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Abstract

Increasing the energy e�ciency of the built environment has become a priority world-
wide and especially in Europe. Because of the relatively low turn-over rate of the
existing built environment, energy e�ciency retrofitting appears to be a fundamental
step in reducing its energy consumption. Last experiences have shown that there is a
vast energy e�ciency potential lying in the building stock, and it is mainly untapped.
One of the reasons is a lack of robust methodologies for planning and evaluation of
building energy retrofitting strategies. Nowadays, dynamic measured data coming
from automated metering infrastructure provides valuable information to evaluate
the e↵ect of energy conservation strategies. For this reason, energy performance
modelling and assessment methods based on this data are starting to play a major
role. In this paper, several methodologies for the measurement and verification of
energy savings, and for the prediction and recommendation of energy retrofitting
strategies, are analysed in detail. Practitioners looking at di↵erent options for these
two processes, will find in this review a thorough and detailed overview of the dif-
ferent methods that can be used. Guidance is also provided to determine which
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method could work best depending on the specific case under analysis. The reviewed
approaches include statistical learning models, machine learning models, Bayesian
methods, deterministic approaches, and hybrid techniques that combine determinis-
tic and data-driven modeling. Existing research gaps are identified and prospects for
future investigation are presented within the main conclusions of this research work.

Keywords: building energy retrofitting, energy savings evaluation, data driven
approach, measurement and verification, retrofitting decision support, energy
performance improvement
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Abbreviations

ANN Artificial Neural Network

ASHRAE American Society of Heating, Refrigerating and Air-Conditioning Engi-
neers

BART Bayesian Additive Regression Trees

BES Building Energy Simulation

BPD Building Performance Database

CDD Cooling Degree Days

CV(RMSE) Coe�cient of Variation of the Root Mean Square Error

EEM Energy E�ciency Measure

EUI Energy Usage Intensity

FRL Fallen Rule List

GA Genetic Algorithm

GBM Gradient Boosting Machine

GMR Gaussian Mixture Regression

GP Gaussian Process

HDD Heating Degree Days

HVAC Heating, Ventilating and Air Conditioning

IPMVP International Performance Measurement and Verification Protocol

MCEM Monte Carlo Expectation Maximization

M&V Measurement and Verification

NMBE Normalized Mean Bias Error

NRE Non-Routine Event
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NSGA Non Sorted Genetic Algorithm

NZEB Nearly Zero Energy Building

PDF Probability Density Function

RMSE Root Mean Square Error

SVM Support Vector Machines
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1. Introduction

Low energy performance of the built environment is one of the main barriers to
reach the 2030 European energy e�ciency targets [1]. One of the most successful ways
to address low building energy e�ciency is a massive and a↵ordable implementation
of energy renovation strategies [2, 3]. However, at present, there are still several
barriers hindering the adoption of procedures and technologies that improve energy
e�ciency, and limiting the investments in this field. Tuominen et al. [4] found a
low impact of renovations on on property prices, lack of trusted information, and
small prioritization for energy performance improvements, to be frequently cited as
the main barriers, in the case of privately owned residential buildings. On the other
hand, Kontokosta [5] identified information asymmetry between project partners,
uncertainty over expected savings, and shortage of expertise in energy technologies,
as the main obstacles in the retrofitting decision making process for commercial
o�ce buildings. In the latter case, the author also highlights that these issues have
been worsened by case-study oriented approaches, many times because of lack of
extensive data and comprehensive pre/post analyses of load profiles following an
energy e�ciency measure (EEM) implementation.

For commercial and public buildings, applied EEMs can have a significant impact,
but the evaluation of this impact with certainty and reliability is no easy task. At
the same time, no consolidated framework exists to evaluate ex-ante the e↵ect of
di↵erent energy retrofitting strategies over buildings. Several techniques to find the
most cost-e�cient set of measures for a particular building have been developed [6],
but scaling up such methods proves to be a major technical challenge, since the
e↵ectiveness of retrofitting actions depends on many parameters and this is a clear
constraint for any evaluation method.

The objective of this review paper is to establish the state of knowledge related
with the modeling-based approaches used to support the planning and evaluation of
building energy retrofitting strategies. More specifically, the paper aims at reviewing
methods, as well as tools, to:

• determine the energy savings obtained through an energy retrofitting program
(commonly referred to as measurement and verification).

• support the process of identification of the most appropriate energy renovation
action according to the specific features of the analyzed building (in this paper
referred to as prediction and recommendation).

Although few reviews already exist, partially covering the topics addressed in this
article, to the best of the authors’ knowledge no published review provides an in-
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depth and comprehensive analysis such as the one presented here. In no other review
work the measurement and verification, and the prediction and recommendation pro-
cesses are analysed together and in a structured way as in the present article. The
details of this analysis are described in Chapter 3. This review work focuses mainly
on data-driven methods, although some deterministic and hybrid methods are also
analysed. The reason for this is that, in the last years, a surge in the number of smart
energy monitoring devices has significantly increased the amount of building energy
performance data available. This made possible the setting up of many publicly
available databases containing energy consumption data and building characteristics
of hundreds of thousands of buildings. Data-driven methods are hence becoming of
increasing interest, as they are able to harness such huge amount of information for
both evaluating the applied energy retrofitting measures and predicting the energy
savings potential of new EEMs [7]. Moreover, traditional deterministic methods not
based on data have to face an important issue related with their scalability, since
the results obtained are usually only valid for the specific building under analysis.
This means that using these methods to develop large scale retrofitting strategies
can be a major challenge [8]. It’s also important to point out that data-driven tech-
niques are being already widely employed in building energy e�ciency, and several
interesting applications are arising, such as control optimization in demand response,
e�ciency improvement of HVAC systems, energy e�cient operation of di↵erent types
of buildings, and more [9–11].

The article is organized as follows. Section 2 introduces the reader to di↵erent
key concepts and how they are used in the context of this review work: the measure-
ment and verification process, the prediction and recommendation process, and the
distinction between data-driven and deterministic models. In Section 3, a concise
overview of previous studies focused on building energy consumption modeling and
forecasting techniques is provided. In Section 4, a review of existing M&V protocols,
as well as data-driven energy baseline estimation methods is presented. State-of-the-
art techniques for non-routine event detection and uncertainty estimation are also
reviewed in that section. Section 5 includes a detailed review of methods to predict
the e↵ect of energy e�ciency measures and to plan energy retrofitting strategies.
Finally, in Sections 6 and 7 the discussion and conclusions of this review work are
outlined. The structure of the paper is also illustrated in Fig. 1, where the two
main processes reviewed in this article are highlighted, together with the di↵erent
applications studied in each case.
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Figure 1: Illustration of paper structure

2. Background

In this section, some concepts which can help to better understand the full content
of the review, are introduced, namely: the measurement and verification process,
the prediction and recommendation process, and the di↵erence between data-driven
methods and deterministic methods.

