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Abstract

The k-independence number of a graph is the maximum size of a set of vertices
at pairwise distance greater than k. A graph is called k-partially walk-regular if the
number of closed walks of a given length l ≤ k, rooted at a vertex v, only depends on
l. In particular, a distance-regular graph is also k-partially walk-regular for any k. In
this paper, we introduce a new family of polynomials obtained from the spectrum of
a graph, called minor polynomials. These polynomials, together with the interlacing
technique, allow us to give tight spectral bounds on the k-independence number of a
k-partially walk-regular graph. With some examples and infinite families of graphs
whose bounds are tight, we also show that the odd graph O` with ` odd has no 1-perfect
code. Moreover, we show that our bound coincide, in general, with the Delsarte’s linear
programming bound and the Lovász theta number θ, the best ones to our knowledge.
In fact, as a byproduct, it is shown that the given bounds also apply for θ and Θ,
the Shannon capacity of a graph. Moreover, apart from the possible interest that
the minor polynomials can have, our approach has the advantage of yielding closed
formulas and, so, allowing asymptotic analysis.

Keywords: Graph, k-independence number, spectrum, interlacing, minor polynomial, k-
partially walk-regular, Delsarte’s LP bound, Lovász theta number, Shannon capacity.

Mathematics Subject Classifications: 05C50, 05C69.

1 Introduction

Given a graph G, let αk = αk(G) denote the size of the largest set of vertices such that any
two vertices in the set are at distance larger than k. Thus, with this notation, α1 is just
the independence number α of G. The parameter αk(G) therefore represents the largest
number of vertices that can be k + 1 spread out in G. Notice also that αk(G) = α(Gk),
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where Gk denotes the power graph, where two vertices u, v are adjacent if and only if they
are at distance at most k in G. It is known that determining αk is a NP-Hard problem in
general (see Kong and Zhao [26]).

The k-independence number is an interesting graph parameter with both practical
and theoretical implications. For instance, codes and anticodes are k-independent sets in
some graphs (for instance, the Hamming graphs). Thus, bounds or exact values of such
a parameter yield necessary conditions for the existence of perfect codes. Moreover, the
k-independence number is closely related to other combinatorial graph parameters (with
the corresponding applications) related to the distance. For instance,

• Distance chromatic number χk(G) = χ(Gk) (Alon and Mohar [3], and Kang and
Pirot [25] ); packing chromatic number (Goddard, Hedetniemi, Hedetniemi, Harris,
and Rall [19], and injective chromatic number (Hahn, [23]). In this case, upper
bounds on the k-independence number give lower bounds on the distance or packing
chromatic number;

• Strong chromatic index (Mahdian [28]);

• Average distance (Firby and Haviland [18]);

• d-diameter (Chung, Delorme, and Solé [7]): An h-code in a graph G with distance
d is a set of h ≥ 2 vertices with minu6=v{dist(u, v)} = d. The d-diameter Dh is the
largest possible distance an h-code in G can have. In particular, D2 is the standard
diameter.

In this paper, under some extra assumptions (for instance, that of walk-regularity), we
improve the known spectral upper bounds for the k-independence number from F. [13],
Abiad, Cioabă, and Tait [1] and Abiad, Coutinho, and F. [2]. Our approach is based
on a new family of polynomials, which we call minor polynomials, that have nonnegative
values at the eigenvalues of the graph, and minimize a given linear function. For some cases
and some infinite families of graphs, we show that our bounds are sharp, and coincide, in
general, with the Delsarte’s linear programming (LP) bound and the Lovász theta number,
the best ones to our knowledge. Moreover, apart from the possible interest that the minor
polynomials can have, our approach has the advantage of yielding closed formulas and,
thus, allowing asymptotic analysis.

Let G = (V,E) be a graph with n = |V | vertices, m = |E| edges, and adjacency
matrix A with spectrum spG = {θ0, θm1

1 , . . . , θmd
d }, where the different eigenvalues are in

decreasing order, θ0 > θ1 > · · · > θd, and the superscripts stand for their multiplicities.
When the eigenvalues are presented with possible repetitions, we shall indicate them by
evG : λ1 ≥ λ2 ≥ · · · ≥ λn.

The first known spectral bound for the independence number α of a graph is due to
Cvetković [8].
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Theorem 1.1 (Cvetković [8]). Let G be a graph with eigenvalues λ1 ≥ · · · ≥ λn. Then,

α ≤ min{|{i : λi ≥ 0}|, |{i : λi ≤ 0}|}.

Another well-known result is the following bound due to Hoffman (unpublished; see,
for instance, Haemers [22]).

Theorem 1.2 (Hoffman [22]). If G is a regular graph on n vertices with eigenvalues
λ1 ≥ · · · ≥ λn, then

α ≤ n −λn
λ1 − λn

.

Regarding the k-independence number, the following three results are known. The first
is due to F. [13] and it requires a preliminary definition. Let G be a graph with distinct
eigenvalues θ0 > · · · > θd. Let Pk(x) be chosen among all polynomials P (x) ∈ Rk(x),
that is, polynomials of real coefficients and degree at most k, satisfying |P (θi)| ≤ 1 for
all i = 1, ..., d, and such that P (θ0) is maximized. The polynomial Pk(x) defined above is
called the k-alternating polynomial of G and it was shown to be unique in F., Garriga, and
Yebra[17], where it was used to study the relationship between the spectrum of a graph
and its diameter.

Theorem 1.3 (F. [13]). Let G be a d-regular graph on n vertices, with distinct eigenvalues
θ0 > · · · > θd, and let Pk(x) be its k-alternating polynomial. Then,

αk ≤
2n

Pk(θ0) + 1
.

