
Defeating Barriers for Resource Usage

Testing for Autonomous Driving Frameworks

Author:

Miguel Alcón Doganoc

Supervisor:

Hamid Tabani Barcelona Supercomputing Center

Co-supervisor:

Jaume Abella Barcelona Supercomputing Center

Tutor:

Miquel Moretó Department of Computer Architecture

Universitat Politècnica de Catalunya

Barcelona Supercomputing Center

Advanced Computing Specialization

Master in Innovation and Research in Informatics

Facultat d’Informàtica de Barcelona

Universitat Politècnica de Catalunya

Department of Computer Architecture - Operating Systems

Barcelona Supercomputing Center

June 24, 2020



Acknowledgements

First of all, I would like to sincerely thank my master Thesis’ advisors Hamid, Jaume and Fran, for

their guidance and mentoring throughout this trip. I also want to thank the rest of the members

of the CAOS group at the BSC, as they have always been available to lend me a hand and provide

feedback on my work to improve it, especially to Leonidas and Enrico for collaborating in this

research.

Moreover, I would like to acknowledge the BSC institution for financially support my master studies,

and also to the following institutions that have partially supported this work: the Spanish Ministry

of Economy and Competitiveness (MINECO) under grant TIN2015-65316-P, the UP2DATE Eu-

ropean Union’s Horizon 2020 (H2020) research and innovation programme under grant agreement

No 871465, the SuPerCom European Research Council (ERC) project under the European Union’s

Horizon 2020 research and innovation programme (grant agreement No. 772773), and the HiPEAC

Network of Excellence.

Finally, I thank my parents and sister for their unconditional support during all these years. With-

out you, this master Thesis would not be possible.



Abstract

The software used to implement advanced functionalities in critical domains (e.g. autonomous

operation) impairs providing evidence that the software has enough resources to correctly execute

(e.g. time and memory). This is not only due to the complexity of the underlying high-performance

hardware deployed to provide the required levels of computing performance, but also due to the

complexity, non-deterministic nature, and huge input space of the Artificial Intelligence (AI) al-

gorithms used. In this Thesis, we focus on Apollo, an industrial-quality Autonomous Driving

(AD) software framework. AD systems, similar to other automotive safety-critical systems, must

undergo a development process with exhaustive Verification and Validation (V&V) steps. Both

steps are challenged by the inherent complexity of AD systems. Our work can be divided into two

contributions.

First, we statistically characterise Apollo’s observed execution time variability and reason on the

sources behind it, aiming the verification step. We discuss the main challenges and limitations in

finding a satisfactory software timing analysis solution for Apollo. While providing a consolidated

solution for the software timing analysis of Apollo is a huge effort far beyond the scope of a single

master Thesis, our work aims to set the basis for future and more elaborated techniques for the

timing analysis of AD software.

Second, we enable software resource usage testing, including execution time bounds and memory,

on Apollo. Resource usage testing is a mandatory validation step during the integration of safety-

related real-time systems. This Thesis exposes the difficulties to perform resource usage testing

for AD frameworks by analysing a complex and critical module of Apollo. Then, it provides some

guidelines and practical evidence on how resource usage testing can be effectively performed, thus

enabling end-users to validate their safety-related real-time AD frameworks.



Contents

1 Introduction 8

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Problem Statement, Objectives and Contribution . . . . . . . . . . . . . . . . . . . . 9

1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Background 13

2.1 Safety-Related Software Development Process . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Apollo Autonomous Driving System . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Perception Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2 Beyond Apollo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Timing Analysis of Apollo 21

3.1 Timing Analysis of Safety-Critical Systems . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Experimental Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.1 Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.3 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Execution Time Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.1 Module Level Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1



Contents

3.4.2 Stage Level Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Sources of Execution Time Variability and Impact Software Timing . . . . . . . . . . 32

3.5.1 Reasoning on Apollo’s Variability . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 En-Route 36

4.1 Roadblocks for Resource Usage Testing on Autonomous Driving Software . . . . . . 36

4.1.1 CPU Resource Usage Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.2 GPU Resource Usage Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.1 For CPU Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.2 For GPU Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Experimental Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.1 Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.2 Data and Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Evaluation and Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4.1 Execution Time Usage Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4.2 Memory Usage Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Related Work 50

6 Conclusions and Future Work 52

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7 Publications 54

2



Acronyms

AD Autonomous Driving.

AI Artificial Intelligence.

ASIL Automotive Safety Integrity Level.

AV Autonomous Vehicle.

CAN Controller Area Network.

CDF Cumulative Distribution Function.

D2H Device-to-Host.

DAG Direct Acyclic Graph.

DAL Design Assurance Level.

DLA Deep Learning Accelerator.

GDB GNU Project Debugger.

GPT Google Performance Tools.

H2D Host-to-Device.

HMI Human Machine Interface.

ISP In-System Programming.

LiDAR Light Detection And Ranging.

MBTA Measurement-Based Timing Analysis.

PVA Programmable Vision Accelerator.

3



Acronyms

QM Quality Managed.

RANSAC RANdom SAmple Consensus.

ROS Robot Operating System.

SOTIF Safety Of The Itended Functionality.

STA Static Timing Analysis.

V&V Verification and Validation.

WCET Worst-Case Execution Time.

YOLO You Only Look Once.

4



List of Figures

2.1 Software development process as described in ISO 26262 (picture taken from ISO

26262 Part 6 [33]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 System development process as described in ISO 26262 (picture elaborated from ISO

26262 Part 4 [33]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Interaction between Apollo’s modules (picture taken from Apollo’s documentation [9]). 17

2.4 Main function of an ApolloApp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 DAGs for two different configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Observed per-module execution time of Apollo. . . . . . . . . . . . . . . . . . . . . . 25

3.2 Execution time (ms) analysis of two Apollo modules. . . . . . . . . . . . . . . . . . . 25

3.3 Apollo AD system pipeline. Dots indicate the instrumentation points we use for

extract timing behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Distribution of execution times (ms) of each module. . . . . . . . . . . . . . . . . . . 28

3.5 Execution time (ms) distribution of YOLO stages. . . . . . . . . . . . . . . . . . . . 31

3.6 RANSAC fitting algorithm in Apollo’s lane detection. . . . . . . . . . . . . . . . . . . . . 34

3.7 Execution time variability of RANSAC. . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 Call tree of the execution of the Perception module. . . . . . . . . . . . . . . . . . . 38

4.2 Bash command to perform the profiling in selected sections of the foo program. . . . 41

4.3 Example of C++ code that selects the section of code to be profiled. . . . . . . . . . 41

4.4 NVIDIA Xavier block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5



List of Figures

4.5 Execution time breakdown for both camera and LiDAR configurations. TL stands

for Traffic Light. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.6 Excerpt timeline of the execution of Perception with both configurations. The x-axis

is shown in seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.7 Memory usage over time for the provided bag files and configurations. . . . . . . . . 46

6



List of Tables

2.1 Example of output of resource usage tests (planned part). Memory occupancy is

given in KBs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Example of output of resource usage tests (measured part). Memory occupancy is

given in KBs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Measures of dispersion for Apollo modules. Values in the first 5 rows are in milliseconds. 29

3.2 Measures of dispersion (YOLO stages). Values in the first 5 rows are in milliseconds. 30

4.1 CUDA kernels executed by LiDAR process node. . . . . . . . . . . . . . . . . . . . . 46

4.2 CUDA kernels executed by Camera process node. . . . . . . . . . . . . . . . . . . . . 47

4.3 CUDA kernels executed by Traffic Light process node. . . . . . . . . . . . . . . . . . 48

7



Chapter 1

Introduction

Each year, more than 1.35 million people die as a result of road traffic crashes [53], and millions of

people are injured. Studies show that transportation is responsible for nearly 30% of the Europe’s

total CO2 emissions, of which 72% comes from road transportation [55]. This does not include

other drawbacks of the automotive sector, such as effect on soil, water and noise pollution, energy

dependency or causing traffic congestion [44]. Autonomous vehicles (AV) can become part of the

equation to solve some of these problems such as reducing fatalities and CO2 emissions.

As all autonomous systems [71], AVs are capable of making decisions independently of human

interference, and these decisions have to be taken while facing uncertainty. More precisely, AVs

rely on AI, sensors and big data to analyse information, adapt to changing circumstances and

handle complex situations on the road as a substitute for human judgement. Adding this to that

at least 90% of vehicle accidents are estimated to be the result of human error, AVs could reduce or

eliminate the largest cause of car accidents while also outperforming human drivers in perception,

decision-making and execution. However, since autonomous systems are very complex, machine

errors could lead to other problems.

1.1 Motivation

Now, AVs are starting to be a reality. Indeed, AD is attracting significant interest from the industry,

primarily from the automotive [23,29,47,73] and technology [7,52,77] sectors. Top companies like

Ford, Toyota, Daimler, Google, Amazon, and NVIDIA are currently working on AD technologies.

Even some of them already have AVs on the road. This is also the case for Baidu and its Apollo

project. 52 AVs of Baidu droved 754,000 km on Beijing roads in 2019 [67]. Most recent news points

out that during the COVID-19 pandemic, Baidu’s driverless cars are helping to carry out frontline

anti-epidemic work such as cleaning, disinfecting, logistics, and transportation with support from

partner companies [15]. In particular, these Baidu’s cars are driving under the control of the Apollo

8



Chapter 1. Introduction

AD framework [14], which is one of the most sophisticated open-source projects implementing the

entire AD software stack. In this project, more than 120 OEMs, Tier1, Tier2, high-tech companies,

and car manufacturers are participating. In this Thesis, we use Apollo as our reference AD system

for our experiments and of our analysis.

AD systems differ from regular systems in that they are considered real-time and safety-critical [31,

72]. On the one hand, real-time systems are systems where their behaviour correctness depend not

only on the logical results of the computations but also on the physical time they take to produce

these results. They must guarantee the results are produced within specified time constraints. For

instance, the braking system of a car must activate the brake before a deadline to guarantee its

correct behaviour and the safety of the passengers. On the other hand, safety-critical systems are

systems whose failure or malfunctioning may result in death or injury to people, loss or severe

damage to equipment or property, or environmental harm. These systems must be protected to

ensure safety is not compromised, and failures occur with negligible probability. Following the

previous example, the braking system is also safety-critical. To sum up, safety-critical real-time

systems must guarantee functional (e.g. correct output of an algorithm) and non-functional (e.g.

meeting deadlines) requirements. In this Thesis, we focus on time correctness of AD systems in

general, and of Apollo in particular.

1.2 Problem Statement, Objectives and Contribution

AD systems, similar to other automotive safety-related systems, must undergo a development

process with exhaustive V&V steps, where each item is proven to adhere to its safety requirements

with the degree of rigor dictated by safety standards such as ISO 26262 [33]. ISO 26262 is an

international standard for functional safety of electrical and/or electronic systems in production

automobiles defined by the International Organization for Standardization.

The development process of safety-related automotive systems is well-defined in ISO 26262. In par-

ticular, some safety goals are determined related to safety at the vehicle level. Those safety goals

are mapped into specific safety requirements as the system is specified, so that items composing

the system have some safety requirements to meet. Then, the architectural design of the system

is performed propagating requirements. At each stage, some verification activities are performed,

for instance, related to assessing whether all requirements are met. Then, software and hardware

elements are designed and implemented, verifying that they meet their requirements. Once com-

ponents are implemented, they are tested to detect flaws in their design. This requires defining

appropriate test cases and metrics to assess test coverage. As components are integrated, larger

tests are performed to validate the integration, the adherence to the requirements, and finally the

correct operation of the vehicle. This test phase is referred to as the validation phase.

In safety-critical systems, on one hand, it should be guaranteed that each task has enough resources

9



Chapter 1. Introduction

before its execution begins. On the other hand, timing verification for software items has received

significant attention during decades with a plethora of techniques aimed at deriving estimates to

the Worst-Case Execution Time (WCET) of tasks to verify that specific task schedules meet safety

requirements (e.g. the braking system activates the brake before its deadline) [2, 20, 38, 40, 41, 50,

65, 81]. Instead, timing validation has received much less attention. Timing validation focuses on

showing that derived timing budgets are not violated. The absence of violations serves as evidence

for certification purposes on the timing correctness of the system. Therefore, resource verification

is key for the successful execution of the tasks.

Automotive industry resorts to engineering practices based on creating stressing tests and collecting

measurements, sometimes with the help of appropriate timing analysis tools that can be used

for both timing V&V [68]. These techniques rely on the ability to collect information on the

execution of the tasks under analysis. This is precisely challenged by forthcoming AD systems.

This is so because AD systems build upon overwhelmingly complex software constructs. On the

one hand, paradoxically, part of the complexity is introduced to ease software development and

maintainability. This includes self-managed thread/process creation for specific functionalities,

subscription of services through callbacks, and abundant use of objects and pointers shared across

different modules, to name a few. As a representative and industry-level AD system, Apollo is

built upon all this complexity. However, complex software structures can create unobvious and

dynamic cross-process dependencies that available resource usage assessment tools fail to capture,

thus being unable to measure, for instance, the actual execution time and memory requirements

of AD software modules in general, and for their functions, in particular. Hence, validation teams

lack the means to perform their work for AD frameworks.

The effectiveness and scalability of traditional V&V approaches are threatened by the complex-

ity and unboundedness of the input and result spaces of functionalities such as perception and

tracking [4, 70]. The untenable number of potential inputs from the operational environment, and

the non-deterministic nature of decision-making algorithms, complicate the definition of worst-case

scenarios in both functional and non-functional dimensions [70]. As a result, it is hard to de-

fine budgets for software timing, relevant criteria for software timing V&V, and adequate testing

methodologies.

In this Thesis, we focus on both resource verification factors, memory resource usage and timing

budgets. In particular, we show the challenges to measure memory resource usage in sophisticated

AD systems. Our study on Apollo AD framework shows that measuring resource usage is dra-

matically more complicated in comparison with traditional real-time systems. Regarding timing

budgets of Apollo we show that in addition to the complexity of measuring timing budgets of highly

coupled modules, we face significant timing variability across various modules.

In this line, contributing to the state-of-the-art with an efficient software timing solution for AD

software frameworks like Apollo is an overwhelming objective that will still require long-term efforts

by the community to be designed and developed. Nevertheless, we started working in this direction

10



Chapter 1. Introduction

by, first, using measurement-based analysis to perform timing analysis on Apollo; and, second,

proposing a set of guidelines to collect execution time and memory utilization measurements of AD

modules and their components, thus enabling resource usage testing, as mandated in the automotive

safety regulation ISO 26262 [33]. In particular, our contributions are the following:

1. Focusing on the analysability of Apollo as a representative example of a class of AD software

frameworks, we highlight how its software characteristics, in combination with the complex

hardware platform (required to sustain the framework performance requirements), are not

comparable with conventional embedded critical systems. In particular, we discuss how ran-

domness, huge input space, and execution scenarios make it difficult to apply established

timing analysis approaches [1, 59,79,80].

