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Abstract

Direct Numerical Simulations of the incompressible Navier-Stokes equations for relatively
high Reynolds numbers, as required for airfoils, are extremely expensive in terms of number
of CPUs as well as processing time. Thus, small-scale modelling is a clever way to reduce
this cost by introducing an extra dissipation in the form of a turbulent viscosity.
In this thesis, the turbulence phenomenon is reviewed, from both theoretical and technical
points of view, and applied to a turbulent Lid-Driven Cavity. In order to do so, different eddy-
viscosity models are applied in a Large Eddy Simulation formulation melded into a symmetry-
preserving discretization that presents the optimal conditions for turbulence simulation.
In fact, S3PQ model developed by CTTC is used and tested in a Lid-Driven Cavity at Re =
10000, provided its remarkable turbulent properties, in which the properties of a turbulent
boundary layer are studied and compared to the theoretical approach, previously developed.
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Chapter 1

Introduction

1.1 Aim of the thesis

The aim of the thesis is, ultimately, to properly simulate the phenomenon of turbulence in
fluids. Nonetheless, in order to be able to provide the expected results, which have to be
physically coherent, a solid background on turbulence has to be built, from both a theoretical
point of view and a computational point of view.

The objectives of this thesis are, thus, the following:

1. Understand how turbulence works and how it is modelled.

2. Implement a C code applying the Finite Volume Method to solve reference cases using
LES models.

1.2 Background and justification

Turbulence is not a well known phenomena. As 1965 Nobel Prize in Physics winner Richard
Feynman stated in his Lectures on Physics [1]: there is a physical problem that is common to
many fields, that is very old, and that has not been solved. It is not the problem of finding new
fundamental particles, but something left over from a long time ago—over a hundred years.
Nobody in physics has really been able to analyze it mathematically satisfactorily in spite of
its importance to the sister sciences. It is the analysis of circulating or turbulent fluids.

In fact, from a theoretical point of view, the analysis of turbulent flows has not progressed
much since Feynman stated that in 1964: Kolmogorov had previously published its statistical
and energetical analysis of the turbulence, and Reynolds and Prandtl had developed their
own theories around Navier-Stokes equations.

This is one of the reasons why the proof of existence and smoothness of a solution to the
incompressible Navier-Stokes equations in three dimensions, which detail the fluid motion, is
one of the Millenium Prize problems.

Nevertheless, with the time passing by, the computational power of CPUs has increased
quite a lot. Moreover, discretizing the Navier-Stokes equations both in space and time had
been proven possible, which made them suitable to be solved in a computer. Thus, different
methodologies have been developed and improved each other in order to obtain more accurate
simulations as well as more complex.

This is the world of CFD, based on discretizing a domain in time and space so as to

1
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solving in each of the control volumes obtained an equivalent integral, in case of a Finite
Control Volume approach, version of the Navier-Stokes equations, which, all summed up,
will contribute to the solution of the full domain.

However, Kolmogorov’s studies shown an increasingly dependance of the relevant scales
of the fluid with how turbulent the flow was. Thus, for strongly turbulent flows, discretiza-
tion scales for a DNS required to be too small in some problems, requiring an enormous
computational power which was either unavailable or unfeasible. Thus, turbulence models
were developed so that the scales could be slightly bigger and, therefore, the simulations were
cheaper in terms of computational power.

This is where LES appears, being one of the most commonly used methods of turbulence
modelling, which, in fact, might require some development in the near future to make it even
cheaper to simulate the Navier-Stokes equations in detail.

1.3 Scope of the thesis

• Understanding the fundamentals of the turbulence theory from Reynolds, Prandtl and
Kolmogorov, among others.

• Implementing the theory as well as simulation techniques such as the Large-Eddy Sim-
ulation in order to solve turbulent cases using the Finite Volume Method.

• Solving the Burgers’ equation so as to get deeper on the energy cascade concept pre-
sented by Kolmogorov.

• Implement a staggered Navier-Stokes solver using the Fractional Step Method to solve
some reference cases in both 2D and 3D.

• Testing different LES models in a reference case to determine which has the best prop-
erties and interacts less with the fluid scales that do not need to be modified.

• Performing a turbulent simulation using a LES model in my own laptop.

JOSEP PLANA RIU 2



Chapter 2

General features and
state-of-the-art

2.1 General features of Fluid Dynamics

In order to fully understand the phenomenon of turbulence, Fluid Mechanics is the most
important field in physics to consider. Thus, a brief introduction to this field is intended in
this brief section.