More recently, Cvetković-like and Hoffman-like bounds were shown by Abiad, Cioabă,
and Tait in [1].

Theorem 1.4 (Abiad, Cioabă, Tait [1]). Let G be a graph on n vertices with adjacency
matrix A, with eigenvalues λ1 ≥ · · · ≥ λn. Let wk and Wk be respectively the smallest and
the largest diagonal entries of Ak. Then,

αk ≤ min{|{i : λki ≥ wk(G)}|, |{i : λki ≤Wk(G)}|}.

Theorem 1.5 (Abiad, Cioabă, Tait [1]). Let G be a δ-regular graph on n vertices with

adjacency matrix A, whose distinct eigenvalues are θ0(= δ) > · · · > θd. Let W̃k be the
largest diagonal entry of A + A2 + · · ·+ Ak. Let θ = max{|θ1|, |θd|}. Then,

αk ≤ n
W̃k +

∑k
j=1 θ

j∑k
j=1 δ

j +
∑k

j=1 θ
j
.

Finally, as a consequence of a generalization of the last two theorems, Abiad, Coutinho,
and F. [2], proved the following results.
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Theorem 1.6 (Abiad, Coutinho, F. [2]). Let G be a δ-regular graph with n vertices and
distinct eigenvalues θ0(= δ) > θ1 > · · · > θd. Let Wk = W (p) = maxu∈V {

∑k
i=1(A

k)uu}.
Then, the k-independence number of G satisfies the following:

(i) If k = 2, then

α2 ≤ n
θ0 + θiθi−1

(θ0 − θi)(θ0 − θi−1)
,

where θi is the largest eigenvalue not greater than −1.

(ii) If k > 2 is odd, then

αk(G) ≤ n
Wk −

∑k
j=0 θ

j
d∑k

j=0 δ
j −

∑k
j=0 θ

j
d

.

(iii) If k > 2 is even, then

αk(G) ≤ n Wk + 1/2∑k
j=0 δ

j + 1/2
.

(iv) If G = (V,E) is a walk-regular graph, then

αk(G) ≤ n 1− λ(qk)

qk(δ)− λ(qk)

for k = 0, . . . , d − 1, where qk = f0 + · · · + fk with the fi’s being the predistance
polynomials of G (see the next section), and λ(qk) = mini∈[2,d]{qk(θi)}.

2 Background

For basic notation and results see Biggs [4] and Godsil [20]. Let G = (V,E) be a (simple)
graph with n = |V | vertices, m = |E| edges, and adjacency matrix A with spectrum
spG = {θ0, θm1

1 , . . . , θmd
d }. When the eigenvalues are presented with possible repetitions,

we shall indicate them by λ1 ≥ λ2 ≥ · · · ≥ λn. Let us consider the scalar product in Rd[x]:

〈f, g〉G =
1

n
tr(f(A)g(A)) =

1

n

d∑
i=0

mif(θi)g(θi).

The so-called predistance polynomials p0(= 1), p1, . . . , pd are a sequence of orthogonal
polynomials with respect to the above product, with degree pi = i, and they are normalized
in such a way that ‖pi‖2G = pi(θ0) (this makes sense since it is known that pi(θ0) > 0) for
i = 0, . . . , d. Therefore, they are uniquely determined, for instance, following the Gram-
Schmidt process. These polynomials were introduced by F. and Garriga in [15] to prove the
so-called ‘spectral excess theorem’ for distance-regular graphs, where p0(= 1), p1, . . . , pd
coincide with the so-called distance polynomials. See Cámara, Fàbrega, F., and Garriga[6]
for further details and applications.
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A graph G is called k-partially walk-regular, for some integer k ≥ 0, if the number
of closed walks of a given length ` ≤ k, rooted at a vertex v, only depends on `. Thus,
every (simple) graph is k-partially walk-regular for k = 0, 1, and every regular graph
is 2-partially walk-regular. More generally, every k-partially distance-regular graph (see
Dalfó, van Dam, F., Garriga, Gorissen [9] is also k-partially walk-regular. Moreover G is
k-partially walk-regular for any k if and only if G is walk-regular, a concept introduced
by Godsil and Mckay in [21]. For example, it is well-known that every distance-regular
graph is walk-regular (but the converse does not hold). Other examples of walk-regular
graphs are the vertex-transitive graphs and the semi-symmetric graphs (which are edge-
transitive, but not vertex-transitive). Moreover, some usual graph operations, such as the
complement and the Cartesian product, on walk-regular graphs provides graphs that are
also walk-regular, see again [21].

Eigenvalue interlacing is a powerful and old technique that has found countless appli-
cations in combinatorics and other fields. This technique will be used in several of our
proofs. For more details, historical remarks, and other applications, see Haemers [22] and
F. [14]. Given square matrices A and B with respective eigenvalues λ1 ≥ · · · ≥ λn and
µ1 ≥ · · · ≥ µm, with m < n, we say that the second sequence interlaces the first one if,
for all i = 1, . . . ,m, it follows that λi ≥ µi ≥ λn−m+i.

Theorem 2.1 ([14, 22]). Let S be a real n ×m matrix such that STS = I, where I is
the identity matrix, and let A be an n× n matrix with eigenvalues λ1 ≥ · · · ≥ λn. Define
B = STAS, and call its eigenvalues µ1 ≥ · · · ≥ µm. Then,

(i) The eigenvalues of B interlace those of A.

