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 

Abstract—Electrical power connectors are critical points of 

electrical networks. Failure in high-voltage connectors may result 

in major power outages, safety risks and important economic 

consequences. Therefore, there is an imperious need to tackle such 

issue by developing suitable on-line condition monitoring 

strategies to minimize the aforementioned problems and to ease 

the application of predictive maintenance tasks. This work 

develops an on-line condition monitoring method to predict early 

failures in power connectors from data acquired on-line (electric 

current and voltage drop across the connector, and temperature) 

to determine the instantaneous value of the connector resistance, 

since it is used as a signature or indicator of its health condition. 

The proposed approach combines a parametric degradation 

model of the resistance of the connector, whose parameters are 

identified by means of the Markov chain Monte Carlo stochastic 

method, which also provides the confidence intervals of the 

electrical resistance. This fast approach allows an on-line diagnosis 

of the health condition of the connector, anticipating its failure and 

thus, easing the application of predictive maintenance plans. 

Laboratory results emulating the ageing conditions of the 

connectors prove the suitability and feasibility of the proposed 

approach, which could be applied to other power products and 

apparatus.  

 
Index Terms—Power connectors, parameter identification, on-

line monitoring, contact resistance, condition monitoring, fault 

diagnosis, predictive maintenance.  

 

I. INTRODUCTION 

LECTRIC power connectors are the connection links in 

low-, medium,- and high-voltage power systems, thus 

being ubiquitous critical components. Although they are simple 

elements, connectors play a critical role in power systems and 

thus, any failure can lead to severe power outages with costly 

and catastrophic consequences [1]. However, power system 

operators try to offer a reliable, continuous and safe power 

delivery to customers, with the least possible service outages 

[2]. The increase of the electrical resistance of the connector is 

a sign of its degradation level, and thus, this parameter can be 

used as a signature or indicator of its health condition.  
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The electrical resistance of power connectors has two main 

components, the bulk resistance and the contact resistance. The 

bulk resistance is determined by the geometry and resistivity of 

the constitutive materials. The contact resistance includes the 

constriction resistance and the film resistance terms [3]. The 

contact resistance is influenced by different factors, including 

the pressure, roughness and state of the contact interfaces, or 

the presence of debris, dirt, oxides and poorly conductive films 

formed at the interface. As a consequence, an increase of the 

electrical resistance can be used as a reliable indicator of the 

connector degradation. This raise of the resistance increases the 

operating temperature, which in turn further increases the 

contact resistance. This vicious cycle overheats the connector, 

reducing its expected useful life [4]. Therefore, the long-time 

operation of the connector increases the electrical resistance 

due to the degradation mechanisms, thus negatively impacting 

the connector performance.   

Two predominant processes govern the ageing of electrical 

connectors. First, the contact resistance may increase as a result 

of a low pressure contact between the connector and the 

conductor due to poor installation and/or peak and off-peak 

daily current cycles, generating contraction and expansion 

patterns, which tend to lose the contact. The chemical reactions 

occurring in the contact interfaces and specifically in the 

constriction areas contribute to generate non-conductive 

compounds, thus influencing the ageing behavior. Both ageing 

mechanisms occur simultaneously, thus increasing the 

electrical resistance of the connector [5]. According to [5], 

during ageing, electrical contacts experiment different stages, 

namely formation, relative stability and accelerated ageing, 

which are a consequence of physical changes and chemical 

reactions occurring at the constriction areas. The formation 

stage is characterized by the formation of a quite stable 

constriction area, whereas during the relative stability stage the 

resistance of the connector experiments a very small increase. 

Finally, the accelerated ageing stage is characterized by a fast 

increase of the resistance due to the combined effect of faster 

chemical processes and higher temperatures.  

J.-R. Riba is with the Universitat Politècnica de Catalunya, Electrical 

Engineering Department, Rambla Sant  Nebridi 22, 08222 Terrassa, Spain (e-
mail: jordi.riba-ruiz@upc.edu) 

M. Moreno-Eguilaz is with the Universitat Politècnica de Catalunya, 

Electronics Engineering Department, Rambla Sant  Nebridi 22, 08222 Terrassa, 
Spain (e-mail: manuel.moreno.eguilaz@upc.edu). 

