunnel invert (direct fastening system) and a

simple tunnel with a floating slab track . For the sake of simplicity, the first

tunnel system is called DFF and the second FST. A schematic of the DFF

and FST models developed in this case study are shown in Figs. 4 and 5,

respectively. The mechanical properties of these system are summarised in

Table 2, for the DFF, and in Table 3, for the FST. For both models, the rails

and the fasteners are modelled as proposed in section 2.2 and the properties

for these systems used in the present case study are shown in Table 4.

The soil is modelled as a homogeneous full-space and the tunnels systems

to be studied are embedded in it. Both the tunnels have an inner radius

of 3 m and a wall thickness of 0.25 m. The tunnels are excited by vertical

point loads at the points shown in blue star markers. These points are the
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1

Fig. 4: Schematic of the DFF system modelled by 2.5D FE (tunnel) and BE (soil). Red
solid markers represent the BE nodes, blue star markers are the points where forces are
applied and pink circular markers denote the evaluators, where the evaluator in the tunnel
wall is denoted by 1.

Subsystem Parameters Units Value
Tunnel Young’s modulus [GPa] 3.5

Poisson ratio [−] 0.15
Density [kg/m3] 2500
Damping [−] 0.01

Table 2: Properties of DFF system.

points where the rails are coupled to the tunnel/soil system. The Green’s

functions of the track/tunnel/soil system for these point loads are obtained

at the tunnel/soil interface (points shown in red) and evaluators locations

(points shown in pink) using the method previously presented. Then, the
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1

Fig. 5: Schematic of the FST system modelled by 2.5D FE (floating slab track and tunnel)
and BE (soil). Red solid markers represent the BE nodes, blue star markers are the
points where forces are applied and pink circular markers denote the evaluators, where
the evaluator in the tunnel wall is denoted by 1.

semi-analytical solutions of a cylindrical cavity in a full-space are used to

relate the displacement Green’s functions in the tunnel/soil interface with

the displacement and traction Green’s functions in a set of evaluators in the

soil used later for the energy flow computations. The properties of the soil

are summarised in the Table 5. The evaluators in the soil are located at

radial distances of 5 m from the outer wall of the tunnels (which represents

a radial distance of 8.25 m from the centre of the tunnels) and placed at

angular locations linearly distributed from θ = π/2 rad to θ = π rad, and

with 19 discrete points. Since the systems studied in this application study
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Subsystem Parameters Units Value
Tunnel Young’s modulus [GPa] 3.5

Poisson ratio [−] 0.15
Density [kg/m3] 2500
Damping [−] 0.01

Floating slab Young’s modulus [GPa] 3.5
Poisson ratio [−] 0.15
Density [kg/m3] 2500
Damping [−] 0.01

Elastomeric mat Young’s modulus [MPa] 2.73
Poisson ratio [−] 0.35
Density [kg/m3] 1328
Damping [−] 0.05

Table 3: Properties of FST.

Subsystem Parameters Units Value
Rails Density [kg/m3] 7850

Young’s modulus [GPa] 207
Cross-sectional area [m2] 23.5 · 10−6

Second moment of inertia [kg/m2] 6930 · 10−6

Fasteners Stiffness [MN/m] 35
Damping [−] 35·103

Table 4: Properties of the rails and fasteners used in DFF and FST.

are symmetric, the vibration energy radiated upwards can be computed mul-

tiplying by 2 the energy flow in the cylindrical strip defined by θ1 = π/2 rad

and θ2 = π rad.

Parameters Units Value
Density [kg/m3] 2191
Young’s modulus [MPa] 180
Poisson ratio [−] 0.3
Damping [−] 0.025

Table 5: Properties of soil.
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The sampling strategy mentioned in section 2.3 is followed to obtain the

response of the system modelled with the numerical methodology. A total of

29 samples of ω̃ and 211 samples of kx are considered for both models. Once

the required Green’s functions of the system are obtained, the train/track

interaction and the train pass-by models are applied to obtain the response in

the evaluator 1 at the tunnel wall and at the evaluators of the soil. The train

is composed by 5 cars, while the properties of each car are summarised in

Table B.7. The linearised Hertz contact stiffness is computed for the present

case, obtaining a value of 1.23 · 109 N/m. It is assumed that both rails have

the same unevenness profile. The train speed in these simulations is assumed

to be 25 m/s, which is a common speed of operation of metro trains.