(ii) If µi = λi or µi = λn−m+i, then there is an eigenvector v of B for µi such that Sv
is eigenvector of A for µi.

(iii) If there is an integer k ∈ {0, . . . ,m} such that λi = µi for 1 ≤ i ≤ k, and µi = λn−m+i

for k + 1 ≤ i ≤ m (tight interlacing), then SB = AS.

Two interesting particular cases where interlacing occurs (obtained by choosing the
matrix S appropriately) are the following. First, let A be the adjacency matrix of a graph
G = (V,E). First, if B is a principal submatrix of A, then B corresponds to the adjacency
matrix of an induced subgraph G′ of G. Second, when, for a given partition of the vertices
of Γ, say V = U1∪ · · · ∪Um, B is the so-called quotient matrix of A, with elements bij , for
i, j = 1, . . . ,m, being the average row sums of the corresponding block Aij of A. Actually,
the quotient matrix B does not need to be symmetric or equal to S>AS, but in this case
B is similar to (and therefore has the same spectrum as) S>AS.



6

3 The minor polynomials

In this section, we introduce a new class of polynomials, called minor polynomials, ob-
tained from the different eigenvalues of a graph, which are used later to derive our main
results. More precisely, these polynomials are introduced with the goal of improving ex-
isting bounds for the k-independence number of k-partially walk-regular graphs, although
their definition applies for any graph.

Let G be a graph with adjacency matrix A and spectrum spG = {θ0, θm1
1 , . . . , θmd

d }.
Let f be a polynomial of degree at most k, satisfying f(θ0) = 1 and f(θi) ≥ 0 for
i = 1, . . . , d. Then, in Section 4, we prove that, if G is k-partially walk-regular, then its
k-independence number satisfies the bound αk ≤ tr f(A) =

∑d
i=0mif(θi). So, the search

for the best result motivates the following definition.

Definition 3.1. Let G = (V,E) be a graph with adjacency matrix A with spectrum spG =
{θ0, θm1

1 , . . . , θmd
d }. For a given k = 0, 1, . . . , d, let us consider the set of real polynomials

Pk = {f ∈ Rk[x] : f(θ0) = 1, f(θi) ≥ 0, for 1 ≤ i ≤ d}, and the continuous function
Ψ : Pk → R+ defined by Ψ(f) = tr f(A). Then, the k-minor polynomial of G is the point
fk where Ψ attains its minimum:

tr fk(A) = min {tr f(A) : f ∈ Pk} .

An alternative approach to the k-minor polynomials is the following: Let fk be the
polynomial defined by fk(θ0) = x0 = 1 and fk(θi) = xi, for i = 1, . . . , d, where the vector
(x1, x2, . . . , xd) is a solution of the following linear programming problem:

minimize
∑d

i=0mixi
with constraints f [θ0, . . . , θm] = 0, m = k + 1, . . . , d

xi ≥ 0, i = 1, . . . , d,

where f [θ0, . . . , θm] denote the m-th divided differences of Newton interpolation, recur-

sively defined by f [θi, . . . , θj ] =
f [θi+1,...,θj ]−f [θi,...,θj−1]

θj−θi , where j > i, starting with f [θi] =

f(θi) = xi, for 0 ≤ i ≤ d.

Thus, we can easily compute the minor polynomials, for instance, by using the simplex
method. Moreover, as the problem is in the so-called standard form, with d variables,
x1, . . . , xd, and d − (k + 1) + 1 = d − k equations, the ‘basic vectors’ have at least d −
(d − k) = k zeros. Note also that, from the conditions of the programming problem, the
k-minor polynomial turns out to be of the form fk(x) = f [θ0] + f [θ0, θ1](x − θ0) + · · · +
f [θ0, . . . , θk](x−θ0) · · · (x−θk−1), with degree at most k. Consequently, when we apply the
simplex method, we obtain a k-minor polynomial fk with degree k and exactly k zeros at
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the mesh θ1, . . . , θd. In fact, as shown in the following proposition, a k-minor polynomial
has exactly k zeros in the interval [θd, θ0).

Proposition 3.2. Let G be a graph with spectrum spG = {θ0, θm1
1 , . . . , θmd

d }. Then, for
every k = 0, 1, . . . , d, a k-minor polynomial fk has degree k with its k zeros in [θd, θ0) ⊂ R.

Proof. We only need to deal with the case k ≥ 1. Assume that a k-minor polynomial fk has
the zeros ξr ≤ ξr−1 ≤ · · · ≤ ξ1 with r ≤ k. Then, it can be written as fk(x) =

∏r
i=1

x−ξi
θ0−ξi .

Let us first show that ξr ≥ θd. By contradiction, assume that ξr < θd, and let θi be the
smallest eigenvalue that is not a zero of fk (the existence of such a θi is guaranteed from
the condition r ≤ k). Then, the polynomial gr(x) = x−θi

θ0−θi
∏r−1
j=1

x−ξi
θ0−ξi , with degree r ≤ k

satisfies the conditions gk(θ0) = 1, gk(θi) ≥ 0 for i = 1, . . . , d, and Ψ(gk) < Ψ(fk) since
θj−θi
θ0−θi <

θj−ξr
θ0−ξr for j > i, a contradiction with the fact that Ψ(fk) is minimum. Second,

let us prove, again by contradiction, that ξ1 > θ0. Otherwise, we could consider the
polynomial gk−1, with degree r − 1 < k, defined as gk−1(x) =

∏r
i=2

x−θi
θ0−θi satisfying again

gk−1(θ0) = 1, and gk−1k(θi) ≥ 0 for i = 1, . . . , d − 1 since θi−ξ1
θ0−ξ1 > 1 for all i = 1, . . . , d.