2.1. The measurement and verification process

Measurement and verification (M&V) is the process of using measurements to
accurately estimate real savings generated in a facility thanks to the implementation
of an energy management strategy [12].
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2.1.1. Baseline modeling
Since savings can’t be directly measured, as they represent the absence of energy

usage, they are determined by comparing measured energy consumption before and
after the implementation of a retrofit measure, considering the relevant adjustments
for changes in conditions. In order to carry out a comparison between the energy
usage before and after the EEM application, a model of the consumption prior to
the implementation of the measures needs to be developed. This is model is called
the baseline energy model. The baseline model can be defined as the energy charac-
terization of the starting situation and has a fundamental role in the determination
of energy savings. In fact, the baseline model allows to isolate the e↵ects of a retrofit
intervention from the e↵ects of other parameters that can simultaneously a↵ect the
energy consumption, therefore reducing the uncertainty with which savings are es-
timated. In this article, the most common data-driven methods used to develop
baseline models are reviewed.

2.1.2. Advanced measurement and verification (M&V 2.0)
In recent years, M&V has been transitioning to a new state, known in the field

as “advanced measurement and verification” (or M&V 2.0). This new form of M&V
is a result of the breakthroughs in advanced metering infrastructure systems and au-
tomated analytics techniques. In M&V 2.0, high granularity datasets with increased
sampling frequency, volume, and resolution, are analysed, in order to perform an
estimation of energy e�ciency savings which is almost in real-time [13]. This is en-
abling M&V to advance from a static and cumbersome process to a more dynamic
one, that translates into hourly energy insights, maximized savings and great benefit
for all the parts involved in the energy retrofitting programs [14]. One of the main
drivers of M&V 2.0 is the development of accurate baseline models for real-time sav-
ings estimation, through the application of advanced statistical and machine learning
techniques. The new features of M&V 2.0 are not only limited to savings evaluation,
in fact, most of the advanced M&V tools currently on the market also provide a range
of di↵erent services, such as analysis and visualization of energy monitoring data,
system-level fault detection and diagnostics, and building energy benchmarking [15].

2.2. The prediction and recommendation process

The term prediction refers to to a group of techniques used to predict the e↵ect
of an hypothetical EEM application on an individual building or facility. The pre-
diction results are then used to recommend the application of specific EEMs over
others, and to plan optimal energy retrofitting scenarios. Thanks to prediction and
recommendation techniques, it’s possible to answer many di↵erent questions, such
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as: “What is the return on investment for a specific EEM?”, “Which EEM would
perform best in the selected building, given its characteristics?”, “Which low capi-
tal cost measures can be applied to increase the energy performance of the selected
building?”, “Of all the buildings belonging to the considered stock, which ones would
benefit the most from an energy renovation program?”, “Which EEM would yield
the highest energy savings, in a 30 years time span?” etc. All these questions are
commonly answered by an engineer, after performing a building energy audit, al-
though the results obtained with the audit can be very uncertain. In Section 5, an
overview is provided of practical data-driven and deterministic methods to predict
EEM impact and plan energy retrofitting strategies for an individual facility or a
group of buildings.

2.3. Data-driven models and deterministic models

Having clear the goals of the two main processes that are going to be studied
in this review, let’s now define the two categories of methods under analysis: data-
driven models and deterministic models.

Data-driven models are statistical models that find relationships between state
variables of the analyzed system (inputs and outputs) without explicit or detailed
knowledge of its physical behaviour. In the case of models built for M&V, for exam-
ple, typical input variables can be external air temperature, wind speed and direction,
solar irradiance, building occupancy rate, while typical output variables can be the
total electrical or thermal load of the building. Depending on the level of physical
significance of the parameters used, these models are usually referred to as grey-box
or black-box models.

The other class of methods reviewed in this article are deterministic methods:
detailed building energy simulation models based on the di↵erential equations of
the energy transfer flows occurring in the control volumes (rooms or spaces) of the
buildings. These physics-based models are usually referred to as white-box models.

While for the measurement and verification process, the methods reviewed in
this article are exclusively data-driven, in the prediction and recommendation sec-
tion, both data-driven and deterministic models are analysed, as well as “hybrid”
models, in various which data-driven techniques are used to analyse results obtained
with deterministic methods.

3. Existing review studies

This paragraph gives a concise but complete overview of previously published
review works regarding the di↵erent topics treated in this article. To the best of
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the authors’ knowledge, there is no published review that addresses the same topics
presented in this article, that is: an up-to-date and detailed analysis of data-driven
and deterministic methodologies used to verify the e↵ect of EEMs in buildings and
to predict the impact of future energy retrofitting strategies. The existing data-
driven and machine learning techniques used to model and forecast building energy
consumption have been thoroughly analysed in a wide range of reviews published
over the last years: [16–23].

Deb et al. [24] divided state-of-the-art forecasting methods in nine di↵erent
categories and compared them in terms of length of training, data needed, accuracy,
and computation time required for the estimation. Wei et al. [25] extended this
analysis to other applications, such as energy pattern profile identification, energy-
usage mapping, benchmarking of the building stock, and the definition of extensive
retrofitting plans. Data-driven techniques related to the development of retrofitting
strategies were also studied in the same review(artificial neural networks, genetic
algorithms, and clustering techniques).

Harish and Kumar [26] carried out an analysis of di↵erent approaches to model
and simulate building energy systems and to evaluate the impact of energy retrofitting
strategies. Di↵erent dynamic modeling techniques were reviewed, including the for-
ward approach (white-box), the data-driven approach (black-box) and the hybrid
grey-box approach. The di↵erent methods were then classified according to the
model type, the parameters used, the simulation period and, the method of validat-
ing the results. A list of building energy simulation software, together with their
strengths and limitations is also presented in that paper.

