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GROUP INVERSE MATRIX OF THE NORMALIZED

LAPLACIAN ON SUBDIVISION NETWORKS

Ángeles Carmona, Margarida Mitjana, Enric Monsó ∗

In this paper we consider a subdivision of a given network and we show
how the group inverse matrix of the normalized laplacian of the subdivision
network is related to the group inverse matrix of the normalized laplacian of
the initial given network. Our approach establishes a relationship between
solutions of related Poisson problems on both structures and takes advantage
on the properties of the group inverse matrix. As a consequence we get
formulae for effective resistances and the Kirchhoff Index of the subdivision
network expressed in terms of its corresponding in the base network. Finally,
we study two examples where the base network are the star and the wheel,
respectively.

1. PRELIMINARIES

In recent years many papers are devoted to the study of different parameters
of composite graphs and operations on graphs, for instance the subdivision graph
operation. Parameters such that the effective resistances and Kirchhoff index of the
subdivision graph have been considered in different works under several hypothesis
such as regular graphs in [6, 11], bipartite graphs in [12], or operations between
graphs that involve the subdivision concept as well, see [3] for instance.

In [14], the author extends the previous results to general graphs and com-
putes the Kirchhoff index of subdivision graphs in terms of the Kirchhoff index,
the multiplicative degree–Kirchhoff index, the additive degree–Kirchhoff index, the
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number of vertices, and the number of edges of a graph. Simultaneously, Sun et
alt. in [12], gave the formulae for the Kirchhoff index in terms of a {1}–inverse
of the combinatorial Laplacian. In [5], the authors extend the subdivision concept
to the case of networks, in such a way that electrical compatibility formulae are
satisfied and we compute the effective resistances and the Kirchhoff index with re-
spect to the combinatorial laplacian of the network, which allows us to obtain some
generalization of known results.

All the cited works, except the last one, compute the parameters associated
with the combinatorial Laplacian for graphs; that is, without taking into account
conductances. In this work, we consider the so–called normalized Laplacian intro-
duced in [9]. The increasing interest on the normalized Laplacian comes from its
probabilistic interpretation that allows to know many measures for random walks,
see for instance [7, 8, 10, 13]. In particular, in [13] the eigenvalues of iterated
subdivision graphs were obtained.

In the present paper, we consider the subdivision of a network by interpreting
it as an electric circuit, and hence each edge has got assigned a positive number
that corresponds with the conductance of a wire connecting two nodes, its inverse
is the resistance. Then, we decompose each edge into two new edges taking into
account electrical compatibility of the circuit, specifically, the series sum rule for
resistances. As a consequence, we would get that after the subdivision process, the
effective resistance between any pair of old vertices should remain unchanged.

Main results are obtained in Section 2, where an expression for the Green
function of the normalized laplacian for the subdivision network is given in terms
of the Green function of the base network and some other known parameters. Then
using the relation between effective resistances and Green functions we obtain the
formula for these parameters and also the corresponding Kirchhoff index. In the
last section we consider two examples that show the efficiency of the method.

In this paper Γ = (V,E, c) denotes a simple network; that is, a finite, with no
loops, nor multiple edges, connected graph. Let n be the order of the network, that
is, the number of vertices in V, and let m be the size of the network, thus the number
of edges in E. We call conductance to the symmetric function c : V ×V → [0,+∞)
satisfying c(x, y) > 0 iff x ∼ y, which means that {x, y} ∈ E is an edge in Γ. For
every vertex in V, let k(x) =

∑
y∈V

c(x, y) be the degree of vertex x; then the volume

of Γ is vol(Γ) =
∑
x∈V

k(x).

Let C(V ) be the set of real functions on V. The standard inner product on
C(V ) is denoted by 〈·, ·〉 and hence if u, v ∈ C(V ) then 〈u, v〉 =

∑
x∈V

u(x)v(x). For

any x ∈ V, εx ∈ C(V ) is the Dirac function or characteristic function of the set {x},
with the only non–null value that it takes is one at x. The normalized laplacian of Γ,
introduced by Chung and Langlands in [9], is the linear operator L : C(V )→ C(V )
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that assigns to each u ∈ C(V ), the real function L (u) defined at every x ∈ V by

L (u)(x) =
1√
k(x)

∑
y∈V

c(x, y)

(
u(x)√
k(x)

− u(y)√
k(y)

)
.