2. Analysis of the execution time variability of Apollo when run on a GPU-based platform.

We focus on the jitter in the per-frame processing time of each Apollo’s module. Also, we

performed a deeper analysis of the Apollo’s camera object detector, which is one of the most

critical processes of the Perception module.

3. Analysis of some of Apollo’s sources of non-determinism with emphasis on its built-in ran-

domization features. We analyse an example function in Apollo, Random Sample Consensus

(RANSAC) fitting algorithm, that instantiates specific randomization properties.

4. Analysis of the difficulties and roadblocks to collect timing and memory utilization measure-

ments of an AD software framework, using Apollo framework in general, and one of its key

module (Perception), in particular, as a representative industry-level software module for

guiding the discussion.

5. A set of remedies and guidelines to defeat those roadblocks, En-Route, to perform the resource

usage testing of AD software in general, and Apollo in particular, with specific focus on

timing and memory utilization concerns. En-Route guidelines aim at setting the basis for the

development of a full methodology.

6. Assessment of En-Route on Apollo’s Perception module. In particular, we showcase how exe-

cution times can be collected at fine granularities despite the complex and dynamic execution

constructs of Apollo, and how memory utilization can also be collected and broken down

across different Perception software components.

1.3 Thesis Organization

The rest of the Thesis is organized as follows. Chapter 2 presents background on the safety-related

software development process and our reference AD system, the Apollo AD framework. Chapter 3

presents our analysis of the execution time variability of Apollo and the reasoning on the sources

11



Chapter 1. Introduction

behind the observed variability. Chapter 4 describes the difficulties and roadblocks we suffered to

collect timing and memory usage measurements of Apollo; En-route, our guidelines to defeat those

roadblocks; and finally an assessment of En-route on Apollo’s Perception module. Chapter 5 shows

other works that are related with this Thesis. Chapter 6 concludes it and gives some insights about

the future work to be done in this area.

The work done in this Thesis has been published in the 35th ACM/SIGAPP Symposium On Applied

Computing (SAC) [5], and in the 26th Real-Time and Embedded Technology and Applications

Symposium (RTAS) [6].

12



Chapter 2

Background

In this chapter, we provide some background on the development process of automotive systems

as stipulated in the ISO 26262 [33] safety standard, with emphasis on the software part, as well as

more detail on the Apollo AD framework [4, 14,70].

2.1 Safety-Related Software Development Process

ISO 26262, the main functional safety standard for road vehicles, provides guidance on how to

develop automotive safety-related electric and electronic systems. Following the hazard and risk

analysis, safety goals and requirements are identified for the different software items. This process

is followed by decomposition of each software item into atomic software and hardware units that

need to be implemented without further decomposition. This process also propagates safety re-

quirements to each item following specified decomposition rules. As a result, each item is attached

an Automotive Safety Integrity Level (ASIL), ranging from A to D, where D is the most stringent

safety level and A the least. Alternatively, some components are not allocated any safety require-

ment, thus being tagged as Quality Managed (QM), meaning that safety regulations do not impose

any requirement on them. All safety-related items (those with some ASIL) undergo a design, V&V

process, as dictated by ISO 26262, to obtain enough evidence that those items meet their safety

requirements to a sufficient extent.

In the case of software, the development process in ISO 26262, see figure 2.1, consists of the require-

ments specification (6-6), software architectural design (6-7), and unit design and implementation

(6-8) to reach the actual product. Then, the V&V phase starts with software unit testing (6-9),

software integration testing (6-10), and software safety requirements verification (6-11). As part of

this process, and, in particular, during unit and integration testing, resource usage testing may be

performed to assess whether specific software items at different granularities (software units and

integrated software) adhere to their requirements. However, those tests may still be limited due

13



Chapter 2. Background

to the low level of integration at that stage, and resource usage testing must generally be repeated

during the system V&V phase1.

On the one hand, verification [34] is the process of evaluating a system or component to deter-

mine whether the products of a given development phase satisfy the conditions imposed at the

start of that phase. In software verification, two of the most used techniques to analyse the tim-

ing of software units are Static Timing Analysis (STA) and Measurement-Based Timing Analysis

(MBTA) [79]. The main difference between both techniques is that STA measures the software tim-

ing through analytic methods, without the need of actually executing the program on real hardware

nor simulators, while MBTA needs real execution times, collected under controlled scenarios, in-

tending to predict what could happen in other scenarios. However, both techniques aim to estimate

the WCET of the software unit under analysis. We expand deeply these concepts in section 3.1.

On the other hand, validation [34] is the process of providing evidence that the system, software,

or hardware and its associated products satisfy requirements allocated to it at the end of each

phase, solve the right problem, and satisfy intended use and user needs. I.e., it is the confirmation,

through the provision of objective evidence, that the requirements for a specific intended use or

application have been fulfilled.

4-7 System
design

6-6 Specification of
software safety
requirements

6-7 Software
architectural

design

6-8 Software
unit design and
implementation

Design phase
verification

Design phase
verification

Design phase
verification

4-8 Item
integration and

testing

6-11 Verification of
software safety
requirements

6-10 Software
integration

testing

6-9 Software
unit design and
implementation

Test phasesDesign phases

Validation
tests

Item
testing

Software
testing

Validation
tests

Software
testing

Validation
tests

Software
testing

Validation
tests 6-

5 
In

iti
at

io
n 

of
 p

ro
du

ct
 d

ev
el

op
m

en
t a

t
th

e 
so

ftw
ar

e 
le

ve
l

Scope of
part 6

Scope of
part 4

Figure 2.1: Software development process as described in ISO 26262 (picture taken from ISO 26262

Part 6 [33]).

System-wise, see figure 2.2, after the specification and system design, hardware and software prod-

uct development occurs, where software development is shown in figure 2.1. Software and hardware

items are then integrated to form a subsystem and, as indicated before, some testing is performed.

1ISO 26262 Part 6, devoted to product development at the software level, already states that “some aspects of

the resource usage test can only be evaluated properly when the software integration tests are executed on the target

hardware or if the emulator for the target processor supports resource usage tests”.

14



Chapter 2. Background

At this stage, since the platform is closer to its final state, further testing processes with higher con-

fidence can be performed. For instance, using hardware-in-the-loop environments where a Simulink

model feeds the subsystem and its outputs are obtained with a host that validates them either

real-time or simply logs them for some offline processing.

Specification of the technical safety requirements4-6

System design4-7

Hardware-software integration and testing4-8.4.2

Part 5: Product
development:
hardware level

Part 6: Product
development:
software level

Figure 2.2: System development process as described in ISO 26262 (picture elaborated from ISO

26262 Part 4 [33]).

The aim of the resource usage test process during integration phases includes the following objec-

tives:

1. Measuring minimum and maximum execution time, where the latter is of particular relevance

for real-time systems.

2. Measuring memory requirements, in any type of storage (e.g., Flash memories, DRAM,

SRAM, ROM) for code, (static) data, stack and heap.

3. Assess whether the task scheduling allows preserving all safety timing constraints (i.e. all

tasks finish by their deadlines).

This information allows the integrator detecting unacceptable resource usage, as well as identifying

the particular software component(s) causing excessive usage. For instance, the type of output

obtained from these tests may be summarized in tables such as table 2.1 and table 2.2. In particular,

for different software items of a hypothetical combustion engine, these tables show the measured

and budgeted (planned) CPU and memory usage (DFLASH, PFLASH, and, RAM) in an Infineon

AURIX CPU. By comparing expected and real values, engineers can determine whether budgets

allocated where sufficient and, if they aren’t, then they must debug the design to understand what

was mispredicted and fix it.

2.2 Apollo Autonomous Driving System

Apollo [14] is an industrial-quality AD software framework with over 120 industrial partners, most

of them top-tier AI tech companies and car manufacturers. Apollo has been already deployed

on a variety of prototype vehicles (including autonomous trucks) and supports state-of-the-art

15



Chapter 2. Background

Planned

Item Task CPU DFLASH PFLASH0 PFLASH1 RAM

Pos mngmt 10ms 3% 280 120 0 80

Angle 5ms 9% 36 0 768 24

Torque monitoring 40ms 1% 16 16 0 0

Accel monitoring 40ms 1% 16 16 0 0

Power mode 2ms 4% 46 376 0 240

Torque CTRL1 20ms 29% 2240 0 880 540

Torque CTRL2 20ms 28% 2048 0 860 512

Table 2.1: Example of output of resource usage tests (planned part). Memory occupancy is given

in KBs.

Measured

Item Task CPU DFLASH PFLASH0 PFLASH1 RAM

Pos mngmt 10ms 4% 308 168 0 96

Angle 5ms 9% 29 0 768 12

Torque monitoring 40ms 1% 10 21 0 0

Accel monitoring 40ms 1% 24 22 0 0

Power mode 2ms 2% 51 263 0 168

Torque CTRL1 20ms 26% 2688 0 1320 270

Torque CTRL2 20ms 14% 2048 0 774 410

Table 2.2: Example of output of resource usage tests (measured part). Memory occupancy is given

in KBs.

hardware [8] such as the latest ADs2 and cameras, from Velodyne [42] and other vendors, as well as

GPU acceleration. It offers its partners the opportunity to develop their own AD systems through

on-vehicle and hardware platforms. Regarding its software implementation, Apollo, similarly to

most state-of-the-art AD systems, consists of a set of modules [9, 57], see figure 2.3. Each of the

modules implement a crucial functionality of AVs. The main Apollo modules are as follows:

• Perception identifies the area surrounding the AV by detecting objects, obstacles, and,

traffic signs, and it is considered as the most critical and complex module of an AD system.

Perception module fuses the output of several types of sensors such as LiDAR, radar, and

camera to improve its accuracy.

• Localization estimates where the AV is located, using various information sources such as

GPS, LiDAR and an Inertial Measurement Unit (IMU). State-of-the-art localization algo-

2LIDAR, which stands for Light Detection and Ranging, uses laser pulses to build a 3D model of the environment

around the car. Essentially, they help autonomous vehicles “see” other objects, like cars, pedestrians, and cyclists.

16



Chapter 2. Background

rithms, including the one in Apollo, are capable of localizing the position of the vehicle at

centimeter-level accuracy.

• Prediction anticipates the future motion trajectories of the perceived obstacles.

• Routing tells the AV how to reach its destination via a series of lanes or roads.

• Planning plans the spatiotemporal trajectory for the AV to take.

• Control executes the planned spatiotemporal trajectory by generating control commands

such as accelerate, brake, and steering.

• CAN Bus (Controller Area Network Bus) is the interface that passes control commands to

the vehicle hardware. It also passes chassis information to the software system.

• Map is similar to a library. Instead of publishing and subscribing messages, it works as a

query engine support, which provides ad-hoc structured information regarding the roads.

• HMI (Human Machine Interface, or DreamView in Apollo) is a module for viewing the status

of the vehicle, testing other modules and controlling the functioning of the vehicle in real-time.

• Monitor is the surveillance system of all the modules in the vehicle, including hardware.

• Guardian is a safety module that performs the function of an Action Center and intervenes

should Monitor detect a failure.

Perception Prediction Planning Control

Relative
Map

Navigator HDMap CANBus

GuardianLocalization

Monitor

HMI

Key: Data lines Control lines

Figure 2.3: Interaction between Apollo’s modules (picture taken from Apollo’s documentation [9]).

For the sake of facilitating the installation and dependencies between numerous libraries, Apollo

is provided inside several Docker container images. A container is a standard software unit that

packages up code and all its dependencies so the entire application can run in a quick and reliable

way from one computing environment to another. A Docker container image is a lightweight,

standalone, executable package of software that includes everything needed to run an application:

code, runtime, system tools, system libraries and settings.

17



Chapter 2. Background

All modules in Apollo are implemented as ApolloApps, whose execution follows the code in figure

2.4. As it can be seen, Apollo uses three libraries for different purposes:

1 #define APOLLO MAIN(APP)

2 int main ( int argc , char ∗∗ argv ) {
3 goog l e : : In i tGoog leLogg ing ( argv [ 0 ] ) ;

4 goog l e : : ParseCommandLineFlags(&argc , &argv , true ) ;

5 s i g n a l (SIGINT , a p o l l o : : common : : a p o l l o a p p s i g i n t h a n d l e r ) ;

6 APP apo l l o app ;

7 ro s : : i n i t ( argc , argv , apo l l o app .Name( ) ) ;

8 apo l l o app . Spin ( ) ;

9 return 0 ;

10 }

Figure 2.4: Main function of an ApolloApp.

• The Google Logging Library (glog) [63], which implements an application-level logging, and

provides logging APIs based on C++-style streams and various helper macros. This library

contains the function google::InitGoogleLogging, which initializes it.

• The Google Commandline Flags (gflags) [62], which implements a C++ command-line flag

processing. This library contains the function google::ParseCommandLineFlags, which

looks for flags in argv and parses them.

• The Robot Operating System (ROS) [58] is a set of software libraries and tools that help

building robot applications. Several AD systems, including Apollo, are relying on ROS as an

middleware and communication system across modules. Function ros::init is from ROS

and it is needed before calling any other roscpp (C++ implementation of ROS) functions in

a node. Each ApolloApp is a ROS node.

To sum up, one module starts with the initialization of glog and ROS, and also loads the parameters

from the argv and parses them using gflags. These parameters are given to the application through

configuration files or as flags in the command line. After that, the module calls the Spin function

before finishing its execution. This function initializes one or more ROS spinners. Then, they call

their spin functions, which execute all the callback functions that are triggered during the runtime,

until the client shuts down the module. A callback function is connected to a specific event, and

it is triggered when this event occurs. In terms of ROS, a function can subscribe to an event

(topic) and publish an event as well. But not only functions can publish an event or subscribe to

it, other components of the AV such as sensors or the controllers of the accelerator, steering wheel

or gearbox can do it too. Thus, ROS acts as a link between Apollo’s modules, the car hardware,

and also between both.

18



Chapter 2. Background

2.2.1 Perception Module

The Perception module [11] is in charge of the detection of the obstacles that surround the car.

Its main functionality is to transform data from sensors (images, point clouds, etc.) into obstacles,

thus knowing relevant information about them, like their position, size, orientation, etc.

The global configuration of input sensors for the Perception module can be represented as a Direct

Acyclic Graph (DAG). With this, Apollo offers the possibility of building customized configura-

tions, according to the requirements and the available hardware. These DAGs, along with other

parameters of the input sensors, are defined in a configuration file. Apollo has implemented some

of these configurations, which are available in the source files. In this work, we consider the DAG

configurations shown in figure 2.5, as they are the ones that we could execute with the data (ROS

bag files, see section 3.3.2) that Apollo provides.

Fusion

Traffic Light
preprocess

Traffic Light
process

LiDAR
process

Radar
process

(a) LiDAR

Motion Service

Lane post-
processing

Fusion

Camera
process

Radar
process

(b) Camera

Figure 2.5: DAGs for two different configurations.

In these DAGs, nodes correspond to different processes and each of them is responsible for complet-

ing a specific task. Arrows indicate data dependencies between nodes of each DAG. For instance,

in figure 2.5b, Fusion requires the output data of Lane post-processing, Camera process, and Radar

process.