 

On-Line Health Condition Monitoring of Power 

Connectors Focused on Predictive Maintenance 

J. Martínez, Á. Gómez-Pau, Member, IEEE, J.-R. Riba and M. Moreno-Eguilaz 

E 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

2 

The evolution of the contact resistance in electrical 

connectors and hence, the overall electrical resistance, is a 

fluctuating nonlinear non-monotonic process [6], thus being 

complex to analyze. Once the resistance of the connector 

exceeds a threshold value, it must be substituted to prevent any 

failure.  

Condition monitoring involves a set of techniques focused to 

identify noticeable changes in a system, which indicate that a 

fault is being developed, so that, a warning of imminent failure 

must be generated, being the basis for applying failure detection 

approaches [7]. To this end, reliable measured data is required, 

from which health indicators can be obtained to assess the 

condition of the analyzed system [8]. Online condition 

monitoring is generating interest in low-voltage distribution 

networks [9], power transformers [10], circuit breakers [11], or 

power cables [12] among others. The development of reliable 

condition monitoring approaches for power connectors requires 

a deep knowledge of the failure mechanisms for on-line 

diagnosis of the condition of such devices so that when the 

behavior of the connectors drifts from the expected one, an 

appropriate action must be taken well before breakdown or 

severe deterioration occurs [13]. It is of vital importance 

detecting the faults in their early stage, when they are still 

developing. Incipient fault detection is of paramount 

importance in power systems, since such faults can lead to 

catastrophic consequences with huge economic losses. The 

detection and diagnose of incipient faults enables to apply 

predictive maintenance plans in power systems, thus 

minimizing associate failure risks and ensuring stable and 

reliable operation with minimum interruptions and outages, so 

that replacement of the failed component can be scheduled well 

before fault occurrence. However, incipient fault detection is 

still a challenging problem, since the subtle changes are 

difficult to detect and false alarm occurrence must be 

minimized [14]. Different methods can be applied for this 

purpose, including model-based approaches constructed from 

the physical laws governing the behavior of the analyzed 

systems, or based on probabilistic theories. Another possibility 

is by means of data-driven approaches, which require large 

amounts of system data, which are analyzed by means of 

suitable signal processing methods combined with machine 

learning algorithms [14]. 

The extensive application  of low-cost sensors, wired and 

wireless communication systems and computational power 

facilitates the application of predictive maintenance 

approaches, although time-based and hands-on maintenance 

strategies are still commonly applied [15]. 

Accelerated degradation tests (ADTs) have been typically 

applied for evaluating the reliability and long-term performance 

of high reliability and long life products [16]. Due to their 

characteristics, it is difficult to have sufficient degradation and 

failure data in a reasonable time. ADTs are often accompanied 

of a statistical analysis of the data collected to analyze the 

degradation process [6]. Many works analyzing the long-term 

behavior of different products are based on ADTs [17]–[19]. 

However, this approach often requires testing several products 

simultaneously, so it can be expensive because of the required 

time, the associated human labor, the consumed energy, and the 

required materials. In addition, obtained results are usually 

specific for the tested products, thus lacking capability for 

generalization. Because of the aforementioned issues, this paper 

presents another alternative.  

This work proposes a simple approach for on-line diagnosis 

of the health status of power connectors based on continuously 

monitoring their electrical resistance by measuring the voltage 

drop and the current flowing across the connectors and their 

temperature. Therefore, the current and past values of the 

electrical resistance are taken as signatures or an indicator of 

the health status of the connector. To this end, a parametric 

degradation model of the connector resistance is combined with 

the application of the Markov chain Monte Carlo (MCMC) 

method. MCMC is applied for identifying the most suitable 

values of the parameters of the resistance degradation model, 

according to the available experimental data, while also 

providing the confidence intervals of the electrical resistance, 

thus being possible to confine the expected future values of the 

resistance within the space defined by the confidence intervals. 

