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Adaptive Monitoring for Autonomous Vehicles using the HAFLoop 

Architecture 

Current Self-Adaptive Systems (SASs) such as Autonomous Vehicles (AVs) are systems 

able to deal with highly complex contexts. However, due to the use of static feedback loops 

they are not able to respond to unanticipated situations such as sensor faults.  Previously, 

we have proposed HAFLoop (Highly Adaptive Feedback control Loop), an architecture for 

adaptive loops in SASs. In this paper, we incorporate HAFLoop into an AV solution which 

leverages machine learning techniques to determine the best monitoring strategy at 

runtime. We have evaluated our solution using real vehicles; results are promising and 

demonstrate the great potential of our proposal. 

Keywords: self-adaptive systems; self-improvement capabilities; adaptive monitoring; 

autonomous vehicles; smart vehicles; machine learning 

Introduction 

Over the last decades, self-adaptive systems (SASs) have been subject of great research efforts in 

both industry and academic communities given their applicability in modern domains such as 

smart cities, mobile apps and autonomous vehicles (AVs) (B. H. C. Cheng et al. 2009; De Lemos 

et al. 2013; Weyns 2017; Krupitzer et al. 2015). SAS’s adaptation is supported by the self-* 

capabilities: self-configuration, self-optimisation, self-healing and self-protection (IBM-

Corporation 2006). Feedback control loops like the IBM’s MAPE-K loop (see Fig. 1) (IBM-

Corporation 2006; Kephart and Chess 2003) are typically adopted for supporting SASs’ self-* 

capabilities. In MAPE-K, the self-* capabilities are managed by five elements: Monitor, Analyse, 

Plan, Execute and Knowledge base. The Monitor gathers runtime data from the managed 

software system and its environment by means of Sensors. The collected data is then analysed by 

the Analyse element and, if needed (e.g. analysis results show a violation of the requirements), a 

system adaptation scheduled by the Plan element. Finally, the adaptation is enacted by the 



 

Execute element using Effectors. In order to operate properly, a Knowledge base containing data 

such as measurements, logs, adaptation policies, etc. is shared. 

System models, static adaptation rules and objective functions are well-established 

concepts used by existing MAPE-K loops in order to manage the adaptation process of SASs 

(Lalanda, McCann, and Diaconescu 2013; Zavala, Franch, and Marco 2019). Adaption rules are 

typically of the form if…then. For instance, in the AV domain, examples of adaptation rules can 

be: if it is raining then reduce speed, if traffic is slow then adjust route to destination. In systems 

with highly dynamic environments such AVs, the traditional design of static feedback loops can 

lead to incompleteness or obsolescence of systems’ models and adaptation rules, as well as non-

optimal objective functions, particularly when runtime uncertainty is experienced (Krupitzer et 

al. 2017). Runtime uncertainty is one of the main factors challenging modern SASs (Zavala et al. 

2018; Knauss et al. 2016; Mallozzi et al. 2019). One of the approaches for addressing this issue 

is to enable the adaptation of SASs’ feedback loops. In this way, for instance, adaptation rules 

could be updated at runtime in order to better fit context, or system and user changing 

requirements. Krupitzer et al. (Krupitzer et al. 2016) have defined this process as self-

improvement . Concretely, as defined by Krupitzer et al. (Krupitzer et al. 2016): 

Self-improvement of the adaptation logic (the MAPE-K loop elements) is the adjustment of 

the adaptation logic to handle former unknown circumstances or changes in the environment 

or the managed resources (the managed element) 

 [Figure 1 near here] 

In a previous work, we have proposed a generic and reusable architecture, called 

HAFLoop (Highly Adaptive Feedback control Loop) (Zavala et al. 2020), for supporting the 

self-improvement capability of SASs. In this work, we instantiate such architecture for enabling 

adaptive monitoring in AVs, i.e., enabling the adaptation of the Monitor element of the MAPE-K 



 

loop.  The Monitor is a crucial element since the quality of the monitored data, i.e., accuracy, 

freshness, completeness, etc., affects directly the performance of the rest of the elements of the 

loop (i.e., Analyse, Plan, Execute and the Knowledge base). For instance, in the AV domain, a 

de-calibrated of faulty sensor may provoke an erroneous adaptation decision, affecting driver’s 

safety and/or comfortability. Runtime adaptation of the Monitor element can also be beneficial 

when resources are scarce. For instance, in hybrid or electric AVs, a runtime trade-off between 

the utility and the cost of sensors and monitoring services, may prolong the availability of the 

main AVs’ features, e.g. the self-driving functionality. For the purposes of this work, we use the 

following generic definition of adaptive monitoring (Zavala, Franch, and Marco 2019): 

Adaptive monitoring is the ability a monitoring system has to modify its structure and/or 

behaviour in order to respond to internal and external stimuli such as changes in their 

execution context, functional and non-functional requirements, systems under monitoring or 

the monitoring system itself 

In order to support adaptive monitoring in AVs, in this work we propose a solution that 

combines two HAFLoop feedback loops: (1) a level-1 loop, in charge of the AVs logic, (2) a 

level-2 loop, in charge of the self-improvement process. Machine learning techniques are 

integrated into the level-2 loop for adapting the Monitor element of the level-1 loop. The 

proposal is a step forward to address some of the most important challenges affecting current 

AVs such as sensor faults, energy-efficiency, vehicles’ communication and uncertainty (Gruyer 

et al. 2017; Schwarting, Alonso-Mora, and Rus 2018; Van Brummelen et al. 2018; Zhu et al. 