As any physical behaviour, fluids follow the conservation of different properties: in the
general case; mass, momentum and energy.

2.1.1 Mass conservation

The conservation of mass is denoted by the continuity equation (2.1).

∂ρ

∂t
+ ρ

∂ui
∂xi

= 0 (2.1)

In the case of an incompressible flow, ρ does not depend on time. Thus, (2.1) is modified
to (2.2), which corresponds to a divergence-free velocity field.

∂ui
∂xi

= 0 (2.2)

2.1.2 Momentum conservation

The conservation of momentum corresponds to (2.3).

ρ

Å
∂ui
∂t

+ uj
∂ui
∂xj

ã
= − ∂p

∂xi
+ µ

∂2ui
∂xj∂xj

+ fi (2.3)

Generally the body forces fi correspond to the weight of the fluid element (ρgi), even
though it can include all sorts of electromagnetic forces (e.g. Lorentz force). Now, it is
here where some approximations can be performed at this term. It is typical in the case of
buoyancy the use of Boussinesq approximation, which replaces the density at the gravitational
term by (2.4), yielding (2.5).

3
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ρ(T ) = ρ∞ − ρ∞β(T − T∞) (2.4)

ρ

Å
∂ui
∂t

+ uj
∂ui
∂xj

ã
= − ∂p

∂xi
+ µ

∂2ui
∂xj∂xj

+ (1− β(T − T∞))ρ∞gi (2.5)

2.1.3 Energy conservation

Following a convection-diffusion equation for energy e and considering that e = CpT , the
conservation of energy yields (2.6).

ρCp

Å
∂T

∂t
+ ui

∂T

∂xi

ã
= λ

∂2T

∂xj∂xj
− p∂ui

∂xi
+ Φe +

1

2

Å
∂ui
∂xj

+
∂uj
∂xi

ã
∂ui
∂xj

(2.6)

Nevertheless, in most cases the pressure, Joule effect and viscosity dissipation can be
neglected, just yielding (2.7)

ρCp

Å
∂T

∂t
+ ui

∂T

∂xi

ã
= λ

∂2T

∂xj∂xj
(2.7)

2.1.4 Similarities and invariances of Navier-Stokes equations

As stated in [2], in order to develop theoretical and computational models in turbulence which
follow a correct qualitative approach these invariances and similarities have to be considered.

In order to do so, a non-dimensional form for (2.3) has to be provided. Nonetheless, the
body forces will be neglected for the sake of simplicity. Thus, considering the independent
variables to be

x̂i = xi/L
t̂ = tU/L

and the dependent variables

ûi = ui/U
p̂ = p/(ρU2)

Thus, by replacing all the non-dimensional values onto (2.3), (2.8) will be derived.

∂ûi
∂t

+ ûj
∂ûi
∂x̂j

= − ∂p̂

∂x̂i
+

µ

ρUL
∂2ûi
∂x̂j∂x̂j

(2.8)

where the Reynolds number (2.9) can be defined, which indicates the ratio of inertial
forces and viscous forces. Thus, the bigger the Reynolds number is, the most relevant will be
the inertial forces in the behaviour of the fluid, and vice versa.

Re =
ρUL
µ

(2.9)
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Reynolds number similarity

Two different cases (scalewise, materialwise, timewise, etc.) but with an exact Reynolds
number will behave the same exact way in the non-dimensional domain, being this the reason
why it can be said that the outcome of the case will be similar in behaviour, yet different on
magnitude, given that (2.8) just depends on Re.

Time and space invariance

Moving the experiment in time and space will just imply a rescale of independent variables
that will not affect in any way (2.8). Thus, time and space shifting will not imply any change
in the flow’s behaviour.

Rotational and reflectional invariance

A fixed rotation or a reflection (double π-rotation) of the reference frame (characterized by
rotation tensor aji) will not imply any change in (2.3). Thus, as detailed in [2], this invariance
will have a deeper meaning, given that the implication related to this invariance implies no
bias in left-handed or right-handed rotation of the flow from the EoM point of view.

Time reversal

A time reversal can be characterized by changing the parity of time. Thus, ûi will also be
affected, which implies a change of the sign of the viscous term, being this the reason why
NS are no time invariant.

