
An Academic RISC-V Silicon Implementation
Based on Open-Source Components

Jaume Abella∗, Calvin Bulla∗, Guillem Cabo∗, Francisco J. Cazorla∗, Adrián Cristal∗, Max Doblas∗,
Roger Figueras∗, Alberto González∗, Carles Hernández∗, César Hernández†, Vı́ctor Jiménez∗, Leonidas Kosmidis∗,

Vatistas Kostalabros∗, Rubén Langarita∗, Neiel Leyva†, Guillem López-Paradı́s∗, Joan Marimon∗,
Ricardo Martı́nez‡, Jonnatan Mendoza∗, Francesc Moll§, Miquel Moretó∗§, Julián Pavón∗,
Cristóbal Ramı́rez∗, Marco A. Ramı́rez†, Carlos Rojas∗, Antonio Rubio§, Abraham Ruiz∗,

Nehir Sonmez∗, Vı́ctor Soria∗, Lluı́s Terés‡, Osman Unsal∗, Mateo Valero∗§, Iván Vargas∗, Luı́s Villa†
∗Barcelona Supercomputing Center (BSC), Barcelona, Spain. Email: name.surname@bsc.es

†Centro de Investigación en Computación, Instituto Politécnico Nacional (CIC-IPN), Mexico City, Mexico.
‡Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Spain. Email: name.surname@imb-cnm.csic.es

§Universitat Politècnica de Catalunya (UPC), Barcelona, Spain. Email: name.surname@upc.edu

Abstract—The design presented in this paper, called preDRAC,
is a RISC-V general purpose processor capable of booting Linux
jointly developed by BSC, CIC-IPN, IMB-CNM (CSIC), and
UPC. The preDRAC processor is the first RISC-V processor
designed and fabricated by a Spanish or Mexican academic
institution, and will be the basis of future RISC-V designs jointly
developed by these institutions. This paper summarizes the design
tasks, for FPGA first and for SoC later, from high architectural
level descriptions down to RTL and then going through logic
synthesis and physical design to get the layout ready for its final
tapeout in CMOS 65nm technology.

I. INTRODUCTION

Open-source software has represented a revolution in com-
puting especially since the introduction of the Linux operating
system. More recently, open Instruction Set Architectures
(ISA) have been proposed, with the promise of a similar
revolution in the hardware side, more specifically in the design
of processors. Open ISAs offer the possibility to implement
specific microarchitectures suited for particular applications.

RISC-V is an open ISA originated in 2010 at the Uni-
versity of California at Berkeley [1], and is now supported
by the RISC-V International [2] with hundreds of members
worldwide. RISC-V is composed of a base instruction set
and extended in a modular fashion by a number of dedicated
instruction extensions targeting higher performance or special-
ized application domains.

Since the first public release of the RISC-V ISA, many im-
plementations of processors have risen both from industry and
academia. PreDRAC is the first fabricated RISC-V processor
from a Spanish or Mexican academic institution. This design
will be the first in a series of high performance computing
processors designed in the context of the DRAC project

This is a Post-Print version of the paper published in DCIS 2020 by IEEE,
DOI: 10.1109/DCIS51330.2020.9268664.

(Designing RISC-V-based Accelerators for next generation
Computers), which started in June 2019.

This paper describes the design, verification, implementa-
tion and post-silicon validation of a RISC-V general pur-
pose processor capable of booting Linux. The design and
verification process is described in the paper, starting with
the core and the rest of peripherals needed to implement a
Linux-capable System-on-Chip (SoC), using open source and
internally designed Intellectual Property (IP) blocks.

The team for preDRAC (around 30 people from four dif-
ferent institutions) was put together in January 2019 and the
design development took place at three main design abstraction
levels: architectural, register transfer level (RTL) and physical;
with most of the team dedicated to the architectural and RTL
levels. Verification efforts to ensure the integrity of the design
between abstraction levels was also an essential part of the
work.