2017). The evaluation of our solution has been performed in the context of the Swedish research 

project SALI (SmArt seLf-driving vehIcle). A series of scenarios have been evaluated using real 

vehicles and the scaled city and rural road environments of the AstaZero test track 

(http://www.astazero.com/) in Sweden. 



 

The remainder of the paper is structured as follows. Section II presents the background of 

this work. Section III describes our generic architecture HAFLoop and its instantiation in the AV 

domain for supporting adaptive monitoring. Section IV provides the details of the evaluation of 

our HAFLoop AVs solution, and discusses the results. Finally, conclusions and future work are 

presented in Section V. 

Background 

This work focuses on the domain of AVs and adds self-improvement capabilities in the form of 

adaptive monitoring for improving AVs’ perception systems. Therefore, the background is 

divided into two parts: 1) perception systems for AVs, and 2) proposals to support self-

improvement capabilities. 

Autonomous Vehicles Perception 

Autonomous vehicles (a.k.a. intelligent vehicles, driverless vehicles, or self-driving vehicles; 

AVs for short) operate autonomously by perceiving the environment and exhibiting a responsive 

action such as navigating, vehicle following, overtaking, parking or lane keeping (H. Cheng 

2011). The process typically comprises four main stages, as shown in Fig. 2: (1) environment 

perception and modelling, (2) localization and map building, (3) path planning and decision-

making, and (4) motion control (H. Cheng 2011). These stages can be mapped to the 

functionalities of the MAPE-K loop elements: Monitor, Analyse, Plan and Execute, respectively. 

As mentioned before, in this work we focus on the Monitor element adaptation, i.e., the 

perception stage of AVs. In this stage, data are usually collected by multiple sensors, such as 

camera, radio detection and ranging (Radar), light detection and ranging (LiDAR), and infrared 

sensors (Van Brummelen et al. 2018). 



 

[Figure 2 near here] 

Since the perception stage is the link between the real world and the rest of the AVs 

stages, it plays a crucial role (Gruyer et al. 2017; Guanetti, Kim, and Borrelli 2018; Zhu et al. 

2017). Given its importance, over the last decade, a lot of research efforts have been dedicated to 

this stage, developing promising advances in AV technologies (Van Brummelen et al. 2018; 

Gruyer et al. 2017; Zhu et al. 2017). However, some perception challenges to attain the full 

potential of AVs remain open, either because they are relatively addressed or largely 

unaddressed by existing approaches (Van Brummelen et al. 2018). In an extensive overview, 

recently performed on the AVs’ perception topic (Van Brummelen et al. 2018), we have 

identified a set of challenges that affect the performance of AVs in poor environmental 

conditions and uncertain and complex settings, as well as challenges regarding the reliability and 

energy-consumption of sensors and the utilisation of connectivity with other road entities. Other 

reviews on the AV domain have also remarked the importance of addressing some of these 

challenges (Gruyer et al. 2017; Zhu et al. 2017; Schwarting, Alonso-Mora, and Rus 2018). From 

these reviews, we have identified current open perception challenges affecting AVs and 

classified them in three main categories:  

• Category 1. Technological perception challenges 

o ChlP1.1. Support AV perception in adverse weather conditions (Gruyer et al. 

2017; Schwarting, Alonso-Mora, and Rus 2018; Van Brummelen et al. 2018; Zhu 

et al. 2017). 

o ChlP1.2. Support AV perception in poor lighting conditions (Zhu et al. 2017; Van 

Brummelen et al. 2018; Gruyer et al. 2017). 

• Category 2. Modelling perception challenges 



 

o ChlP2.1. Support AV perception in complex urban environments (Van 

Brummelen et al. 2018; Schwarting, Alonso-Mora, and Rus 2018; Gruyer et al. 

2017). 

o ChlP2.2. Reduce reliance on a priori data such as maps (Van Brummelen et al. 

2018). 

• Category 3. Functional perception challenges 

o ChlP3.1. Incorporate Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure 

(V2I) communication in AVs perception systems (Gruyer et al. 2017; Van 

Brummelen et al. 2018). 

o ChlP3.2. React to faulty sensors and uncertain sensor data (Van Brummelen et al. 

2018; Gruyer et al. 2017; Schwarting, Alonso-Mora, and Rus 2018; Zhu et al. 

2017). 

o ChlP3.3. Support energy-efficient AV perception (Van Brummelen et al. 2018). 

The Technological challenges refer to the aspects constrained by the sensor technology 

available nowadays. For instance, current camera sensors generate poor-quality images that are 

difficult to exploit with rainy, foggy, sunny (dazzling or shining), or snow conditions (Gruyer et 

al. 2017). Similarly, some sensors are affected by the poor lighting conditions. One of the 

solutions to overcome this issue is the use of data fusion methods, i.e., combine information 

gathered through different sensors (Zhu et al. 2017; Van Brummelen et al. 2018; Gruyer et al. 