Apollo employs a variant of You Only Look Once (YOLO) [28,69] within the Camera process node

of the camera configuration (figure 2.5b), as the main part of the Perception module. YOLO is an

award-winning, widely-used and state-of-the-art object detection approach. Its most computationally-

intensive function is a Convolutional Neural Network inference algorithm. Every second, in an AV,

each camera captures multiple frames, and the object detector processes them on a frame-by-frame

basis. The main stages of the YOLO object detector module are:

• For every frame, the detector first loads the frame (in an appropriate format) into the main

memory.

• Then, all the data is moved to the GPU memory (host-to-device transfer).

• Once the data is stored in the GPU memory, GPU kernels are launched to perform the neural

network evaluation.

19



Chapter 2. Background

• The result of the operations is transferred back to the main memory (device-to-host transfer).

• As the last step, some post-processing operations are performed to finalize and publish the

result of the detection.

2.2.2 Beyond Apollo

In this Thesis, we study Apollo as a representative and well-known AD framework. There are

other well-known AD systems such as Autoware [30] with similar software architecture design,

using ROS and Docker containers, thus facing similar challenges to the ones explored in this work.

ROS is extensively used in robotics and other domains due to the interfaces offered to integrate

modules either time-triggered or event-triggered, making code maintainability a key feature of ROS.

However, such advantage comes at the cost of using abundant pointers, indirections and abstraction

layers that lead to significant testing difficulties, as discussed in the rest of the Thesis. Therefore,

we focus on Apollo without lack of generality, and our contributions and findings can be naturally

extended to other domains and frameworks.

It is also worth pointing out that, in this Thesis, we used Apollo’s version 3.0 as a basis for our

work and experiments. All explanations regarding Apollo’s implementation focus on this version

specifically.

20



Chapter 3

Timing Analysis of Apollo

In this chapter, we first discuss how the complexity of AD systems difficult the application of

established timing analysis approaches. Second, we report the statistical properties of the system on

analysis’ execution time distributions, which must be known before applying some timing analysis

technique. And, third, we analyse the sources of timing variability of Apollo, reinforcing what has

been discussed first. Final insights in statistical and probabilistic approaches for Apollo’s timing

analysis, which are beyond the scope of this Thesis, are presented in [6].

3.1 Timing Analysis of Safety-Critical Systems

In the real-time system’s domain, the system (that is the specific hardware and software to be

deployed) must pass some strict certification tests, for both functional as well as timing valida-

tion [76]. Each specific industry domain needs to apply different certification processes, such as the

ones described in ISO 26262 for the automotive industry. Timing analysis techniques are used to

verify if the applications that run on real-time systems fulfil their timing constraints. Because of

the increasing complexity of hardware and software, the correct verification of meeting constraints

is getting harder, in time and cost. Two of the most used techniques in the industry, STA and

MBTA [79], find serious difficulties to verify the timing constraints of current complex systems such

as AD frameworks. These techniques focus on safely and tightly estimating the WCET bounds of

a process to quantify the maximum time it can last. It is tough to derive the WCET of a specific

task in particular hardware since all the possible factors that could have an impact on the execution

time should be explored, which is unfeasible for AD software in general. These factors can be, for

instance, the platform in which the task is going to run or the different possibilities of input sets it

can receive, to name a few.

STA computes the WCET estimation of the task under analysis through analytic methods. This

means that STA does not need timing measurements of the program running on a real platform.

21



Chapter 3. Timing Analysis of Apollo

The possible execution paths the application can take during its execution are analysed and then put

into an abstract model of the platform. With this information, the model computes an estimation

of the execution time each path lasts, and the final WCET is derived using these estimations.

Conversely, MBTA estimates the WCET of the task by running the program on the objective

platform or on a simulator, measuring the time it takes to finish. After several iterations of this

process, a WCET bound is computed in base of the execution time distribution observed and using

the proper statistical methods.

STA approaches, while continuing to be an appropriate choice for the analysis of simpler, more

predictable systems, can neither effectively model the increasingly complex hardware, nor deal with

the structural and syntactical characteristics of exceptionally complex software functionalities [1,

59, 79, 80]. On the modeling side, building an accurate and reliable hardware model of modern

heterogeneous platforms is rapidly becoming an untenable task, owing to their significant complexity

and, often, by the non-disclosure of fundamental information [1,59]. From an analytical perspective,

instead, the typical program structure and code constructs found in complex AD functionalities

pose a challenge, when not an impediment, to the various analysis steps in STA. In fact, the use of

dynamic references (pointers), recursion, and unboundable loops, in combination with the intrinsic

nature and (random) logic of typical AD advanced functionalities, often prevents the analysis

from computing an absolute, realistic worst-case path [1,39]. To overcome these limitations, static

analysis approaches have typically indulged into conservative models and analysis assumptions that

inevitably lead to overly pessimistic results.

Equally critical (and partially overlapping) issues also arise for industrially-established MBTA ap-

proaches [79], which cannot be straightforwardly applied to capture the entangled interactions

between complex hardware and software functionalities. The behavior of AD software typically

builds on deep, counter-intuitive, or even random input-output relations, that cannot be easily

reconstructed. As a result, identifying (a priori) and triggering specific execution paths (typically

among a huge number) or even fulfilling well-known code coverage requirements, such as Modified

Condition/Decision Coverage (MCDC), becomes a cumbersome task [1, 79]. This scenario com-

plicates the inherent shortcoming of conventional measurement-based approaches: the collected

observations can only realistically be a small subset of the countless scenarios that can potentially

happen due to the combination of software and hardware conditions, with the result of reducing

their predictive value [1]. Apollo modules exhibit extremely high cyclomatic complexity (number

of linearly independent paths within a region of code), with several functions showing a cyclomatic

complexity above 50, which is strongly discouraged [46], and ultimately does not allow to reach a

satisfactory level of path coverage [12].

The orthogonal dimension of parallel execution also brings its own challenges to both static and

measurement-based approaches. Bounding the timing interference potentially arising between, for

example, Apollo modules due to contending accesses to shared resources is particularly challenging.

The contention impact incurred by a module activation depends on the number and timing of re-

22



Chapter 3. Timing Analysis of Apollo

quests sent by each module in the system to the shared hardware resources, which in turn depends

on the particular traversed path as determined by the modules’ input and sometimes potentially

non-deterministic (random) algorithms. Static analysis, which normally handles multicore inter-

ference as an additive factor to be added to timing analysis results obtained in isolation [19, 24],

generally fails to deliver sufficiently tight results. Dynamic approaches, instead, try to design

specific tests to trigger the worst-case contention scenario [16], which is generally out of reach.

In our view, the most feasible approach to follow for software timing budgeting and verification is

that used for the verification of the software and hardware functional behavior in critical domains

like avionics, where it is accepted that system complexity (hardware and software) makes it infea-

sible to scientifically prove the functional correctness of software or hardware and exhaustively test

all possible conditions and scenarios [60]. On this account, full-path coverage is not required, as

practically infeasible to achieve. Instead, a well-defined software-validation process, supported by

the use of independent development and verification teams [60], is regarded as mandatory, with

increasing rigor depending on the target DAL (Design Assurance Level)/ASIL (Automotive Safety

Integrity Level).

The cornerstone of this approach [60] is representative testing, which applies to both functional and

non-functional properties like software timing. In practice, the evaluated scenarios should account

for sensitive algorithm characteristics – w.r.t. timing in our case – so that they have statistical

relevance. How to achieve such representative testing is already addressed in the reference safety

standard for AD systems, ISO21448 [35], which focuses on the safety of the intended functional-

ity (SOTIF) and explicitly includes those functions that use machine learning algorithms, thus

complementing the more general ISO26262. In particular, apart from sensor and actuator testing,

SOTIF (section 10) states explicitly that “relevant use cases and scenarios” for the algorithm as

well as those inputs that may trigger potentially hazardous behavior must be tested. Also, as

part of the integration of the system, tests must include different environmental conditions (e.g.,

different visibility conditions). SOTIF also provides an annex describing the type of testing needed

for perception systems, detailing that representative testing must include, not only usual driving

conditions, but also “conditions which are normally rare and less represented in normal driving but

that might impact perception”, “uncommon scenarios that might increase the likelihood of a safety

violation” and additional tests “based on system limitations”.

Randomization impacts dynamic scenario-oriented software functional testing, the reference solu-

tion in the automotive domain [35, 49]. First, it complicates the definition of worst-case scenarios

since the development and testing teams remain as the ultimate responsible for guaranteeing the

coverage of relevant scenarios. And second, randomization also clouds the definition of what should

be the correct result of a particular function. In fact, probabilistic indicators are generally accepted

as a means to express a more fluid concept of correctness, better matching the outcomes of AD

algorithms (e.g., object detection). In fact, outcomes are typically attached some degree of accu-

racy [56]. Interestingly, statistical and probabilistic concepts are not new to the analysis approach

23



Chapter 3. Timing Analysis of Apollo

in automotive. In fact, they are already accepted as part of automotive system analysis since, for

instance, hardware failure rates and coverage are represented (and operated) with probabilities and

percentages in the reference standard ISO26262 Part 5 [33]. Also, the recently issued SOTIF stan-

dard explicitly acknowledges the use of randomized test cases and random input data as a means

to evaluate the residual risk for safety-critical systems in the automotive domain [35].

In the context of software timing, while not yet adopted by the automotive industry, a probabilistic

treatment of the residual risk of software faults has already been shown to be compatible with

ISO26262 [3]. Certification arguments to fit probabilistic reasoning in current standards have

been already explored in the literature [66], showing that measurement-based probabilistic timing

analysis can provide quantitative means to upper-bound the residual risk existing in any verification

process of the timing of critical functions. In the specific context of AD systems, as discussed in this

chapter, randomness is intrinsic to the delivered functionalities as they often build upon machine

learning using random exploration techniques for efficiency purposes. This is, for instance, the case

of Apollo. Therefore, any approach deployed for the timing analysis of this type of systems needs

to account for some degree of randomness in the system timing behavior. Our view is that, in line

with authors in [3], probabilistic reasoning can be considered an appropriate choice to model high

execution times when their variability is, at least partly, caused by random events or choices.

3.2 Motivation

To illustrate AD software’s extremely variable timing behavior, figure 3.1 shows boxplot diagrams

of the observed per-frame execution time variability (jitter) of each of the modules of the Apollo AD

framework, when running under a representative set of inputs on our GPU-based target platform

(see section 3.3). Boxplot diagrams show the median, the quantiles, maximum, minimum values

and outliers across different executions. The observed jitter (max vs. min) is vast across all

modules, up to 21x (and 6.1x on average). To make things worse, the execution times present

arbitrary distributions that vary across modules. This is illustrated in figure 3.2 that shows the

histogram (bars) and the Cumulative Distribution Function or CDF (line) of observed execution

times, required to process each frame, for two software modules of Apollo. The x-axis shows

execution times (in milliseconds), the left y-axis the frequency of occurrence for the histogram (for

a 1,000 observations sample), and the right y-axis the fraction of observations for the CDF.

The unconventional amount and distribution of execution time values exhibited by Apollo mod-

ules is largely determined by the inherent variability of the deployed algorithm, though it is also

caused by the complexity of the hardware platforms necessary to sustain the performance and tim-

ing requirements of the intended functionalities. Both hardware and functional complexity result

in scenarios not easily analysable with prevailing software timing analysis methods [79]. This oc-

curs because such complexity undermines the accuracy and scalability of static analyses and the

significance of measurement-based approaches [1].

24



Chapter 3. Timing Analysis of Apollo

Figure 3.1: Observed per-module execution time of Apollo.

0%

20%

40%

60%

80%

100%

0

50

100

150

200

30
.2

51
.4

72
.6

93
.8

11
5.
1

13
6.
3

15
7.
5

17
8.
8

20
0.
0

22
1.
2

24
2.
4

26
3.
7

28
4.
9

30
6.
1

32
7.
4

34
8.
6

F
re
qu

en
cy

Freq.

CDF

s

0%

20%

40%

60%

80%

100%

0

10

20

30

40

50

98
.2

98
.4

98
.5

98
.7

98
.9

99
.1

99
.3

99
.5

99
.7

99
.9

10
0.
1

10
0.
3

10
0.
5

10
0.
7

10
0.
9

10
1.
1

F
re
qu

en
cy

Freq

CDF

Figure 3.2: Execution time (ms) analysis of two Apollo modules.

3.3 Experimental Methodology

3.3.1 Platform

We run Apollo on an x86 platform using 8 AMD Ryzen 7 1800X CPU cores and 64 GB of DDR4

RAM at 2133 MHz. In order to satisfy the computational needs of Apollo, our platform is equipped

with a Pascal-based high-end GPU (the NVIDIA GeForce 1080 Ti with 3584 CUDA cores). While

drastically different from traditional automotive architectures such as the AURIX TriCore, the

selected target platform resembles state-of-the-art automotive Systems on Chip (SoCs) targeting

the automotive AD market. For example, the two variants of the NVIDIA Drive PX2 platform,

AutoCruise and AutoChauffeur, have similar CPU and GPU configurations. The former comprises

a single Tegra X2 SoC, which contains 4 ARM Cortex-A57 and 2 Denver cores, combined with an

integrated Pascal GPU. The latter contains two Tegra X2 SoCs and 2 discrete Pascal-based GPUs.

Moreover, the ARM A57 CPUs used in these platforms exhibit similar hardware complexity as that

of the x86 cores in our platform, since both are superscalar, out-of-order CPUs, with several levels

of cache. Note that the GPU in the automotive platforms is integrated, i.e. both devices share

the same memory, whereas our GPU is discrete, thus requiring data transfers. However, we have

verified that data transfers account for less than 1% of the total execution time of Apollo. Therefore,

25



Chapter 3. Timing Analysis of Apollo

the multiprocessing capabilities in the CPU side and the GPU architecture of our platform are

representative of the automotive domain.

Due to the software dependencies of Apollo, the framework is executed on a Linux environment

and, as mentioned before, it is built on top of ROS (Robotic Operating System) [58]. In order to

minimize the jitter stemming from outside of the application, i.e. from the operating system or

hardware behavior, we follow standard guidelines for real-time execution under Linux. In particular,

we minimize the running services of the system to the bare minimum, stopping services such as

mail services or the window manager. In addition, we assign real-time priorities from the Linux

kernel to all scheduled tasks under analysis. We have further pinned tasks on specific cores in order

to prevent costly task migration and remap all interrupts to a separate core not assigned to any

real-time task. As we discuss in section 3.5, this execution configuration results in a relatively low

platform jitter, and it is the same configuration used for both measuring the platform variability

and running Apollo.

3.3.2 Data

Apollo developers provide several data for different configurations and versions to test the frame-

work, which is given as bag files. A bag is a file format in ROS for storing ROS message data. They

are typically created by a tool like rosbag, which subscribe to one or more ROS topics, and store the

serialized message data in a file as it is received. These bag files can also be played back in ROS to

the same topics they were recorded from, or even remapped to new topics. So, playing back a bag

file simulates a real situation recorded previously in a real scenario, thus enabling the framework’s

testing without owning an AV. For the version we are using, Apollo 3.0, we could only run Apollo

successfully with two of the bag files they provide. One of them contains data coming from the

LiDAR (point clouds), and the other from the camera (images), hence each of them matches the

configurations presented in section 2.2.1.