Lee et al. [27] reviewed retrofitting analysis toolkits for commercial buildings,
classifying them in 3 main categories: toolkits using data-driven methods, toolkits
using normative calculations, and toolkits using physics-based energy models. From
the analysis, it appears that there is still room for improvement of these methods,
especially regarding: (i) mitigation of the high degree of uncertainty associated with
these tools, (ii) interoperability between the di↵erent tools, (iii) incorporation of
human behaviour in the models, (iv) extension of output parameters. An overview of
the current state of advanced measurement and verification tools was also provided by
Granderson and Fernandes [15]. The authors reviewed sixteen di↵erent commercially
available tools and classified them according to various criteria: the standard protocol
employed, the type of baseline models used, the input data granularity required, the
possibility to provide uncertainty estimates, and more. Granderson et al. [28] also
compared the accuracy of ten di↵erent baseline energy use models for automated
measurement and verification of energy savings. The techniques were tested on 537
commercial buildings in the US using training periods of di↵erent lengths and without
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any non-routine adjustment. Two di↵erent error metrics: normalized mean bias error
(NMBE) and coe�cient of variation of the root mean squared error (CV(RMSE))
were calculated and compared, showing similar performances for the ten models.
Results of this analysis showed that data-driven statistical techniques are better
candidates for scaling up the adoption of whole-building energy savings evaluations
using advanced metering infrastructure. In a subsequent publication [29], the same
authors applied one of the ten methods (the time of the week and temperature baseline
model) on a set of 84 buildings, in an attempt to test the applicability of these M&V
approaches on a larger scale. It was found that 70% of the buildings of the data set
were well fit to be analysed with the automated approach, and in 80% of the cases
savings and uncertainties were quantified to levels above the minimum acceptable
thresholds defined by the ASHRAE Guideline 14 [30], a standard protocol used for
M&V.

Although the presented review works are of great importance, there is still a
shortage of studies covering specifically, and in detail, the processes of measurement
and verification of energy savings, and of energy retrofitting planning. Practitioners
looking at di↵erent options for these two processes, will find in this review a thorough,
as well as detailed, overview of the di↵erent methods that can be used. Guidance is
also provided to determine which method could work best depending on the specific
case under analysis. At the same time, it’s important to highlight how this review
work is mainly focused on data-driven approaches. Considering the growing attention
that statistical and machine learning techniques are now receiving in the field of
building energy performance analysis, such a study appears essential to identify the
research gaps and to highlight future research lines.

4. Measurement & Verification: review of methods and data-driven ap-

plications

This section aims at reviewing the most popular M&V methods currently in use,
with special focus on the data-driven techniques used to estimate baseline energy
models. In the first part of the section, four frequently employed M&V protocols
are introduced. Following, a review of state-of-the-art data-driven techniques to
develop baseline energy models and estimate retrofit savings is presented. The last
paragraphs of the section present a review of data-driven approaches to the problems
of non-routine event detection and savings uncertainty estimation.

4.1. Measurement & Verification protocols

M&V is an evolving science and various methods and best practices were drawn
up and documented in di↵erent guidelines. Attempts have been made to create
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a unique standard for the M&V process, but depending on the analysed facility’s
geographical location, principal use (residential, commercial, industrial, etc.), and
type of metering data available, practitioners still employ di↵erent protocols. The
optimal degree of standardization that will ultimately be required for advanced M&V
is an open issue and currently under discussion among stakeholder groups [15].

4.1.1. International Performance Measurement and Verification Protocol (IPMVP)
The International Performance Measurement and Verification Protocol [12], pro-

posed by E�ciency Valuation Organization (EVO), defines standard terms and sug-
gests best practices to quantify energy savings following the application of one or
more energy e�ciency measures. According to this protocol, four di↵erent options
are available to determine energy e�ciency savings:

• Option A: Partially Measured Retrofit Isolation. This option involves the use
of measurement instruments to monitor the consumption of the equipment
a↵ected by the applied EEM, isolated from the energy usage of the rest of the
building. In this option, only partial measurement is used, meaning that some
parameter(s) are estimated rather than measured.

• Option B: Retrofit Isolation. This case is equivalent to option A, with the ex-
ception that no estimations are allowed and full measurement of all the relevant
parameters is required.

• Option C: Whole Building. In this approach, utility meters are used to evaluate
the energy performance of the whole building. Option C determines the total
savings of all implemented EEMs and is only applicable in projects where
savings are expected to have a substantial impact, making them distinguishable
from energy variations unrelated to the applied measures.

• Option D: Calibrated Simulation. This option involves using building energy
modeling software that allows the prediction of energy consumption in di↵erent
scenarios. The models used for this scope are first calibrated, making sure that
the predicted energy load of the building matches the real (metered) data.

4.1.2. ASHRAE Guideline 14
The ASHRAE Guideline 14 for measurement of Energy, Demand and Water

Savings [30], published by the American Society of Heating, Refrigerating and Air-
Conditioning Engineers (ASHRAE), also specifies three di↵erent approaches to de-
termine energy savings:
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• Retrofit Isolation Approach, similar to IPMVP option B

• Whole Facility Approach, similar to IPMVP option C

• Whole Building Calibrated Simulation Approach, similar to IPMVP option D

Furthermore, the ASHRAE guideline provides di↵erent metrics to evaluate the
validity of the applied models, such as thresholds for net determination bias or the
maximum acceptable uncertainty of the estimated savings.

4.1.3. DOE Uniform Methods Project
The US Department of Energy (DOE), is also building a set of protocols to assess

savings due to energy renovation programs. These protocols, joined together under
the name Uniform Methods Project [31], provide a simple and clear method to de-
termine energy savings for residential, industrial, and commercial buildings. The
protocols are based on IPMVP, but supplementary practices are included, that can
be used to aggregate savings from single retrofitting actions and assess program-wide
e↵ects.

4.1.4. CalTRACK
CalTRACK [32] is a protocol that was born from the e↵orts of the California

Energy Commission and the California Public Utilities Commission to have a stan-
dardized protocol for the evaluation of energy savings in the residential sector. Cal-
TRACK specifies a set of methods to measure and report changes in the energy
consumption of a building following the application of an EEM. These methods have
the goal of estimating the energy that would have been consumed in the building if
the intervention had not taken place. The techniques implemented have been empir-
ically tested by a technical team with several di↵erent stakeholders and developed
under an open-source license model. The data required to apply the CalTRACK
methods includes one full year of consumption data before the EEM application,
local weather data, and the date of implementation of the measure.

4.2. Data-driven baseline estimation methods

Several baseline energy modeling approaches, using both monthly billing and in-
terval meter data, are presented in the next paragraphs. The reviewed methods are
classified into statistical learning, machine learning, and Bayesian techniques, Fig.
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2 shows an overview of how this section is structured, and Table 1 summarizes the
characteristics of all the models analysed.