Easily ker(L ) = span(
√
k) and given f ∈ C(V ), the Poisson problem L (u)(x) =

f(x) is compatible iff 〈f,
√
k〉 = 0. In this case, two different solutions differ up to

a multiple of
√
k, so there exists a unique solution orthogonal to

√
k for every

compatible linear system L (u) = f (Fredholm’s alternative).

The Green function of Γ is the kernel G : V × V −→ R such that for each
y ∈ V , G(·, y) is the unique orthogonal to

√
k solution of the Poisson equation

L u = εy −
√
k(y)

vol(Γ)

√
k. Related to it, the Green operator of Γ is the linear operator

G : C(V ) −→ C(V ) defined on every f ∈ C(V ) as

G (f)(x) =
∑
y∈V

G(x, y)f(y), x ∈ V.

Once a labelling of V is considered, linear operators can be identified with
matrices and functions can be identified with n dimensional vectors. Then, the
matrix corresponding to L , will be denoted by L and, the matrix corresponding to
G , which is the group inverse matrix of L, will be denoted by G.

Given x, y ∈ V , the effective resistance between x and y, is the value

(1) R(x, y) =
G(x, x)

k(x)
+
G(y, y)

k(y)
− 2

G(x, y)√
k(x)

√
k(y)

,

see [1, Proposition 4.3]. Moreover, the Kirchhoff index of Γ is defined in [2] as

k(Γ) = vol(Γ)
∑
x∈V

G(x, x) =
1

2

∑
x,y∈V

R(x, y)k(x)k(y).

The subdivision network Γ
S

= (V
S

, E
S

, c
S

) of Γ is obtained from it by inserting
a new vertex in every edge, so that each {x, y} ∈ E is replaced by two new edges,
say {x, vxy} and {vxy, y} where vxy is the new inserted vertex. We denote by V ′ the

set of new generated vertices assuming that vxy = vyx. Thus, V
S

= V ∪V ′ and the
order of the subdivision network is n+m while its size is 2m. As we are interested
in keeping electrical compatibility in the new network, we define conductances as

c
S

(x, vxy) = c
S

(y, vxy) = 2c(x, y), so that series rule for resistors is fulfilled

1

c(x, y)
=

1

cS (x, vxy)
+

1

cS (y, vxy)
.

To our knowledge, the most common is to assume that the value of conduc-
tances on the subdivision structure is one and hence, the electrical compatibility
condition fails.
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The degree function on Γ
S

, k
S ∈ C(V S

), satisfies k
S

(x) = 2k(x) for any

x ∈ V, and k
S

(vxy) = 4c(x, y) for those vertices in V ′. Moreover, it holds that

vol(Γ
S

) = 4vol(Γ).

2. THE GROUP INVERSE OF THE NORMALIZED LAPLACIAN
FOR THE SUBDIVISION NETWORK

The first main result we present in this section sets the precise relation be-
tween the solution of a compatible Poisson problem for the normalized laplacian

on a subdivision network Γ
S

and the solution of a conveniently well posed Poisson
problem for the normalized laplacian on the base network Γ.

With the aim of usefulness we consider two operators:

(a) Let h ∈ C(V S

) its contraction to C(V ) is

h(x) = h(x) +
1√

2k(x)

∑
y∼x

√
c(x, y)h(vxy).

(b) For any u ∈ C(V ) its extension to C(V S

), and related to h ∈ C(V S

) is

uh(vxy) = h(vxy) +

√
c(x, y)√

2

(
u(x)√
k(x)

+
u(y)√
k(y)

)

for vxy ∈ V ′, while uh(x) = u(x) for those vertices in V.

The following result links the solution of a Poisson problem in the subdivision
network with an appropriate Poisson problem on the base network. From now on

L
S

denotes the normalized laplacian of the subdivision network Γ
S

.

Theorem 1. Given h ∈ C(V S

) such that 〈h,
√
kS 〉V S = 0, then 〈h,

√
k〉V = 0.

Moreover, u ∈ C(V S

) is a solution of the Poisson equation L
S
(u) = h in V

S

iff
u = u|V is a solution of the Poisson equation L (u) = 2h in V. In this case, the

identity u = uh holds.