But, from the same inequalities, we also have Ψ(qk−1) < Ψ(fk), a contradiction.

Finally, assume that r < k. Since all zeros ξ1 ≤ · · · ≤ ξr are in the interval [θd, θ0), we
can consider again the smallest one θi such that fk(θi) > 0. Then, reasoning as before,
the polynomial gr+1(x) = x−θi

θ0−θi
∏r
i=1

x−ξi
θ0−ξ , with degree r + 1 ≤ k leads to the desired

contradiction Ψ(gr+1) < Ψ(fk).

The above results, together with fk(θ0) = 1 and fk(θi) ≥ 0 for i = 1, . . . , d drastically
reduce the number of possible candidates for fk. Thus, if k is even, then there exists some
index set I ⊂ {1, . . . d} of size |I| = k such that

fk(x) =
∏
i∈I

x− θi
θ0 − θi

. (1)

When k is odd, (1) also applies, but we can impose that d ∈ I. Let us see some particular
examples:

• The cases k = 0 and k = d are easy. Clearly, f0 = 1, and fd has zeros at all the
points θi for i 6= 0. In fact, fd = 1

nH, where H is the Hoffman polynomial [24].

• For k = 1, the only zero of f1 must be θd. Hence,

f1(x) =
x− θd
θ0 − θd

. (2)

Moreover, since f1(θi) < 1 for every i = 1, . . . , d, we have that

(1 =)Ψ(fd) < Ψ(fd−1) < Ψ(fd−2) < · · · < Ψ(f1) < Ψ(f0)(= n),

since, for k = 0, . . . , d− 1, fk+1(θi) ≤ fkf1(θi) < fk(θi) for every i = 1, . . . , d.
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• For k = 2, the two zeros of f2 must coincide with consecutive eigenvalues θi and
θi−1. More precisely, the same reasonings used in Abiad, Coutinho, and F. [2] shows
that θi must be the largest eigenvalue not greater than −1. Then, with these values,

f2(x) =
(x− θi)(x− θi−1)

(θ0 − θi)(θ0 − θi−1)
. (3)

• When k = 3, the only possible zeros of f3 are θd and the consecutive pair θi, θi−1
for some i ∈ [2, d − 1]. In this case, empirical results seem to point out that such
a pair must be around the ‘center’ of the mesh (see the examples below). In fact,
since, as mentioned above, our results holds with any polynomial f ∈ Rk[x] satisfying
f(θ0) = 1 and f(θi) ≥ 0 for i = 1, . . . , d, a good (and usually optimal) choice is to
take as “f3” the polynomial f3 = f1f2.

• When k = d − 1, the polynomial fd−1 takes only one non-zero value at the mesh,
say at θ, which seems to be located at one of the ‘extremes’ of the mesh. In fact,
when G is an r-antipodal distance-regular graph, we show in the last section that
either θ = θ1 or θ = θd for odd d yields the tight bound (that is, r) for αd−1, as
does Theorem 1.3. Consequently, for such a graph with odd d, we have two different
(d − 1)-minor polynomials, say f and g, and, hence, infinitely many (d − 1)-minor
polynomials of the form h = γf+(1−γ)g, where γ ∈ [0, 1]. (Notice that, if γ 6∈ {0, 1},
then h must have some zero not belonging to the mesh {θ1, . . . , θd}.)

Now, let us give all the k-minor polynomials, with k = 1, . . . , d, for two particular
distance-regular graphs. Namely, the Hamming graph H(2, 7) and the Johnson graph
J(14, 7) (for more details about these graphs, see, for instance, Brouwer, Cohen, and
Neumaier [5]). First, we recall that the Hamming graph H(2, 7) has spectrum

spH(2, 7) = {71, 57, 321, 135,−135,−321,−57,−71}.

Then, the different minor polynomials f0, . . . , f7 are shown in Figure 1, and their values
xi = fk(θi) at the different eigenvalues θ0, . . . , θ7 are shown in Table 1.

k x7 x6 x5 x4 x3 x2 x1 x0
1 0 1/7 2/7 3/7 4/7 5/7 6/7 1

2 1 1/2 1/6 0 0 1/6 1/2 1

3 0 1/14 1/21 0 0 5/42 3/7 1

4 2/9 0 0 1/45 0 0 2/9 1

5 0 1/35 0 0 0 0 6/35 1

6 1 0 0 0 0 0 0 1

7 0 0 0 0 0 0 0 1

Table 1: Values xi = fk(θi) of the k-minor polynomials of the Hamming graph H(2, 7).
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Figure 1: The minor polynomials of the Hamming graph H(2, 7).

As another example, consider the the Johnson graph J(14, 7) (see, for instance, Brouwer,
Cohen, and Neumaier [5] and Godsil [20]). This is an antipodal (but not bipartite)
distance-regular graph, with n = 3432 vertices, diameter D = 7, and spectrum

sp J(14, 7) = {491, 3513, 2377, 13273, 5637,−11001,−51001,−7429}.

Then, the solutions of the linear programming problem are in Table 2, which correspond
to the minor polynomials shown in Figure 2.

k x7 x6 x5 x4 x3 x2 x1 x0
1 0 1/28 3/28 3/14 5/15 15/28 3/4 1

2 9/275 1/55 0 0 14/275 54/275 27/55 1

3 0 5/1232 1/176 0 0 75/1232 5/16 1

4 1/1485 0 0 0 0 14/495 2/9 1

5 0 1/2860 0 0 0 0 27/260 1

6 0 0 0 0 0 0 1/13 1

7 0 0 0 0 0 0 0 1

Table 2: Values xi = fk(θi) of the k-minor polynomials of the Johnson graph J(14, 7).
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Figure 2: The minor polynomials of the Johnson graph J(14, 7).