Data-driven 
baseline estimation 

methods

Statistical 
learning

Machine 
learning

Bayesian 
methods

Linear and 
nonlinear regression

Kernel regression

Transfer functions

Random forest

Support vector 
machine

Artificial neural 
networks

Gradient boosting 
machine

Bayesian inference

Gaussian process

Gaussian mixture 
regression

Figure 2: Load profiles identified for the o�ce building

4.2.1. Statistical learning techniques
Statistical learning is a branch of data-driven modeling that is based on building a

statistical model by inferring relationships between di↵erent variables in the analysed
dataset. This model is then used to make predictions on other datasets supposed to
be similar to the one used to build the model.

4.2.1.1. Linear and nonlinear regression.
Regression analysis has been the first implemented statistical method for the evalua-
tion of energy savings in buildings. Its origins can be traced back to the development
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of the PRInceton Scorekeeping Method (PRISM) [33], a statistical procedure formu-
lated to include weather normalization in the estimation (scorekeeping) of energy
savings. This model is obtained by applying a regression technique that takes into
account di↵erent variables frequently having an impact on energy usage, such as
occupancy, climate, and equipment operation. Common variables chosen for the re-
gression can be: average outdoor temperature, relative humidity, cooling degree days
(CDD), heating degree days (HDD), building occupancy and building working days.

Mathieu et al. [34] used linear regression to estimate building energy baselines
using high granularity (15-min-interval) consumption data. The model proposed in-
cludes an indicator variable that marks the hour of the week and a piecewise-linear
temperature regressor having fixed change points. In addition, two di↵erent regres-
sion models are fit for when the building is considered occupied or unoccupied. This
method has been shown to be highly accurate [28] and has been used as a bench-
mark model in several recent publications regarding measurement and verification
methods [35][36][37].

Mohd et al. [38] also tested a linear regression approach to evaluate the e↵ect
of an EEM over the HVAC system in an o�ce complex in Malaysia. Both single
variable and multivariate linear regressions were fitted, using monthly billing data,
temperature readings, and occupancy details. A similar approach was followed by
Wang et al. [39] , who tested di↵erent linear and nonlinear regression models to
assess the energy savings caused by a mechanical system retrofitting in a healthcare
facility in Dallas, Texas. The models were fitted with electricity and gas monthly
billing data and using average outdoor temperature and degree-day as independent
variables. The regression model approach was also tested in the industrial sector:
Kissock and Eger [40] built a baseline energy model with multivariable piece-wise
linear regression, that was used to disaggregate savings in an industrial facility. The
facility’s consumption was supposed linearly dependent on its production and on the
outdoor air temperature.

Regression analysis is appealing for its simplicity and the possibility of applying
it even when low resolution data is available. On the other hand, the linear approach
can sometimes be too simple to capture complex relationships between variables.

4.2.1.2. Kernel regression.
Kernel regression belongs to a special class of regression models, called time-varying
coe�cient models, where the regressors are not considered constant, but dynamically
changing over time. The use of kernel regression to estimate building energy con-
sumption baselines was first proposed by Brown et al. [41], with the goal of improving
the predictive accuracy of standard linear regression models. The idea behind kernel
regression is that the regressors are not estimated using the whole historical dataset.
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Instead, the regressors are evaluated for each timestep, by estimating a weighted
average of all the timesteps with the nearest values of the regression parameters (e.g.
weather conditions, time of the day, etc.). The main advantages of kernel regression
are an increased estimation accuracy, compared to standard linear regression, and
the ability to provide robust and reasonable results even in case of small training
sets. On the other hand, since the coe�cients are evaluated for a rolling time win-
dow and not considering the whole timeseries dataset, when making predictions for
longer time frames (e.g. one year or more) the model might not be able characterize
the existing seasonal variations and generalize properly .

4.2.1.3. Transfer functions.
Transfer functions have been shown to be capable of accurately estimating the ther-
mal parameters of buildings [42–45], their application for verification of energy sav-
ings is now also being tested. The great advantage of transfer functions is the pos-
sibility to take into account the building dynamics connected to its thermal inertia.
Furthermore, the coe�cients of the transfer function model are coupled with the
features of the building, thus avoiding the requirement of large amounts of data to
obtain reliable results. One of the drawbacks of the method is that the calculations
are based on the internal temperature of the building, which is not always known
when performing M&V. This baseline estimation methodology was first suggested
by Dı́az et al. [46], who combined two transfer function models to assess energy
e�ciency savings in a building of the University of Granada.

4.2.2. Machine learning techniques
The term machine learning (ML) identifies algorithms that make use of statistical

models in order learn from data without any specifically programmed instruction.
ML algorithms identify patterns in the dataset through iteration and are then able
to harness the gained information to make predictions.

4.2.2.1. Artificial neural networks.
Artificial neural networks (ANN) have been applied in several cases to develop base-
line energy models [17–20]. The black-box nature of these models makes them very
popular, since they can be easily applied to many di↵erent problems after just a
quick data pre-processing phase. But their simplicity comes at the expense of feature
interpretability, making the process of debugging and model improvement consider-
ably more di�cult. Low model interpretability and the need for large amounts of
training data are the main drawbacks of ANNs. Yalcintas [47] tested ANN models
using Levenberg-Marquardt back-propagation to evaluate energy retrofitting savings
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in two hotel buildings. Adnan et al. [48] used an Hybrid Artificial Neural Network,
in combination with Evolutionary Programming, to quantify the savings achieved for
a chiller unit in Malaysia, using three di↵erent inputs: operating time, refrigerant
tonnage and di↵erential temperature. Chang et al. [49] also assessed post retrofit
energy savings for an air conditioning system, using ANNs and an energy saving eval-
uation model based on a parameter named Refrigeration Operation Energy saving
E↵ect Ratio (ROEER).

4.2.2.2. Support vector machine.
Support vector machine (SVM) was first applied to estimate building energy baselines
by Dong et al. [50]. This machine learning approach is usually preferred when the
training data available is small, since it proves to be very powerful in solving problems
with non-linear formulations, even with small training datasets. The training time
of this technique scales cubically with the size of the dataset [51], making SVM not
ideal when dealing with large-size problems. In [25], an overview of the most recent
applications of SVM to building energy consumption prediction is presented.