The structure of the paper is as follows: Section II describes
the chip architecture and IP components. Section III explains
the different pre- and post-fabrication verification techniques.
Next, Section IV details the synthesis and physical design
results. Section V shows the measurements performed on
the manufactured chip. Finally, Section VI presents some
considerations about the open source processors on silicon and
concludes this work.

II. CHIP ARCHITECTURE

The chip adapts an open-source SoC platform developed
by lowRISC [3] for the Berkeley Rocket RISC-V core. In
the preDRAC implementation, the core has been replaced by
Lagarto, a RISC-V processor core developed at CIC-IPN in
Mexico.



Fig. 1. PreDRAC processor block diagram.

A. Chip Overview

Figure 1 shows the block diagram of the preDRAC single
core processor. The processor is a single core design that
incorporates a 5-stage single-issue in-order pipeline. It imple-
ments the 64-bit RV64IMA scalar RISC-V ISA with a bimodal
branch predictor, as well as the associated instruction and data
L1 caches (each one 4-way 16KB, 2-cycle access latency)
and a unified L2 cache (8-way 64KB, 3-cycle access latency).
The main blocks in the cache hierarchy are adapted from the
lowRISC project [4]. Moreover, the peripherals required to
connect the processor with external devices (i.e. main memory,
JTAG, UART and an SD card) combine IPs from different
open source projects (i.e. TileLink, GLIP, OpenOCD and
MohorTAP [5], [6]) as well as IPs designed in-house. Note that
main memory access needs to be done via an FPGA board,
where DRAM chips are located.

Table I summarizes the main IP blocks in the preDRAC
processor design together with a short description of the block,
the source code (some parts of the design are based on other
projects), and hardware description language used for each
block.

B. Core Microarchitecture

The current core design is strongly based on the Lagarto
core, an earlier design at CIC-IPN using the MIPS32 ISA [7].
During the current project, the Lagarto design was ported to
RISC-V resulting in a 64-bit in-order core which implements
the RV64IMA instruction set architecture (ISA) and supporting
the privileged ISA version 1.7. The design is composed by five
stages: fetch , decode, read-registers, execution and write-back.

TABLE I
THE MAIN IP BLOCKS OF THE PREDRAC PROCESSOR.

preDRAC processor IP blocks
IP Block Description Source Language
Lagarto
pipeline

RV64IMA 5-stage in-
order pipeline, Bimodal
Branch Predictor with
1024 entries.

internal Verilog
and Chisel
(CSRs)

Instr. cache 4-way 16KB, 2-cycle
access latency, VIPT, 64B
cache blocks, 8-entry
TLB.

open,
lowRISC
0.2

Chisel

Data cache 4-way 16KB, 3-cycle
blocking access latency,
VIPT, 64B cache blocks,
8-entry TLB.

open,
lowRISC
0.2

Chisel

L2 cache 8-way 64KB, 3-cycle ac-
cess latency, PIPT, 64B
cache blocks, MESI pro-
tocol.

open,
lowRISC
0.2

Chisel

TileLink 128-bit wide 0.3.3 ver-
sion.

open,
lowRISC
0.2

Chisel

UART AXI4-Lite Slave interface,
11 bit per packet, con-
figurable baud rate, parity
bit and stop bits, up to
3MBauds.

based on
Lagarto SoC
v1.0, internal

Verilog

SD Card
controller

AXI4-Lite Slave interface,
Bidirectional 8-bit wide
SPI miso/mosi packets, up
to 25Mbps.

based on
Lagarto
SoC v1.0,
internal.

Verilog

JTAG Communication interface
between (PC) C read/write
functions and (Internal)
in/out FIFOs, uses an
FT2232H transciever,
clock at 50MHz.

open, GLIP,
OpenOCD
and
MohorTAP.

Verilog, C

Packetizer AXI-4 front end interface,
64-bit wide, 50 MHz in
65nm TSMC standard I/O

internal. Verilog

PMU 9 counters, user accessi-
ble.

internal Verilog

Debug ring start/stop execution,
read/write register values,
write program to L2
cache.

internal Verilog

In order to reduce the branch instruction penalty, the design
make use of a bimodal branch predictor with 1024 entries.