2017). Part of the perception stage is the pre-processing of raw sensor data to generate models of 

the environment. In this regard, there are some Modelling challenges that are still open. For 

example, in cluttered environments AVs may model several interactions among different road 

users, failing in this task may provoke an unsafe state (Schwarting, Alonso-Mora, and Rus 2018). 



 

Rule-based, probabilistic, learning-based, among other types of approaches have been proposed 

for modelling complex environments at runtime; however, there are aspects that still have to be 

addressed (Van Brummelen et al. 2018; Schwarting, Alonso-Mora, and Rus 2018; Gruyer et al. 

2017).  

The last category corresponds to the Functional challenges. These challenges refer to the 

aspects related to the (adequate) operation of the data gathering task of the perception stage, 

independently from the technology, i.e., sensor data completeness/redundancy, reliability and 

process optimisation.  For example, in high-density traffic conditions, radar systems may pick up 

other vehicles’ radar signals, causing false detections, interference and additional uncertainty 

(Hischke 2002; Schipper et al. 2015). Moreover, as more sensors are integrated into vehicles, 

e.g., for supporting data fusion algorithms, the risk of faults increases as well as the power 

consumption (Ren et al. 2018; Gawron et al. 2018). A popular approach to optimize AVs energy 

consumption is the adoption of V2V and V2I communications (Gawron et al. 2018; Guanetti, 

Kim, and Borrelli 2018); however, correctly supporting these capabilities in AVs remains still a 

challenge (Gruyer et al. 2017; Van Brummelen et al. 2018). In this work, we focus on the 

operational aspects of AVs’ monitoring systems. Therefore, our contribution regarding current 

AVs challenges will be on ways to address the open Functional perception challenges. 

Self-Adaptive Systems Self-Improvement 

For many years, software solutions for SASs have relied on static feedback loops that manage 

the whole adaptation process. This implies that changes on the structure and behaviour of the 

loops’ components are not possible at runtime. This vision has constrained SASs capabilities to 

respond to unpredictable events and in consequence limited their application. In extremely 

demanding domains such AVs, smart cities or mobile applications, this approach is not suitable; 



 

in these domains, feedback control systems must be able to adapt at runtime as well. Motivated 

by the increased need of adaptive feedback loops, many researchers have proposed self-

improvement solutions to address this issue. In a recent work, we have reviewed 26 approaches 

for supporting adaptive feedback loops (Zavala et al. 2020), and presented a new generic one, 

HAFLoop. We have found gaps and opportunities of contribution to the research field; for 

instance, the urgency of solutions that satisfy modern SASs’ requirements such as 

decentralisation. Based on our findings, we have identified a series of challenges related to the 

flexibility, generalisability and reusability of the solutions that still need more research efforts to 

be addressed. Below, we summarize such challenges and organize them into three main 

categories: 

• Category 1. Applicability of self-improvement challenges 

o ChlS1.1. Provide generic self-improvement solutions, so they can be reused in a 

variety of SASs. 

o ChlS1.2. Support software engineers in the whole software development 

lifecycle. 

• Category 2. Capabilities of self-improvement challenges 

o ChlS2.1. Support reactive (reaction after a change) as well as proactive (action 

before it) adaptation. 

o ChlS2.2. Support changes on both the structure and the parameters of SASs’ 

feedback loops. 

• Category 3. Engineering of self-improvement challenges 

o ChlS3.1. Support different software components’ settings, i.e., centralized, 

decentralized, hybrid. 



 

The Applicability of self-improvement challenges refer to the generalisability and 

completeness of the proposals. Generic and flexible enough software solutions would structure 

and accelerate the development process of adaptive loops as well as facilitate the evolution of 

SASs over time (Zavala et al. 2020). From the analysed approaches, there is a tree-layer based 

approach, proposed by Perrouin et al. (Perrouin et al. 2012)  that tries to address this issue by 

supporting a variety of adaptation types; however, the proposal provides only a vision while 

details for engineering such vision are missing. In general, most of the approaches studied do not 

provide guidelines for designing, implementing, maintaining and evolving their self-

improvement solutions in different SASs. On the other hand, the Capabilities of self-

improvement challenges refer to the functionality supported by the solutions. Concretely, there 

are two desirable behaviours: first, respond to context changes by adapting SASs feedback loops 

(reactive adaptation) and predict the need for adaptation before a context change (proactive 

adaptation); second, respond adequately to context changes either reorganizing feedback loops 

components (structure adaptation) and/or tuning loop parameters (parameter adaptation). 

Most of the current self-improvement approaches do not completely support both 

behaviours (Zavala et al. 2020). MORPH (Braberman et al. 2017; 2015) is one of the approaches 

that considers reactive and proactive adaptation as well as structure and parameter adaptation. 

The proposal consists of a reference architecture for goal-oriented SASs that modifies SASs 

configuration and loops behaviour in order to satisfy a series of goals, at runtime. The solution 

relies on a goal model described by the user and enriched by inferences from logs that describes 

the system state, goals and environment assumptions. The operation of many SASs can be 

modelled and driven by high-level goals; however, in modern and complex SASs the application 

of this proposal could not be feasible due to engineering challenges. The Engineering self-



 

improvement challenges affecting modern SASs are mainly provoked by its complexity. Modern 

SASs applications such as smart cities, mobile apps and smart vehicles require the 

interoperability of heterogeneous components as well as its decentralisation. 