3.3.3 Measurements

For time measurements, we used instrumentation points at module and node boundaries, at the

granularity shown in figure 3.3. For modules using only the CPU, we use the high resolution -

clock of C++, which provides a high-resolution time counter. On the stages of the Camera process

that use the GPU, we use NVIDIA CUDA events, which provide a reliable, high-resolution time

counter for GPU tasks. This measurement method can account for the fact that GPU tasks are

asynchronous to the CPU side without affecting the performance and timing of the software under

analysis, which is not possible with regular CPU time counters.

CPU counters cannot be used for measuring the execution time of GPU tasks, because when a

GPU task is called, the execution returns back to the CPU immediately, while the GPU executes

26



Chapter 3. Timing Analysis of Apollo

Camera process 

Apollo

Perception 

Localization

Prediction

Load Image
H2D transfer

GPU Forward Neural 
Network

D2H transfer
Post Processing

Routing

Planning

Control

CAN Bus

Modules Nodes

AD Framework

Frame-level processing

LiDAR process
Radar process

Lane postprocessing
Map

HMI

Monitor

Guardian

Fusion
Traffic Light preprocess

Traffic Light process 
Motion Service

Figure 3.3: Apollo AD system pipeline. Dots indicate the instrumentation points we use for extract

timing behavior.

the task in parallel. Hence, our instrumentation for obtaining time measurements can be regarded

as having low overhead.

3.4 Execution Time Jitter

Next, we report the main statistical properties of the observed execution time distributions. We

perform our analysis at module level except for the Perception module, where we perform a more

detailed analysis at the stage level of the Camera process node.

3.4.1 Module Level Analysis

We measure execution times at frame-level and capture the resulting distribution for each of the

modules when they process real tracing data collected by autonomous car sensors.

Figure 3.4 shows the observed execution time histogram and CDF of each Apollo module. As it

can be seen, jitter distributions have different shape and dispersion, hampering their analysis. This

phenomenon is quantified in table 3.1, which shows different measures of dispersion that allow us

analysing and comparing the distributions. It shows:

• (1) Minimum and (5) maximum values observed in the execution time sample.

27



Chapter 3. Timing Analysis of Apollo

0%

20%

40%

60%

80%

100%

0

50

100

150

200
30

.2
51

.4
72

.6
93

.8
11

5.
1

13
6.
3

15
7.
5

17
8.
8

20
0.
0

22
1.
2

24
2.
4

26
3.
7

28
4.
9

30
6.
1

32
7.
4

34
8.
6

F
re
qu

en
cy

Freq.

CDF

(a) Perception

0%

20%

40%

60%

80%

100%

0

20

40

60

80

100

120

140

160

16
.8

38
.7

60
.6

82
.5

10
4.
4

12
6.
4

14
8.
3

17
0.
2

19
2.
1

21
4.
1

23
6.
0

25
7.
9

27
9.
8

30
1.
8

32
3.
7

34
5.
6

F
re
qu

en
cy

Freq.

CDF

(b) Prediction

0%

20%

40%

60%

80%

100%

0

20

40

60

80

100

120

140

160

4.
4

5.
0

5.
7

6.
3

6.
9

7.
5

8.
2

8.
8

9.
4

10
.0

10
.7

11
.3

11
.9

12
.5

13
.2

F
re
qu

en
cy

Freq.

CDF

(c) Localization

0%

20%

40%

60%

80%

100%

0

10

20

30

40

50

98
.2

98
.4

98
.5

98
.7

98
.9

99
.1

99
.3

99
.5

99
.7

99
.9

10
0.
1

10
0.
3

10
0.
5

10
0.
7

10
0.
9

10
1.
1

F
re
qu

en
cy

Freq

CDF

(d) Map

0%

20%

40%

60%

80%

100%

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

17
5.
5

18
0.
3

18
5.
1

19
0.
0

19
4.
8

19
9.
6

20
4.
5

20
9.
3

21
4.
1

21
9.
0

22
3.
8

22
8.
6

23
3.
5

23
8.
3

24
3.
1

24
7.
9

F
re
qu

en
cy

Freq.

CDF

(e) Planning

0%

20%

40%

60%

80%

100%

0

10

20

30

40

50

6.
6

7.
1

7.
6

8.
1

8.
6

9.
1

9.
6

10
.1

10
.6

11
.1

11
.6

12
.1

12
.6

13
.1

13
.6

14
.1

F
re
qu

en
cy

Freq.

CDF

(f) Control

0%

20%

40%

60%

80%

100%

0

10

20

30

40

50

6.
2

6.
7

7.
2

7.
7

8.
2

8.
7

9.
2

9.
7

10
.2

10
.7

11
.2

11
.7

12
.2

12
.7

13
.2

13
.6

F
re
qu

en
cy

Freq. CDF

(g) CAN Bus

Figure 3.4: Distribution of execution times (ms) of each module.

28



Chapter 3. Timing Analysis of Apollo

Per Pred Loc Map Plan Con CAN

(1) Min 30.2 16.8 4.4 98.2 175.5 6.6 6.2

(2) Q1 53.0 56.4 9.2 99.1 196.1 8.6 8.2

(3) Q2 78.6 84.0 9.9 99.8 202.3 10.4 10.1

(4) Q3 120.8 140.5 10.5 100.5 208.8 12.2 12.0

(5) Max 359.2 356.6 14.1 101.2 250.4 14.3 13.9

(6) CV 0.69 0.69 0.15 0.01 0.05 0.21 0.22

(7)IQRn 0.86 1.00 0.13 0.01 0.06 0.35 0.38

(8) Kurt 1.65 0.59 2.31 -1.13 1.22 -1.16 -1.19

(9) Var 11.9 21.2 3.5 1.03 1.4 2.1 2.2

Table 3.1: Measures of dispersion for Apollo modules. Values in the first 5 rows are in milliseconds.

• (2) Quantiles Q1, (3) Q2 and (4) Q3. Quantiles are cut points dividing the range of a

probability distribution into intervals: Q1 (25% below and 75% above), Q2 (50% below and

50% above), and Q3 (75% below and 25% above).

• (6) The estimated coefficient of variation CV that provides the ratio between standard devi-

ation (σ) and the mean (µ) of the sample. Thus, values close to 0 indicate that the standard

deviation is very low in relative terms, whereas high values (e.g., above 0.5) indicate high

variability.

• (7) The Inter-Quantile Range normalized (IQRn) that provides similar relative information

since IQRn = (Q3 −Q1)/µ, but focusing only on the central 50% of the values.

• (8) The excess kurtosis (Kurt) that provides information on whether tail values (those below

µ − σ and above µ + σ) are abundant and distant from the mean: Kurt < 0 indicates that

tail values are less significant than in a Gaussian distribution, thus closer to the mean and/or

less frequent; and Kurt > 0 that outliers are abundant and/or distant from the mean. For

instance, Kurt = −1.2 suggests a uniform distribution since tails are bounded.

• And (9) the variation between the max. and min. values.

Based on table 3.1, we derive the following conclusions:

1. The observed variability (Var) between the minimum and maximum recorded execution times

is high (up to 21x for Prediction), above 2x for 5 out of 7 modules, and low only for the Map

module. Moreover, Q3 is 2x higher than Q1 for the 2 modules with the highest maximum

execution time (Perception and Prediction).

2. The CV is low only for 2 modules (Map and Planning), moderate for 3, and very high for

2 (Perception and Prediction). For the latter modules, a high CV indicates that values are

highly spread, both central and tail values.

29



Chapter 3. Timing Analysis of Apollo

3. IQRn shows that the dispersion of the central values is huge for two modules (0.8-1.0) and

moderate for another 2 (around 0.35), thus indicating that dispersion is relevant even for the

central part of the distribution.

4. Kurt is high for 4 modules. While this is irrelevant for Localization, since values are rel-

atively low, it is quite relevant for Perception, Prediction, and Planning, whose dispersion

and execution time are high. High Kurt for those modules indicates that extreme values

are abundant or significant. By analysing minimum and maximum values, we see that those

values are far beyond Q1 and Q3, so that we can expect gentle slopes in their tails.

3.4.2 Stage Level Analysis

We extend our jitter analysis at the stage level for the Perception module, as representative of

the complexity of AD software. Our goal is analysing whether large jitter is caused by just few

stages while the others are exhibiting a much narrower jitter distributions – so statistical analysis

is required only for those few stages, whereas conventional timing analysis techniques can be used

for the rest. In this experiment, we profile the per-frame processing time of each stage in the

Perception’s YOLO object detector located in Camera process (see figure 2.5b).

Loading H2D GPU D2H PPro

(1) Min 0.01 0.68 39.02 0.94 5.33

(2) Q1 0.03 0.99 40.61 0.94 6.77

(3) Q2 0.04 1.06 40.86 0.94 7.24

(4) Q3 0.04 1.13 41.60 0.94 7.92

(5) Max 0.16 1.64 45.25 1.13 12.70

(6) CV 0.14 0.09 0.03 0.01 0.11

(7)IQRn 0.14 0.13 0.02 0.00 0.16

(8) Kurt 113.2 0.01 2.09 147.8 0.38

(9) Var 16 2.4 1.2 1.2 2.4

Table 3.2: Measures of dispersion (YOLO stages). Values in the first 5 rows are in milliseconds.

As it can be seen in figure 3.5 and table 3.2, all stages follow the observed trend at the module

level as they exhibit significant jitter and have arbitrarily different distributions:

1. Loading, Host-to-Device (H2D), and Device-to-Host (D2H) stages have very low execution

times in relative terms, so even if dispersion is very high for some of them, this is irrelevant

in practice.

2. GPU kernels show tiny dispersion in the central part (IQRn = 0.02), but very large relative

dispersion in the tails (Kurt = 2.09). While the maximum is far away from the central part of

30



Chapter 3. Timing Analysis of Apollo

0%

20%

40%

60%

80%

100%

0

500

1000

1500

2000

0.
01

4
0.
02

3
0.
03

2
0.
04

1
0.
05

0
0.
05

9
0.
06

8
0.
07

7
0.
08

6
0.
09

5
0.
10

4
0.
11

3
0.
12

2
0.
13

0
0.
13

9
0.
14

8
0.
15

7

F
re
qu

en
cy

Freq. CDF

(a) Loading

0%

20%

40%

60%

80%

100%

0

100

200

300

400

500

600

0.
67

5
0.
73

3
0.
79

0
0.
84

8
0.
90

6
0.
96

3
1.
02

1
1.
07

8
1.
13

6
1.
19

4
1.
25

1
1.
30

9
1.
36

6
1.
42

4
1.
48

2
1.
53

9
1.
59

7

F
re
qu

en
cy

Freq. CDF

(b) H2D

0%

20%

40%

60%

80%

100%

0

200

400

600

800

1000

1200

1400

39
.0
2

39
.4
0

39
.7
7

40
.1
4

40
.5
1

40
.8
8

41
.2
6

41
.6
3

42
.0
0

42
.3
7

42
.7
4

43
.1
2

43
.4
9

43
.8
6

44
.2
3

44
.6
0

44
.9
8

F
re
qu

en
cy

Freq. CDF

(c) GPUkernel

0%

20%

40%

60%

80%

100%

0

1000

2000

3000

4000

5000

6000

7000

0.
93

8
0.
94

9
0.
96

1
0.
97

2
0.
98

4
0.
99

6
1.
00

7
1.
01

9
1.
03

0
1.
04

2
1.
05

3
1.
06

5
1.
07

6
1.
08

8
1.
09

9
1.
11

1
1.
12

2

F
re
qu

en
cy

Freq. CDF

(d) D2H

0%

20%

40%

60%

80%

100%

0

100

200

300

400

500

600

700

5.
33

5.
77

6.
21

6.
65

7.
09

7.
53

7.
97

8.
41

8.
85

9.
29

9.
73

10
.1
7

10
.6
1

11
.0
5

11
.4
9

11
.9
3

12
.3
7

F
re
qu

en
cy

Freq. CDF

(e) PosPro

Figure 3.5: Execution time (ms) distribution of YOLO stages.

31



Chapter 3. Timing Analysis of Apollo

the distribution in relative terms, it is close in absolute terms (11% higher than the median),

so dispersion in absolute terms is low.

3. Post-processing (PosPro) has moderately high dispersion in both, the central part of the

distribution and the tails. Hence, a gentle slope is expected for its upper tail.

As explained in section 2.2.1, the Perception module can have different shapes, and the Camera

process is just one of the possible nodes that can compose the DAG. Moreover, YOLO is not the

only work this node performs. Hence, camera object detection execution time (see figure 3.5 and

table 3.2) is lower than the overall Perception execution time.

3.4.3 Summary

Effectively deriving timing bounds requires methods to model highly variable execution times.

Those methods must not impose constraints on the distribution since the observed jitter distribu-

tions present arbitrary shape and dispersion.

3.5 Sources of Execution Time Variability and Impact Software

Timing

3.5.1 Reasoning on Apollo’s Variability

Several well-known sources of execution time variability exist in modern critical embedded systems.

We categorize them as follows.

Platform

At hardware level, they relate to the use of complex heterogeneous high-performance platforms

based on GPUs or FPGAs, e.g., the NVIDIA Drive PX2 platform or the Intel GO platform.

Complex System-on-Chip might make execution time to vary due to their initial state dependence,

which is hard to control. At software level, low-level drivers (e.g., CUDA driver) and the operating

system (e.g., memory location of the actual buffers used for inter-thread communication), can also

keep some internal state, thus affecting execution time [18] (more details on our hardware/software

configuration are shown in section 3.3). Also, the execution of each function in Apollo modules

can take a variable execution time, causing variation in the way modules overlap in time. The net

result is that the set of instructions of each module that overlap in time and compete for resource

varies across frames.

32



Chapter 3. Timing Analysis of Apollo

Randomization

Randomization and non-determinism are inherent traits of several machine learning based state-of-

the-art AD algorithms, which differentiates them from conventional software solutions [14,17,21,22,

57]. In fact, non-determinism is necessary for the AD functionality to take rapid and efficient deci-

sions. For example, randomized path planners are a common approach to cope with the complexity

of exhaustive, deterministic path planning [27]. Randomization is also used in the Probabilistic

Roadmap Method and Rapidly-exploring Random Trees, where random selection of configurations

is a core step in the rapid generation of planning solutions [27]. Also in Perception, either model-

or graph-based segmentation algorithms usually incorporate randomization elements [56]: a clear

example of the former is RANSAC; when it comes to the latter, two illustrative examples are

Conditional Random Field and Markov Random Field.

As a concrete example, figure 3.6 shows a variant of RANSAC fitting algorithm as it is implemented

in Apollo’s lane detection module. As it can be seen, the function, in line 7, generates three random

values r1, r2, and r3 which are then used to produce values x1, x2, and x3 respectively in line 8.