In the case that the measured value of the resistance falls 

between these intervals, it can be concluded that the connector 

operates under healthy conditions, otherwise, a warning signal 

should be activated. This strategy allows anticipating severe 

faults, thus limiting the consequences of the degradation of the 

connectors with time, and facilitating the application of 

predictive maintenance plans. The proposed approach is fast, 

being possible to be applied almost in real-time and can be 

adapted to many other power devices. In addition, the proposed 

method does not need performing accelerated 

ageing/degradation tests, which present many drawbacks, since 

they require long testing periods and intensive human labor, 

require large amounts of energy and thus, they result expensive.  

Despite the key role of power connectors in power systems, 

there are few studies focusing on on-line monitoring of the 

health status of such components, this work contributing to this 

area.  

II. CONNECTOR RESISTANCE AND DEGRADATION MODELS 

A. On-line electrical resistance measurement 

As mentioned earlier, the resistance can be used as a reliable 

indicator of the health condition of power connectors.  Typical 

values of this resistance is in the range of several units or tens 

of micro-Ohms, thus this being a challenging measurement. To 

this end, both the current I and the voltage drop V across the 

connector terminals, as well as the phase shift  between the 

voltage drop and the current are measured when the connector 

is energized, from which its resistance can be calculated as [20], 

0

/
·cos

1 ( 20)

V I
R

T







 
      (1) 

R0 being the AC resistance of the connector measured at 20 ºC.  

The AC resistance differs from the DC resistance due to the 

skin effect factor. However, due to the low frequency operation 

and the small size of the analyzed connectors, this difference is 

very small, although it tends to increase with the size of the 

connector. Since the resistance changes with temperature, (1) 
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includes a temperature correction, where α is the resistivity 

temperature coefficient (0.004 °C-1 for both Al and Cu) and R0 

is the equivalent connector resistance when converted to 20ºC 

common reference. It is noted that the temperature coefficient 

of the analyzed bimetallic connectors is influenced by the quasi-

metallic spots generated in the contact interface. Experimental 

results show that the temperature coefficient in (1) is better 

approximated by α = 0.0035 °C-1 because of this effect. 

The temperature of the connector cannot be used alone as a 

fault indicator because it depends on several variables such as 

the ambient temperature, the electrical current level that flows 

through the connector, or meteorological variables (wind speed, 

solar radiation, ice or rain). Therefore, for using the temperature 

as an indicator of the connector condition, a complex thermal 

model would be required. Due to this complexity, and the need 

to measure other variables (rain, wind speed, etc.) this paper 

avoids applying this method.  

B. Oxidation Multi Spot Resistance Degradation Model 

To predict the future value and the evolution with time of the 

connector resistance, a suitable model is required. The multi 

spot resistance degradation parametric model presented in [21] 

is selected in this paper due to its simplicity, small number of 

parameters to identify and satisfactory results. It assumes an 

increase with time of the contact resistance because of the 

development under fretting conditions of non-conductive oxide 

films at the contact interface and a uniform distribution of the 

contact spots. According to [21], the two-parameter, i.e., θ = 

(R0,τ), resistance degradation model determining the evolution 

with time of the connector resistance, taking into account the 

oxidation process for uniformly distributed multi-spot contacts 

can be written as, 

   

0
0 2

ˆ( , , )

1 / · 1 /

R
R t R

t t


 



 

       (2) 

where R̂  is the electrical resistance estimated by the model, t is 

the time measured from the installation of the connector, R0 is 

its initial resistance corrected to 20ºC, and τ is the maximum 

life time, since it produces a zero-value in the denominator of 

(2). Fig. 1 shows the evolution with time of the resistance 

according to (2). 
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Fig. 1.  Oxidation multi spot resistance degradation model.  