C. Cache Hierarchy

In this section, the principal characteristics of the Cache
Hierarchy used in this project are explained. The preDRAC
project adapts the cache design developed in the Untethered
lowRISC SoC version 0.2 [3] implementation. The majority
of the Cache Hierarchy used here is adopted from that project.
One characteristic of this SoC platform is its high configura-
bility: It is possible to modify the number of sets, ways, bits
on a set, etc.

The lowRISC Cache Hierarchy has two levels of caches. In
the first level, the private caches of each core are located and
each core has a First level instruction cache (IL1) and a First
level data cache (DL1). In the second level, there is a shared
cache.



In the first level, the caches are Virtually Indexed Physically
Tagged (VIPT). This means that the index used to access
the metadata or data arrays are the virtual ones, but inside
the metadata array, the saved tags are the physical ones.
This configuration allows to access the Translation Lookaside
Buffer (TLB) in parallel with the metadata and data arrays,
making the critical path shorter. The only requirement to
implement this type of cache is that the page size must be
a multiple of the cache way size. For instance, given that DL1
and IL1 cache way size is 4 kB, VIPT is feasible for page
sizes of 4×N kB.

In this hierarchy, the caches are inclusive. In this case, this
means that in the second level cache (L2) there is an active
copy of all the data that are in the first-level caches. That
implies the need to invalidate all the copies in the first level
cache of each line evicted from the L2. LowRISC implements
a variety of coherence protocols. In the preDRAC tapeout, the
protocol chosen is MESI. In this case, a directory is used to
maintain the coherence. This directory is located in the last
level of cache, the L2.

The replacement mechanism used in the lowRISC caches
can only be random replacement. Therefore, on the preDRAC
SoC, all the caches are using random replacement protocol.
This random replacement uses the lower bits of a 16 bits LFSR
in order to select the next set to be replaced. The feedback
polynomial is:

x16 + x14 + x13 + x11 + 1 (1)

D. Access to Main Memory and Peripherals

Ideally, the objective of the tapeout would be to include the
whole preDRAC SoC, together with all the aforementioned
peripherals on a single die. However, we faced many chal-
lenges regarding the availability of certain technologies and
analog and digital IPs that are needed for fabrication.

The lack of a physical interface for a DDR3 memory
controller motivated us to design a custom interface to commu-
nicate with memory using the physical DDR3 memory from
an external FPGA board, in our case a Xilinx Kintex KC705.

This implied to split the original design into two parts,
one that contains the memory controllers to access the main
memory, and a second one containing the core and rest of
the uncore system, including L1 and L2 cache memories.
Both parts are connected with an FPGA Mezzanine Card
(FMC) cable. This split is depicted in Figure 1. This external
connection only supports up to 50 MHz transfer speed, and
also the 128-bit bus must be split into 4 transactions of 32 bits
each.

E. Clocking

Another challenge of this design is the lack of publicly
available analog IPs for clock generation. For this reason, a
200 MHz off-chip oscillator is used as the main clock signal.

The custom memory interface with the FMC cable only
supported up to 50 MHz clock frequency. This required us to
have multiple clock frequencies in the design (see Figure 2).

The FMC clock (50 MHz) is simply the ASIC clock divided
by 4, and is thus aligned with it, avoiding the need of FIFOs
for clock domain crossing.

Fig. 2. Clock domains in the preDRAC processor design.

III. DESIGN VERIFICATION

A significant effort in the preDRAC processor was devoted
to verification at different stages of the design: RTL, post-
synthesis and post-place and route.

A. RTL and Gate Level Simulations

As part of the verification process, logic simulations pre-
synthesis, post-synthesis and post-place and route were per-
formed, using 395 ISA tests. Each test consists of a small
program that executes a particular instruction and performs
some check to determine if it is executed properly. The applied
tests exclude those using floating point and vector units, not
present in the design. The result provided by the simulation
is a list of the applied tests and whether they were successful
or not.