Proof. Firstly we note that
〈
h,
√
k
〉
V

=
1√
2

〈
h,
√
kS
〉
V S

as

∑
x∈V

h(x)
√
k(x) =

∑
x∈V

h(x)

√
k

S

(x)

2
+

1√
2

∑
x∈V

1√
k(x)

∑
y∼x

√
c(x, y)h(vxy)

√
k(x)

=
1√
2

∑
x∈V

h(x)
√
kS (x) +

1√
2

∑
vxy∈V ′

h(vxy)
√
kS (vxy).

So the first statement holds. Then,
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L
S
(u)(vxy) = u(vxy)− c

S

(vxy, x)√
kS (vxy)

√
kS (x)

u(x)− c
S

(vxy, y)√
kS (vxy)

√
kS (y)

u(y)

= u(vxy)−
√
c(x, y)√

2

u(x)√
k(x)

−
√
c(x, y)√

2

u(y)√
k(y)

.

So we obtain that,

u(vxy) = L
S
(u)(vxy) +

√
c(x, y)√

2

(
u(x)√
k(x)

+
u(y)√
k(y)

)
.

Also, for the former vertex in the given network,

L
S
(u)(x) =

1√
kS (x)

∑
y∼x

c
S

(x, vxy)

 u(x)√
kS (x)

− u(vxy)√
kS (vxy)

 .
Substituting the precedent expression for u(vxy) we obtain

L
S
(u)(x) =

1

2
√
k(x)

∑
y∼x

c(x, y)

[
2u(x)√
k(x)

−
√

2L
S
(u)(vxy)√
c(x, y)

− u(x)√
k(x)

− u(y)√
k(y)

]

=
1

2
√
k(x)

∑
y∼x

c(x, y)

(
u(x)√
k(x)

− u(y)√
k(y)

)
− 1√

2k(x)

∑
y∼x

√
c(x, y)L

S
(u)(vxy).

Finally, we get, if u = u|V

L
S
(u)(x) =

1

2
L (u)(x)− 1√

2k(x)

∑
y∼x

√
c(x, y)L

S
(u)(vxy).

Corollary 1. Given h ∈ C(V S

), such that 〈h,
√
kS 〉V S = 0, let h ∈ C(V ) be its

contraction to V ; u ∈ C(V ) be the unique solution of L (u) = 2h that satisfies
〈u,
√
k〉V = 0; and the constant

λ = − 1

2vol(Γ)

∑
r∼s

h(vrs)
√
c(r, s).

Then, u⊥ = uh + λ
√
kS ∈ C(V S

) is the unique solution of the Poisson problem

L
S
(u) = h that satisfies 〈u⊥,

√
kS 〉V S = 0. Specifically,

u⊥(x) = u(x)−
√
k(x)√

2vol(Γ)

∑
r∼s

h(vrs)
√
c(r, s),

u⊥(vxy) = h(vxy) +

√
c(x, y)√

2

(
u(x)√
k(x)

+
u(y)√
k(y)

)
−
√
c(x, y)

vol(Γ)

∑
r∼s

h(vrs)
√
c(r, s),
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for any x ∈ V and vxy ∈ V ′.

Proof. As two solutions differ on a multiple of
√
kS , we have that u⊥ = uh+γ

√
kS ,

γ ∈ R. Then,

0 = 〈u⊥,
√
kS 〉V S = 〈uh,

√
kS 〉V S + γ

∑
x∈V S

k
S

(x)

=
√

2
∑
x∈V

u(x)
√
k(x) +

∑
vxy∈V ′

uh(vxy)
√
kS (vxy) + γvol(Γ

S

)

= 2
∑

vxy∈V ′
uh(vxy)

√
c(x, y) + 4γvol(Γ),

because 〈u,
√
k〉V = 0, and hence

λ = − 1

2vol(Γ)

∑
r∼s

uh(vrs)
√
c(r, s)

= − 1

2vol(Γ)

∑
r∼s

[
h(vrs)

√
c(r, s) +

c(r, s)√
2

(
u(r)√
k(r)

+
u(s)√
k(s)

)]

= − 1

2vol(Γ)

∑
r∼s

h(vrs)
√
c(r, s)− 1

2
√

2vol(Γ)

∑
r∈V

u(r)√
k(r)

∑
s∼r

c(r, s)

= − 1

2vol(Γ)

∑
r∼s

h(vrs)
√
c(r, s)− 1

2
√

2vol(Γ)

∑
r∈V

u(r)
√
k(r)

= − 1

2vol(Γ)

∑
r∼s

h(vrs)
√
c(r, s).