III. MARKOV CHAIN MONTE CARLO SIMULATIONS 

Markov chain Monte Carlo (MCMC) are stochastic methods 

allowing to obtain parameter estimates for complex models, for 

which standard estimation methods are extremely difficult to 

apply. In this paper the role of MCMC is to identify the 

parameters θ = (R0,τ) of the multi-dimensional distribution 

function corresponding to the contact resistance 
0

ˆ( , , )R t R   

described by (2). 

MCMC iteratively generates random samples to characterize 

the parameters of the distribution of interest [22]. MCMC 

methods include different sampling algorithms from a given 

complex multi-dimensional probability distribution [23]. They 

build a Markov chain having the chosen multi-dimensional 

distribution as its equilibrium distribution. Markov chains are 

stochastic models which define a sequence or collection of 

random variables moving from one estate to another one. The 

probability to move from one state to the subsequent one only 

depends on the current state and elapsed time, but it is 

independent of the sequence of preceding states. By recording 

states from the chain it is possible to generate a sample of such 

distribution. When including more steps in the Markov chain, 

the distribution of the sample tends to match more accurately 

the actual desired distribution. Markov chains are guided 

random walks through the space of parameters describing all 

feasible values of such parameters, although some values have 

more probability to be generated than others (it depends on the 

prior information of the experimental data provided by the 

user). Therefore, Markov chains tend to sample from the more 

likely sample space regions. Although different algorithms are 

available to implement MCMC, the Metropolis–Hastings (MH) 

algorithm (see Fig. 2) is among the most popular [22], [24], 

[25]. MH is a statistical sampling method that generates the 

Markov chain, thus allowing to generate as many samples as 

required in the random sequence. The Markov chain is often 

initialized by sampling from a two-dimensional uniform prior 

distribution P(θ) with upper and lower bounds ub and lb, 

respectively [26]. It is assumed that when increasing the sample 

size, the probability density functions built by the Markov chain 

tend to converge to the actual distribution [25].  

MCMC is focused to approximate from a sampling of prior 

distribution P(θ), the posterior probability density function 

(PDF) of the model parameters θ = (R0,τ), which is a conditional 

probability function depending on the measured resistance data 

R, i.e., P(θ|R). Finally, via Monte Carlo integration, summary 

statistics are generated from the randomly generated samples to 

describe the distribution of the parameters [27].  
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Fig. 2. Construction of the Markov chain by the Metropolis-Hastings algorithm. 

Adapted from [25]. 

A. Initial Parameter estimation  

Parameters R0 and τ are estimated from measurements of the 

contact resistance by applying the Markov Chain Monte Carlo 
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(MCMC) method in combination with the fminsearch function 

from Matlab®, which finds the minimum of an unconstrained 

multivariable function using a derivative-free method [28]. The 

fminsearch function returns the initial estimates or seed values 

of the parameter estimates 
0

ˆ ( , )ini iniR   and the sum of 

squares (sos) of the error function, which are required by the 

MCMC algorithm. The definitive values of the parameters 

0
ˆ ( , )def defR   are provided by the MCMC algorithm. 

MCMC provides many estimated pairs (R0,τ), thus enabling 

generating confidence intervals for the parameters being 

estimated. The fminsearch function from Matlab® outputs the 

sum of the squares of the error function as in (3), calculated as 

the squared difference between the measured contact resistance 

R and the one provided by the model, i.e., R̂ as in (2). The sum 

of squares function, sos, is expressed as, 

2

1

ˆ[ ( ) ( )]
n

i i
i

sos R t R t


         (3) 

R(ti) and ˆ( )iR t  being, respectively, the contact resistance 

measured at time t = ti, and the contact resistance calculated by 

means of (2), whereas n is the number of acquired data points.  
MCMC simulations require, as inputs, the initial estimates of 

the parameters 
0

ˆ ( , )ini iniR  , and the covariance matrix of the 

parameter estimates ̂ , which is calculated from the initial 

estimate of the error variance 
2ˆ , since MCMC requires to 

know the variance of each parameter. According to [29], 
2ˆ can 

be calculated as,  

  2 2

1

1 ˆˆ / ( ) [ ( ) ( )]
n

i i
i

sos n p R t R t
n p




   