4.2.2.3. Random forest.
Random forest is an ensemble learning algorithm that constructs several decision
trees and then outputs the mean of their prediction, in order to correct for the indi-
vidual trees’ tendency to overfit the data. This powerful methodology has been used
for several applications in the domain of building energy prediction. Ahmad et al.
[52] used random forests to predict hourly HVAC energy consumption, while Araya
et al. [53] proposed their use for fault detection and diagnosis. In the measurement
and verification framework, the use of random forests was outlined both in [28] and
[15]. Random forests prove to be very accurate in the prediction of building energy
usage, although the black-box nature of this algorithm means that the computational
time associated with this calculation is quite high, due to the necessity of optimizing
the hyper-parameters and performing cross-validation to avoid overfitting.

4.2.2.4. Gradient boosting machine.
Similar to random forest, the gradient boosting machine (GBM) is a powerful ma-
chine learning algorithm based on the concept that a “strong learner”, having high
prediction accuracy, can be obtained by iteratively combining several less complex
models, called “weak learners”. Touzani et al. [36] used this approach to build an
energy consumption baseline model that can be applied for energy savings estima-
tion. The algorithm has four hyper-parameters that were optimized using grid search
with 5-fold block cross-validation. The results of the GBM method were compared
to the ones obtained with a piecewise linear regression model and a random forest
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algorithm. This analysis showed that the GBM was able to improve both R2 pre-
diction accuracy and CV(RMSE) in most of the analysed cases.

4.2.3. Bayesian methods
As an alternative to the more traditional frequentist approach, several researchers

studied the application of the Bayesian paradigm to the measurement and verifica-
tion process. In Bayesian statistics, a probability model is fit to a dataset, with
the goal of obtaining a probability distribution on the model parameters and on
other values, like predictions for unobserved data [54]. Then, as new data becomes
available, Bayes’ theorem is used to update these probability distributions. Among
the advantages of Bayesian methods, authors list: the possibility of automatically
and exactly quantifying the uncertainty of the models (including di↵erent sources
of uncertainty, like measurement errors and weather variability), lower sensitivity to
outliers, the possibility to have real-time updates of the estimates, and more [55][56].

4.2.3.1. Bayesian paramaters inference.
Lindelöf et al. [57] applied Bayesian inference to analyse energy invoices and climate
data to estimate the impact of the installation of a model-predictive controller for a
heating system in an o�ce building in Switzerland. The approach tries to estimate
the probability density function (PDF) of three parameters: the building’s heat-loss
coe�cient, the building’s balance temperature, and the stochastic variations of the
heating demand, conditioned on the information contained in the utility invoices.
The impact of the EEM is assessed by estimating the variations of the heat loss co-
e�cient, through the analysis of a PDF obtained by fitting a Bayesian model to the
billing data before and after the EEM application. The Bayesian approach allows
to extract high amounts of information from the data and proves to be especially
useful in the case of data with monthly granularity. One of the main challenges of
this method is that the first probability model, called prior, is often not easy to find
and justify, and can be a major source of inaccuracy.

4.2.3.2. Gaussian process.
The application of Gaussian processes (GP) in the M&V process was first proposed
by Heo and Zavala [58], with the goal of solving certain limitations of the linear
regression method. The Gaussian process approach is non-parametric, since its aim
is not finding the parameters of a given function that can best fit the data, but to
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look for a distribution over the functions f(x) potentially consistent with the ob-
servations. GPs can capture complex building energy behaviour, such as nonlinear
trends, multivariable interactions and time correlations. At the same time, since
GPs belong to the framework of Bayesian statistics, this method allows the savings’
uncertainties to be quantified thoroughly. Burkhart et al. [59] suggested the use of
Monte Carlo expectation maximization (MCEM) to enhance GP modeling and grant
more accurate predictions in case of uncertain input data. Maritz et al. [60] pub-
lished a guideline to perform M&V using GPs, with special emphasis on the process
of kernel selection. The approach is described step by step and then applied to adjust
the baseline consumption of an academic facility. A two-stage grid search technique
is used to determine the best fit coe�cients for the model, which is then applied to
calculate savings in two di↵erent case studies. One of the main issues associated with
this method is its computational and memory complexity, that increases cubically
with the size of the training dataset.

4.2.3.3. Gaussian mixture regression.
Srivastav et al. [61] tested the performance of Gaussian mixture regression (GMR)
for building baseline energy prediction. The approach was tested on both simulated
data from the US Department of Energy and on real data from a commercial build-
ing in California, accuracy was compared with a linear regression model. The model
showed an estimation accuracy comparable with the multivariate regression approach
in both cases, although GMR has the key advantage of allowing the computation of
confidence intervals that adapt locally for di↵erent circumstances, according to the
uncertainty of training data. At the same time, GMR seems to be less sensitive to
data sparsity and to regressors correlation. Similarly to GPs, the main challenges of
GMR are linked to its long computational time.

4.3. Non-routine event detection

The issue of non-routine event detection is a known challenge in the M&V re-
search community and is common to all the previously introduced baseline estimation
methods. Non-routine events (NREs) are defined as fluctuations in the energy usage
of a building that are not caused by any variation of the explanatory variables of the
baseline model, and that are not attributable to the applied measure itself. In order
to achieve a precise evaluation of the energy savings, non-routine events must be
detected, and accounted for as non-routine adjustments in the estimation of avoided
energy use. This process is usually performed manually and, depending on the kind
of event, it might require some engineering expertise and knowledge of what the
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NRE was [29]. This is a considerable issue in automated M&V, as failing to identify
such events could lead to an over (or under) estimation of the savings. Recently,
Touzani et al. [62] proposed an automated technique, based on statistical change
point detection, to identify non-routine events and adjust the savings calculations.
The preliminary results of this study, carried out on a set of synthetic data created
using energy simulation software EnergyPlus, show a high identification rate for true
positives, as well as for false positives, suggesting that the algorithm might still be
improved to achieve better results.

4.4. Uncertainty estimation

In the M&V context, determining the uncertainty of the obtained results proves
to be an issue of major importance. Providing a range of uncertainty, together with
the point estimate result, can help establishing the amount of risk associated with a
given investment, and support stakeholders in making more informed decisions [63].
Energy savings estimates usually provide results in form of a single point value, the
uncertainty can then be interpreted as the interval of doubt around this estimate
[37]. According to the IPMVP, when dealing with energy savings, three kinds of
quantifiable uncertainties are identified: sampling uncertainty, arising from the fact
that in some projects not all the devices can be monitored, hence sampling tech-
niques are used, measurement uncertainty, related to the accuracy of the monitoring
infrastructure used to measure the energy consumption, and modeling uncertainty,
related to the errors of the baseline models used to estimate the savings.