Taking into account the relation between Poisson problems for the normalized

laplacian on Γ
S

and Γ, we obtain the expression of the Green function for the
normalized laplacian of the subdivision network G

S
, in terms of the Green function

of the base network G.

Theorem 2. Let Γ
S

be the subdivision network of Γ, then for any x, z ∈ V and

vxy, vzt ∈ V ′, the Green function of Γ
S

is given by

GS (x, z) = 2G(x, z) +

√
k(x)

√
k(z)

4vol(Γ)
,

GS (vxy, z) =
√

2
√

c(x, y)

(
G(x, z)√

k(x)
+

G(y, z)√
k(y)

−
√

k(z)

4vol(Γ)

)
,

GS (vxy, vzt) =
√

c(x, y)c(z, t)

(
G(x, z)√
k(x)k(z)

+
G(x, t)√
k(x)k(t)

+
G(y, z)√
k(y)k(z)

+
G(y, t)√
k(y)k(t)

)

−
3
√

c(x, y)c(z, t)

2vol(Γ)
+ εvzt(vxy).
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Proof. For the first case, suppose z ∈ V, and let hz = εz −
√
kS (z)

4vol(Γ)

√
kS . After

Theorem 1, for every x ∈ V the data function to be used for the Poisson problem
on Γ must be

hz(x) = εz(x)−
√
kS (z)

√
kS (x)

4vol(Γ)
− 1√

2

√
kS (z)

4vol(Γ)

∑
y∼x

√
c(x, y)√
k(x)

√
kS (vxy)

= εz(x)−
√
kS (x)

√
kS (z)

2vol(Γ)
= εz(x)−

√
k(x)

√
k(z)

vol(Γ)
.

The unique solution to the Poisson problem L (uz) = 2hz, orthogonal to
√
k, using

the Green function for Γ, is uz(x) = 2G(x, z), and from Corollary 1

G
S
(x, z) = 2G(x, z) +

√
k(x)

√
k(z)

4vol(Γ)2

∑
r∼s

√
kS (vrs)

√
c(r, s)

= 2G(x, z) +

√
k(x)

√
k(z)

2vol(Γ)2

∑
r∼s

c(r, s) = 2G(x, z) +

√
k(x)

√
k(z)

4vol(Γ)
.

On the other hand, for every vxy ∈ V ′,

G
S
(vxy, z) =

√
2
√
c(x, y)

(
G(x, z)√
k(x)

+
G(y, z)√
k(y)

)

−
√
k(z)

√
c(x, y)√

2vol(Γ)
+

√
c(x, y)

√
k(z)√

2vol(Γ)2

∑
r∼s

c(r, s)

=
√

2
√
c(x, y)

(
G(x, z)√
k(x)

+
G(y, z)√
k(y)

−
√
k(z)

4vol(Γ)

)
.

Finally, we complete the proof by considering the case where the pole is a new
generated vertex by the subdivision procedure. So suppose now vzt ∈ V ′, and let

hvzt = εvzt −
√
c(z, t)

2vol(Γ)

√
kS . Then, for every x ∈ V

hvzt(x) = −
√

2
√
c(z, t)

2vol(Γ)

√
k(x) +

1√
2

∑
y∼x

√
c(x, y)√
k(x)

−

(
εvzt(vxy)−

√
c(z, t)

vol(Γ)

√
c(x, y)

)

= −
2
√
c(z, t)√

2vol(Γ)

√
k(x) +

1√
2

[√
c(z, t)√
k(z)

εz(x) +

√
c(z, t)√
k(t)

εt(x)

]

=
1√
2

√
c(z, t)√
k(z)

(
εz(x)−

√
k(z)

vol(Γ)

√
k(x)

)

+
1√
2

√
c(z, t)√
k(t)

(
εt(x)−

√
k(t)

vol(Γ)

√
k(x)

)
.
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Hence, the Poisson problem to solve is L (uvzt) = 2hvzt and, using the Green
function for Γ, we obtain

uvzt(x) =
√

2
√
c(z, t)

(
G(x, z)√
k(z)

+
G(x, t)√
k(t)

)
.