4 A tight bound for the k-independence number

Now, we are ready to derive our main result about the k-independent number of a k-
partially walk-regular graph. The proof is based on the interlacing technique. Then,
we require the graph to be k-partially walk-regular to guarantee a constant value of the
diagonal entries corresponding to the independent vertices.

Theorem 4.1. Let G be a k-partially walk-regular graph with n vertices, adjacency matrix
A, and spectrum spG = {θm0

0 , . . . , θmd
d }. Let fk ∈ Rk[x] be a k-minor polynomial. Then,

for every k = 0, . . . , d− 1, the k-independence number αk of G satisfies

αk ≤ tr fk(A) =

d∑
i=0

mifk(θi). (4)

Proof. Let U be a k-independent set of G with r = |U | = αk(G) vertices. Again, assume
the first columns (and rows) of A correspond to the vertices in U . Consider the partition of
said columns according to U and its complement. Let S be the normalized characteristic
matrix of this partition. The quotient matrix of fk(A) associated with this partition is
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given by

ST fk(A)S = Bk =

(
1
r

∑
u∈U (fk(A))uu fk(θ0)− 1

r

∑
u∈U (fk(A))uu

rfk(θ0)−
∑

u∈U (fk(A))uu
n−r fk(θ0)−

rfk(θ0)−
∑

u∈U (fk(A))uu
n−r

)
(5)

=

(
1
n

∑d
i=0mifk(θi) 1− 1

n

∑d
i=0mifk(θi)

r− r
n

∑d
i=0mifk(θi)

n−r 1− r− r
n

∑d
i=0mifk(θi)

n−r

)
, (6)

with eigenvalues µ1 = fk(λ1) = 1 and

µ2 = trBk − 1 = Ψ(fk)−
r − r · w(fk)

n− r
.

where we recall that Ψ(fk) = 1
n

∑d
i=0mifk(θi). Then, by interlacing, we have

0 ≤ µ2 ≤ w(fk)−
r − r ·Ψ(fk)

n− r
, (7)

whence, solving for r, we get r ≤ n ·Ψ(fk) and the result follows.

As mentioned in the previous section, notice that, in fact, this proof works for any
polynomial f satisfying f(θ0) = 1 and f(θi) ≥ 0 for i = 1, . . . , d. By way of example, if G is

a distance-regular graph with distance polynomials p0, . . . , pd, we could take f(x) =
q2k(x)

q2k(θ0)
,

with degree 2k, where the sum polynomial qk = p0 + · · · + pk satisfies ‖qk‖2G = qk(θ0).
Now, recall that qk(θ0) = nk corresponds to the number of vertices at distance at most k
from any vertex of G (see, for instance, Biggs [4]). Thus, we obtain

α2k ≤ Ψ(p) =

d∑
i=0

mi
q2k(θi)

q2k(θ0)
=

n

q2k(θ0)
‖qk‖2G =

n

nk
,

as expected.

Another possibility is to use the polynomial f(x) = Pk(x)+1
Pk(θ0)+1 , where Pk is the k-

alternating polynomial. In this case, when G is an r-antipodal distance-regular graphs
and k = d − 1, it turns out that the d-distance polynomial is pd = H − r

2Pd−1 + r
2 − 1,

where H is the Hoffman polynomial (see F. [13]). Then, we get Ψ(f) = 2n
Pd−1(θ0)+1 , which

coincides with the bound for αd−1 given in Theorem 1.3.

Let us now consider some particular cases of Theorem 4.1 by using the minor poly-
nomials. As before, in what follows, G has eigenvalues θ0 > θ1 > · · · > θd, and θi is the
largest eigenvalues not greater than −1. Notice that the results for k = 1, 2 were already
known; see Hoffman [22] and Abiad, Coutinho, and F. [2], respectively.
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The case k = 1.

As mentioned above, α1 coincides with the standard independence number α. In this case
the minor polynomial is f1(x) = x−θd

θ0−θd . Then, (4) gives

α1 = α ≤ tr f1(A) =
−nθd
θ0 − θd

, (8)

which is Hoffman’s bound in Theorem 1.2.

The case k = 2.

We already stated that f2(x) = (x−θi)(x−θi−1)
(θ0−θi)(θ0−θi−1)

. Then, (4) yields

α2 ≤ tr f2(A) = n
θ0 + θiθi−1

(θ0 − θi)(θ0 − θi−1)
, (9)

in agreement with the result of Abiad, Coutinho, and F. [2] (here in Theorem 1.6(i)).
Moreover, in the same paper, two infinite families of (distance-regular) graphs where the
bound (9) is tight were provided.

The case k = 3.

Assume that G is at least 3-partially walk-regular, and let nt be the common number of
triangles rooted at every vertex. Then, if, as commented above, we take f3 = f1f2, we get

α3 ≤ tr f3(A) = n
2nt − θ0(θd + θi + θi−1)− θdθiθi−1

(θ0 − θd)(θ0 − θi)(θ0 − θi−1)
. (10)

In particular, if G is bipartite, then nt = 0 and, as we will see in the next section, the
obtained results for the Hamming graphs are optimal (in the sense that they coincide with
the Delsarte’s linear programming bound).

