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Abstract. We present a functionally graded material design (FGMD) approach relying on a
topology optimization procedure based on asymptotic homogenization and phase-field method.
We also introduce a complete framework from which numerical results lead to 3D printed struc-
tures. We firstly present numerical experiments to verify the proposed methodology and, subse-
quently, we discuss experimental measurements comparing optimized FGMD with a constant
density structure having the same weight. Experimental evidence shows the effectiveness of the
proposed methodology in improving the overall stiffness of optimized structures.

1 INTRODUCTION

Additive Manufacturing (AM) technologies introduce a change in design and manufacturing
paradigms, shifting the focus from a manufacturing oriented design, also known as design for
manufacturing, to the so called functional design, that mainly focuses on the functionality of
the product almost without manufacturability limitations. In this work, we focus on a special
type of functional design, the so called functionally graded material design (FGMD).

FGMD aims at obtaining structures with mechanical properties similar to fully dense ma-
terial structures but employing less material, exploiting the possibility to produce local voids
and/or lattice microstructures by means of AM processes. Such a result can be achieved by
means of a topology optimization [1, 2] which is able to optimally distribute the material within
the structure (see, e.g, [4]).

Starting from the seminal work of Bourdin and Chambolle [5], phase-field methods are
nowadays well established in the topology optimization field [11, 10, 3]. In [6] it has been
developed a phase-field topology optimization procedure suitable for FGMD. There are other
methods in the literature which allow to obtain similar structures, for example, we mention the
landmark contribution of Cheng et al. [7], where the method of moving asymptotes (MMA)
is used to minimize the mass of the structure under stress constraints using an homogenized
material definition. Contrary to the method proposed in [7], which can only distribute the mate-
rial within a given domain, the phase-field approach proposed in [6] allows to obtain structures
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where also regions of voids can be accounted for, substantially introducing an additional degree
of freedom within the design process.

Accordingly, the present work, we introduce a complete pipeline from numerical results to
3D printed component. Employing an in-house developed Mathematica® code we are able to
convert a continuous density map obtained from the phase-field based topology optimization
into a 3D virtual model suitable for AM technologies.

The paper is organized as follows: in section 2 an asymptotic homogenization suitable for
FGMD is presented, in section 3 we recall the phase-field topology optimization for graded
materials first introduced in [6]. In section 4 we verify the implementation of the asymptotic
homogenized material tensor by means of a numerical example and subsequently we show the
results of a graded material phase-field topology optimization for the classical, well established
MBB-beam benchmark problem; moreover we introduce a complete pipeline to convert numer-
ical results into 3D printed structures, and finally we discuss experimental measurements show-
ing the effectiveness of topology optimization in improving stiffness of FGMD. In section 5 we
draw our main conclusions and discuss some possible further outlook for this research.

2 ASYMPTOTIC HOMOGENIZATION

FGM may be obtained creating a microstructure into the solid part of the component to form
a cellular medium. One way of creating such microstructures is the introduction of regularly
spaced holes. More in details, square cells with centrally-placed squared holes are considered
in this work (see Figure 1).

We assume that the solid part of the microstructure is an isotropic material of elastic modulus
E and Poisson ratio ν. We also introduce a field variable χ ∈ [0,1] that is a measure of the
dimension of the squared hole a with respect to the dimension of the side l of the cell, as shown
in Figure 1:

χ = 1− a
l
. (1)

Because of the squared holes, the cellular medium can be considered an orthotropic material,
for which the (homogenized) elastic tensor CH(χ) at the macroscale is expressed, under the
hypothesis of plane stress state, as follows:

CH(χ) =




CH
11(χ) CH

12(χ) 0

CH
12(χ) CH

22(χ) 0

0 0 CH
66(χ)


 . (2)

Given a value of χ, we evaluate the components of CH (χ) considering an asymptotic ho-
mogenization procedure for which the Representative Volume Element (RVE) is the square cell
with the squared hole. The RVE is denoted in the following by Πχ and its area by Yχ. A Carte-
sian coordinate coordinate system {y1,y2,y3} is introduced in Πχ, with the origin in the center
of the RVE.

According to relation (2), only three components of CH(χ) have to be evaluated, namely
CH

11(χ), CH
12(χ) and CH

66(χ), since from symmetry considerations it results that CH
11(χ) =CH

22(χ).
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Figure 1: a) Schematic representation of the FGM; b) microstructure consisting of square cells
with centrally-placed squared holes (RVE).