Galilean invariance

As all classical physics phenomena, NS are Galilean invariant, which implies that the be-
haviour will be similar for all different inertial frames of reference. Furthermore, NS in par-
ticular are also invariant in rectilinear acceleration non inertial reference frames, as derived
in [2], based on changing the non-dimensioning process of pressure:

p̂ =
p+ ρx̂iAi

ρU

Frame rotation

Given a rotative reference frame, by introducing the derivative in a rotative frame of reference,
the fact that the fictitious accelerations (centrifugal, Coriolis and angular acceleration) appear
implies that the same procedure for the Galilean invariance cannot be applied, given that
Coriolis acceleration is velocity-dependant and angular acceleration is time-dependant. Thus,
the NS will not be material-frame indifferent.

Nonetheless, for a 2D case with a steady rotation, both Coriolis acceleration and angular
acceleration vanish, allowing to absorb the centrifugal acceleration onto the pressure term
and, then, in this exact case NS are material-frame indifferent.
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Chapter 3

Previous work

In order to get used to programming codes in which the Finite Volume Method was used,
being this the method used in all cases simulated for the thesis, some previous work had been
done, which has gone from simple cases from heat conduction in solids to the solution of the
Navier-Stokes equations in both hydrodynamics and with heat transfer.

Even though a brief summary of the work done will be developed in the next sections,
the full reports are available in the Appendices (see Appendices A, B, C, D).

3.1 Heat Conduction equation

This case based on a 2D rod made of four different materials (Table A.1) was done so as to
solve the heat diffusion equation (3.1).

∂

∂xi

Å
λ
∂T

∂xi

ã
+ q̇v = ρcp

∂T

∂t
(3.1)

The domain to solve and the different materials can be seen in Figure A.1, while the
boundary conditions applied are Table A.2.

Thus, after performing a centered nodes FVM discretization a diagonal-dominant pentadi-
agonal system of equations was obtained, which was solved using the Gauss-Seidel line-by-line
algorithm (algorithm 1), which corresponds to a mix of the TDMA (see [3]) and the Gauss-
Seidel algorithm , in which a TDMA is performed for each line considering the north and
south values as known by using its last calculated value, and repeated until convergence.

Algorithm 1: Gauss-Seidel line-by-line.

while ε > δ do
j := 0;
while j < Ny do

b∗ := b+AN(:, j)x(:, j + 1) +AS(:, j)x(:, j − 1);
TDMA(A(:, j), x, b∗);
j := j + 1;

end
r := b−Ax;

ε =
√
rT r

end

After validating the code, different results concerning the processing time, the time step

6
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or the grid size were obtained in order to understand how, for example, changing the tolerance
of the solver or changing the number of control volumes would affect in obtaining the desired
results or how long would take to end the simulation.

In terms of the temperature at the desired points, the results from Table A.5 were ob-
tained, yielding Figure 3.1.

Figure 3.1: Mesh size convergence analysis for the case studied, with tolerance set at δ = 10−5

and a timestep of ∆t = 1.0 s.

3.2 Convection-diffusion equation

After solving the 2D conduction case, the next step was getting introduced in the convection-
diffusion equations (3.2), being both momentum and energy equations from Navier-Stokes
examples of these. In these cases, the transport and diffusion of φ was studied knowing the
flow field.

∂(ρφ)

∂t
+ ρui

∂φ

∂xi
= Γ

∂2φ

∂xi∂xi
+ S (3.2)

Thus, different cases were conducted with analytical solution, with different Péclet num-
bers (3.3).

Pe =
ρuL

Γ
(3.3)

Nonetheless, the last case solved corresponded to the Smith-Hutton problem, defined by
the boundary conditions from Table B.1 and the velocity field (3.4).

u(x, y) = 2y(1− x2) (3.4a)

v(x, y) = −2x(1− y2) (3.4b)

(3.4c)
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Thus, the equation was discretized using a FVM discretization. Nevertheless, in this case
a simple discretization as presented in the conduction equation would not provide a stable
algorithm. Thus, a general discretization can be obtained as (3.5), where F stands for any
neighbour node, while f stands for the boundary of the node between F and P .

aF = DfA(|Pef |) + max (−nfFf , 0) (3.5)

Moreover, here Df =
Γf

(δxf |nf |) and Ff = ρuf |nf |, whereas A(|Pe|) stands for the dis-

cretization scheme used to calculate the values at the boundaries. Even though multiple
schemes can be used, in this case the PowerLaw scheme was used (3.6) [3].