Reddy and Claridge [64] argued that the uncertainty in the consumption baseline
model is the key factor in determining the uncertainty in the measured savings and
proposed a formula to estimate it taking into account the CV(RMSE) of the em-
ployed statistical model and the relative influence of the EEM on the baseline energy
consumption. Koran et al. [65] compared four di↵erent methods to calculate the un-
certainty of energy e�ciency savings estimated using metering data: a formula found
in the ASHRAE Guideline 14 [30], an improved version of the ASHRAE formula,
an exact formula that can be used in the case of ordinary least square regression,
and a bootstrapping technique. All the four methods presented provided reasonable
results, although the accuracy of the methods was not evaluated. Subsequently, a
work by Touzani et al. [37] compared the accuracy of two di↵erent approaches to
determine the uncertainty of energy e�ciency savings estimations. Four di↵erent
baseline models were applied: two hourly models and two daily ones. The uncer-
tainty of the model estimates were then analysed using two methods: the ASHRAE
Guideline 14 approach and the k-fold cross-validation approach, a method to assess
model accuracy commonly utilized in the machine learning community. The study
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was carried out on a dataset comprising whole-building electricity consumption data,
sampled every 15 minutes, from 69 commercial buildings located in Central Califor-
nia, Northern California, and Washington DC. The results showed that both methods
underestimated the uncertainty of all the four baseline models tested, although the
underestimation proved to be stronger for hourly models, probably due to higher
autocorrelation of residuals.

Among the few authors to take into account other uncertainties than the mod-
elling one, Olinga et al. [66] proposed a method to optimally allocate budget and
e↵ort in M&V while handling both sampling and modeling uncertainties. The results
of their case study show a 42 % reduction of the sampling cost and an 11 % reduction
of the total M&V cost thanks to the implementation of the proposed approach.
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5. Prediction and recommendation: review of the methods

In this section, various techniques to predict the e↵ect of energy e�ciency mea-
sures and to plan energy retrofitting strategies for specific buildings or groups of
buildings, are analysed. As many methods are involving the combination of deter-
ministic models based on simulations and data-driven approaches, this section of
the review presents three di↵erent categories of methods: deterministic, hybrid, and
purely data-driven. Table 2 shows an overview of the methods discussed this sec-
tion; the type of buildings where they were applied and the categories of the analysed
retrofitting measures are also schematized.

5.1. Deterministic methods (Building Energy Simulation)

The approaches presented here are based on the application of building energy
simulation (BES) to predict the energy performance of buildings in di↵erent scenar-
ios.

5.1.1. BES models for retrofit and NZEB comparative analysis
Zangheri et al. [67] used building energy modeling software EnergyPlus [68] to

identify which would be the most cost-optimal retrofit combination to reach nearly
zero-energy building (NZEB) levels in di↵erent building/climate combinations. The
study analyzes four di↵erent building typologies of 60s-70s and ten di↵erent climate
areas within the European Union. In order to perform the study, first a “base
refurbishment level” was defined, as the minimum possible level of refurbishment to
which compare the deeper ones. The base refurbishment level was defined following
the assumption that it is not possible to not intervene at all on a building older
than 40 years, and includes the rehabilitation of the building envelope, and the
substitution of the old heating or cooling systems with comparable equipment. It
was found that cost-optimal and NZEB scenarios are characterized by an average
increased investment cost, with respect to the base refurbishment level, of 50% and
115 % respectively. The energy e�ciency potential of the cost-optimal cases proved
to be substantial (between 36 % and 88% primary energy savings), with associated 30
years global costs many times lower than their respective base refurbishment levels.

Similarly, Rysanek and Choudhary [69] used TRNSYS [70], a simulation tool for
transient systems, to analyse di↵erent energy retrofitting scenarios for a mid-sized
o�ce building in Cambridge (UK), while taking into consideration both technical
and economic uncertainty. The authors also provide an analysis of how relevant the
approach is to real-world contexts. TRNSYS was also used by Valdiserri et al. [71]
to evaluate the thermal demand reduction of a tertiary building in Italy, due to an
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improvement of the thermal envelope and installation of high e�ciency windows.
An investment cost analysis was also performed, using the Net Present Value (NPV)
method.

5.1.2. BES combined with data collected from bills and questionnaires
Another frequently applied method to predict the energy savings of specific energy

e�ciency measures is to use building energy simulation tools and compare the simu-
lation with the real consumption obtained from metering or energy bills. Suastegui
et al. [72] used this method to evaluate potential savings in the residential sector in
Mexico due to replacement of oversized HVAC units. A sample of 300 houses was
analysed and questionnaires were used to gather data about the households size and
HVAC units capacity. An energy simulation of these buildings was then run using
a model based on the Transfer Function Method. The model provides the optimal
HVAC sizing for the analysed households, which is then used to calculate the kWh
that could be saved in these households by replacing oversized units.

5.2. Hybrid methods

Hybrid methods make use of data-driven techniques to optimize the results ob-
tained with deterministic methods. The reviewed approaches involve the use of
di↵erent data-driven algorithms to scale up the results obtained to a higher amount
of buildings, or to find the optimal solution, within the BES results, according to a
given cost function.

5.2.1. BES combined with Artificial Neural Networks
This method, presented by Ascione et al. [73], proposes the use of EnergyPlus

simulations and artificial neural networks to predict building energy retrofitting ef-
fects and evaluate di↵erent renovation scenarios. The approach takes advantage of
the reliable and rigorous assessment of EEM impact granted by building energy simu-
lation software and scales the results obtained to a large number of buildings, through
the application of artificial neural networks. This combination grants high accuracy
of results, while keeping the computational times reasonably low. The method em-
ploys two di↵erent families of ANNs, one trained with pre-retrofit building simulation
data and one with post-retrofit building simulation data, the di↵erence between the
outputs is considered as the improvement due to the implemented energy retrofit.
The approach was tested on o�ce buildings built in Southern Italy in the period
between 1920 and 1970, about 8800 units, representing approximately 13% of the
o�ce buildings in Italy. Three independent networks are modeled in the first family
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(pre-retrofit), each of them having a di↵erent output: primary energy demand for
heating, primary energy demand for cooling, and percentage of annual discomfort
hours. The second category of neural networks (targeting the refurbished building
stock), consists of four ANNs with single output: the three networks introduced for
the pre-retrofit case, plus a new network included to predict the electricity produced
by photo-voltaic panels and used in the building. The accuracy of the ANNs were
assessed by analysing regressions and distributions of relative error between the net-
works’ outputs and the results obtained with EnergyPlus models. In both cases (pre
and post-retrofit), the accuracy of the models showed to be quite high, with the
average absolute value of relative errors ranging between 6.1% and 11%.