The general case 1 ≤ k ≤ d

In general, from (1), we can state the following: Let I ⊂ {1, . . . , d} range over all index
sets with k elements (in the case of k odd we can also require that d ∈ I). Then,

αk ≤ tr fk(A) = min
I

∑
j 6∈I

mj

∏
i∈I

θj − θi
θ0 − θi

. (11)
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4.1 The Shannon capacity of Gk

Now, let us see that the upper bound for the k-independence number in (4) also holds for
the Shannon capacity Θ of the power graph Gk when G is walk-regular. The parameter
Θ was introduced by Shannon [29], the founder of information theory, for a general graph

G = (V,E), and it is defined as follows. Let G�` be the strong product G�
(`)
· · · �G of `

copies of G, with vertex set the Cartesian product V×
(`)
· · · ×V , and vertex (u1, . . . , u`) is

adjacent to vertex (v1, . . . , v`) when, for any 1 ≤ i ≤ `, either ui = vi or ui is adjacent to vi.
The adjacency matrix of G�` is (A+I)⊗`−I, where the first term denotes the Kronecker
product of ` copies of the matrix A + I. Then, the Shannon (zero-error) capacity of G is
defined as

Θ(G) = sup
`

√̀
α(G�`) = lim

`→∞

√̀
α(G�`).

Notice that, since α(G�`) ≥ α(G)`, the Shannon capacity gives an upper bound for the
independence number, α(G) ≤ Θ(G). In our context, we have the following result.

Proposition 4.2. Let G be a walk-regular graph with n vertices, adjacency matrix A, and
spectrum spG = {θm0

0 , . . . , θmd
d }. Let fk ∈ Rk[x] be a k-minor polynomial of G. Then, for

every k = 0, . . . , d, the Shannon capacity of the power graph H = Gk satisfies

Θ(Gk) ≤ tr fk(A) =

d∑
i=0

mifk(θi). (12)

Proof. First note that, given a regular graph H, the proof of Theorem 4.1 works for any
symmetric matrix AH such that (AH)uv = 0 if distH(u, v) > k, AH has constant positive
row sum and diagonal, and trAH > 0. Then, we can apply Theorem 4.1 to the matrix
A` = fk(A)⊗`, which satisfies the above conditions with respect to the graph H�` with
H = Gk. Indeed, A` has constant row sum fk(θ0)

`, constant diagonal (because fk(A) and
its Kronecker product fk(A)⊗` have constant diagonals), and trA` = (tr fk(A))`. So, we
get

α(H�`) ≤ trA` =
(∑d

i=0mifk(θi)
)`
,

and the result follows.

Form this proposition, and recalling that the Shannon capacity is an upper bound for
the independence number, we have the following corollary.

Corollary 4.3. Let G be a walk-regular graph as above. Let fk be a minor polynomial of
G for a given k = 1, . . . , d. Then,

αk(G) = α(Gk) ≤ Θ(Gk) ≤ Ψ(fk) =

d∑
i=0

mifk(θi).

Moreover, if Ψ(fk) is an integer coinciding with the exact value of the k-independence
number, then Θk(G) = Ψ(fk)
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5 Some examples in distance-regular graphs

In this section, we first deal with distance-regular graphs. (Recall that every distance-
regular graph is also walk-regular.) to compare the above bounds with those obtained
in F. [13] and Abiad, Cioabă, and Tait [1] (here in Theorems 1.3 and 1.5, respectively),
together with the results obtained from the Delsarte’s linear programming bound (see
Delsarte[10], and Delsarte and Levenshtein [11]).

In our context, Delsarte’s results can be formulated in the following way. Let Γ be a
distance-regular graph Γ with diameter d, and let C be a subset of r vertices. Then, the
inner distribution rk of C, for 0 ≤ k ≤ d, is the mean number of vertices v in C at distance
k (in Γ) from a given vertex u ∈ C, that is, rk = 1

|C|
∑

u∈C |Γk(u) ∩ C| for k = 0, . . . , d.

Notice that, as commented by Godsil [20], the numbers rk determine the probability that
a randomly chosen pair of vertices from C are at distance k. By using the (pre)distance
polynomials p0, . . . , pd of Γ, F. and Garriga [16] showed that the so-called C-multiplicities
of each eigenvalues of C are

mC(θi) =
m(θi)

n

d∑
k=0

rk
pk(θi)

pk(θ0)
(0 ≤ i ≤ d). (13)

In fact, (13) is essentially equivalent to Delsarte’s identity b = aQ which gives rise to the
celebrated linear programming bound (see Delsarte [10], and Delsarte and Levenshtein
[11]), based on the non-negativity of the C-local eigenvalues. In our case, as C is a k-
independent set, we have r0 = 1, r1 = · · · = rk = 0, r = |C| = r0 + · · ·+ rd, and the linear
programming problem to be solved is the following.

maximize r := 1 +
∑d

i=k+1 ri
subject to mC(θj) ≥ 0, j = 0, 1, . . . , d;

ri ≥ 0, i = k + 1, . . . , d.

(14)

5.1 Hamming graphs

Let us first consider the Hamming graph H(2, 7) again. Thus, in Table 3 we show the
bounds obtained for αk(H(2, 7)). Note that, in general, the bounds obtained by Theo-
rem 4.1 constitute a significant improvement with respect to those in F. [13], and Abiad,
Cioabă, and Tait [1], and coincide with those obtained from the Delsarte’s linear program-
ming bound. Moreover, the bounds for k 6= 4 are equal to the exact values. In particular,
α1 = 64 and α6 = 2 since the Hamming graphs are bipartite and 2-antipodal; α7 = 1
since H(2, 7) has diameter D = 7; and the exact value α2 = 16 since H(2, 7) contains the
Hamming(7, 4) perfect code.