The equations that allow to obtain the homogenized material tensor components, under the
hypotheses of linear elastic behavior and small strain approximation used for the RVE are:

CH
11 =CH

22 =
1

Yχ

E
1−ν2

∫

Πχ
[1− ε̃11(y)−νε̃22(y)]dy (3a)

CH
12 =

1
Yχ

E
1−ν2

∫

Πχ
[ν− ε̃11(y)−νε̃22(y)]dy (3b)

CH
66 =

1
Yχ

E
2(1+ν)

∫

Πχ
[1− γ̃12 (y)]dy (3c)

In equations (3) ε̃11(y), ε̃22(y) and γ̃12, are the microscopic strain fields occurring in the RVE,
with applied periodicity boundary conditions, and resulting from the application of specific
macroscopic strain histories ε̄i j. More in detail, the strain histories ε̄11, ε̄22 and γ̄12 applied
for equations (3a), (3b) and (3c) respectively, are shown in figure 2. Equations (3) have been
numerically solved by Finite Element Analises (FEA) in [8].

In FGM the value of the density field variable χ is allowed to continuously vary on the whole
structure. In order to perform topology optimization using the model involving a material with
square micro cells, we need to determine the functional relationship between the constitutive
matrix CH components and the field variable χ, i.e. to construct CH(χ). To this aim, a table of 11
equally spaced sampling points representing 11 values of χ was extracted from [8]. Finally, we
use a least squares approximation polynomial fitting to find the elements of the homogenized
elasticity matrix CH(χ) in a continuous form, relying on the discrete values obtained at the
sampling points.
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Figure 2: Macroscopic strain histories applied to the RVE for the evaluation of the components
of the homogenized material tensor CH(χ). a) ε̄11, b) ε̄22, c) γ̄12

3 PHASE-FIELD TOPOLOGY OPTIMIZATION FOR FUNCTIONALLY GRADED
MATERIALS

We now consider a domain Ω ⊂ Rd , where a material is distributed by means of two phase
field variables: ϕ ∈ [0,1] and χ ∈ [0,ϕ], where ϕ ≡ 0 corresponds to voids and ϕ ≡ 1 indicates
bulk material, while χ varies continuously, such that it can be considered as a measure of the
material density in the domain regions (ϕ �= 0).

We aim at solving a linear elastic problem formulated as follows:

div(σ(ϕ,χ)) = 0 in Ω (4a)
u = 0 on ΓD (4b)
σ(ϕ,χ) ·n = g on ΓN (4c)
ε(u) = sym(∇u) in Ω (4d)
σ(ϕ,χ) = C(ϕ,χ) : ε(u) in Ω (4e)

with g external load vector, n the unit normal vector, and with the material tensor C(ϕ,χ)
defined as follows:

C(ϕ,χ) = CH(χ)ϕ3 + γ2
ϕCH(χ)(1−ϕ)3 (5)

with γϕ > 0.
In this work we aim at minimizing the compliance of the structure defined as the inverse of

the stiffness:
C (u) =

∫

ΓN

g ·udx

under a volume constraint and such that the linear elastic problem (4) is satisfied.
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To this end, following [6], we introduce the Ginzburg-Landau functional, which defines the
free energy of the system as follows:

E(ϕ,χ) =
∫

Ω

γϕ

2
| ∇ϕ |2 + 1

γϕ
ψ0(ϕ)dx+

∫

Ω

γχ

2
| ∇χ |2 dx (6)

where γχ > 0 and ψ0(ϕ) = (ϕ−ϕ2)2 is the double-well potential.
In order to minimize the compliance together with the free-energy functional, we construct

a cost functional of the form:

J (ϕ,χ,u) = C (u)+κE(ϕ,χ) (7)

with κ > 0.
We now define the set of admissible phase-field variable ϕ and χ, Φad and Ξad respectively:

Φad := {φ ∈ H1(Ω) : 0 ≤ φ ≤ 1 a.e. in Ω} (8)

and
Ξad := {χ ∈ H1(Ω) : 0 ≤ χ ≤ χ a.e. in Ω}, (9)

where H1(Ω) indicates the first order Sobolev space on Ω.
The optimization problem can be then formulated as follows:

min
ϕ∈Φad ,χ∈Ξad

J (ϕ,χ,u), (10)

verifying the conditions:
∫

Ω
ϕdx = mϕ | Ω |, (11)

∫

Ω
χdx = mχ | Ω |, (12)

and such that the linear elastic problem (4) is satisfied.
The volume constraints of equations (11) and (12) are imposed introducing the Lagrange

multipliers λ and µ for the functional M ϕ =
∫

Ω(ϕ−mϕ)dx and M χ =
∫

Ω(χ−mχ)dx, whereas
the state equation is inserted into the problem by means of the adjoint operator S :