Most of the approaches analysed in our previous work (Zavala et al. 2020) consider only 

the adaptation of centralized feedback loops and only 3 out of 26 support both centralized and 

decentralized loops. Unfortunately, the adoption or adaptation of centralized solutions for 

decentralized settings is not a straightforward task. Therefore, there is a need of flexible solutions 

that can be adopted in a variety of SASs settings. Motivated by these research gaps, we proposed 

HAFLoop, an architectural solution that aims at providing generic and reusable software 

structures for supporting engineers in the systematic development of adaptive feedback loops for 

modern SASs. In the next section, we summarize our proposal HAFLoop and exemplify how it 

can be adopted by demanding SASs such the AVs for improving the operation of their feedback 

loops through adaptation. 

Adaptive Monitoring for Autonomous Vehicles 

Current AVs’ perception systems are constantly affected by runtime uncertainty, e.g., they are 

exposed to unexpected faults, runtime limited resources such as energy, and the unpredictable 

behaviour of other vehicles. In order to overcome such situations, a first step will be to address 

the Functional perception challenges affecting AVs (see Section 2.1). The adoption of self-

improvement solutions, like HAFLoop, may help AVs to reach this goal. In this section, we 

focus on how HAFLoop could improve AVs operation. Firstly, we provide an overview of the 

HAFLoop generic architecture and describe the main characteristics that allow our approach to 

address current self-improvement challenges (see Section 2.2). Secondly, we propose an 

architectural solution for AVs using HAFLoop feedback loops and explain the mechanisms that 



 

address current Functional perception challenges. 

The HAFLoop Architecture 

HAFLoop (Zavala et al. 2020) is an architectural solution that extends the IBM’s MAPE-K loop 

reference model for enabling the adaptation of the elements of the loop (Monitor, Analyse, Plan, 

Execute, Knowledge base), at runtime. HAFLoop proposes generic components and 

subcomponent that are reused by the different elements, and the mechanisms that allow them to 

coordinate their normal operation (i.e., monitoring, analysing, planning, executing and managing 

knowledge) with their own adaptation process. Fig. 3 provides an overview of a HAFLoop 

MAPE-K element (henceforth, HAFLoopElement). A HAFLoopElement is organized in four 

layers: (1) Communication layer, (2) Message processing layer, (3) Logic layer and (4) 

Knowledge layer. 

The Communication layer, as its name indicates, is in charge of the HAFLoopElement 

communication with external entities; it consists of a Sender and a Receiver components. The 

Message processing layer is in charge of preparing input and output messages; it is composed of 

a Logic selector and a Message processor components. The Logic layer corresponds to the actual 

HAFLoopElement-specific logic, i.e., the logic for monitoring, analysing, planning, executing or 

managing knowledge, as well as the logic for being adapted. This layer is composed of the 

Functional logic and the Adaptation logic components. The Functional logic is the main part of 

the element and it has to be developed for each SAS while the rest of the components can be 

reused and/or extended (addressing ChlS1.1). Finally, the Knowledge layer is in charge of 

managing the HAFLoopElement’s knowledge and it is composed of a Knowledge manager 

component. 



 

[Figure 3 near here] 

HAFLoop utilizes policies for decoupling HAFLoopElement´s components operation 

through separation of concerns, i.e., each component has all the information it requires to operate 

correctly. Therefore, they can be deployed in a variety of SASs settings, from centralized to 

fully-decentralized (addressing ChlS3.1). Policies are utilized at runtime for driving the 

HAFLoopElement’s adaptation process, e.g., in case of an Analyse HAFLoopElement, a change 

on the algorithm used to analyse sensor data is indicated in its policies. Policies can also be used 

by system owners to configure their adaptive feedback loops, in terms of both behaviour and 

structure. The adaptation of policies can be triggered proactively and/or reactively that will 

depend on each SAS implementation, i.e., the architectural solution is decoupled from the 

specific approaches allowing SASs owners to test, implement and combine different proposals 

for addressing ChlS2.1.  

Internally, each HAFLoopElement component operates with three generic 

subcomponents: (1) a Message manager, (2) a Component policy manager, and (3) a Component 

policy (see Fig. 4). While the first subcomponent is in charge of receiving, processing and 

sending component’s operation-related messages, the last two are in charge of managing the 

adaptation process of the component’s policy, at runtime. Policy adaptation consists of three 

main steps: (1) variables adjustment, (2) change notification, (3) component structural and/or 

parameter adaptation enactment (as response to the policy variables adjustment). Some structural 

adaptations such as HAFLoopElements and HAFLoopElement components reorganisation 



1. https://github.com/edithzavala/loopa 

2. https://github.com/edithzavala/opendlv/tree/feature.smartcar 

(addition, removal, substitution, etc.) are already considered in the proposal (for addressing 

ChlS2.2).  

[Figure 4 near here] 

In order to address ChlS1.2, in the proposal of HAFLoop (Zavala et al. 2020), the 

engineering process was supported with the development of a framework and a series of 

guidelines for adopting HAFLoop1. The framework for Java-based applications implements the 

generic functionalities of HAFLoop and it can be reused in any type of SAS. Although the 

framework only covers Java-based applications, it also serves as an example for implementing 

HAFLoop in other languages. In this work, we use the Java-based HAFLoop framework for 

implementing a self-improvement loop and develop an ad-hoc instance of HAFLoop in C++ for 

supporting AVs smart behaviour.  