   (4) 

sos being the residual sum of squares of the error function and 

p the number of parameters in the regression model, two in the 

analyzed case. The covariance matrix of the parameter 

estimates can be calculated as, 
2 1ˆ ˆcov( ) ( '· )i iX X          (5) 

where X and X’ are, respectively, the Jacobian or first-order 

partial derivatives matrix and its transposed matrix, which from 

(2) results in, 

0
ˆ ˆ ˆˆ ˆ ˆ( , ) / ( , ) /   ( , ) /i i i iX R t R t R R t            

 
      (6) 

B. Proposed approach summary 

Fig. 3 summarizes the steps of the approach proposed in this 

paper. First, on-line data (temperature, voltage drop and 

current) are acquired, from which the resistance of the 

connector is obtained. The past data is fitted using the resistance 

degradation model given by (2), the parameters of the model 

and the confidence intervals being determined by means of 

MCMC simulations. Finally, the current measured value of the 

electrical resistance is compared against the prediction 

performed by the model as detailed in Fig. 4, in order to 

diagnose the health condition of the connector.  

Fig. 4 explains how the proposed approach works. It shows 

the tendency of the evolution electrical resistance in one 

connector (connector #5) and the fitting of the model according 

to the parameters identified by the MCMC algorithm, along 

with the calculated confidence intervals. It allows diagnosing 

the health status of the connector, which is done by comparing 

the current value of the electrical resistance with the value 

estimated by the model. The blue line and “x” symbols in Fig. 

4 are the past measured values of the electrical resistance, the 

black line represents the fitted model according to (2), and the 

pink line and “x” symbol represents the current measured value 

of the resistance. In the case that the current measured value of 

the resistance falls between the confidence intervals, it is 

assumed that the connector behaves well, otherwise an alarm is 

triggered. In this latter case, if during the consecutive 

measurements corresponding to a pre-established time interval 

the resistance falls outside the confidence intervals, a warning 

indicating that the connector must be replaced must be 

generated. 
On-line measurement of the 

electrical resistance 

Parametric degradation model
(R0, τ)

Initial parameter estimation
fminsearch   (R0, τ)

On-line failure detection
Short-term extrapolation

MCMC simulations

Final parameter estimates (R0, τ) 
and confidence intervals 

 
Fig. 3. Proposed on-line health condition monitoring approach. 
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Fig. 4. On-line condition monitoring approach suggested in this paper, 
including the electrical resistance degradation model fitted according to (2), and 

the 50%, 90%, 95% and 99% confidence intervals plotted as area bands, 

representing the predictive probability limits due to the uncertainty in the 
parameters values. a) Healthy condition. b) Fault condition. 
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IV. THE TESTED CONNECTORS AND EXPERIMENTAL SETUP  

A. The Tested Connectors 

Medium voltage connectors are usually made of copper or 

aluminum. They are designed for providing a stable and reliable 

electrical connection between two conductors. To this end, such 

elements must generate very reduced power losses [30], [31], 

i.e., they must offer very low electrical resistance. Medium 

voltage grids typically use compression connectors, because 

compression is a simple technique producing a relatively low 

contact resistance and reliable electrical connection.  

This work analyzes the behavior of bimetallic copper-

aluminum ICAU120 aluminum-copper compression 

connectors from SBI Connectors, which are intended for 120 

mm2 aluminum conductors. In these connectors, aluminum and 

copper are joined by friction welding. The barrel of the 

connector is compressed by using of a hexagonal crimping 

machine. To improve the contact between the aluminum 

conductor and the barrel of the connector, contact grease 

withstanding 140ºC was applied to the inner barrel surface. 

The developments done in this work, as well as the presented 

experimental results are a means to validate the feasibility to 

apply this approach in substation connectors by means of the 

SmartConnector project, whose details are found in [32]. It 

includes the substation connector itself, a set of miniature 

sensors (temperature, voltage drop and current), a thermal 

energy harvesting unit, and wireless communications.  