Gate level simulations have also been used to get activity
information and perform a more realistic power estimation
of the design. Power estimation is performed with Cadence
Joules.

B. Tests on FPGA

To verify the design before moving to the ASIC design flow,
multiple tests are performed with an implementation of the
system in FPGA, first in one FPGA to test the standalone SoC,
and then in two different FPGAs to mimic the final design.

The testing and verification strategy for the preDRAC
design consisted of 4 incremental steps: (i) simple RISC-V
ISA tests, which test each instruction, (ii) additional RISC-V
lowRISC tests, (iii) random generation of torture tests from
lowRISC, as well as (iv) booting the Linux kernel.

This verification phase allowed to start the ASIC design
with confidence in the correct functionality of the system.

C. Debug Infrastructure for Pre-Silicon Verification and Post-
Silicon Validation

We developed a debug infrastructure to verify at run-time
the state of the SoC, and to be able to inject internal tests
without using the packetizer interconnection. This system is
referred in RISC-V literature as a Debug Ring [4]. Such a
system was already developed by lowRISC. We decided to
develop our own infrastructure for two reasons. Firstly, the



lowRISC debug ring design was only available via a pre-built
bitstream for FPGA and thus not synthesizable in an ASIC.
Secondly, we needed to include this debug ring because it
controls the SoC initialization for Linux booting operations,
which means that the SoC would not be capable to boot the
Linux kernel without the Debug Ring and user interaction.

In a similar way as the lowRISC debug ring implementation,
our implementation is based on the Open SoC Debug Library
(OSD) [8], which provides a plug and play communication
interface with a base architecture, and the Generic Logic
Interfacing Project (GLIP) [6], which gives a generic data
exchange protocol based on FIFO queues.

Figure 3 shows the block diagram from the debug ring
implementation. It is divided into hardware inside the SoC
and a USB transceiver on the daughter board, and software
running on a host computer connected through USB. In
the software side the important aspects to underline are the
usage of the OSD and GLIP C++ libraries which control the
communication with the debug interface and allow us to easily
connect with different technologies such as JTAG, UART-
RS232 and TCP, without changing the C kernel code.

Fig. 3. Debug Ring Block diagram and interconnection.

IV. SYNTHESIS AND PHYSICAL DESIGN

The preDRAC SoC is designed using a fully digital design
flow based on standard cells in TSMC 65nm technology.
Standard cell libraries and SRAM macros were obtained via
Europractice. SRAM memories are used for the register file,
caches and associated tables. Care was taken to adapt the RTL
from the FPGA implementation to an ASIC implementation.

A. Synthesis

The synthesis tool is Cadence Genus. A multi-mode multi-
corner flow was followed using 10-track, regular-Vt cells, and
three corners: typical, best and worst cases with Non-Linear
Delay Model (NLDM) characterization. Table II shows the
corner conditions being considered.

TABLE II
LIST OF STANDARD CELL CORNERS.

Corner Conditions (V and T)
Typical 1.2 V and 25 C
Fast 1.32 V and 0 C
Slow 1.08 V and 125 C

Table III lists the memory block sizes used in the design.
The same corners as with the Standard Cells were used for
synthesis (Typical, Fast and Slow.)

TABLE III
SRAM SIZES.

DxW Size (kb) Description
32x64 2 Register file banks 0 & 1
1024x28 28 MEM BIPC 0 & 1
256x128 32 I and D L1 Cache (4 instances)
4096x128 512 L2 Cache
64x80 5 ICache tag
64x88 5.5 MetadataArray 1
1024x2 2 MEM PHT (2 instances)
1024x40 40 MEM BTB (2 instances)
128x128 16 Part of 128x176 MetadataArray 0
128x48 6 Part of 128x176 MetadataArray 0

The synthesis results show that there are no violating
paths in terms of timing for the defined timing constraints
(200 MHz clock). It is worth to mention that to achieve
this satisfactory result a few iterations in the design were
necessary. In particular, making sure that reset signals acted on
all relevant flip-flops was the most time consuming problem,
one that became only evident by gate level simulations and not
by RTL simulations. On the other hand, we avoided the use of
clock domain crossing, which is another source of problems
in ASIC designs.