HAFLoop for Autonomous Vehicles 

In order to support adaptive monitoring in AVs, we have adopted a 2-feedback loop-based 

approach. A level-1 loop is in charge of managing the AV adaptation process (i.e., the smart 

behaviour) while a level-2 loop is in charge of level-1 loop’s Monitor element adaptation. The 

adaptation of level-1 loop Monitor is enabled as a step forward to address the open Functional 

perception challenges affecting current AVs. For demonstrating the feasibility of our vision, we 

have extended the vehicle software environment OpenDLV2 with the principles of HAFLoop, 

i.e., we have enable adaptation capabilities to the main AV’s feedback control system. 

Henceforth we call this extended version HAFLoop-OpenDLV.  



3. https://github.com/chalmers-revere/opendlv-device-gps-pos 

4. https://github.com/chalmers-revere/opendlv-device-LiDAR-hdl32e 

5. https://github.com/chalmers-revere/opendlv-device-camera-opencv 

Concretely, OpenDLV is an open source software stack of microservices for distributed 

robotic and automotive systems, written in C++, that supports the development of AVs, in real 

and simulation environments. It supports the whole AVs cycle (see Fig. 2) allowing engineers to 

test different logics in each phase. It also provides a series of baseline self-driving algorithms. 

For real vehicles, OpenDLV implements a series of low-level hardware-software interfaces that 

allow the interaction with vehicles’ sensors and actuators. In this work, we will test our solution 

in a real vehicle with the following sensors: an Applanix POS GPS/INSS, a Velodyne LiDAR 

HDL32e and an Axis camera. In order to enrich contextual data, apart from these sensors, we 

will include data gathered through V2V communications (complying with ChlP3.1) and weather 

and traffic monitoring cloud services. HAFLoop-OpenDLV software module becomes the AV 

level-1 loop mentioned before. The architecture of this loop is shown in Fig. 5. Below, we 

describe each of its components: 

[Figure 5 near here] 

• Level-1 Monitor (HAFLoopMonitor) 

o GPS3 is the interface of an Applanix POS GPS/INSS, this component provides 

vehicle’s position data (i.e., latitude and longitude, see Fig. 6a). 

o LiDAR4 is the component that interacts with a VelodyneLiDAR HDL32e, it 

provides 360º 3D point cloud data (see Fig. 6b). The LiDAR input is used to 

determine frontal, gear and lateral distances. 

o Camera5 interfaces with an Axis camera in order to provide image data (see Fig. 

6c). After receiving the image data, a post-processing that simulates frontal 

distance calculation is performed. 



6. https://github.com/edithzavala/OpenDaVINCI/tree/feature.smartvehicle/automotive/miniature/ 

lanefollower 

o V2V component provides simulated V2V communication data, two types of 

messages are considered: CAM (ETSI 2011) and DENM (ETSI 2010). 

o City reporter component consumes the service offered by HERE 

(https://developer.here.com/) through API. This service provides real-time traffic 

data. The City reporter also consumes data from the OpenWeatherMap service 

(https://openweathermap.org/) in order to gather weather data.  

The different subcomponents of the HAFLoopMonitor, referred as Monitors in Fig. 5, are 

independent one from each other. Therefore, a Monitor can be removed, enabled or disabled 

without interfering in the operation of the rest of subcomponents. In this instance of HAFLoop-

OpenDLV, the HAFLoopMonitor supports both structural and parameter adaptations (addressing 

ChlS2.2). Regarding the AVs main stages illustrated in Fig. 2, the HAFLoopMonitor performs 

the Environment perception and modelling stage which is the most relevant to this work. 

[Figure 6 near here] 

• Level-1 Analyse, Plan and Execute (HAFLoopAnalyse, HAFLoopPlan and 

HAFLoopExecute) 

o Lane follower is a complex component that appears in three of the loop elements. 

This component is included for simulation purposes and has been extended from 

an existing one available at the OpenDaVINCI software vehicles’ environment 

(https://opendavinci.readthedocs.io). The extended version of the lane follower6 

supports a context-aware AV. This component has three main functionalities: 1) 

follow a lane, 2) overtake objects moving slow or static, 3) re-evaluate route to 

destination based on traffic and runtime events (e.g., a crash). The 



7. https://github.com/edithzavala/ksam-loopa 

logic of this component encompasses the 3 last stages of an AV process (see Fig. 

2). 

• Level-1 Knowledge base (HAFLoopKnowledge) 

o Odsupercomponent creates an UDP multicast session in order to allow the 

communication of all the rest of components. Apart from that, it distributes to the 

other components their initial policies. 

o Adaptation data manager forwards to the level-2 loop the monitoring data 

gathered through sensors and services.   

o Adaptation enactor manager receives requests for adaptation from the level-2 

loop and sends requests for change to the Monitor. Then, policy variables are 

adjusted and the Monitor structure and/or parameters adapted. 