4.1. Vibration analysis

In this section, the analysis of the vibration response of both tunnel systems

due to train passage is performed. The response of the rail and the tunnel is

obtained at the railhead (vertical response) and at evaluator 1 in the tunnel

wall, respectively. Figure 6 shows the vibration acceleration response of the

rails and evaluator 1 in the time domain for DFF and FST systems. Figure

7 shows the frequency content for the vertical component of the vibration

acceleration of the rail and the evaluator on the tunnel wall in one-third

octave bands for DFF and FST cases. The octave bands are normalised with

respect to train pass time, which is computed as (x̃Na − x̃1)/vt.
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Fig. 6: Acceleration response in the time domain of the rail for the FST (a) and DFF (b)
systems and on the evaluator 1 for the FST (c) and DFF (d) systems.
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Fig. 7: One-third octave bands of the vertical acceleration spectrum of the rail (a) and
the horizontal acceleration spectrum of the evaluator 1 (b). Solid black line represents the
response of the FST system and solid grey line represents the DFF system response. The
dB are computed with a reference of 10−6 m/s2.

In Fig. 7, it can be seen that, in general, the level of vibration of the rail for

the the FST system is larger that the one for the DFF system, mostly for the

bands of 20 Hz, 25 Hz and 31.5 Hz. In contrast, it is shown that the level of

vibration on the evaluator at the tunnel wall for the FST system is smaller

and the frequency content is shifted to lower frequencies, inducing to large

differences between the frequency responses of the FST and DFF systems at

high frequencies, where the FST is reducing drastically the levels of vibration

as compared with the DFF system. The reduction of the vibration levels at

the tunnel wall can be also evaluated using the maximum transient vibration

value (MTVV) as an indicator. It is obtained that the MTVV for DFF

system is 0.0583 m/s2 and for the FST system is 0.0308 m/s2, which implies
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a reduction of 5.5 dB. These results are in accordance with previous studies

that compared these two types of track solutions [9, 41].

4.2. Vibration energy flow analysis

In this section, a detailed analysis of the vibration energy flow radiated by

both tunnel systems considered in this application study is performed. For

the vibration energy flow analysis, the total vibration energy flow, the energy

spectral density and the energy spectrum radiated by DFF and FST are

obtained. It is important to note that, in this case, the term energy is referred

to the physical vibration energy and it should not be confused with the energy

associated to a signal typically used in signal processing. The vibration

energy flow analysis is performed on the evaluators in the soil previously

mentioned.

E = rm

∫ θ2

θ1

∫ ∞
−∞
v(0, θ, t) · τ (0, θ, t)dtdθ. (21)

Using Eq. (21), the total energy flow per meter radiated by both DFF and

FST tunnel systems at distances of 5 m away from the outer tunnel wall is

obtained and presented along with MTVV in the Table 6.

Track type MTVV Total vibration energy flow
DFF 0.0583 m/s2 0.2547 J/m
FST 0.0308 m/s2 0.2227 J/m

Table 6: Comparison of total energy flow from DFF and FST with MTVV of the vibration
at the tunnel wall.

As can be seen, the FST has lower total vibration energy flow radiated up-

wards than DFF, which is the same trend as the one obtained with MTVV.
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However, a comparison of the values of MTVV with total vibration energy

flow shows that the amount of reduction obtained with FST based on to-

tal vibration energy flow (0.6 dB) is significantly less than that obtained by

MTVV criterion (5.5 dB).

In order to analyse the disparity between total vibration energy flow and

MTVV indicators, the energy spectral density (ESD) is proposed. Taking

into account that the power flow radiated through the previously defined

cylindrical strip is given by

P (t) = rm

∫ θ2

θ1

v(0, θ, t) · τ (0, θ, t)dθ, (22)

and accounting for the Parseval’s theorem, the energy spectral density can

be computed by the expression

ESD = rm

∫ θ2

θ1

V (0, θ, ω) · T ∗(0, θ, ω)dθ, (23)

where T is the Fourier transform of τ and T ∗ is complex conjugate of T .

Figure 8 shows the ESD and energy spectra (ES) in one third octave bands

radiated by DFF and FST systems. In a similar way as the vibration analysis

of the previous section pointed out, Fig. 8 shows that the FST system is

shifting the frequency content to lower frequencies. However, in light of the

total energy flow results previously obtained, one can see from Fig. 8 that

the difference in ES values at higher frequencies of FST and DFF is not as

much as compared with acceleration values in Fig. 7 (b). This is the reason

for the observed disparity between the reduction obtained by MTVV and
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vibration energy flow values. It should be noted that vibration energy flow

takes into account the effect of stress (in the soil) which is not accounted in

MTVV values.
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Fig. 8: ESD of the vibration energy flow radiated upwards (a) for the evaluators in soil
located at a distance of 5 m the outer tunnel wall for the cases of the DFF system (solid
grey line) and FST system (solid black line). ES in one-third octave bands bands of the
vibration energy flow radiated upwards (b) for the evaluators in soil located at a distance
of of 5 m the outer tunnel wall for the cases of the DFF system (solid grey line) and FST
system (solid black line). The dB are computed with a reference of 1 J/m.