Table IV shows a summary of the gates report, where it can
be seen that of a total of 88,960 instances, only 21 correspond
to memory cells, that nevertheless represent 79.7% of the cell
area and 72.1% of leakage current.

TABLE IV
NUMBER OF INSTANCES BY TYPE AND THEIR CONTRIBUTION TO AREA

AND LEAKAGE.

Type Instances Area (µm2) Leakage power (µW)
macros 21 1,841,871.1 (79.7%) 75,100.8 (72.1%)
sequential 25,664 263,667.6 (11.4%) 14,051.6 (13.5%)
inverter 4,572 6,449.2 (0.3%) 681.0 (0.7%)
buffer 6,344 11,842.4 (0.5%) 1,385.3 (1.3%)
logic 52,359 185,915.2 (8.0%) 12,917.4 (12.4%)
Total 88,960 2,309,745.5 (100%) 104,136.1 (100%)



TABLE V
POWER ESTIMATION OF THE NETLIST USING ACTIVITY INFORMATION

OBTAINED FROM SIMULATION

Leakage Internal Switching Total
(mW) (mW) (mW) (mW)

default 0.10918 190.44509 10.99893 201.55320
add 0.10917 138.12315 2.57574 140.80806
amoand 0.10922 130.48090 2.32073 132.91085
bne 0.10916 138.04635 2.45308 140.60859
mul 0.10917 138.01555 2.57164 140.69636
ld 0.10918 137.02828 2.71643 139.85389
jal 0.10914 138.61095 2.31653 141.03661
sd 0.10923 137.97742 2.73500 140.82164
idle 0.10917 107.07991 2.11543 109.30451

The total area (Top asic) including a routing estimation is
2.487 mm2, in line with the initial area budget of 2.5 mm2

for the core.
The results of the power estimations performed after synthe-

sis are summarized in Table V. The default row refers to an es-
timation where no switching activity information is provided,
and the tool calculates the power using a random probability of
20% by default. The next rows provide the power estimation
when using the switching information obtained from a set of
ISA tests for the following operations:

• add: Addition.
• amoand d: Atomic memory operation (AMO) which

performs logical AND.
• bne: Conditional branch.
• mul: Multiplication.
• ld: Load a value from memory into a register.
• jal: Jump and link. Performs an unconditional jump and

stores the address of the instruction following the jump
into a register.

• sd: Store a value from a register to memory.

Finally, the idle row contains the power estimation when
the processor is in idle state.

B. Place and Route

Place and Route of the synthesized netlist was executed
using Cadence’s Innovus and Mentor Calibre for DRC. The
chip target was a single module of 2 mm×2 mm for a Multi
Project Wafer (MPW) run through Europractice using the
65 nm technology node from TSMC, which uses 10 metal
layers. The final chip has 108 pads with 60 µm pitch, including
19 pins dedicated to the power supply. Total chip area is
3.57 mm2 with only 0.508 mm2 used for the (156,326) stdcells
(taking into account also the CTS and physical cells) of the
design, and the rest mainly used for memory blocks (21
macros occupying around 2 mm2) and pads. The chip is
powered at 1.2 V for the core and 2.5 V for the IO pads. The
estimated power consumption after place and route is 344 mW
using the tool default random activity pattern of 20%. Fig. 4
presents the final layout showing details of the customized
floorplan. A photograph of the fabricated chip is shown in
Fig. 5.

L2

L
1

 D
a
t

L
1

 I
n
st

MDArray_tag_A

MDArray_tag_1

MDArray_tag_B

IC_tag_array

PHT
ArrayBTBArray_1 BIPCArray

R
FA

rr
a
y

S
td

 C
e
lls

Std Cells

Fig. 4. preDRAC ASIC layout highlighting the different parts of the floorplan.
Top metal layer was reserved for logos and pads. Metal filling was performed
by TSMC. Side to side size is 1,850 µm.