Then, from Corollary 1, we get that

G
S
(vxy, vzt) = εvzt(vxy)−

√
c(x, y)

√
c(z, t)

vol(Γ)

+
√
c(x, y)c(z, t)

(
G(x, z)√
k(x)k(z)

+
G(x, t)√
k(x)k(t)

+
G(y, z)√
k(y)k(z)

+
G(y, t)√
k(y)k(t)

)

−
√
c(x, y)c(z, t)

2vol(Γ)
.

From Eq. (1), we easily calculate the values of the effective resistances for the
subdivision network. Moreover, we also give the expression of its Kirchhoff index.

Theorem 3. Let Γ
S

be the subdivision network of Γ, then for any x, z ∈ V and

vxy, vzt ∈ V ′, the effective resistances between vertices of Γ
S

are given by

R
S
(x, z) = R(x, z),

R
S
(vxy, z) =

1

4

1

c(x, y)
+

1

2
R(x, z) +

1

2
R(y, z)− 1

4
R(x, y),

R
S
(vxy, vzt) =

1

4

(
1

c(x, y)
+

1

c(z, t)

)
+

1

4

(
R(x, z) +R(x, t) +R(y, z) +R(y, t)−R(x, y)−R(z, t)

)
,

for any vxy 6= vzt.

Moreover, the Kirchhoff index of the subdivision network is

k(Γ
S

) = 16 k(Γ) + 2 vol(Γ)(2m− 2n+ 1).

Proof. The expressions for the effective resistance follow directly from Eq. (1) and
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Theorem 2. On the other hand, from the definition of Kirchhoff index we get

k(Γ
S

) = 8k(Γ) + 2vol(Γ)(2m− 1)

+ 4vol(Γ)
∑
x∼y

c(x, y)

(
G(x, x)

k(x)
+2

G(x, y)√
k(x)k(y)

+
G(y, y)

k(y)

)
= 8k(Γ) + 2vol(Γ)(2m− 1)

+ 4vol(Γ)
∑
x∈V

G(x, x)

k(x)

∑
y∼x

c(x, y) + 4vol(Γ)
∑
x∈V

1√
k(x)

∑
y∼x

c(x, y)
G(x, y)√
k(y)

= 12k(Γ) + 2vol(Γ)(2m− 1) + 4vol(Γ)
∑
x∈V

G(x, x)

k(x)

∑
y∼x

c(x, y)

+ 4vol(Γ)
∑
x∈V

1√
k(x)

∑
y∼x

c(x, y)

(
G(x, y)√
k(y)

− G(x, x)√
k(x)

)

= 16k(Γ) + 2vol(Γ)(2m− 1)− 4vol(Γ)
∑
x∈V

(
1−

√
k(x)

vol(Γ)

√
k(x)

)
= 16k(Γ) + 2vol(Γ)(2m− 2n+ 1).

3. SOME EXAMPLES

In this final section we add results corresponding to two examples of subdi-
vision networks obtained from the n–Star and the n–Wheel, respectively.

Firstly we consider the n–Star network, see Fig. 1 (left), that has n + 1
vertices, {x0, x1, ..., xn}, and constant conductance a > 0, i.e., c(x0, xi) = a, for
i = 1, ..., n, and zero otherwise. Thus, the degree function is k(x0) = na and
k(xi) = a for i = 1, ..., n, while vol(Γ) = 2na. Hence, the subdivision of the n–
Star has n new inserted vertices, those white in Fig. 1 (right), that we denote
as vx0xi

. Accordingly to the definition of the conductances, the degree function of

the subdivision n–Star network is k
S

(x0) = 2na, k
S

(xi) = 2a, and k
S

(vx0xi) = 4a,
i = 1, ..., n,

Normalized laplacian matrices of the former network and its subdivision are,
respectively

L =

 1 − 1√
n
1T

− 1√
n
1 I

 and L
S

=


1 0T − 1√

2n
1T

0 I − 1√
2
I

− 1√
2n

1 − 1√
2
I I


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a

aa

2a

2a

2a

2a

Figure 1: The Star network and its subdivision network

being 0 and 1 n entries vectors (all zeros, all ones) and I the n× n identity matrix.
It can be proved, see [4] for instance, that the group inverse matrix for such an
n-Star network is

G =


1

4
− 1

4
√
n
1T

− 1

4
√
n
1 A


being A an n × n matrix whose values are 1 − 3

4n
on the diagonal, and − 3

4n
otherwise.