5. Conclusions

In this article, a methodology to compute the vibration energy flow in the soil

from underground railway infrastructures due to railway traffic is presented.

The methodology uses a 2.5D FEM-BEM approach to compute the response

at the tunnel/soil interface and at other evaluators placed in the tunnel
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structure. The track is modelled with a semi-analytical model consisting of

two continuously supported Euler-Bernoulli beams as a model of the two rails

and their fastening systems. Traction and displacement Green’s functions

inside the soil domain are obtained from the displacement Green’s functions

obtained on the track/soil interface using the semi-analytical solution of a

cylindrical cavity in a full-space. 2D rigid multibody model of the train cars

is used to obtain the train pass-by response of the track/tunnel/soil system.

A new non-uniform sampling strategy for the wavenumber is proposed in this

paper. This strategy aims to capture accurately the response of the system

in the wavenumber-frequency domain. Strategies for fast computation of the

BEM matrices are described. A methodology for fast computation of the

Green’s functions is also described and expressions of asymptotic solutions

for 2.5D Green’s functions of a full-space are presented in Appendix A.

A new perspective for the comparison of mitigation measures is given in the

present paper based on vibration energy flow radiated upwards as an indi-

cator. A comparison of two different underground railway infrastructures,

one based on a floating-slab track (FST) and another one based on a direct

fastening system track (DFF), is presented as an example of this new per-

spective. From the analysis of the induced vibration using MTVV criterion

and using the vibration energy radiated for both case studies presented in the

paper, it can be concluded that the FST system is a better vibration mitiga-

tion solution than DFF system. However, these two indicators are providing

significantly different estimations of the insertion loss of the FST system as

compared with the DFF one. This high discrepancy casts significant doubts

on the methodology for assessing the vibration induced by underground rail-
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way infrastructures based on only one accelerometer placed at the tunnel

wall, which is the typical practice nowadays. Further work on this regard

is required in order to get the complete picture of the comparison between

these two indicators and also to provide a new methodology, probably based

on a setup of various accelerometers located at the tunnel wall, that really

represents the vibration energy that the tunnel system is emitting to the

surroundings.

Acknowledgements

The present work is supported by the Ministerio de Economı́a y Competi-

tividad under the research grant BES-2015-071453, individual research grant

related to the project ISIBUR: Innovative Solutions for the Isolation of Build-

ings from Underground Railway-induced Vibrations supported by the Min-

isterio de Ciencia e Innovación, Retos de Investigación 2014, with reference

TRA2014-52718-R. The authors want to also acknowledge the financial sup-

port provided by the project VIBWAY: Fast computational tool for railway-

induced vibrations and re-radiated noise assessment, supported by the Min-

isterio de Ciencia e Innovación, Retos de Investigación 2018, with reference

RTI2018-096819-B-I00. The second author also wants to acknowledge the

funds provided by the NVTRail project, Noise and Vibrations induced by

railway traffic in tunnels: an integrated approach, with grant reference POCI-

01-0145-FEDER-029577, funded by FEDER funds through COMPETE2020

(Programa Operacional Competitividade e Internacionalização (POCI)) and

by national funds (PIDDAC) through FCT/MCTES.

36



Appendix A. 2.5D static Green’s functions for displacements and

tractions for a homogeneous full-space

The full-space elastodynamic Green’s functions for tractions and displace-

ments for nonzero frequency can be found in [40]. In this section, analyt-

ical solutions of Green’s displacements and stress are given for two cases:

(ω = 0, kx 6= 0) and (ω = 0, kx = 0). The tractions Green’s functions can

be found from the stress Green’s functions σ, which can be obtained from

strains Green’s functions using the relation σki,j = λεkvolδi,j + 2µεki,j, where

i, j, k = {x, y, z}. In this section, H
(2)
n are n-th order Hankel’s functions of

the second kind, λ is the first Lamé constant, µ is the second Lamé constant,

β is the S-wave speed, α is the P-wave speed, ρ is the density of the medium,

r =
√
y2 + z2 and ν is the Poisson ratio of the medium.
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Appendix A.1. Expressions of the displacements Green’s functions for kx 6= 0

and ω = 0

Gxx =
H

(2)
0 (ikxr)

4iρβ2
− kxrH

(2)
1 (ikxr)

8ρ

(
1

β2
− 1

α2

)
,

Gyy =
H

(2)
0 (ikxr)

4iρβ2
− 1

4iρ

(
1

β2
− 1

α2

)[
H

(2)
0 (ikxr)

2

−
ikxrγ

2
y

4

(
H

(2)
1 (ikxr)−H(2)

3 (ikxr)
)
− γ2yH

(2)
2 (ikxr)

]
,

Gzz =
H

(2)
0 (ikxr)

4iρβ2
− 1

4iρ

(
1

β2
− 1

α2

)[
H

(2)
0 (ikxr)