S =−
∫

Ω
σ : ε(p)dx+

∫

ΓN

g ·pdx, (13)

where p is the so-called adjoint variable.
A Lagrangian functional L can now be defined as follows:

L = J +λM ϕ +µM χ +S . (14)

Since the compliance minimization problem in equation (10) is self-adjoint we have p = u. We
want that our optimal control solutions satisfy the first order optimality conditions defined as

DϕLvϕ ≥ 0 ∀ϕ ∈ Φad, (15)
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and
DχLvχ ≥ 0 ∀χ ∈ Ξad. (16)

To solve the optimality inequalities of equations (15) and (16), we employ Allen-Cahn gra-
dient flow. Introducing a pseudo-time step τ, the Allen-Cahn equation can be written as:

γϕ

τ

∫

Ω
(ϕ−ϕn)vϕdx+

γχ

τ

∫

Ω
(χ−χn)vχdx+ γϕκ

∫

Ω
∇ϕ ·∇vϕdx+ γχκ

∫

Ω
∇χ ·∇vχdx+

∫

Ω
(ϕ−mϕ)vλdx+

∫

Ω
(χ−mχ)vµdx+

∫

Ω
vϕλdx+

∫

Ω
vχµdx−

∫

Ω
ε(u) :

∂C
∂ϕ

vϕε(u)dx−
∫

Ω
ε(u) :

∂C
∂χ

vχε(u)dx+
γ
ε

∫

Ω

∂ψ0

∂ϕ
(ϕn)vϕdx = 0, (17)

which we solve using the finite element method. For a more detailed explanation of the method
and the implemented algorithm we refer to [6].

4 RESULTS

In this section we discuss numerical and experimental results showing the effectiveness of
the proposed methodology. The finite elements and the phase-field topology optimization re-
sults are obtained using a FEniCS [9] environment, whereas the procedure to generate 3D vir-
tual models from numerical results is implemented in Mathematica®. A Stratasys Object 260
Connex 3® is used to print the specimens.

Verification of asymptotic homogenization procedure To estimate the modeling error in-
troduced by asymptotic homogenization we study the simple numerical benchmark described
in Figure 3, namely a quarter of traction test sample. We apply a load g = 100[N/mm] and
we evaluate the compliance and the maximum displacement in x-direction ux,max of the speci-
men. We consider domains with microstructure having different cell size and the corresponding
homogenized structure. Table 1 reports the results obtained for three different macroscopic den-
sity fraction ρ f = ρstr/ρbulk = 0.25,0.5and0.75, where ρbulk = 7850[N/m3] is the density of the
bulk material and ρstr the actual density of the perforated structures (e.g, see Figure 4). It can
be observed that for lower density fraction the error of the homogenized model increases. This
effect is due to both boundary effects and an intrinsic modeling error which we introduced with
the asymptotic homogenization assumptions. Nevertheless, due to the extremely high computa-
tional costs of simulations resolving a time evolving microstructure domain, we can consider the
homogenized model a sufficiently good trade-off between accuracy and computational efforts.

Topology optimization of an MBB-beam We apply the phase-field topology optimization
procedure described in section 3 to the Messerschmitt-Bölkow-Blohm (MMB) beam problem
described in Figure 5. We set g = 25 N and we consider the RGD851 rigid polymer from
Stratasys, having elastic modulus E = 2300 MPa and a Poisson ratio ν= 0.3. The volume filling
ratios are mφ = 0.7 and mχ = 0.4. In order to satisfy the machine manufacturing constraints,
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x

y

Ω

50

10 g

Figure 3: One-quarter traction test. All units are in mm.

(a) 5×1 (b) 10×2 (c) 20×4

(d) 40×8 (e) 80×16

Figure 4: Microstructure domains with different cell sizes and fixed density fraction ρ f = 0.5.

Table 1: Compliance and max. displacement value of different microstructures and correspond-
ing homogenized material.