Based on these randomly generated values, the function initializes two matrices A and B in lines 10

and 11. These matrices are then used in findSolution function, line 12, in which a mathematical

equation is solved to obtain another vector c. Note that the randomly generated values have a

cascade effect on the flow of the function and, in fact, we have observed that depending on the

values of these matrices during the initialization phase, the main loop, lines 6 to 27, can iterate for

a different number of times.

Impact of input data on timing and timing variability

In order to analyse the impact of input data on timing variability, we focus on a controlled scenario

in which we can reason on the variability caused by input data (both random and deterministic) and

the platform related variability. Note that Apollo’s modules have more than 130,000 lines of code,

and 6,200 functions with intricate dependences and high cyclomatic complexity [70]. Furthermore,

these functions are event-triggered by events arriving from the sensors and other modules at different

frequencies. This makes the analysis of Apollo inputs overwhelmingly complex.

In particular, we focus on the RANSAC algorithm introduced in figure 3.6, as it combines four

deterministic input parameters and three randomized inputs . The input parameters are a vector

of matrices (V), an integer value showing the maximum number of iterations (maxIters), another

integer value (N) describing the minimum number of data points required to estimate model pa-

rameters, and a floating-point value (inlierThresh) to determine data points that are fit well by

the model. The 3 random inputs are r1, r2, and r3.

As part of Apollo, and with the data we used during the experiments, RANSAC is called 2,002

times each with a different set of values for the input parameters (V, maxIters, N, inlierThresh).

33



Chapter 3. Timing Analysis of Apollo

1 RANSAC (Input: Vector V of vectors of size 2, integers maxIters and N,
2 float inlierThresh,
3 Output: vector C of size 4 )
4 Let n = size(V ), q1 = bn/4c, q2 = bn/2c and q3 = b3 · n/4c
5 If n < N then throw an error and return False
6 For j = 1, 2, ...,maxIters do
7 Generate randomly r1, r2, r3, between 0 and 231 − 1
8 Let x1 = r1 (mod q2), x2 = q2 + r1 (mod q1), x3 = q3 + r1 (mod q1)
9 Initialize matrices A and B as follows:

10

A =


V [x1, 0] · V [x1, 0] V [x1, 0] 1

V [x2, 0] · V [x2, 0] V [x2, 0] 1

V [x3, 0] · V [x3, 0] V [x3, 0] 1

 ,

B =
[
V [x1, 1] V [x2, 1] V [x3, 1]

]
11
12 Let vector c = findSolution(c, colPivHouseholderQr(A) · c = B),
13 Inliers = 0, res = 0 and y = 0
14 For i = 1, 2, ..., n do
15 y = V [i, 0]2 · c[0] + V [i, 0] · V [i, 0] · c[1] + c[2]
16 If |y − V [i, 1]| ≤ inlierThresh then ++Inliers
17 res += |y − V [i, 1]|
18 If Inliers > maxInliers or (Inliers = maxInliers and res < minRes) then
19 C[3] = 0, C[2] = c[0], C[1] = c[1], C[0] = c[2],
20 maxInliers = Inliers, minRes = res
21 If Inliers > n·earlyStopRatio then break
22 If maxInliers/n < goodLaneRatio then return False
23 Else T = V
24 V = clear(V )
25 For i = 1, 2, ..., n do
26 y = T [i, 0]2 · C[2] + T [i, 0] · C[1] + C[0]
27 If |y − T [i, 1| ≥ inlierThresh then V = V ∪ {T [i]}
28 Return True

1

Figure 3.6: RANSAC fitting algorithm in Apollo’s lane detection.

34



Chapter 3. Timing Analysis of Apollo

In each call and iteration of RANSAC’s main loop, random values are generated for r1, r2 and r3.

We have measured that the loop iterates at most 200 times. It is also worth noticing, that r1, r2,

and r3 have no dependence with the input parameters, i.e., they are generated randomly with the

generation process and not influenced by the particular input parameters given to RANSAC. As

an output, RANSAC produces the matrix C and true/false.

From the execution of RANSAC as part of Apollo (RANSAC-native) we collect 2,002 sets of input

parameters – one per invocation of RANSAC.

We also collect several sets of random values corresponding to the values of r1, r2, and r3 as part

of several invocations to RANSAC. We use those values to feed a standalone version of RANSAC

(RANSAC-standalone) under the following scenarios to capture the effect of input data: (DEF)

same input data as RANSAC-native, both input parameters and random values; (FRAND) same

input parameters as in RANSAC-native and fixed randomly generated values inside the function;

(FPARS) same random values as in RANSAC-native, and fixed input parameters; and (FBOTH)

that fixes both input parameters and random inputs.

We first compare RANSAC-native and RANSAC-standalone under the DEF scenario. Our results

show that both produce the same outputs in terms of C and true/false. In terms of execution time,

figure 3.7 shows the variability in each of the scenarios. For FBOTH, the left chart shows that the

variability across runs under the same parameters and random inputs, i.e. due to the platform,

is 5% on average (up to 1.26x). Under FRAND the variability caused by the input parameters

(middle chart) is much higher ranging from 200x to 300x, with 214x on average. Finally, under

FPARS the variability due to random values (right chart), is quite high ranging from 77x to 99x

(79.9x on average) as well, though smaller than that due to input parameters.

Figure 3.7: Execution time variability of RANSAC.

Overall, these results evidence the huge variability caused by random and deterministic input values,

with reduced effect coming from the platform.

35



Chapter 4

En-Route

In chapter 3, we presented our solution for timing verification for AD frameworks like Apollo.

Chapter 4, instead, focuses on validation. More precisely, on resource usage testing, a mandatory

validation step during the integration of safety-related real-time systems.

4.1 Roadblocks for Resource Usage Testing on Autonomous Driv-

ing Software

Due to the stringent performance requirements of AD platforms, high-performance hardware is

deployed to execute specific functionalities fast enough. For instance, input data sensed through

a camera, LiDAR or radar, need to be processed at specific rates (e.g. 25 frames per second for

camera-based input data). Since heavy parallel computations need to be performed at such high

rates, hardware accelerators such as GPUs are needed [45]. This is the case for Apollo in general,

and its Perception module in particular [11], whose most heavy computations are offloaded onto

a GPU. The use of GPUs is the most common solution for massive computation requirements of

such workloads. Therefore, Apollo’s code is executed across CPUs and GPUs. Next, we review

the difficulties experienced to perform resource usage tests in both computing components for the

Perception module of Apollo as an illustrative example.

4.1.1 CPU Resource Usage Tests

We must first identify the tools to use to test the CPU parts of the Perception module (or any

other part of any AD framework). In general, AD frameworks use arbitrarily complex programming

constructs not suited for regular performance tools for safety-related systems, which are suited for

highly-static program constructs, inline with the software development requirements imposed by

ISO 26262. However, programming practices for Apollo differ noticeably from those indicated by

36



Chapter 4. En-Route

ISO 26262 and, instead, target different objectives such as performance efficiency, modularity and

maintainability, which leads to the use of multiple threads, callbacks, asynchronous processing and

the like.

To test such a complex CPU code, we considered initially the use of profiling tools such as Val-

grind [75], Google Performance Tools (GPT) [64] or Perf (part of Linux), inherited from the

general-purpose computing domain where programming constructs considered are less restrictive.

In particular, our inspection of Apollo software revealed that Apollo developers have used GPT

since, all the configuration hints needed for using it to profile Apollo are already embedded in

Apollo’s source files. In fact, Apollo documentation already includes detailed instructions to use

GPT for profiling purposes [10].

We have profiled the execution of the Perception module of Apollo with GPT and results turned

out to be disappointing. The Perception module runs several different nodes, depending on the

input sensors available. For instance, for one of the input data sets provided along with Apollo,

LiDAR and radar sensors are used to feed Apollo, and so 5 different nodes are used by Apollo

(LiDAR, Radar, Fusion, Traffic Light preprocess, and Traffic Light process shown in figure 2.5a),

which are managed by 5 different threads spawned automatically by the Perception module itself.

Those nodes are in charge of performing the callback functions for each of those functionalities of

Perception.

When using GPT to profile Perception, we obtained the call tree depicted in figure 4.1, where the

fraction of execution time devoted to each of the functions is indicated along with each function.

The first observation is that, despite all 5 Perception nodes are executed, the call tree obtained

only reflects functions corresponding to the Fusion node and, despite all the other modules are also

executed, GPT fails to provide any profiling information. In fact, we verified that the output of

the execution was correct, matching the output of the non-profiled execution, and the 5 nodes were

correctly spawned and executed as revealed by monitoring the execution of the framework. Thus,

the first conclusion reached is that the complexity of Perception’s structure already exceeds the

capabilities of GPT. Moreover, even the call tree obtained does not reflect all functions executed

as part of the Fusion node. In particular, as shown in the call tree, GPT reports that 95% of

the execution time is spent running the sleep function. However, some functions processing large

amounts of data that must be executed, are not reported by GPT, thus meaning that GPT even

fails to profile properly a single Perception node. Note that, in order to validate our conclusions,

that were primarily based on code inspection, we added debugging messages in the code in functions

not shown in the call tree, both inside Fusion as well as in other nodes. The execution printed

those messages, thus confirming the conclusions reached by code inspection on the fact that those

functions were executed. Therefore, GPT simply failed to provide correct information in the call

tree despite being the profiling tool recommended by Apollo developers.

37



Chapter 4. En-Route

C++
Run	thread

0%

C++
Invoke

0.1%

ROS
SharedMemorySegment

Read	data

0%

ROS
SharedMemoryBlock
Read	from	block

0.1%

ROS
SubscriptionCallbackHelper

Deserialize

0.9%

Boost
Basic	managed	shared

memory

0.7%

ROS
Shared	memory
management

0.1%

Apollo
Perception
Main

0.2%

Apollo
ApolloApp

Spin

0%

ROS
waitForShutdown

0%

C++
Sleep

95%

ROS
Next

0%

ROS
Deserialize

0.7%

Apollo
Perception
Run	subnode

0.4%

Apollo
FusionSubnode
ProcEvents

0.3%

Apollo
FusionSubnode

Process

0.1%

Apollo
ProbabilisticFusion

Fuse

0.5%

EGLIBC
Start	thread

0.1%

EGLIBC
Clone

0%

ROS
Name
Resolve

0.8%

Figure 4.1: Call tree of the execution of the Perception module.

4.1.2 GPU Resource Usage Tests

We first identified two of the most suitable tools for profiling Perception’s GPU code. Since it is

intended to run on NVIDIA GPUs, we use nvprof [51] and NVIDIA Visual Profiler, which uses

nvprof, for visualizing the profiled information. Then, when attempting to use nvprof to profile

Perception, we experienced three issues, as detailed next.

Issue 1: no execution progress

The first and most challenging problem we have faced with nvprof, which occurred not only for the

Perception module but for any Apollo module regardless of whether it uses the GPU or not, is that

execution of the module seemed not to make progress at all, waiting in an infinite loop. Initially,

we suspected that Perception was running slowly with the profiling tool rather than not making

any progress, so we let the Perception module run for 24 hours. However, we observed no progress

so we concluded that execution got simply stalled and the problem was not causing, instead, slow

progress.

We attempted to find where and why execution got stalled, so we introduced printed messages

in different parts of the module, but none of them was printed. Not even the message placed at

38



Chapter 4. En-Route

the earliest possible execution point was printed. At this point, although we lack the means to

double-check this hypothesis, we suspect that the problem relates to libraries loaded along with

Apollo whose source code is not available and hence, cannot be inspected as we do for Apollo’s

open-source code.

As part of the debug process, we came out with some conjectures on whether the source of the

stall with nvprof was the fact that CUDA calls occurred through multiple threads or because those

threads were launched by ROS. For that purpose, we developed two programs with those features

and profiled them with nvprof.

The first program creates several threads so that each of them launches and runs a CUDA kernel.

The program is run and tested inside the Docker container to verify that, by using the container it

does not affect the profiling process.

The second program, uses ROS with two nodes, a subscriber and a publisher. The publisher

publishes ROS messages and whenever the subscriber receives a message, it creates several threads

to launch and execute CUDA kernels. This program is designed to verify that the profiler is able

to capture CUDA kernels that are launched through threads within ROS nodes.

In both cases, profiling worked properly with no stall at all, so we concluded that those code

constructs are not per se the source of Perception’s stall when profiled with nvprof.

Finally, we changed a number of profile options such as profile-child-processes or profile-

all-processes without success. The first enables the profiling of the application and all child

processes launched by it, and the second enables the profiling of all processes launched by the same

user who launched the nvprof instance. In fact, only when we disabled the option to profile the

application from start (profile-from-start off) execution progressed as expected. Nevertheless,

this feature, as indicated by its name, disables profiling, so that, in order to profile Perception, we

have to identify the parts of the code that we want to profile in order to apply a focused profiling.

This is, in general, unwanted, since this increases the burden on the user side to identify what parts

of the code need being profiled instead of letting the profile tool simply profile the whole module

under analysis.

Issue 2: CUDA kernel identification

Related with the previous issue, and given that we want to test the resource usage performed by the

GPU code, we need to identify those code sections where CUDA kernels are launched. However,

this is a cumbersome task since Apollo builds upon a modified version of Caffe [36], a framework

intended to manage Artificial Neural Networks, which are the most computing intensive element of

Perception. Such framework makes extensive use of the GPU. However, CUDA calls are performed

through a number of function calls that increase the difficulties to trace what particular calls are

used and where in the code.

39



Chapter 4. En-Route

Issue 3: Lack of support for memory usage testing

The third issue relates to the lack of support to measure the memory usage performed by the code

executed in the GPU. In particular, resource usage testing needs to determine not only end-to-

end resource requirements, but also the requirements at finer granularities to help debugging and

optimization during the development process. Unfortunately, we have been unable to identify any

suitable tool that allows collecting this information for GPU code in an easy manner.

Overall, the presented problems challenge resource usage testing in complex AD frameworks such

as Apollo. In the next section, we provide appropriate solutions to tackle these problems.

4.2 Guidelines

We introduce En-Route, our set of guidelines to enable resource usage tests for AD frameworks.

Next, we introduce En-Route guidelines for CPUs and then for GPUs.

4.2.1 For CPU Platforms

Besides GPT, we have evaluated to what extent Callgrind (a profiling tool from Valgrind) and Perf

allow performing resource usage testing for the CPU code of Perception. Callgrind simply did not

work with Perception, so we discarded it. Perf, although provided better results than GPT, failed

to profile Perception completely providing accurate measurements for all functions. Overall, we

found no tool providing appropriate support yet. Thus, there is a business opportunity for software

vendors to develop appropriate tools for resource usage testing of complex CPU code.

As part of En-Route, we had to rely on engineering work together with the limited support of

tools such as Perf to build the call tree of Perception. Once this information was obtained, it was

obvious where to place timers systematically to collect execution times at any desired granularity.