2

− ikxrγ
2
z

4

(
H

(2)
1 (ikxr)−H(2)

3 (ikxr)
)
− γ2zH

(2)
2 (ikxr)

]
,

Gxy =
γykxr
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(
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H
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0 (ikxr),

Gxz =
γzkxr
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)
H

(2)
0 (ikxr),

Gyz =
γzγykxr

8ρ

(
1

β2
− 1

α2

)
H

(2)
1 (ikxr). (A.1)
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Appendix A.2. Expressions of the displacements Green’s functions for kx = 0

and ω = 0

Gxx =
1

8π(1− ν)µ
(3− 4ν) ln

1

r
,

Gyy =
1

8π(1− ν)µ

[
(3− 4ν) ln

1

r
− γ2y

]
,

Gzz =
1

8π(1− ν)µ

[
(3− 4ν) ln

1

r
− γ2z

]
,

Gxy = 0,

Gyz =
γyγz

8π(1− ν)µ
,

Gxz = 0. (A.2)

Appendix A.3. Expressions of the strains Green’s functions for kx 6= 0 and

ω = 0

In order to get obtain the strains for the case of kx 6= 0 and ω = 0, the terms

presented in Eq. A.3 are derived for that case. Substituting this terms in the

original equations presented by Tadeu and Kausel [40], it is possible to find
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the strains for the case of kx 6= 0 and ω = 0.

A ·B0 =
r

16µ(1− ν)

H
(2)
1 (ikxr)

kx
,

A ·B1 =
−ir

16µ(1− ν)
H

(2)
0 (ikxr),

A ·B2 =
kxr

16µ(1− ν)
H

(2)
1 (ikxr),

A ·B3 =
ik2xr

16µ(1− ν)
H

(2)
2 (ikxr),

(A.3)
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Appendix A.4. Expressions of the strains Green’s functions for kx = 0 and

ω = 0

εxvol = εxyy = εxzz = 0,

εxxy = − γy
4πρβ2r

,

εxxz = − γz
4πρβ2r

,

εxyz = 0,

εyvol = − γy
2πρα2r

,

εyyy =
γy

4πρr

(
1− 2γ2y
β2

−
3− 2γ2y
α2

)
,

εyzz =
γy

4πρr
(1− 2γ2z )

(
1

β2
− 1

α2

)
,

εyxy = εxyy = 0,

εyyz = − γz
4πρr

(
2γ2y
β2

+
1− 2γ2y
α2

)
,

εzvol = εyvol,

εzyy =
γz

4πρr
(1− 2γ2y)

(
1

β2
− 1

α2

)
,

εzzz =
γz

4πρr

(
1− 2γ2z
β2

− 3− 2γ2z
α2

)
,

εzxy = εzxz = 0,

εzyz = − γy
4πρr

(
2γ2z
β2

+
1− 2γ2z
α2

)
. (A.4)
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Appendix B. Vehicle model

The vehicle model used in the present work is an extension of the one pre-

sented by Lei and Noda [42] considering massive springs as a model of the

primary suspension. A summary of the parameters for this vehicle model,

the values taken in the present paper and the units of each parameter are

shown in Table B.7. As shown, the massive parameters are divided by two

since the values required of the half-vehicle. The stiffness of the secondary

and primary suspension are already given for of vehicle system.

Vehicle parameters Notation Units Value

Car body mass mc [kg] 41923/2

Car body mass inertia Jc [kg m−2] (9.17/2)·105

Sprung mass of the ith bogie m
s(i)
bog [kg] 720/2

Stiffness of the ith bogie’s secondary

suspension

k
(i)
ss [N m−1] 8.14·105

Structural damping coefficient of the

ith bogie’s secondary suspension

η
(i)
ss [−] 0

Viscous damping of the ith bogie’s

secondary suspension

c
(i)
ss [N s m−1] 15·103

Unsprung mass of the ith bogie m
(i)
bog [kg] 1730/2

Unsprung mass inertia of the ith bo-

gie

J
(i)
bog [kg m−2] 824/2

Stiffness of the jth wheelset’s pri-

mary suspension

k
(j)
ps [N m−1] 1.24·106

Structural damping coefficient of the

jth wheelset’s primary suspension

η
(j)
ps [−] 0
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Viscous damping of the jth

wheelset’s primary suspension

c
(j)
ps [N s m−1] ·104

Mass of the jth wheelset’s primary

suspension

m
(j)
ps [kg] 0

Mass of the jth wheelset m
(j)
w [kg] 1410/2

Distance between bogies of the same

car

dsc [m] 11.368

Distance between bogies of different

cars

ddc [m] 4.97

Distance between wheelsets of the

ith bogie

d
(i)
w [m] 2

Table B.7: Vehicle model parameters and data.
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