Fig. 5. Microscope photograph of the preDRAC chip (left) and at the polySi
level (right).

V. POST-SILICON RESULTS

The preDRAC design was sent to Europractice for fabri-
cation in May 2019 and the chip samples were received in
September. To test it, we designed a PCB with all the required
circuits (power supply, external 200 MHz clock, reset) and
connectors (FMC for the FPGA, JTAG, UART, micro SD).

Before running any code on the fabricated SoC, we per-
formed several tests to the chip to check its operation: adequate
standby current, and checking that the implemented clock
divider functions properly: from 200 MHz to 50 MHz. This
clock divider is used to transmit data at a lower frequency
through the custom interface that we implemented.

The following functional tests have been applied:

• JTAG debug-ring interface test by connecting it to a com-
puter running Linux and ensuring successful operation.

• Access to L2 cache by writing/reading through JTAG.
• Exercising fetch and execute cycles on some small ker-

nels written into L2, while checking the register file to



verify the correct code execution.
• Running a set of ISA tests to verify the correctness of

individual instructions.
• Running a subset of Mälardalen WCET Benchmarks [9]

to get some average performance numbers: IPC of 0.33
with a clock frequency of 200 MHz. These are bare-metal
applications stored on the FPGA BootRAM and accessed
via the Packetizer.

• Finally, we tested different SoC peripherals (UART, SPI,
PMU and DDR3) from kernels loaded into main memory
using the custom interface.

Results of above tests concluded that all of them worked as
expected, except for the SPI controller, which shows a buggy
behaviour and prevented the use of the on-board SD card.
As a workaround to this issue, we implemented an alternative
path to access the peripherals using the custom interface. We
moved the UART and the SPI controllers to the FPGA side,
and the SoC uses the custom interface to access them. In this
way, we were able to use the external SD card memory and
successfully boot Linux.

VI. CONCLUSIONS AND FUTURE WORK

RISC-V open ISA is a great opportunity for educational,
research and industry organizations to work on open pro-
cessor based developments while opening many potential
collaborations among these communities. It is expected that
this new drive will also impact other hardware development
domains other than just processors. Different organizations like
OpenHW Group [10], CHIPS Alliance [11], FOSSi Founda-
tion [12] or local networks as RISC-V France [13] and Red-
RISCV [14], in addition to the parent organization RISC-
V International [2], are working on a collaborative scheme
towards this new open hardware paradigm and opportunities.
Europe has also decided to work on this direction by applying
open-source HW/SW to avoid excessive technology dependen-
cies from third parties, firms or countries, and has chosen the
RISC-V ISA as the base-line architecture for next European
processors [15].

In this design experience, it was possible to assess the
existing resources and limitations of the open-source proposal
regarding processor ASIC design.

Many resources do exist, and some of them were indeed
leveraged for this project. Processor design may use open-
source RTL cores and resources for SoC (e.g. lowRISC,
PULP [16]).

It is also true that porting a processor to silicon implies
a large effort and currently there are some technical and
economic hurdles to surmount that prevent this activity to be a
mainstream one like: in depth knowledge of specialized design
flows, expensive and proprietary EDA tools, limited or costly
access to libraries, memory macros and analog IPs.

Some of these limitations are alleviated by the Europractice
program in the case of academic and research institutes,
which have access to low cost CAD tools, libraries and
manufacturing. In the case of analog IPs for silicon there is
not a straightforward solution, although some efforts, such as

the Berkeley Analog Generator approach [17], [18] go in the
direction to offer open-source analog blocks as well.

In 2020 we plan to fabricate a new iteration of the preDRAC
design incorporating more robust verification methodologies
and multiple IPs (i.e. a PLL or a new interface with memory),
opening the door to future high performance designs.

Once this updated design is being fabricated and tested, we
plan to prepare the Lagarto RISC-V core to be offered as free
and open-source hardware.