For the case k = 2, it is possible to get tight bounds for every Hamming graph H(2, d).
As commented, in this case, the 3-minor polynomial is f3(x) = f1(x)f2(x) with zeros at
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k 1 2 3 4 5 6 7

Bound from Theorem 1.3 109 72 36 19 7 2 –

Bound from Theorem 1.5 (k > 2) - - 65 67 64 65 64

Bound from Theorem 1.6(i)-(iii) - 21 56 6 55 3 55

Bound from Delsarte (14) 64 16 8 3 2 2 1

Bound from Theorem 4.1 64 16 8 3 2 2 1

Exact value 64 16 8 2 2 2 1

Table 3: Comparison of the bounds for αk in the Hamming graph H(2, 7).

θd = −d, for θi ∈ {−2,−1} (the largest eigenvalues not greater than −1), and θi−1 ∈ {0, 1}.
Then, we obtain

α3 ≤
2d−1

d+ 1
(d odd), and α3 ≤

2d−1

d
(d even).

5.2 The Johnson graph J(14, 7)

As an example of a (non-bipartite) distance-regular graph, consider now the Johnson
graph J(14, 7). The comparative results are now in Table 4. Note that, in contrast with
the case of H(2, 7), for small values of k, namely k = 3, 4, Delsarte’s linear programming
bound is much better. Again, as in the case of Hamming’s graph, the bounds for k = 6, 7
are equal to the correct values α6 = 2 and α7 = 1, since J(14, 7) is also 2-antipodal and
it has diameter D = 7. In this case, the other exact values are not shown because the
computation on a standard laptop failed. (While G = J(14, 7), and all their powers, have
3432 vertices, the first values of the table about the graph power G3 requires to consider
2,942,940 edges!)

k 3 4 5 6 7

Bound from Theorem 1.3 464 125 20 2 –

Bound from Theorem 1.5 935 721 546 408 302

Bound from Theorem 1.6(ii)-(iii) 26 10 5 3 2

Bound from Theorem 1.6(iv) 80 86 25 2 1

Bound from Delsarte (14) 8 3 2 2 1

Bound from Theorem 4.1 19 6 2 2 1

Table 4: Comparison of bounds for αk in the Johnson graph J(14, 7).
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5.3 Antipodal distance-regular graphs

Finally, we consider an infinite family of distance-regular graphs where our bound for αd−1
is tight. With this aim, we assume that the minor polynomial takes non-zero value only
at θ1. Thus, fd−1(x) = 1∏d

i=2(θ0−θi)

∏d
i=2(x− θi). Then, the bound (4) of Theorem 4.1 is

d∑
i=0

mifd−1(θi) = m0fd−1(θ0) +m1fd−1(θ1) = 1 +m1

∏d
i=2(θ1 − θi)∏d
i=2(θ0 − θi)

= 1 +m1
π1
π0

where, in general, πi =
∏
j=0,j 6=i |θi − θj | for i = 0, 1, . . . , d. Now suppose that G is an

r-antipodal distance-regular graph. Then, in F. [13], it was shown that G is an r-antipodal
distance-regular graph if and only if its eigenvalue multiplicities are mi = π0/πi for i even,
and mi = (r − 1)π0/πi for i odd. So, with m1 = (r − 1)π0/π1, we get

αd−1 ≤ 1 +m1
π1
π0

= r,

which is the exact value.

When G is an r-antipodal distance-regular graph with odd d, we can also consider
the minor polynomial gd−1, which takes non-zero value only at θd, that is gd−1(x) =

1∏d−1
i=1 (θ0−θi)

∏d−1
i=1 (x−θi). Then, reasoning as above, we get again the tight bound Ψ(gd−1) =

1 +md
πd
π0

= r.

5.4 Odd graphs

For every integer ` ≥ 2, the odd graphs O` constitute a well-known family of distance-
regular graphs with interactions between graph theory and other areas of combinatorics,
such as coding theory and design theory. The vertices of O` correspond to the (` − 1)-
subsets of a (2` − 1)-set, and adjacency is defined by void intersection. In particular, O3

is the Petersen graph. In general, the odd O` is a `-regular graph with order n =
(
2`−1
`−1
)

=
1
2

(
2`
`

)
, diameter ` − 1, and its eigenvalues and multiplicities are θi = (−1)i(` − i) and

m(θi) =
(
2`−1
i

)
−
(
2`−1
i−1
)

for i = 0, 1, . . . , `− 1. For more details, see for instance, Biggs [4]
and Godsil [20].

In Table 5 we show the bounds of the k-independence numbers for O`, ` = 2, 3, 4, 5
given by Theorem 4.1. The numbers in bold faces, 7 and 66, correspond to the known
values of 1-perfect codes in O4 and O6, respectively. As in the case of Hamming graphs,
all the obtained bounds coincide with the Delsarte’s LP bounds.