5.2.2. Multi-objective and multi-criteria optimization of BES data using Genetic Al-
gorithms

In the framework of decision aid systems for energy retrofitting strategies, two
very popular solutions are multi-objective and multi-criteria optimizations. Asadi
et al. [74] wrote a detailed review on the topic, explaining also the conceptual
distinction between multi criteria and multi objective models: in multi-criteria op-
timization, the group of possible alternatives is finite and explicitly known a priori,
to be evaluated according to multiple criteria, while in multi-objective optimization
models, the potential solutions are implicitly determined by the optimization vari-
ables and constraints. A very popular technique, frequently used by scientists in
both these cases, is the genetic algorithm (GA). Following, di↵erent applications of
genetic algorithms in the building energy retrofitting field are presented.

Siddharth et al. [75] built an IT tool that uses GAs to create several combina-
tions of building variables correlated with energy consumption. For each of these
combinations, the energy consumption of the building is simulated and a nonlinear
regression model is fit between the system characteristics and the annual energy de-
mand of the building. In this way, di↵erent system configurations are determined,
allowing the evaluation of hypothetical energy e�ciency measures. The tool was
successfully tested in three di↵erent climate zones in India and the US. Genetic algo-
rithms and other optimization techniques, such as particle swarm optimization and
sequential search, were also applied by Bichiou and Krarti [76] to optimize the selec-
tion of building envelopes and HVAC systems for houses in five di↵erent US cities,
with the goal of minimizing their operating costs. The comparative analysis showed
that savings in computational e↵ort could be as high as 70% when using genetic
algorithms in place of particle swarm or sequential search.

Ascione et al. [77–79] also used GAs to analyse EnergyPlus simulation data
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in both multi-objective and multi-criteria analyses. The approach was successfully
used first to determine the optimal renewable energy mix in a building and then to
identify optimal energy retrofitting strategies in typical hospital and o�ce reference
buildings.

5.2.3. Multi objective optimization of BES data using NSGA-II
Chantrelle et al. [80] developed MultiOpt, a multi-criteria tool that uses NSGA-

II (a non-dominated sorting genetic algorithm) [81] coupled with environmental
databases and assessment software (TRNSYS), to optimize the retrofitting process of
buildings across a variety of di↵erent objectives. NSGA-II was also used by Delgarm
et al. [82], in combination with EnergyPlus, to analyse how di↵erent architectural
parameters a↵ect the energy consumption of a building in four di↵erent climate re-
gions of Iran. The analysis shows that the optimization process could decrease the
building’s energy consumption by up to 42.2 %.

5.2.4. Multi-objective optimization of BES data using Genetic Algorithms and Arti-
ficial Neural Networks

This optimization methodology, that combines di↵erent approaches introduced
in the previous paragraphs, was used by Magnier and Haghighat [83] to reduce the
energy usage while keeping the optimal thermal comfort in a residential building.
The approach features the use of NSGA-II to solve the optimization problem and
a multilayer feed-forward ANN to reduce the time of computation required by the
analysis.

More recently, Asadi et al. [84] used a similar technique to analyze TRNSYS
data and identify optimal building energy retrofitting strategies. The set of possible
retrofitting actions was summarized in five decision variables introduced as inputs for
the ANN: external wall insulation materials, roof insulation materials, window types,
solar collector types, HVAC system. The ANN, trained with building simulation re-
sults, had four di↵erent outputs: total percentage of discomfort hours, and energy
demands for space heating, space coolings and sanitary hot water. A multi-objective
GA was then applied to analyze the results of the ANN analysis and find the optimal
solutions in terms of energy usage, renovation cost, and thermal discomfort hours.

5.2.5. Mixed-Integer Linear Programming
Iturriaga et al. [85] used a Mixed-Integer Linear Programming model to de-

sign the energy renovation of an existing building, with the goal of achieving the
nearly Zero Energy Building standard. The proposed approach attempts to model
the energy demand of the building through a linear model, introducing the EEMs as

28



virtual energy sources that produce, at specific points in time, the energy that would
be saved. To calculate the exact demand reduction corresponding to each EEM,
dynamic TRNSYS simulations are run. The linear programming approach is then
used to optimize the obtained results for the optimal cost case and the Zero Energy
Building case. The method was successfully implemented to obtain the system con-
figuration that minimizes the annual net costs for a real building located in the city
of Bilbao (Spain).

5.3. Data-driven methods

The data-driven methods analysed in this section have the goal of providing
recommendations for building energy retrofit by drawing conclusions based on the
analysis of collected data from real use-cases.

5.3.1. User-facing Fallen Rule List using audit data
This method, presented by Marasco and Kotokosta [86], proposes the application

of a fallen rule list classifier to how di↵erent building would react to di↵erent groups
of EEMs. The classifier uses binary features obtained from energy audit data for
over 1000 buildings in the city of New York and has the goal of providing a tool
for decision-makers with the capability of either supporting, or potentially replacing,
a complete energy audit. The classifier analyzes the correlation between building
specific data and the EEM recommended by energy consultants after performing a
building audit. The model was trained on 764 buildings and then tested on 192 build-
ings, showing a good overall performance for predicting the EEMs of the following
categories: cooling system, distribution system, domestic hot water, fuel switching,
lighting and motors, representing collectively 62% of EEMs analysed in this study.

5.3.2. Artificial Neural Networks using audit data
Beccali et al. [87] implemented artificial neural networks to create a decision

aid tool able to evaluate energy performance and possible refurbishment strategies
for tertiary buildings in Southern Italy. The networks were trained using audit data
from 151 non-residential buildings, located in di↵erent regions of Southern Italy. The
audits collected information about the buildings’ geometric and equipment charac-
teristics, as well as data about ten di↵erent proposed retrofitting actions. This data
was employed to determine the ideal architecture configuration for two ANNs and
for their subsequent training. One of the networks estimates the e↵ective energy
performance of any building, while the other assesses key economic indicators, al-
lowing users to gain information about possible energy savings, payback time and
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investment costs per kWh saved.