ACKNOWLEDGMENTS

The DRAC project is co-financed by the European Union
Regional Development Fund within the framework of the
ERDF Operational Program of Catalonia 2014-2020 with a
grant of 50% of total eligible cost. The authors are part of Red-
RISCV which promotes activities around open hardware. The
Lagarto Project is supported by the Research and Graduate
Secretary (SIP) of the Instituto Politécnico Nacional (IPN)
from Mexico, and by the CONACyT scholarship for Center
for Research in Computing (CIC-IPN).

REFERENCES

[1] Andrew Waterman, Yunsup Lee, David A. Patterson, and Krste
Asanovic. “The RISC-V Instruction Set Manual, Volume I: Base User-
Level ISA”. In Tech. Report UCB/EECS-2011-62, EECS Dept., UC
Berkeley, pages 97–116, 2011.

[2] RISC-V International. https://riscv.org/. [Online; accessed 23-April-
2020].

[3] lowRISC. “Untethered lowRISC v0.2”. https://www.lowrisc.org/docs/
untether-v0.2/. [Online; accessed 27-August-2019].

[4] lowRISC. “Overview of the debug infrastructure”. https://www.lowrisc.
org/docs/debug-v0.3/overview/, 2018.

[5] U. C. Berkeley. “The TileLink Specification, Version 0.3.3”. https://docs.
google.com/document/d/1Iczcjigc-LUi8QmDPwnAu1kH4Rrt6Kqi1
EUaCrfrk8. [Online; accessed 23-July-2019].

[6] Institute for Integrated Systems (LIS). “The Generic Logic Interfacing
Project”. https://www.glip.io/index.html, 2018.

[7] Cristóbal Ramı́rez, César Hernández, Carlos Rojas Morales, Gus-
tavo Mondragón Garcı́a, Luı́s A. Villa, and Marco A. Ramı́rez. “Lagarto
I–Una plataforma hardware/software de arquitectura de computadoras
para la academia e investigación”. In Research in Computing Science,
volume 137, pages 19–28, 2017.

[8] The Open SoC Debug Contributors. “The Open SoC Debug Docu-
mentation Library”. https://opensocdebug.readthedocs.io/en/latest/index.
html#, 2018.

[9] “Mälardalen WCET benchmarks homepage”. www.mrtc.mdh.se/
projects/wcet/benchmarks.html, 2010. [Online; accessed 4-September-
2019].

[10] Open Hardware Group. https://www.openhwgroup.org/. [Online; ac-
cessed 23-April-2020].

[11] CHIPS Alliance. https://chipsalliance.org/. [Online; accessed 23-April-
2020].

[12] FOSSi Foundation. https://fossi-foundation.org/. [Online; accessed 23-
April-2020].

[13] RISC-V France. https://www.riscv.fr/. [Online; accessed 23-April-2020].
[14] Red RISC-V. https://www.red-riscv.org/. [Online; accessed 23-April-

2020].
[15] European Processor Initiative. https://www.

european-processor-initiative.eu/. [Online; accessed 23-April-2020].
[16] PULP Platform. https://pulp-platform.org/. [Online; accessed 23-April-

2020].
[17] J. Crossley, A. Puggelli, H. P. Le, B. Yang, R. Nancollas, K. Jung,

L. Kong, N. Narevsky, Y. Lu, N. Sutardja, E. J. An, A. L. Sangiovanni-
Vincentelli, and E. Alon. “BAG: A designer-oriented integrated frame-
work for the development of AMS circuit generators”. In IEEE/ACM
International Conference on Computer-Aided Design, Digest of Techni-
cal Papers, ICCAD, pages 74–81, 2013.



[18] Eric Chang, Jaeduk Han, Woorham Bae, Zhongkai Wang, Nathan
Narevsky, Borivoje NikoliC, and Elad Alon. “BAG2: A process-portable
framework for generator-based AMS circuit design”. In 2018 IEEE
Custom Integrated Circuits Conference (CICC), pages 1–8. IEEE, apr
2018.