Analogously, memory usage could be obtained using the Massif tool (part of Valgrind) [74]. In

any case, CPU code has low memory requirements since heavy processing and thus, large sets of

data collected from sensors, occur in the GPU in AD frameworks.

Overall, En-Route provides guidelines to address all roadblocks that impede otherwise performing

resource usage testing in AD frameworks. However, as discussed before, a number of processes

require some degree of user intervention due to the lack of appropriate tools. Yet, those processes

which are not automated, are systematic in nature and tools can be developed to perform them.

Thus, while being a disadvantage in the current state, the lack of automation of those processes is

an opportunity for software vendors to develop and commercialize appropriate tools.

40



Chapter 4. En-Route

4.2.2 For GPU Platforms

En-Route addresses the issues identified in previous section, namely execution progress, CUDA

kernel identification, and memory usage testing.

Execution progress

As explained before, we observed execution progress only when we disabled the profile-from-

start option of nvprof (with value off). This, however, disables by default any profiling, so we

need to introduce calls to cudaProfilerStart and cudaProfilerStop (CUDA Profiler API) in

appropriate code locations to profile relevant code sections (i.e. those using the GPU). We have

used these calls and assessed that they allow profiling specific sections of the Perception module,

obtaining execution time information for all the CUDA kernels and API functions that the module

calls within the code region profiled. Figures 4.2 and 4.3 show an example of how to use them.

1 nvprof −t t imeout −−p r o f i l e−from−s t a r t o f f . / foo args

Figure 4.2: Bash command to perform the profiling in selected sections of the foo program.

1 #include <c u d a p r o f i l e r a p i . h>

2 . . .

3 void f oo ( . . . ) {
4 . . .

5 c u d a P r o f i l e r S t a r t ( ) ;

6

7 // Sec t i on you want to p r o f i l e

8

9 cudaPro f i l e rS top ( ) ;

10 . . .

11 }

Figure 4.3: Example of C++ code that selects the section of code to be profiled.

Once profiling has been enabled, another issue appeared: how to stop execution to collect profiling

information. Apollo, as any other AD framework, is intended to run continuously. Its execution

can be terminated correctly sending a SIGINT signal. This signal triggers a function that stops

all processes correctly and finishes their execution. However, when running Apollo profiled with

nvprof, the SIGINT signal may be received by nvprof instead of Apollo, thus terminating the profiling

process in a way that profiling information is not collected rather than terminating Apollo itself.

In order to solve this problem, we came out with a solution that consists of the following steps:

• Set the timeout option of nvprof. Note that AD frameworks perform all their activities in

41



Chapter 4. En-Route

a loop with specific deadlines. Hence, this information can be used to set the timeout to

profile the appropriate number of iterations of each functionality.

• Let Apollo run longer than the scheduled timeout before sending a SIGINT signal, which

will therefore arrive when nvprof has already finished. At this point, profiling information

collected by nvprof has been recorded correctly, thus providing information on execution time

of GPU-related code.

CUDA kernel identification

Identifying the code sections where profiling is needed, and so where the CUDA Profiler API needs

to be used, is easy in simple programs. However, the Apollo framework has a complex structure,

thus challenging the identification of the location of CUDA calls. Apollo builds upon Caffe for its

Artificial Neural Networks, and it turns out not to be trivial identifying what particular functions

of Caffe need being profiled, which would require inspecting all functions of all nodes of Perception

(or other modules if they would have used GPU) to identify the Caffe functions to be profiled.

To simplify this process, En-Route imposes the profiling of all functions, thus relieving end users

from having to track what functions are used in practice. Since this task would be tedious if applied

manually, we have developed a Python script that automates the insertion of the profiling calls,

thus easing the work of end users.

Memory Usage Testing

The last issue to solve for GPU code relates to the difficulties to obtain information about the

memory usage of the CUDA calls. As explained before, no specific tool provides this feature on its

own. Thus, to obtain memory usage information, En-Route builds upon the combination of two

tools: the GNU Project Debugger [25] (GDB) and the NVIDIA System Management Interface [26]

(nvidia-smi). In particular, our solution requires user intervention to determine the granularity at

which memory usage must be assessed, and introduce breakpoints with GDB at the corresponding

locations. Then, when running Perception and a breakpoint is reached, we use nvidia-smi to query

how much memory is being used in the GPU, thus allowing to measure the amount of memory

required at each point of the execution, as well as the amount of memory allocated between two

consecutive breakpoints.

42



Chapter 4. En-Route

4.3 Experimental Methodology

4.3.1 Platform

Experiments were done on top of an NVIDIA AGX Xavier development platform intended for

automotive systems [61]. It has an octa-core CPU based on Carmel ARM V8 64-bit architecture,

and an NVIDIA GPU with 512 CUDA cores based on the Volta architecture. The AGX Xavier [78]

also includes two Deep Learning Accelerator (DLA), Programmable Vision Accelerator (PVA), and

a set of multimedia accelerators providing additional support for machine learning. The In-System

Programming (ISP) has been enhanced to provide native HDR support, which is a promising

property for camera-based object detectors, and higher precision math without offloading work

to the GPU. Xavier features a large set of I/O and has been designed for safety and reliability

supporting various standards such as ISO 26262 with ASIL level C. The CPU cluster is fully cache

coherent and the coherency is extended to all the other accelerators on-chip. At platform level,

Xavier features NVLink 1.0 supporting 20 GB/s in each direction for connecting a discrete graphics

processor to Xavier in a cache coherent manner. In addition, it offers PCIe Gen 4.0 support (16

GT/s). In figure 4.4, the Xavier block diagram is depicted which shows the different elements we

mentioned above and how they are linked with the block and with other components.

Volta
Octa-core

Carmel

PVA

MM/DLA Southbridge

dGPU

NVLink

2
5

6
-b

it
LP

D
D

R
4

X
N

V
Li

n
k

Xavier
SoC

P
C

Ie
 4

Xavier
SoC 2 PCIe4

Figure 4.4: NVIDIA Xavier block diagram.

4.3.2 Data and Measurements

The data used in the experiments showed in this chapter, as well as how time and memory mea-

surements were taken, are the same than in section 3.3.

43



Chapter 4. En-Route

4.4 Evaluation and Experimental Results

This section applies En-Route guidelines to the Perception module of Apollo. We provide execution

time tests at node granularity for the CPU. Then, we provide execution time for GPU kernels.

Finally, we provide results of the memory requirements tests.

4.4.1 Execution Time Usage Tests

For CPU Platforms

We have collected execution times for the different nodes in figures 2.5a and 2.5b. Note that node

execution time in the CPU also includes GPU execution times for those nodes using the GPU.

The relative execution time for each node is shown in figure 4.5, where each of the two input data

setups (LiDAR and camera configurations) is normalized w.r.t. its total execution time. As shown,

En-Route allows testing how much each function or node contributes to the total execution time

of the module analysed. In particular, we observe that Fusion has a large contribution to the

overall execution time for both input data sets, whereas Radar has a low contribution instead. We

also note that there are three nodes in each case that take almost 1
3 of the total execution time

each: Fusion, Lane post-processing and Camera for the camera input set, and Fusion, Traffic Light

process and LiDAR for the LiDAR input set.

Camera LiDAR

Lane-
Postprocessing

Radar

Fusion

Fusion

TLPreprocessor

TLProcess

MotionService

Camera LiDAR
0

20

40

60

80

100

E
xe

cu
ti

o
n

 t
im

e
 (

%
)

Radar

Figure 4.5: Execution time breakdown for both camera and LiDAR configurations. TL stands for

Traffic Light.

44



Chapter 4. En-Route

In order to dig more into this behavior, we analyse the timelines for both input sets. Excerpts of

those timelines, obtained with the En-Route guidelines, are shown in figure 4.6 for the 8-9 seconds

time frame. Different color depth is used to indicate different jobs of the same task (node).

8 8.2 8.4 8.6 8.8 9
Timeline (s)

Fusion

Radar

LiDAR

Traffic Light
Preprocessor

Traffic Light
Process

(a) LiDAR

8 8.2 8.4 8.6 8.8 9
Timeline (s)

Fusion

Motion
Service

Radar

Camera

Lane Post-
processing

(b) Camera

Figure 4.6: Excerpt timeline of the execution of Perception with both configurations. The x-axis

is shown in seconds.

As shown, the different nodes run concurrently on the CPU and GPU. In particular, the three

nodes dominating the execution time for each input set (see figure 4.5) run almost continuously

starting a new job almost immediately after finishing the previous one. Instead, two other nodes

(Radar is one such node in both input sets) do not run most of the time, having some significant

time elapsed between the end of one job and the start of the following one. This information can

be retrieved since En-Route allows collecting start and end times for each node and function, thus

allowing to build both the timelines and the execution time breakdowns.

For GPU Platforms

In order to illustrate the results of En-Route to test execution times on the GPU, we report in

table 4.1 the execution time of each CUDA kernel for the LiDAR process node. En-Route provides

kernel execution times for each individual CUDA kernel of the node. This allows summarizing

the data in the way shown in the table, where we report for each CUDA kernel the fraction of

time devoted to that kernel w.r.t. the total time devoted to all kernels, the absolute accumulated

execution time, the number of kernel calls, as well as the average, minimum and maximum execution

time for each kernel. For instance, in the second row we find the results for function sgemm -

32x32x32 NN vec, intended to perform matrix multiplications. We see that this function takes

27.08% of the overall execution time spent by the CUDA kernels on the GPU, with a total of 368

calls, taking 411µs on average, for a total of 151ms.

We also collected execution times on the GPU of Camera process and Traffic light process nodes,

45



Chapter 4. En-Route

Time (%) Time Calls Avg Min Max Name

27.08 151.14ms 368 410.72µs 32.257µs 1.5219ms sgemm 32x32x32 NN vec

19.17 107.01ms 437 244.87µs 8.4160µs 1.1276ms void caffe::im2col gpu kernel

13.16 73.466ms 653 112.51µs 864ns 1.9801ms [CUDA memcpy HtoD]

9.99 55.766ms 115 484.92µs 242.70µs 1.2116ms [CUDA memcpy DtoH]

9.26 51.662ms 115 449.23µs 41.730µs 895.69µs void caffe::col2im gpu kernel

5.84 32.582ms 575 56.663µs 2.8160µs 245.80µs void gemmk1 kernel

4.63 25.854ms 552 46.836µs 2.0800µs 217.77µs void caffe::ReLUForward

4.14 23.112ms 115 200.97µs 63.395µs 354.90µs sgemm 128x128x8 TN vec

3.47 19.385ms 92 210.71µs 125.13µs 346.09µs maxwell sgemm 128x64 raggedMn nn splitK

1.56 8.7246ms 184 47.416µs 6.4320µs 124.04µs void caffe::Concat

0.95 5.2876ms 184 28.736µs 12.320µs 78.563µs void caffe::Slice

0.68 3.8039ms 69 55.129µs 24.929µs 114.66µs void caffe::SigmoidForward

0.05 299.37µs 23 13.016µs 12.640µs 13.985µs void caffe::mul kernel

0.02 103.38µs 157 658ns 370ns 1.3520µs [CUDA memset]

Table 4.1: CUDA kernels executed by LiDAR process node.

which are shown in tables 4.2 and 4.3, respectively. As expected, there can be seen several kernels

from neural networks such as caffe::ReLUForward, caffe::ScaleBiasForward or caffe::MaxPoolForward

in all tables, since the three nodes use them. Moreover, the most time-consuming kernels of Per-

ception are related to matrix multiplications (gemm stands for General Matrix Multiply), followed

by caffe::im2col gpu kernel, which rearranges discrete image blocks into columns. Both are

commonly used in the image processing domain, and by neural networks too.

4.4.2 Memory Usage Tests

For CPU Platforms

0 50 100 150 200 250 300
Time (ms)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

M
em

o
ry

 h
e
a
p

 c
o
n

su
m

p
ti

o
n

 (
G

B
)

Rest

CUDA

ROS

Traffic Light Process

Traffic Light Preprocessor

(a) LiDAR

0 20 40 60 80 100 120 140 160
Time (ms)

0

0.05

0.1

0.15

0.2

0.25

0.3

M
em

o
ry

 h
e
a
p

 c
o
n

su
m

p
ti

o
n

 (
G

B
)

Rest

Lane-Postprocessing

Camera

ROS

CUDA

(b) Camera

Figure 4.7: Memory usage over time for the provided bag files and configurations.

46



Chapter 4. En-Route

Time(%) Calls Avg Name

22.11 4455 285.44µs maxwell sgemm 128x64 raggedMn nn splitK

15.06 21600 40.111µs caffe::im2col gpu kernel

14.24 19170 42.732µs sgemm 32x32x32 NN vec

10.75 622 994.41µs [CUDA memcpy DtoH]

6.74 7710 50.296µs [CUDA memcpy HtoD]

5.60 810 397.39µs caffe::col2im zgpu kernel

4.32 17550 14.153µs gemmk1 kernel

2.78 23625 6.7620us caffe::ReLUForward

2.24 6885 18.699µs [CUDA memcpy DtoD]

2.03 3105 37.561µs caffe::ScaleBiasForward

1.88 270 400.74µs sgemm 32x32x32 NN

1.56 135 665.44µs sgemm 128x128x8 TN vec

1.49 135 635.60us gemmSN NN kernel

1.33 945 80.781µs caffe::PermuteKernel

1.32 3105 24.371µs caffe::div kernel

1.06 9990 6.1050us caffe::Concat

1.01 1350 42.850us caffe::MaxPoolForward

0.76 31860 1.3690us axpy kernel val

0.43 405 61.110us caffe::kernel channel div

0.38 405 54.119µs caffe::kernel channel subtract

0.37 270 79.064µs sgemm 32x32x32 TN vec

0.33 135 139.38µs thrust::system::cuda::detail::bulk ::detail::launch by value

0.30 405 42.425µs caffe::kernel exp

0.24 6480 2.1730us scal kernel val

0.23 8505 1.5780us caffe::Slice

0.19 405 27.239µs caffe::kernel channel max

0.19 405 27.091µs caffe::kernel channel sum

0.18 405 25.707µs maxwell sgemm 128x64 raggedMn nt splitK

0.18 6210 1.6340us copy kernel

0.17 270 37.049µs apollo::perception::resize linear kernel

0.16 21563 419ns [CUDA memset]

0.15 3105 2.6910us caffe::powx kernel

0.08 135 34.784µs apollo::perception::get object kernel

0.08 3105 1.4520us caffe::add scalar kernel

0.04 135 17.092µs thrust::system::cuda::detail::bulk ::detail::launch by value

0.01 26 23.938µs caffe::ROIPoolForward

0.01 135 3.0720us caffe::SigmoidForward

0.00 26 3.3440us apollo::perception::compute overlapped by idx kernel

Table 4.2: CUDA kernels executed by Camera process node.