For the n–Star network, effective resistances are

R(x0, xi) =
1

a
, R(xi, xj) =

2

a
,

while its corresponding Kirchhoff index is k(Γ) = n(2n− 1)a.

Hence, using Theorem 2, we calculate

G
S

=



5

8
− 3

8
√
n
1T −

√
2

8
√
n
1T

− 3

8
√
n
1 A1 A2

√
2

8
√
n
1 AT2 A3


where matrices A1,A2 and A3 have all the same“shape”; that is, a constant value
on the diagonal and a different one off the diagonal, so they can be expressed in
terms of the identity matrix and J the all ones matrix as

A1 = 2I− 11

8n
J, A2 =

√
2I− 9

√
2

8n
J and A3 = 2I− 7

4n
J.
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After using Theorem 3, effective resistances for the subdivision network of
n–Star network are to be

R
S
(x0, xi) = R

S
(vx0xi,x0xj

) =
1

a
,

R
S
(x0, vx0xi) = R

S
(xi, vx0xi) =

1

2a
,

R
S
(xi, xj) =

2

a
and R

S
(xi, vx0xj

) =
3

2a
,

for i, j = 1, . . . , n, i 6= j. Please note that as the subdivided star is a tree, the
values of the effective resistances do agree with those obtained by direct application
of simple electrical properties.

And also, the Kirchhoff index for the subdivision network of n–Star network
is,

k(Γ
S

) = 4na(8n− 5).

a

a

a

a

c
c

c

c

2a

2a

2c
2c

2c
2a

2c

2a

2a

2a

Figure 2: The Wheel network and its subdivision network

Finally, in our second example, we consider the n–Wheel network, see Fig.
2 (left), Wn, that has n + 1 vertices labelled {x0, x1, ..., xn}. The only non null
conductances are c(x0, xi) = a > 0 and c(xi, xi+1) = c > 0, for i = 1, ..., n,
assuming xn+1 = x1. Thus, the degree function is defined as k(x0) = na and
k(xi) = a+ 2c for i = 1, ..., n. In addition, vol(Wn) = 2n(a+ c).

As the normalized laplacian operator on a network can be seen as a particular
Schrödinger operator, we use the results in [4] again to obtain the Green function
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of the normalized laplacian for the n–Wheel network. And it is

G(x0, x0) =
(a+ 2c)2

(2(a+ c))2

G(x0, xi) = −
(a+ 2c)

√
na(a+ 2c)

n(2(a+ c))2
, i = 1, ..., n

G(xi, xj) = − (a+ 2c)2

2na(a+ c)

( a

2(a+ c)
+ 1
)

+ p
Un−1−|i−j|(p) + U|i−j|−1(p)

Tn(p)− 1

i, j = 1, ..., n, where p = 1 +
a

2c
and Tk(p) and Uk(p) are the first and second kind

Chebyshev polynomials respectively.

Then effective resistances are

R(x0, xi) =
n(a+ c)

c

Un−1(p)

(Tn(p)− 1)

R(xi, xj) = 2
n(a+ c)

c

(
Un−1(p) + Un−1−|i−j|(p) + U|i−j|−1(p)

)
(Tn(p)− 1)

,

i, j = 1, ..., n, i 6= j and the Kirchhoff index is

k(Wn) = 2n(a+ c)

(
− (a+ 2c)2

2a(a+ c)
+
n(a+ 2c)

2c

Un−1(p)

Tn(p)− 1

)

= 2n(a+ c)

 p2

(2p− 1)(1− p)
+

n−1∑
j=0

p

p− cos( 2π j
n )

 ,

taking into account that
nUn−1(p)

Tn(p)− 1
=

n−1∑
j=0

1

p− cos( 2π j
n )

.

Let us now consider the subdivision network of the n–Wheel network. We
denote the new white vertices in Fig.2 (right), by vx0xi

and vxixi+1
, i = 1, . . . , n

provided xn+1 = x1, as before. According to the notation, the degree of the vertices

in the subdivision network of the n–Wheel network are k
S

(x0) = 2na, k
S

(xi) =

2(a+ 2c), k
S

(vx0xi
) = 4a and k

S

(vxixi+1
) = 4c.