5.3.3. Clustering techniques
This method is based on the assumption that clustering techniques can help in

the development of renovation plans for groups of buildings that respond similarly
to the application of EEMs. Geyer et al. [8] tested the application of clustering algo-
rithms using performance-based indicators of the impact of applied measures. The
impact of the measure on the considered building is described by a parameter equal
to the quotient of the emission reduction caused by the measure, and the invest-
ment costs. To assess the impact of an applied EEM, di↵erent calculation methods
are applied: simplified estimations, monthly sums, dynamic simulations or building
energy simulations. Two di↵erent clustering methodologies are tested: hierarchical
clustering and partitioning k-means clustering. A set of six di↵erent retrofit mea-
sures, as well as their combination, was simulated. To estimate their e↵ect, simplified
calculations using monitored energy consumption and geometric information about
the buildings were realized. This method allows the evaluation of how buildings with
di↵erent characteristics react to applied EEMs and to identify the clusters (groups
of buildings) with highest priority for action. Salvalai et al. [88] also investigated
the combination of clustering algorithms and building energy simulation, to evaluate
optimal renovation strategies for a sample of school buildings in Northern Italy.

5.3.4. Linear regression
Walter and Sohn [89] trained a multivariate linear regression model using data

contained in a large building energy database, to estimate energy savings due to the
implementation of particular retrofits. The model’s input parameters are both cate-
gorical and numerical variables, while the response variable is the annual source en-
ergy usage intensity (EUI). Through this method, it’s possible to analyse the impact
of specific building properties and installed systems on the EUI, predict for possible
combinations of explanatory variables not included in the database and yield pre-
dictions that have clear and well-known statistical properties. The predictors chosen
include the majority of the fields in the US Building Performance Database[90], in
case of highly correlated fields only one of them is chosen. This method proves to
be highly e↵ective, as the data required to perform this type of analysis is generally
a↵ordable and easy to obtain, making this approach cheaper and faster than other
methods that involve the creation of building energy simulation models.
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5.3.5. Genetic algorithm combined with A* graph search
This method was examined by Yi-Kai et al. [91], with the goal of analysing all

possible retrofitting actions, and their trade-o↵s, to identify optimal solutions. Six
experienced building renovation stakeholders were interviewed to determine the as-
sessment scores of di↵erent renovation actions, as well as the cost information for
each action. Based on this data, a two-stage hybrid GAA* algorithm (combination
of Genetic Algorithm and the best first (A*) algorithm) was used to test all the pos-
sible scenarios and identify the optimal solutions. This approach was compared to
two commonly adopted methods: zero-one goal programming (ZOPG) and Genetic
Algorithm (GA) proving be better than either of them alone.
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6. Discussion

In this article, two fundamental processes required for the improvement of build-
ing energy performance have been studied: the measurement and verification process,
and the prediction and recommendation process. After describing their goals and
main challenges, di↵erent methods found in literature were reviewed. The analy-
sis was focused mainly on data-driven approaches, although for the prediction and
recommendation process, deterministic methods were also considered, since their
combination with data-driven techniques is becoming of increasing interest.

In the first part of the article, di↵erent methods for energy baseline estimation
were reviewed. For every method, advantages and limitations were examined. The
reviewed articles show that more complex methods generally provide more accurate
estimations, although the bias-variance trade-o↵ should be always kept in mind: as
the models’ complexity increases, they can become more accurate, but also more
likely to overfit (fail to properly fit additional data, as new observations are added
to the dataset) [92]. This said, it was found that di↵erent models still have di↵erent
specific cases where they work best, regardless of their level of complexity. Another
interesting insight that emerged from the review is that, when comparing di↵erent
methods, being able to accurately determine the uncertainty of the results obtained
is a very valuable feature. If the main concern of the M&V practitioner is to ob-
tain the best possible estimation of model uncertainty, Bayesian methods seem to
be the most optimal choice, as they provide accurate uncertainty estimations with-
out assuming normally distributed errors. On the other hand, statistical learning
techniques seem to be favoured when the main concern is the interpretability of the
model, and machine learning techniques are most frequently employed when large
amounts of data are available and the practitioner is interested in optimizing the
model’s predictive accuracy.

In the second part of this review, several deterministic and data-driven methods
to predict the e↵ect of energy retrofitting actions on buildings were analysed and
presented. Although many of the methods reviewed use deterministic building energy
simulations for this task, the analysis of the simulations’ results is often performed
with data-driven techniques. These approaches, classified as “hybrid” models, appear
to be quite popular because of the possibility to combine the accuracy of deterministic
methods and the computational e�ciency of large scale optimization techniques.

In conclusion, it’s important to remark that the comparison of the presented
methods is no trivial work, as they were all applied in di↵erent use cases, with data
of di↵erent granularity, and not using the same explanatory variables. This issue is
a known problem in the building performance research community and was already
pointed out by Miller [93], who proposed and worked on the creation of a public
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dataset from electricity meters of non-residential buildings, to test and compare pre-
diction algorithms and feature extraction techniques [35][94].

7. Conclusions and future work

In order to improve the energy performance of the current building stock, it is
essential to implement energy renovation programs. One of the main barriers to the
widespread application of such programs is the lack of information regarding the
impact of retrofitting actions. It appears clear that quantifying energy savings from
implemented measures and determining the uncertainty of the obtained results, are
two key steps towards the achievement of a more e�cient built environment. The set
of calculations performed to collect this data, is often referred to as the measurement
and verification process. At the same time, another major task is to be able to find
tailored e↵ective renovation strategies for specific buildings or groups of buildings,
in the article this process was referred to as the prediction and recommendation
process.

In this review, the main methods currently utilized for these two processes were
studied, with a special focus on data-driven approaches, as they are innovative tech-
niques proving to be more e↵ective and scalable than other traditional methods
[16][20]. All of the reviewed techniques have di↵erent characteristics and have been
applied in some specific cases, their characteristics were discussed in detail and then
schematized in Tables 1 and 2. State-of-the-art methods to identify non-routine
events and estimate uncertainty in M&V were also reviewed. Thanks to the ad-
ditional analysis provided by these methods, it’s possible to obtain more accurate
estimates of the calculated savings and of their uncertainty.

From the review work, it was also seen that, while the M&V process seems to
have a well defined structure, with di↵erent established standardization protocols
and a range of published scientific articles addressing the topic . The prediction
and recommendation process seems to lack such a structure and a considerable stan-
dardization e↵ort would be needed in order to establish metrics of comparison and
standardized approaches for the di↵erent methods currently in use.

Finally, it appears clear that, with more and more data being collected by au-
tomated metering infrastructure, data-driven methods are becoming a fundamental
tool to plan e↵ective strategies for the energy demand reduction of the existing build-
ing stock. For this reason, it is essential that governments and institutions quickly
operate to develop policies that can facilitate the collection and analysis of building
energy data.
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