47



Chapter 4. En-Route

Time (%) Time Calls Avg Name

47.23 4.6013ms 708 6.4990us [CUDA memcpy HtoD]

8.40 818.78µs 392 2.0880us void gemmk1 kernel

8.40 817.99µs 83 9.8550us sgemm 32x32x32 NN vec

5.07 493.48µs 801 616ns [CUDA memset]

3.96 386.06µs 226 1.7080us [CUDA memcpy DtoD]

2.71 264.49µs 43 6.1500us void caffe::im2col gpu kernel

2.67 259.72µs 81 3.2060us void caffe::ScaleBiasForward

2.45 238.54µs 174 1.3700us void copy kernel

2.28 221.67µs 182 1.2170us void scal kernel val

2.06 200.55µs 2 100.28µs sgemm 128x128x8 TN vec

2.05 200.04µs 87 2.2990us void caffe::powx kernel

1.84 179.11µs 87 2.0580us void caffe::div kernel

1.55 151.07µs 89 1.6970us void caffe::ReLUForward

1.31 127.53µs 5 25.505µs maxwell sgemm 128x64 raggedMn nn splitK

1.18 115.24µs 87 1.3240us void caffe::add scalar kernel

1.08 105.67µs 6 17.611µs sgemm 32x32x32 NN

1.01 97.921µs 42 2.3310us void caffe::Concat

0.93 90.562µs 32 2.8300us void axpy kernel val

0.82 80.324µs 2 40.162µs void caffe::col2im gpu kernel

0.75 72.964µs 6 12.160us [CUDA memcpy DtoH]

0.47 45.889µs 2 22.944µs void caffe::PSROIPoolingForward

0.46 45.218µs 7 6.4590us void caffe::MaxPoolForward

0.39 38.082µs 3 12.694µs void caffe::AvePoolForward

0.19 18.593µs 2 9.2960us void caffe::kernel CropBlob

0.15 14.752µs 6 2.4580us void caffe::ScaleForward

0.10 9.6650us 1 9.6650us void caffe::kernel ResizeBlob

0.09 8.4480us 3 2.8160us void caffe::kernel channel max

0.09 8.3840us 3 2.7940us void caffe::kernel channel sum

0.08 8.0970us 3 2.6990us void caffe::kernel channel div

0.07 7.1680us 3 2.3890us void caffe::kernel channel subtract

0.06 5.7920us 2 2.8960us void gemv2T kernel val

0.06 5.4410us 3 1.8130us void caffe::kernel exp

0.03 3.2960us 2 1.6480us void caffe::set kernel

Table 4.3: CUDA kernels executed by Traffic Light process node.

48



Chapter 4. En-Route

Finally, we show the type of results that En-Route provides in terms of memory usage. We obtain

memory usage per node or per function, and also the memory requirements over time, as depicted

in figure 4.7 for the CPU for input data using either LiDAR or camera configurations. As figure 4.7a

shows, CPU memory usage grows up to 1.3 GB in around 100 ms. Such memory usage remains

quite constant over time for the remaining 200 ms of execution, but also after that point until the

end of the execution. Similarly, as figure 4.7b shows, CPU memory usage grows up to 300 MB in

around 20 ms and remains constant for the rest of the execution.

The main reason that the memory usages for the two configurations are different is related to

the design of the AD software. For instance, both LiDAR and camera configurations use neural

networks with different architectures and, therefore, have different memory usages.

In both cases, En-Route allows assessing how much memory is used by each different node, thus

facilitating the validation process. For instance, we observe that CUDA support requires around

100MB for both configurations (note the different scale of the plots).

For GPU Platforms

As explained in section 4.2.2, to obtain memory usage information from the GPU, En-Route builds

upon GDB and nvidia-smi, and requires user intervention. For this reason, En-Route is not able

to collect at which time the program uses or frees memory, but it allows to measure the amount of

memory allocated at different points of the execution, at the code level. Therefore, the results we

got with En-Route regarding the GPU memory usage need code knowledge to be fully understood.

However, for both configurations, we found the execution points where data was allocated in mem-

ory, and how much of it occupied. In both cases, we did not detect data that was freed from memory

until the end of the program. Moreover, the GPU’s memory usage of Perception is directly related

to the different neural networks it is using and, hence, with Caffe. In particular, Perception run-

ning with the camera configuration reached the peak of 2975MB in 7 steps (183MB, 2MB, 6MB,

1504MB, 6MB, 4MB and 1270MB), while with the LiDAR configuration occupied 2295MB in 5

steps (183MB, 6MB, 6MB, 200MB and 1900MB).

4.4.3 Summary

Overall, as shown, En-Route allows collecting detailed information in terms of resource usage for

complex AD frameworks. We have shown that results allow assessing both, total resource usage as

well as resource usage over time, thus enabling a wide variety of assessments for the V&V of AD

frameworks.

49



Chapter 5

Related Work

The timing validation of automotive systems has been customarily based on the combination of

dynamic measurements with a system-level timing model [13,49], often extended to capture CAN or

network-based communication between engine control units [48]. Some works have also reported on

industrial experience in applying STA to automotive software [32,37]. These works, however, focus

on the timing characterisation of traditional, arguably simple, automotive software, on relatively

predictable hardware platforms. As such, they are unfit to capture and understand the execution

time variability arising when shifting to complex AD software running on multicores and GPUs.

The work in [82] advocates stochastic analysis for the characterisation of end-to-end latencies, thus

focusing on system-level aspects rather than timing characterisation. Meanwhile, for the localization

module, authors in [43] report large execution time variability, but do not analyse it as we have

done in this Thesis for Apollo modules and stages of the Camera process node.

In [54], the authors evaluate the use of NVIDIA’s TX1 in real-time computer vision-based workloads.

They use a combination of synthetic benchmarks, image processing samples from NVIDIA’s CUDA

SDK, and a closed-source road-sign recognition industrial case study. Our work differs both in size

and complexity of the evaluated software, as we characterise the timing variability and analyse the

timing behavior of an entire AD framework, far beyond the sole Perception module.

Regarding resource usage tests, they have been often regarded as an engineering problem, being

the main challenge how to create stressful tests. Moreover, since those tests are neither needed

for the design of the system itself, nor for the validation of the safety requirements, no explicit

safety requirements need to be fulfilled by those tests. Still, tool qualification may be required in

accordance with ISO 26262 part 8 [33], since those tools are part of the development of safety-related

elements. However, the advent of AD frameworks with software constructs far more complex than

those used so far in automotive systems, challenge current resource usage testing practice, thus

calling for new solutions. This Thesis tackles this challenge by presenting En-Route, a set of

guidelines able to handle the complexity of AD frameworks to perform a wide variety of resource

50



Chapter 5. Related Work

usage tests.

Tools for CPU profiling, such as Valgrind, Google Performance Tools (GPT) or Perf, pose also a

number of limitations to resource usage testing since they also clash with the dynamic behavior of

AD frameworks. Thus, new solutions are needed matching their needs.

Tools for GPU profiling, such as the NVIDIA Visual Profiler and nvprof [51], pose a number of

limitations related to the dynamic behavior of AD frameworks and the fact that they are intended

to run continuously, thus never ending the profiling process. Therefore, appropriate utilization of

these tools is needed, as performed by En-Route.

The set of guidelines proposed in this Thesis, En-Route, overcomes these limitations. While we

identified that some additional tool support for an enhanced automation of the process would

be convenient, the solutions we provided already enable resource usage testing for complex AD

frameworks, subject to the qualification of these tools (or equivalent ones) to fully adhere to the

requirements of a safety-related development.

51



Chapter 6

Conclusions and Future Work

6.1 Conclusions

The slant towards AD solutions is pushing for the adoption of advanced software functionalities

exploiting complex AI-based algorithms. The inherent non-deterministic traits of AD software

challenge both, effectiveness and scalability of conventional analysis approaches. In this Thesis,

we present an analysis of the timing variability of Apollo, an industrial-quality AD framework,

showing that Apollo modules and nodes exhibit a highly variable timing behavior and arbitrary

distributions. We analyse randomization as one of the reasons behind this variability, and show how

it impairs some of the fundamentals of consolidated timing analysis techniques. We also discuss

approaches and prospects to address this variability. In line with the latter, we show that statistical

approaches are better equipped to effectively model the timing behavior of AD frameworks similar

to Apollo. We illustrate this by analysing the execution time of Apollo modules and single stages

of the Camera process of the Perception module when running on a real board.

Furthermore, the advent of AD frameworks also challenges current practice to perform resource

usage tests due to the complexity of those software frameworks and the hardware platforms that

need to be used, which include CPUs and GPUs. Those tests are a requirement for safety-related

automotive systems, as indicated in ISO 26262. In this Thesis, we present En-Route, a set of

remedies and guidelines to enable resource usage testing on complex AD frameworks. We assess En-

Route with Apollo, illustrating the main difficulties to use existing tools and how those difficulties

can be defeated, leading to a wide variety of results for execution time and memory requirements.

In particular, those results allow breaking down resource usage across functions and assessing usage

over time, thus facilitating the duties of system integrators to validate that resource usage is within

expected bounds.

While our timing analysis and En-Route guidelines are applied on Apollo, findings of this applied

research work can be naturally extended to other AD frameworks (e.g. Autoware) or analogous

52



Chapter 6. Conclusions and Future Work

frameworks in other domains (e.g. in the robotics domain).

6.2 Future Work

On the one hand, we presented the first steps towards a complete and efficient timing analysis

solution for AD software frameworks like Apollo, which means it will still require long-term efforts

by the community to achieve such an overwhelming objective.

On the other hand, although we were able to enable resource usage testing on Apollo, we faced

several problems with existing tools, which led to rely on engineering work, together with our

knowledge of the framework, to achieve it. Basically, we found no tool providing appropriate

support in this domain. Thus, as we said in section 4.2.1, there is a business opportunity for

software vendors to develop proper tools for resource usage testing of complex CPU code.

53



Chapter 7

Publications

Based on the work done in this Thesis, two papers has been published under the following format:

• En-Route: on enabling resource usage testing for autonomous driving frame-

works [5]. Miguel Alcon, Hamid Tabani, Jaume Abella, Leonidas Kosmidis, and Francisco

J. Cazorla. 2020. In Proceedings of the 35th Annual ACM Symposium on Applied Computing

(SAC ’20), Brno, Czech Republic, March 30 - April 3, 2020.

• Timing of Autonomous Driving Software: Problem Analysis and Prospects for

Future Solutions [6]. Miguel Alcon, Hamid Tabani, Leonidas Kosmidis, Enrico Mezzetti,

Jaume Abella and Francisco J. Cazorla. 2020 IEEE Real-Time and Embedded Technology

and Applications Symposium (RTAS), Sydney, Australia, 21-24 April 2020.

54



Bibliography

[1] Jaume Abella et al. WCET analysis methods: Pitfalls and challenges on their trustworthiness.

In 10th IEEE International Symposium on Industrial Embedded Systems, SIES, pages 39–48.

IEEE, 2015.

[2] J. Abella et al. Wcet analysis methods: Pitfalls and challenges on their trustworthiness. In

SIES, 2015.

[3] Irune Agirre et al. Fitting software execution-time exceedance into a residual random fault in

ISO-26262. IEEE Trans. Reliability, 67(3):1314–1327, 2018.

[4] Sergi Alcaide, Leonidas Kosmidis, Hamid Tabani, Carles Hernandez, Jaume Abella, and Fran-

cisco J Cazorla. Safety-related challenges and opportunities for gpus in the automotive domain.

IEEE Micro, 38(6):46–55, 2018.

[5] Miguel Alcon, Hamid Tabani, Jaume Abella, Leonidas Kosmidis, and Francisco J. Cazorla.

En-Route: On Enabling Resource Usage Testing for Autonomous Driving Frameworks. In Pro-

ceedings of the 35th Annual ACM Symposium on Applied Computing, SAC ’20, page 1953–1962,

New York, NY, USA, 2020. Association for Computing Machinery.

[6] Miguel Alcon, Hamid Tabani, Leonidas Kosmidis, Enrico Mezzetti, Jaume Abella, and Fran-

cisco J. Cazorla. Timing of autonomous driving software: Problem analysis and prospects

for future solutions. In 2020 IEEE Real-Time and Embedded Technology and Applications

Symposium (RTAS), pages 267–280, 2020.

[7] Amazon Web Service. ADAS and Autonomous Driving. https://aws.amazon.com/automot

ive/autonomous-driving/, 2020.

[8] Apollo. Apollo Hardware Development Platform. https://apollo.auto/platform/hardwar

e.html, 2020.

[9] ApolloAuto. Apollo 3.0 Software Architecture. https://github.com/ApolloAuto/apollo/b

lob/master/docs/specs/Apollo 3.0 Software Architecture.md, 2018.

[10] ApolloAuto. How to do performance profiling. https://github.com/ApolloAuto/apollo/b

lob/r3.0.0/docs/howto/how to do performance profiling.md, 2018.

55

https://aws.amazon.com/automotive/autonomous-driving/
https://aws.amazon.com/automotive/autonomous-driving/
https://apollo.auto/platform/hardware.html
https://apollo.auto/platform/hardware.html
https://github.com/ApolloAuto/apollo/blob/master/docs/specs/Apollo_3.0_Software_Architecture.md
https://github.com/ApolloAuto/apollo/blob/master/docs/specs/Apollo_3.0_Software_Architecture.md
https://github.com/ApolloAuto/apollo/blob/r3.0.0/docs/howto/how_to_do_performance_profiling.md
https://github.com/ApolloAuto/apollo/blob/r3.0.0/docs/howto/how_to_do_performance_profiling.md


Bibliography

[11] ApolloAuto. Perception. https://github.com/ApolloAuto/apollo/blob/r3.0.0/docs/sp

ecs/perception apollo 3.0.md, 2018.

[12] Anders Arpteg, Björn Brinne, Luka Crnkovic-Friis, and Jan Bosch. Software engineering chal-

lenges of deep learning. In 44th Euromicro Conference on Software Engineering and Advanced

Applications, SEAA, pages 50–59. IEEE Computer Society, 2018.

[13] AUTOSAR. Recommended methods and practices for timing analysis and design within the

autosar development process. Technical Report (n.645), 2017.

[14] Baidu. Apollo, an open autonomous driving platform. http://apollo.auto/, 2018.

[15] Baidu. How coronavirus is accelerating a future with autonomous vehicles.

https://www.technologyreview.com/2020/05/18/1001760/how-coronavirus-is-acc

elerating-autonomous-vehicles/, 2020.

[16] Jingyi Bin et al. Studying co-running avionic real-time applications on multi-core COTS

architectures. In Embedded Real Time Software and Systems, ERTS 2014, February 2014.

[17] Mariusz Bojarski et al. End to end learning for self-driving cars. CoRR, abs/1604.07316, 2016.

[18] Alejandro J. Calderón et al. Understanding and exploiting the internals of GPU resource

allocation for critical systems. In Proceedings of the International Conference on Computer-

Aided Design, ICCAD, pages 1–8. ACM, 2019.

[19] Sudipta Chattopadhyay et al. A unified WCET analysis framework for multicore platforms.

ACM Trans. Embedded Comput. Syst., 13(4s):124:1–124:29, 2014.

[20] S. Chattopadhyay et al. A unified WCET analysis framework for multi-core platforms. In

RTAS, 2012.