The level-2 feedback loop, in charge of self-improvement, i.e., adapting the level-1 

loop’s Monitor, has been developed using the Java-based HAFLoop framework. The architecture 

of the level-2 loop7 is shown in Fig. 7. Below, we describe each of its components: 

[Figure 7 near here] 

• Level-2 Monitor (HAFLoopMonitor) 

o Monitoring data thresholds’ checker revises the correctness of the morning 

data, based on policies. Data out of thresholds could indicate, for example, a 

sensor fault (enabling the AV to address ChlP3.2, ChlS2.1); if that is the case, an 

alert is triggered. All the data gathered is persisted by the Knowledge base. 



 

o Battery inspector continuously checks the vehicle’s battery level (consider a 

hybrid AV). If the vehicle starts to run out of battery, an alert is sent to the 

Analyse element before it gets totally depleted (enabling the AV to proactively 

address ChlP3.3, ChlS2.1). The battery level data can be visualized at runtime 

thanks to the Knowledge base element. 

• Level-2 Analyse (HAFLoopAnalyse) 

o Analysis alerts manager this component receives alerts from the Monitor 

element. According the alert type, e.g., a fault or a battery issue, it analyses time 

series data (stored by the Knowledge base) in order to determines the sensors and 

monitoring services (from AV’s level-1 loop) that will be used in the near future. 

In order to accomplish this task, it relies on a Data miner component. In case an 

adaptation is required, it sends an alert to the Plan element.  

o Data miner this component uses the data mining Weka tool (Machine Learning 

Group at the University of Waikato 2016) and existing models (created during a 

training phase), in order to forecast: (1) the position of vehicles in the near future, 

(2) the usage of the self-driving functionality such future position(s). Weka offers 

a variety of classification and clustering algorithms. In this work, we have 

selected a couple of these algorithms based on previous experiences (Zavala et al. 

2015; 2018; Zavala, Franch, and Marco 2019; Zavala et al. 2020), particularly 

based on the promising results obtained in a series of experiments performed in 

the smart vehicles domain, in simulation environments. 

• Level-2 Plan (HAFLoopPlan) 



 

o Planner alerts manager performs a trade-off between the cost of keeping a 

monitor (monetary and power), the data it provides, and its relevance regarding 

the self-driving functionality usage, every time it receives an alert from the 

Analyse element. Cheaper monitors are preferred if they (or a combination of 

them) are able to gather the data required. In the case of a battery critical 

situation, the Planner sacrifices coverage is and a restricted self-driving 

functionality is supported. When coverage is not sufficient and the risk is high, a 

request for take-over is sent to the user (disabling the self-driving functionality). 

The resulting list of monitors to adapt, and their configuration, is sent to the 

Execute element. 

• Level-2 Execute (HAFLoopExecute) 

o Adaptation request sender receives the requests for adaptation triggered by the 

Plan element, transforms them into actionable tasks that can be understood by the 

Managed Element ME (i.e., in this case, using the communication protocols and 

format required by the level-1 loop) and sends them. 

• Level-2 Knowledge base (HAFLoopKnowledge) 

o Data store persist runtime data produced by the MAPE elements. In this 

implementation, the data gathered by the Monitor element is in .arff files, the 

format used by Weka. The rest of data, e.g., list of active monitors, active 

functionalities, data mining prediction, etc., are stored in different runtime 

variables. This component is also connected to the Runtime data dashboard 

component for data visualization. 



 

o Runtime data dashboard uses the monitoring tool Graphite 

(http://graphite.readthedocs.io) the Grafana platform (https://grafana.com/) (see 

Fig. 8) in order to provide a real-time visualization of the monitoring data. Fig. 8 

shows the different variables we have visualized, these includes: the calls 

performed to the different level-2 loop elements, the data mining self-driving 

functionality usage prediction, the measurements of the monitoring sensors and 

services as well as their health (i.e., whether they are working properly or not). 

[Figure 8 near here] 

Evaluation 

Motivated by the current challenges affecting AVs perception (see Section 2.1), we have 

developed a research project called SALI (https://azopenresearch.fluidreview.com/res/p/A0034/). 

In the context of the SALI project, we have evaluated our solution through a series of 

experiments conducted in (controlled) real traffic environments, at the facilities of the test 

ground AstaZero in Sweden. Concretely, experiments have been executed in two test areas: a 

scaled city (see Fig. 9a) and a rural road (see Fig. 9b).  

The components of the AVs level-1 and level-2 loops (see Fig. 5 and Fig. 7) have been 

implemented as a series of microservices which have been containerized using Docker 

(https://www.docker.com/) for facilitating, among other tasks, the deployment process. While the 

level-1 loop was deployed and run on the vehicle’s machine during the experiments, the level-2 

loop was deployed on an external machine. Concretely, a computer with an IntelR CoreTM i7-

7700HQ CPU @ 2.80GHz and 16,0GB of RAM. During the evaluation, both machines were 

connected through a local area network using an Ethernet connection. 



 

The evaluation aimed at assessing the correctness and timeliness of our solution for 

supporting adaptive monitoring in modern SASs such the AVs, in realistic environments. In 

order to do so, a series of use cases have been executed using three real cars: two Volvo XC90s 

(henceforth Snowfox and Greyfox) and one Volvo V40. Specifically, we have run three use 

cases: a sensor fault, battery issues and a road accident with uncertain sensor data. Apart from 

the vehicles mentioned before, a soft vehicle (see left-hand yellow half-vehicle in Fig. 10) has 

been utilized for the road accident use case at the AstaZero city area. Our solution has been 

deployed on the Snowfox car, while, the other vehicles have been used for setting up the 

scenarios.  