More generally, (8) and (9) allow us to compute the bounds for α1 and α2 of every
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graph / k 2 3 4 5

O4 7 – – –

O5 13 8 – –

O6 66 21 11 –

O7 158 90 17 12

Table 5: Some bounds for αk in odd graphs O` for ` = 4, 5, 6, 7.

odd graph O`, which turn out to be

α1 ≤
(
2`
`

)
(`− 1)

4`− 2
∼ 22`−2

`
1
2
√
π
, (15)

α2 ≤
(
2`
`

)
(`− 2)

2(`+ (−1)`(`− 2(−1`))
∼ 22`−1

`
3
2
√
π
, (16)

where we have indicated their asymptotic behavior, when ` → ∞, by using the Stirling’s
formula. As a consequence, we have the known result that, when ` is odd, the odd graph
O` has no 1-perfect code. Indeed, the existence of a 1-perfect code in O` requires that

α2 = n
`+1 =

(2`` )
2(`+1) (since all codewords must be mutually at distance ≥ 3). However, when

` is odd, (16) gives α2 ≤
(2`` )(`−2)

2(`−1)(`+2) <
(2`` )

2(`+1) , a contradiction. (In fact, when n is a power

of two minus one,
(2`` )

2(`+1) is not an integer, which also prevents the existence of a 1-perfect

code.) Note that this result is in agreement with the fact that a necessary condition for a
regular graph to have a 1-perfect code is the existence of the eigenvalue −1, which is not
present in O` when ` is odd (see Godsil [20]).

Finally, by using the same polynomial as in Subsection 5.3, we have that the (d− 1)-
independence number of O`, where d− 1 = `− 2, satisfies the bounds

α`−2 ≤ 1 +m1
π1
π0

=

{
2`− 1, ` even,
2`− 2, ` odd.

For instance, for the Petersen graph P = O3, this yields α1 ≤ 4, as it is well-known.

6 Some examples in walk-regular graphs

In this section, we consider some walk-regular graphs that are not distance-regular. Thus,
in this case, Delsarte’s LP bound does not apply. Instead, we compare our results with
those obtained with the Lovász theta number, commonly denoted by θ. This is a well-
known parameter introduced by Lovász [27] in order to bound the Shannon capacity Θ
of a graph G, θ(G) ≤ Θ(G). It is also known as Lovász theta function and it can be
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computed by semidefinite programming (SDP). Two possible definitions of this parameter
are the following: Let G = (V,E) be a graph on n vertices. Let A = (auv) range over all
n × n symmetric matrices such that auv = 1 when u = v or uv 6∈ E. Let ρ(A) be the
spectral radius of A. Then, the Lovász theta number of G is

θ(G) = min
A

ρ(A). (17)

Alternatively, the dual method to this is θ(G) = maxB tr(BJ), where B ranges over all
n × n symmetric positive semidefinite matrices such that buv = 0 for every uv ∈ E and
trB = 1, and J is the all-1 matrix (see Lovász [27]).

It is known that the independence number is upper bounded by the Lovász theta
number, so that, in our context, αk(G) = αk(G

k) ≤ θ(Gk). As a consequence, our
spectral bounds for αk could be all obtained as the values of some feasible solutions to the
minimization formulation of the Lovász theta semidefinite programming. Therefore, they
are all greater than or equal to the Lovász theta numbers of θ(Gk). However, for k-partially
walk-regular graphs, computing our spectral bound Ψ(fk) through the minor polynomials
is significantly faster than solving an SDP, and, in many cases, we have equality, Ψ(fk) =
θ(Gk), as shown in Table 6. Moreover, as commented in the Introduction, we think that
the minor polynomials have interest on their own, and could be used in other contexts.
In fact, as it happened with the Shannon capacity, the upper bound of Theorem 4.1 also
applies for the Lovász theta number,

θ(G) ≤ Ψ(fk) = tr fk(A).

To prove it, just consider the matrix Ak = J − nfk(A) + Ψ(fk)I, which satisfies the
conditions in (17) and it has spectral radius ρ(Ak) = n− nfk(θ0) + Ψ(fk) = Ψ(fk).

Putting all together (Proposition 4.2 and the above results), if G is walk-regular, the
following inequalities hold:

αk(G) ≤ θ(Gk) ≤ Θ(Gk) ≤ tr fk(A),

and, if the exact value of αk(G) equals tr fk(A) (so that both numbers are integers),
then all inequalities become equalities. This gives a method to find the Shannon capacity
Θ(Gk) being equal to the Lovász theta number θ(Gk). (For k = 1 this was already noted
by Lovász in [27]).

Apart from some known graphs, we compared our bounds with GM ×K2, where GM
is the walk-regular graph of Figure 3 (see Godsil and McKay [21]), and the graph F20 of
Figure 4 obtained by Farrell [12], which is the first example of a distinct cubic walk-regular
graph that is neither vertex-transitive nor distance-regular. The obtained results are in
Table 6, where, as we mentioned, we observe that all our bounds coincide with the Lovász
theta number.
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Figure 3: Godsil & McKay graph.

Figure 4: Farrell graph F20.
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GM ×K2 [21] k 2 3 4 5 6

Bound from Lovász θ number 4 2 1 – –

Bound from Theorem 4.1 4 2 1 – –

Exact value 4 2 1 – –

F20 [12] k 2 3 4 5 6

Bound from Lovász θ number 4 2 2 1 –

Bound from Theorem 4.1 4 2 2 1 –

Exact value 4 2 2 1 –

Folkman graph k 2 3 4 5 6

Lovász θ number 3 2 1 – –

Bound from Theorem 4.1 3 2 1 – –

Exact value 3 2 1 – –

Gray graph k 2 3 4 5 6

Bound from Lovász θ number 11 9 3 3 1

Bound from Theorem 4.1 11 9 3 3 1

Exact value 11 9 3 3 1

Ljubljana graph k 2 3 4 5 6

Bound from Lovász θ number 27 18 10 8 2

Bound from Theorem 4.1 27 18 10 8 3

Exact value 26 17 8 8 2

Table 6: Comparison between bounds and exact values of αk in some walk-regular graphs
(not distance-regular).
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