[21] Chenyi Chen, Ari Seff, Alain L. Kornhauser, and Jianxiong Xiao. Deepdriving: Learning

affordance for direct perception in autonomous driving. In IEEE International Conference on

Computer Vision, ICCV, pages 2722–2730. IEEE Computer Society, 2015.

[22] Xiaozhi Chen et al. Multi-view 3d object detection network for autonomous driving. In IEEE

Conference on Computer Vision and Pattern Recognition, CVPR, pages 6526–6534. IEEE

Computer Society, 2017.

[23] Daimler. Autonomous Driving. https://www.daimler.com/innovation/product-innovat

ion/autonomous-driving/, 2020.

[24] Dakshina Dasari et al. Identifying the sources of unpredictability in cots-based multicore

systems. In 8th IEEE International Symposium on Industrial Embedded Systems, SIES, pages

39–48. IEEE, 2013.

56

https://github.com/ApolloAuto/apollo/blob/r3.0.0/docs/specs/perception_apollo_3.0.md
https://github.com/ApolloAuto/apollo/blob/r3.0.0/docs/specs/perception_apollo_3.0.md
http://apollo.auto/
https://www.technologyreview.com/2020/05/18/1001760/how-coronavirus-is-accelerating-autonomous-vehicles/
https://www.technologyreview.com/2020/05/18/1001760/how-coronavirus-is-accelerating-autonomous-vehicles/
https://www.daimler.com/innovation/product-innovation/autonomous-driving/
https://www.daimler.com/innovation/product-innovation/autonomous-driving/


Bibliography

[25] GDB Developers. Gdb: The gnu project debugger. https://www.gnu.org/software/gdb/,

2017.

[26] GDB Developers. Gdb: The gnu project debugger. https://developer.nvidia.com/nvidi

a-system-management-interface, 2019.

[27] Mohamed Elbanhawi and Milan Simic. Sampling-based robot motion planning: A review.

IEEE Access, 2:56–77, 2014.

[28] J. Redmon et al. Yolo9000: better, faster, stronger. arXiv preprint, 2017.

[29] Ford. Media Center Release. https://media.ford.com/content/fordmedia/fna/us/en/n

ews/2017/02/10/ford-invests-in-argo-ai-new-artificial-intelligence-company.h

tml, 2017.

[30] The Autoware Foundation. Autoware. An open autonomous driving platform. https://gith

ub.com/CPFL/Autoware/, 2016.

[31] A. Furda and L. Vlacic. Enabling safe autonomous driving in real-world city traffic using

multiple criteria decision making. IEEE Intelligent Transportation Systems Magazine, 3(1):4–

17, 2011.

[32] Jan Gustafsson and Andreas Ermedahl. Experiences from applying WCET analysis in indus-

trial settings. In IEEE International Symposium on Object-Oriented Real-Time Distributed

Computing (ISORC), pages 382–392, 2007.

[33] International Organization for Standardization. ISO/DIS 26262. Road Vehicles – Functional

Safety, 2009.

[34] International Organization for Standardization. ISO/IEC/IEEE 24765. Systems and software

engineering – Vocabulary, 2017.

[35] International Organization for Standardization. ISO/PAS 21448. Road Vehicles – Safety of

the Intended Functionality, 2019.

[36] Y. Jia et al. Caffe: Convolutional architecture for fast feature embedding. arXiv preprint

arXiv:1408.5093, 2014.

[37] Daniel Kästner et al. Timing validation of automotive software. In Leveraging Applications

of Formal Methods, Verification and Validation, Third International Symposium, ISoLA. Pro-

ceedings, pages 93–107, 2008.

[38] R. Kirner and P. Puschner. Classification of WCET analysis techniques. In ISORC, 2005.

[39] Raimund Kirner and Peter P. Puschner. Obstacles in worst-case execution time analysis.

In 11th IEEE International Symposium on Object-Oriented Real-Time Distributed Computing

(ISORC), pages 333–339, 2008.

57

https://www.gnu.org/software/gdb/
https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-system-management-interface
https://media.ford.com/content/fordmedia/fna/us/en/news/2017/02/10/ford-invests-in-argo-ai-new-artificial-intelligence-company.html
https://media.ford.com/content/fordmedia/fna/us/en/news/2017/02/10/ford-invests-in-argo-ai-new-artificial-intelligence-company.html
https://media.ford.com/content/fordmedia/fna/us/en/news/2017/02/10/ford-invests-in-argo-ai-new-artificial-intelligence-company.html
https://github.com/CPFL/Autoware/
https://github.com/CPFL/Autoware/


Bibliography

[40] Y.-T. S. Li and S. Malik. Performance analysis of embedded software using implicit path

enumeration. In DAC, 1995.

[41] H. Li et al. Traceability of flow information: Reconciling compiler optimizations and WCET

estimation. In RTNS, 2014.

[42] Velodyne Lidar. Velodyne Lidar. https://velodynelidar.com/, 2020.

[43] Shih-Chieh Lin et al. The architectural implications of autonomous driving: Constraints

and acceleration. In Proceedings of the International Conference on Architectural Support for

Programming Languages and Operating Systems, ASPLOS, pages 751–766, 2018.

[44] Markus Maibach, Christoph Schreyer, Daniel Sutter, HP Van Essen, BH Boon, Richard Smok-

ers, Arno Schroten, C Doll, Barbara Pawlowska, and Monika Bak. Handbook on estimation

of external costs in the transport sector. Ce Delft, 336, 2008.

[45] Fabio Mazzocchetti, Pedro Benedicte, Hamid Tabani, Leonidas Kosmidis, Jaume Abella, and

Francisco J Cazorla. Performance analysis and optimization of automotive gpus. In Proceed-

ings of the 31st International Symposium on Computer Architecture and High Performance

Computing (SBAC-PAD) 2019. IEEE, 2019.

[46] Thomas J. McCabe. Cyclomatic complexity and the year 2000. IEEE Software, 13(3):115–117,

1996.

[47] Detlev Mohr et al. The road to 2020 and beyond: What’s driving the global automotive

industry, 2013.

[48] Saad Mubeen, Jukka Mäki-Turja, and Mikael Sjödin. Support for end-to-end response-time

and delay analysis in the industrial tool suite: Issues, experiences and a case study. Comput.

Sci. Inf. Syst., 10(1):453–482, 2013.

[49] Nicholas Navet. Timing analysis of automotive architectures and software. 53rd Design Au-

tomation Conference (DAC), 2016. Invited Talk.

[50] J. Nowotsch et al. Multi-core interference-sensitive WCET analysis leveraging runtime resource

capacity enforcement. In ECRTS, 2014.

[51] NVIDIA. Profiler :: CUDA toolkit documentation. https://docs.nvidia.com/cuda/profi

ler-users-guide/index.html#nvprof-overview, 2019.

[52] NVIDIA. Driving Innovation. https://www.nvidia.com/en-us/self-driving-cars/, 2020.

[53] World Health Organization. Road traffic injuries. https://www.who.int/news-room/fact-s

heets/detail/road-traffic-injuries, 2020.

[54] Nathan Otterness et al. An evaluation of the NVIDIA TX1 for supporting real-time computer-

vision workloads. pages 353–364, 2017.

58

https://velodynelidar.com/
https://docs.nvidia.com/cuda/profiler-users-guide/index.html#nvprof-overview
https://docs.nvidia.com/cuda/profiler-users-guide/index.html#nvprof-overview
https://www.nvidia.com/en-us/self-driving-cars/
https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries


Bibliography

[55] European Parliament. Co2 emissions from cars: facts and figures (infograph-

ics). https://www.europarl.europa.eu/news/en/headlines/society/20190313STO3121

8/co2-emissions-from-cars-facts-and-figures-infographics, 2019.

[56] Scott Pendleton et al. Perception, planning, control, and coordination for autonomous vehicles.

Machines, 5(1):6, Feb 2017.

[57] Roger Pujol, Hamid Tabani, Leonidas Kosmidis, Enrico Mezzetti, Jaume Abella, and Fran-

cisco J Cazorla. Generating and exploiting deep learning variants to increase heterogeneous

resource utilization in the nvidia xavier. In 31st Euromicro Conference on Real-Time Systems

(ECRTS 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[58] Morgan Quigley et al. ROS: an open-source robot operating system. In ICRA workshop on

open source software, volume 3, page 5. Kobe, Japan, 2009.

[59] Jan Reineke. Challenges for timing analysis of multi-core architectures. Workshop on Foun-

dational and Practical Aspects of Resource Analysis, 2017. Invited Talk.

[60] Leanna Rierson. Developing Safety-Critical Software: A Practical Guide for Aviation Software

and DO-178C Compliance. 2017.

[61] D. Shapiro. Introducing xavier, the nvidia ai supercomputer for the future of autonomous

transportation. NVIDIA blog, 2016.

[62] Google Open Source. gflags. https://opensource.google.com/projects/gflags, 2019.

[63] Google Open Source. google-glog: Application Level Logging . https://opensource.googl

eblog.com/2008/10/google-glog-application-level-logging.html, 2019.

[64] Google Open Source. Google Performance Tools. https://github.com/gperftools/gperft

ools/wiki, 2019.

[65] J. Souyris et al. Computing the Worst Case Execution Time of an Avionics Program by

Abstract Interpretation. In WCET workshop, 2007.

[66] Zoë R. Stephenson, Jaume Abella, and Tullio Vardanega. Supporting industrial use of prob-

abilistic timing analysis with explicit argumentation. In 11th IEEE International Conference

on Industrial Informatics, INDIN, pages 734–740. IEEE, 2013.

[67] Synced. Beijing self-driving vehicle road tests topped one million km in 2019.

https://syncedreview.com/2020/03/14/beijing-self-driving-vehicle-road-test

s-topped-one-million-km-in-2019/, 2020.

[68] Rapita Systems. On-target software verification solutions. www.rapitasystems.com, 2020.

59

https://www.europarl.europa.eu/news/en/headlines/society/20190313STO31218/co2-emissions-from-cars-facts-and-figures-infographics
https://www.europarl.europa.eu/news/en/headlines/society/20190313STO31218/co2-emissions-from-cars-facts-and-figures-infographics
https://opensource.google.com/projects/gflags
https://opensource.googleblog.com/2008/10/google-glog-application-level-logging.html
https://opensource.googleblog.com/2008/10/google-glog-application-level-logging.html
https://github.com/gperftools/gperftools/wiki
https://github.com/gperftools/gperftools/wiki
https://syncedreview.com/2020/03/14/beijing-self-driving-vehicle-road-tests-topped-one-million-km-in-2019/
https://syncedreview.com/2020/03/14/beijing-self-driving-vehicle-road-tests-topped-one-million-km-in-2019/
www.rapitasystems.com


Bibliography

[69] Hamid Tabani, Matteo Fusi, Leonidas Kosmidis, Jaume Abella, and Francisco J Cazorla.

Intpred: flexible, fast, and accurate object detection for autonomous driving systems. In

Proceedings of the 35th Annual ACM Symposium on Applied Computing, pages 564–571, 2020.

[70] Hamid Tabani, Leonidas Kosmidis, Jaume Abella, Francisco J Cazorla, and Guillem Bernat.

Assessing the adherence of an industrial autonomous driving framework to iso 26262 software

guidelines. In Proceedings of the 56th Annual Design Automation Conference 2019, page 9.

ACM, 2019.

[71] Araz Taeihagh and Hazel Si Min Lim. Governing autonomous vehicles: emerging responses

for safety, liability, privacy, cybersecurity, and industry risks. CoRR, abs/1807.05720, 2018.

[72] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. Deeptest: Automated testing of deep-

neural-network-driven autonomous cars. In Proceedings of the 40th International Conference

on Software Engineering, ICSE ’18, page 303–314, New York, NY, USA, 2018. Association for

Computing Machinery.

[73] Toyota Motor Corporation. Toyota News Release. https://pressroom.toyota.com/toyot

a-establish-artificial-intelligence-research-development-company/, 2015.

[74] Valgrind Developers. Massif: a heap profiler. http://valgrind.org/docs/manual/ms-manu

al.html, 2019.

[75] Valgrind Developers. Valgrind. http://valgrind.org/, 2019.

[76] Sergi Vilardell, Isabel Serra, Hamid Tabani, Jaume Abella, Joan Del Castillo, and Francisco J

Cazorla. Cleanet: enabling timing validation for complex automotive systems. In Proceedings

of the 35th Annual ACM Symposium on Applied Computing, pages 554–563, 2020.

[77] Waymo. Waymo. https://waymo.com/, 2020.

[78] WikiChip. Tegra xavier - nvidia. https://en.wikichip.org/wiki/nvidia/tegra/xavier#B

oard, 2019.

[79] Reinhard Wilhelm et al. The worst-case execution-time problem - overview of methods and

survey of tools. ACM Trans. Embedded Comput. Syst., 7(3):36:1–36:53, 2008.

[80] Reinhard Wilhelm and Jan Reineke. Embedded systems: Many cores - many problems. In 7th

IEEE International Symposium on Industrial Embedded Systems, SIES, pages 176–180. IEEE,

2012.

[81] R. Wilhelm et al. The worst-case execution-time problem - overview of methods and survey

of tools. ACM Trans. Embed. Comput. Syst., 7(3):36:1–36:53, May 2008.

[82] Haibo Zeng, Marco Di Natale, Paolo Giusto, and Alberto Sangiovanni-Vincentelli. Stochastic

analysis of can-based real-time automotive systems. IEEE Transactions on Industrial Infor-

matics, 5(4):388–401, Nov 2009.

60

https://pressroom.toyota.com/toyota-establish-artificial-intelligence-research-development-company/
https://pressroom.toyota.com/toyota-establish-artificial-intelligence-research-development-company/
http://valgrind.org/docs/manual/ms-manual.html
http://valgrind.org/docs/manual/ms-manual.html
http://valgrind.org/
https://waymo.com/
https://en.wikichip.org/wiki/nvidia/tegra/xavier#Board
https://en.wikichip.org/wiki/nvidia/tegra/xavier#Board

	Introduction
	Motivation
	Problem Statement, Objectives and Contribution
	Thesis Organization

	Background
	Safety-Related Software Development Process
	Apollo Autonomous Driving System
	Perception Module
	Beyond Apollo


	Timing Analysis of Apollo
	Timing Analysis of Safety-Critical Systems
	Motivation
	Experimental Methodology
	Platform
	Data
	Measurements

	Execution Time Jitter
	Module Level Analysis
	Stage Level Analysis
	Summary

	Sources of Execution Time Variability and Impact Software Timing
	Reasoning on Apollo's Variability


	En-Route
	Roadblocks for Resource Usage Testing on Autonomous Driving Software
	CPU Resource Usage Tests
	GPU Resource Usage Tests

	Guidelines
	For CPU Platforms
	For GPU Platforms

	Experimental Methodology
	Platform
	Data and Measurements

	Evaluation and Experimental Results
	Execution Time Usage Tests
	Memory Usage Tests
	Summary


	Related Work
	Conclusions and Future Work
	Conclusions
	Future Work

	Publications