[Figure 9 near here] 

[Figure 10 near here] 

Preparation Activities 

The evaluation of our solution has consisted of testing our implementation in eight scenarios of 

our three use cases (two scenarios per use case). Table 1 provides the description of the scenarios 

while Fig. 11-13 illustrate them. For the sensor fault and battery issues use cases, the AV has to 

determine whether the self-driving functionality is going to be used or not. In order to enable this 

feature, a training phase has been conducted for modelling user’s preferred route and self-driving 

functionality usage (see initial set-up vignette in Fig. 12 and Fig. 13). These two use cases have 

been executed on the rural road while the road accident use case in the city area. The IBk (Aha, 

Kibler, and Albert 1991) and JRip (Kotsiantis 2007; Tan, Steinbach, and Kumar 2005) 

algorithms from the Weka tool (Machine Learning Group at the University of Waikato 2016) 

have been used for training the AV; the first one for position data and the second one for 



 

modelling the self-driving functionality usage. The patterns generated by this training phase are 

illustrated in Fig. 14. 

[Figure 11 near here] 

 [Table 1 near here]

 [Figure 12 near here]

 [Figure 13 near here]

 [Figure 14 near here]

In order to configure the AVs HAFLoop feedback loops, we have set an initial set of 

policies. Table 2 and Table 3 show a simplified version of the level-1 and level-2 loop policies, 

respectively. For the sake of simplicity, some policy variables related to elements’ internal 

structure such as the list of components’ recipients, are not shown. 

[Table 2 near here]

 [Table 3 near here]

Scenarios Execution and Results 

The experiments have consisted on the repetitive execution of different scenarios. A total of 30 

executions have been done. For analysing the evaluation results, we have explored two aspects of 

the self-improvement process: the response time and the adequacy of the adaptations. The 

response time has been divided into:  

• Level-2 loop response time. This is the time elapsed since a challenging factor (from 

Table 1) is detected by the Monitor element, until a decision of no adaptation required or 

an adaptation request is sent. 



 

• Level-1 loop response time. This is the time required by the level-1loop for enacting an 

adaptation since a request is received. 

• Data mining response time. This refers to the prediction process time, i.e. the time 

required for predicting next vehicle’s positions and the usage of the self-driving 

functionality in such positions. This time is part of the Level-2 loop response time; 

however, we consider that is interesting to report it separately in our benchmarking.  

Regarding the self-improvement adequacy; first, we have evaluated the correctness of the 

enactment process, i.e., ensure that the expected adaptations, described in Table 1, are the ones 

enacted; second, if enacted, we check whether it has been enacted timely (from a human-

perspective). As a conclusion of the execution of all the scenarios, it can be confirmed that the 

enactment of all the adaptation decisions have been done correctly and as expected. From a 

human-perspective, it has also been concluded that the adaptations have been timely enacted. 

Timelines has been evaluated as follows: for the road accident, the adaptation should have been 

executed before the intersection is reached (see Fig. 11); for the sensor fault and battery issues 

use cases, the adaptation is enacted within the segment of the route where the self-driving 

functionality is required (according to the patterns shown by Fig. 14).  

The adequacy of the self-improvement functionality has also been evaluated in terms of 

prediction correctness. From the results, we have concluded that the prediction of the vehicle’s 

position and the self-driving usage has also been accurate and timely. For instance, when the 

vehicle was starting the journey our solution predicted that the functionality would be used while 

when the vehicle was almost at the end of the segment where self-driving is typically used (see 

Fig. 14), the prediction indicates the functionality would not be required in the near future. 

Thanks to the correctness of the predictions, the vehicle has made the correct adaptation 



 

decisions. Table 4 shows the resulting average response time (in milliseconds) for the data 

mining module and the level-2 loop. The response time of cases where data mining has been 

required is reported separately as well as of the scenarios that have configured a minimum 

number of alert iterations for the Monitor and Analyse elements. The standard deviation of the 

response times is provided as well. In Fig. 15, we have plotted a detailed response time per 

scenario execution. The x-axis indicated the number of the execution, while the y-axis the 

response times.  

The average level-2 loop response times go from 249,83 ms to 781,5 ms, for the cases 

that have not required data mining. For the rest of the cases, the time goes from 3971,75 ms to 

4421,5 ms. Particularly, in the second use case, the data mining module spent in average 3624 

ms. On the other hand, the use cases considering waiting iterations have experienced an 

increment of around 500 ms in their response time; this variable should be further investigated as 

it may affect the performance of the whole solution. However, we consider that its usage may 

depend on each application. The benefit of using an architectural solution as HAFLoop is that 

SASs’ owners can put their efforts on investigating domain-specific variables like this one, 

instead of wasting time building the generic functionalities of an adaptive loop.  

Regarding the adaptations’ enactment, in us2 and us6 the process has implied the 

adaptation of OpenDLV components (Camera and V2V) and the City reporter (Traffic service). 