Medium voltage connectors instead of substation connectors 

have been used to experimentally validate the condition 

monitoring approach proposed in this paper since the useful life 

of the former is shorter, thus allowing a drastic reduction of 

testing time, technician hours, power requirements and overall 

cost.  

B. Accelerated degradation by means of heat cycle tests 

Experimental heat cycle tests following the IEC 61238-1-

3:2018 standard [5] were carried out to accelerate the 

degradation of the connectors and to obtain experimental data 

to corroborate the accuracy and usefulness of the proposed 

approach. In a real application data should come from the on-

line measurements of the SmartConnector instead from the heat 

cycle tests.   

To conduct the heat cycle tests, an electrical loop was 

installed, which includes seven ICAU120 Al-Cu medium-

voltage connectors and 120 mm2 aluminium alloy conductor, as 

shown in Fig. 5. Wire equalizers were used to measure the 

voltage drop across the connectors, since they allow improving 

the contact resistance measurement accuracy by equalizing or 

averaging the voltage distribution at the measuring points.  

Before running the experiment, the initial or reference value 

of the DC resistance of all connectors was measured by 

applying four-wire or Kelvin method, using a calibrated digital 

micro-ohmmeter (Micro Centurion II from RayTech). Next, the 

heat cycle tests were carried out. The power frequency electric 

current in the loop was measured by using a Rogowski coil 

(500LFxB from CWT; 0.06 mV/A). During such tests the 

voltage drop across the outer terminals of all connectors and the 

electrical current in the loop were acquired by means of a NI 

USB-6202 DAQ instrument, which includes 8 differential 

inputs using a sample frequency of one sample every six 

seconds, which allows calculating the resistance of the 

connectors every 6 seconds. T-type thermocouples and a 

thermocouple data acquisition module (USB TC-08 from 

Omega) were used to acquire the temperature in order to correct 

the resistance of the connectors to 20ºC by applying (1).  

The recommended operating temperature of the conductor is 

below 90 ºC. However, to accelerate the degradation process, 

the heat cycle tests were performed at 120ºC during 

approximately 92.5 h, completing a total of 140 heat cycles.  

  
a) 

+ - + -

Temperature 
measurements

Electrical resistance measurements

EqualizersEqualizers

b) c)  
Fig. 5.  a) Electrical loop for the temperature cycle tests. b) Contact resistance 

measurement by using wire equalizers. c) ICAU120 Al-Cu medium voltage 

connectors. 

V. EXPERIMENTAL RESULTS AND ON-LINE CONDITION 

MONITORING APPROACH ASSESSMENT 

A. Experimental evaluation of the MCMC-based on-line 

condition monitoring approach. 

This section evaluates the performance of the proposed 

condition monitoring approach. To this end the experimental 

results of the seven analyzed connectors collected during the 

accelerated heat cycle tests are presented and compared against 

the results provided by the MCMC-based degradation model. A 

total of 5000 MCMC iterations were conducted to obtain 

suitable results by applying the proposed approach. 

Fig. 6 shows the temporal evolution of the on-line 

measurements of the contact resistance of connector #5. These 

results are plotted in intervals of ten test hours. As explained, 

the MCMC method identifies the most suitable parameter 

values (R0,τ) of the parametric degradation model and the 

confidence intervals representing the predictive probability 

limits due to the parameter uncertainty. If the current value of 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

6 

the resistance falls between the confidence intervals, it is 

considered that the connector is working as expected, otherwise 

an alarm signal must be generated. In this last case, if during the 

consecutive measurements corresponding to a pre-established 

time interval the resistance falls outside the confidence 

intervals, a warning indicating that the connector must be 

replaced should be generated. When the measured values are 

outside of confidence intervals but below the model line (black 

line), the connector is in the formation phase, so it must not be 

considered as faulty. Results presented in Fig. 7 for connector 

#5 indicate that according to the model, the connector behaves 

well until hour 40, since the new measured resistances (pink 

line) fall within the confidence intervals. However, according 

to Fig. 7.d, from hour 45 on, the new values of the resistance 

surpasses the confidence intervals, thus indicating an 

anomalous behavior of the connector. 
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d) 

Fig. 6. Results of the MCMC-based condition monitoring approach presented 

in this paper. Predictions made at hours 10, 20, 30 and 40 of the accelerated 

heat cycle tests for connector #5. Past on-line measurements (blue line), future 

measurements (pink line) and the predictions made by the fitted model (black 

line) used for model validation and confidence intervals (99%,95%, 90% and 

50%). Prediction made by the model after a) 10 h b) 20 h c) 30 h d) 40h. 