ρ f 0.25 0.75 0.5
�cells �DOFs C ux,max �DOFs C ux,max �DOFs C ux,max
5x1 30346 496.0 0.78 26288 48.1 5.31E-02 59564 103.0 1.29E-01

10x2 30788 295.5 0.45 82262 46.5 4.91E-02 58482 89.0 1.04E-01
20x4 36376 203.4 0.24 252262 45.8 4.71E-02 60544 82.9 8.99E-02
40x8 144558 188.44 0.21 333984 45.3 4.60E-02 66082 79.2 8.21E-02
80x16 819714 185.4 0.20 339608 44.5 4.48E-02 111350 76.6 7.86E-02
hom 402402 169.0 0.17 402402 44.8 4.47E-02 402402 79.7 7.97E-02

which do not allow to print infinitely small thicknesses, we set a minimum value for the density
parameter χmin = 0.29, such that χ ∈ [χmin,ϕ] where ϕ �= 0 and χ = 0 otherwise. The evolution
of the density phase-field variable χ at different time steps is shown in Figure 6.
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Figure 5: MBB-beam half-domain setup

From analysis to 3D printing In order to convert the result of Figure 6f into printable data
we implemented the following procedure:

1. Choose the shape and the size of the microstructure cells. In this work we choose squared
cells with dimensions fulfilling technological requirements such as the minimum print-
able thickness and hole dimension. The dimension of the cell l = 1mm is determined
according to the resolution capability of the Connex 3 3D-printer.

2. Generate a Cartesian grid Λχ over the domain Ω with a constant size equal to the cell
dimension;

3. Evaluate the average value χ̄ within each cell of Λχ;

4. Generate a cuboid for each cell of Λχ; each cuboid results from the extrusion of a square
of side equal to a, evaluated through equation (1). Each cuboid represents the void that
has to be introduced to create the microstructure.

5. Generate an high resolution Cartesian grid Λϕ over the domain Ω with a constant size
equal to the finite element mesh dimension; for each cell of Λϕ the corresponding value
of the field variable ϕ is assigned. For each cell, if the value of ϕ> ξ a cuboid is generated,
being ξ a threshold value.

6. By means of a boolean operation subtract the solid obtained at step 4 from the solid
obtained at step 5.

This procedure is implemented in Mathematica such that we have obtained a complete con-
version pipeline within a single numerical framework.

The complete process, from analysis to 3D printing is described in Figure 7 where the main
steps of this method are highlighted. Finally, we print the final structure using the 260 Connex
3® available at the laboratories of the University of Pavia.

8

169



Alaimo G., Carraturo M. et al.

(a) t = 1 (b) t = 15

(c) t = 30 (d) t = 45

(e) t = 60 (f) t = 85

Figure 6: Evolution of the density variable χ at different time steps t.

Experimental results We now aim at assessing the higher mechanical properties (e.g., stiff-
ness) which topologically optimized structures can achieve compared to lattice structures having
the same weight but constant density. We printed five different specimens: 3 using the optimized
model and 2 constant density beams. One of the optimized specimen was used to calibrate the
machine, thus we report results only of 4 measurements. Figure 8 shows the two different kind
of specimens (constant density and FGM) in the testing machine. We perform a 3-point bend-
ing test and measure the maximum displacement along the axis of symmetry of the structure.
The experimental results are reported in Figure 9. They clearly show the benefits of performing
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Figure 7: From analysis to 3Dprinting: A complete pipeline from a continuously graded nu-
merical solution to a 3D printed FGM structure; a) phase-field based topology optimization,
b) generation of 3D virtual model from the discrete maps of the field variables, c) finished 3D
virtual model, d) 3D-printed part

topology optimization on the mechanical response of the structure: for the same load (50 N) we
have more than two times less maximum displacements in the optimized specimen than in the
constant density one.

(a) Constant density specimen (b) FGM topologically optimized specimen

Figure 8: Speciments used in the experiment.

5 CONCLUSIONS

In this work we develop a complete pipeline to obtain 3D printed FGM structures. In par-
ticular, we employ the phase-field method together with asymptotic homogenization for the
analysis and the topological optimization of the structure, whereas an in-house developed code
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Figure 9: Load vs displacements plot.

is used to convert the density map into a 3D virtual model suitable for 3D printing.
As a validation benchmark we investigate an MBB-beam problem under the hypothesis of

plane stress state. The resulting optimized structure is printed and experimentally tested. Mea-
surements data are also obtained for a similar beam structure having constant density and equal
weight. Experimental evidence shows that for a fixed weight of the structure, FGM structures
obtained by means of the proposed methodology are more effective in terms of stiffness with
respect to an analogous lattice structure with constant density.

This experimental results show that the phase-field approach can be useful in case of FGMD
optimization. In fact, contrary to similar methods available in literature, the proposed phase-
field based topology optimization allows to not only redistribute the material within a given
domain but also to indicate void regions, by means of an additional degrees of freedom into the
problem.

As further outlooks for the present research we aim at extending the presented method to
3D problems and to mass minimization under both functional (e.g., maximum stress constraint)
and technological constraints related to AM processes (e.g., overhang building angles, feature
resolution of the specific AM process).
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