The adaptation in these use case have managed sequentially, i.e., first the City reporter and then 

the OpenDLV components, resulting in a smaller level-2 loop response time for the City reporter 

than for OpenDLV components (see Fig, 15). This is an implementation issue that can easily be 

fixed with parallelism. In this work, we have considered the average of both response times.  



 

Table 5 shows the level-1 loop’s average response time (in milliseconds). Response times 

are shown by component adapted: Camera, V2V or City reporter service. The de/activation  of 

the V2V and the Camera has been simulated by software components; therefore, the response 

time for the adaptation enactment may be different in real cases. That is not the case of the City 

reporter which connects to a real service and enacts the adaptation changing its configuration. As 

in previous table, the standard deviation of the response times has been included. The response 

time per scenario execution is detailed in Fig. 16. A different graph is provided per monitoring 

component adapted. The x-axis show the number of execution, while response time is indicated 

by the y-axis.  

[Table 4 near here] 

[Table 5 near here]

[Figure 15 near here]

In the case of the City reporter, one can notice that the response time of the second 

adaptation, in us2, is much smaller than the response time of the first adaptation (almost 20 

times). This systematic difference could be attributed to the service communication protocol 

which might take more time when the service and the client are connected for the first time; 

however, we cannot make any conclusions since the low-level details of the framework used for 

this purpose (i.e., Spring boot - https://spring.io/projects/spring-boot) are hidden from our 

perspective and out of the scope of this work. The execution of more experiments could improve 

our understanding of this phenomenon, for example adding a 3rd (or more) adaptation(s). 

The results of this evaluation are promising. The execution of the scenarios in a realistic 

environment not only shows the feasibility but also the benefits of supporting adaptive loops in 

modern SASs such the AVs. The adoption of HAFLoop has allowed our AV to accurately and 



 

timely adapt at runtime and deal with unexpected situations such as faults and limited resources. 

Among the most important benefits of using HAFLoop in AVs, there is the possibility of 

supporting self-improvement capabilities and adapt their perception system at runtime. That is, 

address current Functional perception challenges affecting the AV domain. Moreover, since 

HAFLoop decouples AVs’ normal operation (Level-1 loop) from the self-improvement process 

(Level-2 loop); the adoption of our solution does not affect AVs’ self-driving functionality 

response time. 

[Figure 16 near here]

Threats to Validity 

• Internal validity. In order to reduce this threat, we have interpreted our response time 

and adaptation adequacy results quantitatively using descriptive statistics in order to 

determine tendencies and dispersion. An accidental bug in our code can also be 

considered a threat to internal validity. In order to reduce this unavoidable threat, we have 

tried to use well-established frameworks and tool such as the previous mentioned Spring 

boot or Gradle (https://gradle.org/) and Docker, etc. 

• Construct validity. A threat to construct validity in our evaluation could be that some of 

the vehicle’s dynamics and adaptation enactment processes have been simulated. Due to 

this decision, some aspects could have not been measured, e.g., the time required by the 

Camera to physically de/activated. For reducing this threat, we have included in this 

evaluation a real service (i.e., City reporter) that has been adapted both structurally and 

parametrically. This adaptation case demonstrates a more realistic runtime adaptation 

process. 



 

• External validity. The external validity threat is about how generalizable are our 

conclusions. The evaluation presented in this this work has been conducted in the domain 

of AVs and the results show the feasibility and benefits of adopting HAFLoop in this 

extremely demanding domain. However, the scenarios for running this evaluation are 

simple compared to the highly complex situations a real AV has to face in real life. Given 

such evaluation characteristic, the generalisation of our results ignoring other factors is 

limited, not only to the domain, but also to the application of our solution in this specific 

domain. More experimentation could reduce this threat; however, due the great diversity 

of execution contexts, in the SASs’ field it will always exist. 

Conclusion and Future Work 

This work has addressed the runtime adaptation of SASs’ feedback control loops, particularly the 

adaptation of the Monitor element for responding to changes in the environment and the system 

itself. In order to support the adaptation process, we have adopted HAFLoop, a generic 

architectural solution for supporting SASs’ self-improvement. We have identified open research 

challenges affecting AVs perception systems as well as challenges affecting the research field of 

SASs’ self-improvement. Although great efforts have been done in both fields, there are not 

state-of-the-art solutions that address all the functional challenges affecting them. Motivated by 

this fact, we have implemented a solution for a real vehicle. The solution leverages machine 

learning techniques to determine the best adaptation decision based on user’s behaviour and 

context data. We have validated our proposal in a series of use cases scenarios and in real 

(controlled) environments at the AstaZero test track.  

The evaluation results are promising and demonstrate not only the feasibility but the 

benefits of adopting our proposal, in the domain of AVs. A next step for this work would be the 



 

development of solutions for adapting the rest of the MAPE-K elements. Each element operates 

in a different way and has a different objective; therefore, we consider that element-specific 

approaches should be developed. For instance, the frequency parameter that has been adapted in 

this work in the Monitor element may not be relevant for the Plan element. Finally, regarding the 

evaluation of our generic proposal HAFLoop, we consider that experiments with different 

settings should still be investigated. For instance, in other domains or using other techniques in 

the domain of AVs, e.g., other data mining algorithms.  
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