B. Results summary 

This section describes the experimental results achieved 

through the heat cycle test of the analyzed connectors. 

Results reported in Fig. 7 show that the behavior of 

connectors #1, #5 and #6 starts failing around hour 45, 

connectors #2, #4 and #7 still do not fail at hour 60, whereas 

connector #3 starts failing around hour 55. 

As 5000 MCMC iterations were performed, the MCMC 

algorithm returns a probability density function of the 

parameters R0 and τ, so their mean value is calculated, which is 

shown in Table I at hour 40 of the heat cycle tests. Table I also 

displays the coefficients of determination R2 between the 

adjusted model and experimental data to prove the accuracy of 

the model in representing the experimental data. The coefficient 

of determination of connector #7 is low because this is the only 

connector that at hour 40 is at the beginning of the relativity 

stability phase or at the end of the formation phase, as shown in 

Fig. 7. Therefore, its resistance is stable with no noticeable 

increment, thus presenting a stable behavior with no symptoms 

of degradation, as corroborated by the results, which show that 

the measured value of the resistance is always below the 

prediction of the model. The results shown in Fig. 7 and the 

high determination coefficients presented in Table I prove the 

suitability and accuracy of the proposed fault diagnosis method. 

TABLE I 

Model Parameters at Hour 40  

Connector #1 #2 #3 #4 #5 #6 #7 

R0 [Ω] 2.4E-05 3.3E-05 3.1E-05 2.5E-05 2.9E-05 3.0E-05 2.5E-05 

τ [h] 714285.7 3169.3 2631.6 2325.6 1875.4 769.2 4412.9 

R2 0.968 0.924 0.997 0.994 0.999 0.999 0.508 

The procedure presented in this paper requires, in average, a 

computational effort of about 5 seconds using an Inter(R) 

Xeon(r) CPU E5-2620 0 @ 2.00GHz with 64 Mb RAM 

memory. 
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Fig. 7. MCMC-based condition monitoring approach validation during the 100 

h of the accelerated heat cycle tests for all connectors (#1 - #7). Model 
predictions against experimental data during the 100h of the heat cycle tests for 

all the connector from 20 h to 50 h every 10 hours (#1 - #7). a) Connector #1. 

b) Connector #2. c) Connector #3. d) Connector #4. e) Connector #5. f) 
Connector #6. g) Connector #7. 

VI. CONCLUSIONS 

This paper has presented and verified by means of a thorough 

experimental plan an on-line condition monitoring method to 

detect early failures of power connectors. To this end, the 

electrical resistance of the connector must be continuously 

monitored, since it is used as a signature of the health condition 

of the connector. It is obtained from on-line measurements of 

the temperature, the voltage drop and the current flowing across 

the connectors. An outstanding advantage of the proposed 

approach is that it allows avoiding to perform previous 

degradation tests to the connectors, thus simplifying the 

requirements, minimizing power consumption and operator 

intervention. The proposed approach is based on a parametric 

degradation model of the connector resistance, whose 

parameters are identified by applying the Markov chain Monte 

Carlo (MCMC) method, which also determines the confidence 

intervals of the electrical resistance. Therefore, when the 

measure value of the resistance falls within the intervals, it is 

concluded that the connector behaves well, otherwise a warning 

signal is activated. This approach allows anticipating severe 

faults, thus preventing the connectors and the installation from 

major failures, while facilitating to apply predictive 

maintenance plans. Finally, the proposed approach can be 

applied for on-line condition monitoring of many other 

elements and devices. 
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