From Theorem 2, we obtain the expression of the values of the Green function
for the subdivision of the Wheel network case by case.
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Initially when only former vertices are concerned

G
S
(x0, x0) =

5a2 + 17ac+ 16c2

8(a+ c)2
,

G
S
(x0, xi) = −

√
na(a+ 2c)

8n(a+ c)2
(3a+ 7c), i = 1, ..., n;

G
S
(xi, xj) = − (a+ 2c)2

8an(a+ c)2
(11a2 + 31ac+ 16c2),

+
2p
(
Un−1−|i−j|(p) + U|i−j|−1(p)

)
(Tn(p)− 1)

, i, j = 1, ..., n.

Secondly when both, former and later, kinds of vertices are involved

G
S
(x0, vx0xi) =

√
2

8
√
n

8c2 + 3ac− a2

(a+ c)2
, i = 1, ..., n;

G
S
(x0, vxixi+1

) =

√
2nac

8n(a+ c)2
(−5a− 9c), i = 1, ..., n and assuming xn+1 = x1;

G
S
(xj , vx0xi

) = −
√

2a(a+ 2c)

8na(a+ c)2
(9a2 + 21ac+ 8c2)

+
p
√

2a√
a+ 2c

(
Un−1−|i−j|(p) + U|i−j|−1(p)

)
(Tn(p)− 1)

, i, j = 1, ..., n;

G
S
(xj , vxixi+1) =

√
2(a+ 2c)c

8an(a+ c)2
(−11a2 − 33ac− 16c2), i, j = 1, ..., n with xn+1 = x1.

And finally when only new vertices are taken into account

G
S
(vx0xi

, vx0xj
) = −a(7a+ 11c)

4n(a+ c)2
+

a

2c

(
Un−1−|i−j|(p) + U|i−j|−1(p)

)
(Tn(p)− 1)

+ εvx0xi
(vx0xj

), i, j = 1, ..., n;

G
S
(vx0xi

, vxjxj+1
) = −

√
ac

(11a2 + 23ac+ 8c2)

4an(a+ c)2

+

√
ac

2c

(
Un−1−|i−j|(p) + Un−1−|i−j−1|(p)

)
Tn(p)− 1

+

√
ac

2c

(
U|i−j|−1(p) + U|i−j−1|−1(p)

)
Tn(p)− 1

,

G
S
(vxixi+1

, vxjxj+1
) = −c(15a2 + 35ac+ 16c2)

4an(a+ c)2

+ (1 + p)
Un−1−|i−j|(p) + U|i−j|−1(p)

Tn(p)− 1
+ εxi

(xj).
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with i, j = 1, ..., n in every case and, as usual with xn+1 = x1 when required.

Applying Theorem 3 we can obtain the effective resistances for the subdivi-
sion network of the n–Wheel. In what follows we compute just some of them as
examples.

R
S
(xi, xj) = R(xi, xj), i, j = 0, ..., n i 6= j;

R
S
(x0, vx0xi

) =
1

4a
+
n(a+ c)

c

Un−1(p)

Tn(p)− 1
, i = 1, ..., n;

R
S
(xj , vx0xi

) =
1

4a
+

5

4

n(a+ c)

c

Un−1(p)

Tn(p)− 1

+
n(a+ c)

c

Un−1−|i−j|(p) + U|i−j|−1(p)
)

Tn(p)− 1
, i, j = 1, ..., n;

R
S
(vxixi+1

, xj) =
1

2c
+
n(a+ c)

c

Un−1(p)

Tn(p)− 1
− n(a+ c)

c

(
Un−2(p) + 1

)
Tn(p)− 1

+
n(a+ c)

c

(
Un−1−|i−j|(p) + U|i−j|−1(p)

)
Tn(p)− 1

+
n(a+ c)

c

(
Un−1(p) + Un−1−|i+1−j|(p) + U|i+1−j|−1(p)

)
Tn(p)− 1

.

with i, j = 1, ..., n and assuming xn+1 = x1 once more.

In addition, the Kirchhoff index for the subdivision network of the n–Wheel
is

k(Γ
S

) = n+ 4np
Un−1(p)

(Tn(p)− 1)
− 5a2 + 17ac+ 16c2

2a(a+ c)
.
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