A(|Pe|) = max (0, (1− 0.1|Pe|)5) (3.6)

After solving the system of equations using algorithm 1, the results for each ρ/Γ were
obtained (see Table B.2-B.5), while the convergence analysis yields Figure 3.2.

Figure 3.2: Convergence analysis for the Smith-Hutton Problem at different ρ/Γ numbers

3.3 Navier-Stokes equations

In order to numerically solve the Navier-Stokes equations, two different methods were used.
First of all, following Patankar [3] methodology, as it seemed more natural given the previous
cases, the SIMPLER (Semi-Implicit Method for Pressure-Linked Equations Revised) was
used to solve one of the reference cases in CFD, the Lid Driven Cavity (LDC). Eventually,
nonetheless, the Fractional Step Method [4] was used to solve both Lid Driven Cavity as well
as the Differentially Heated Cavity (DHC) to conduct a case considering the energy equation.

3.3.1 SIMPLER Algorithm

First introduced by Patankar in 1979, the SIMPLER (algorithm 2) relies on the use of a
staggered grid (Figure 3.3) to avoid the checkerboard problem, provided that the use of a
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non-staggered grid may lead to a case in which the pressure field has no physical sense.

(a) x−staggered grid. (b) y−staggered grid. (c) Main grid.

Figure 3.3: Representation of the staggered grid. In all representations, the dark cell cor-
responds to just a control volume, whereas the light cells correspond to all the domain.
Extracted from [5].

Thus, the algorithm, which is a modified version of the SIMPLE (Semi-Implicit Method
for Pressure-Linked Equations), introduced by Patankar and Spalding back in 1972, is based
on decoupling velocity and pressure by splitting the latter in two different fields p∗ and p′.

In this case, the numerical scheme used to compute the velocity at the boundaries of the
staggered grid was the Central Difference Scheme (CDS), even though it is slightly unstable,
because its use is the most extended in the solution of turbulent flows.

The case solved was the LDC, which is described in Appendix C, for different Reynolds,
being in this case Re = 100 and Re = 400. In order to validate them, the results were
compared to the benchmark values from [6], yielding Table C.1 and Table C.5. Furthermore,
some simulations were done for Re = 1000, even though its convergence analysis was not
done.

Moreover, in this case the use of a relaxation factor was considered so as to either enhance
or not the performance of the code, in which it was seen that, even though it is not always
optimal exactly at fr = 1.0, its efficiency is rather high as Figure C.5 shows for Re = 100.

In order to enhance the performance of the code, in this point the Gauss-Seidel line-by-
line method was replaced by the Conjugate Gradient Method (algorithm 3), one of the most
known Krylov Subspace solvers, which converges much faster than the first used method even
though it requires that the coefficients matrix A corresponds to a positive definite matrix.
Even though some problems arose during the programming of the algorithm, its use has been
proper since then, when the case simulated fulfills the properties required by the method.

The results obtained by using both methods for Re = 1000 and compared to the bench-
mark can be seen in Figure 3.4 and Figure 3.5 even though the convergence results can be
seen in Appendix C.
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Figure 3.4: Comparison between the results at the specified points calculated using the
SIMPLER algorithm using the LBL method and the results given in [6] using a 80×80 mesh.

Figure 3.5: Comparison between the results at the specified points calculated using the
SIMPLER algorithm using the CG algorithm and the results given in [6] using a 80 × 80
mesh.
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Algorithm 2: Semi-Implicit Method for Pressure-Linked Equations Revised

ui,g(x, y) := ui,0(x, y) ;
t := 0;
while εt > δt do

ui,Pui ,old = ui,Pui for F = N,S,E,W do

aFui := DfA(|Pef |) + max (−nfFf , 0);

end

ûiPu =
∑
∀F aF,iuF,i+b

aPui
;

for f = n, s, e, w do
df := ∆xfnf/aFu ;

end
for F = N,S,E,W do

aF = ρfdfnf∆xf ;

end
bP (ûi) = ρ[ûw − ûe]∆y + ρ[v̂s − v̂n]∆x;
Solve aP p

∗
P =

∑
∀F aF p

∗
F + bP ;

for i=1:2 do

Solve aPuiu
∗
Pui

=
∑
∀Fui

aFuiu
∗
Fui

+ bPui −
∂p∗

∂xi

∣∣∣
Pui

;

end
bP (u∗i );

Solve aP p
′=

∑
∀F aF p

′
F +bP

P ;
uPu = u∗Pu + de(p

′
P − p′E);

vPv = v∗Pv + dn(p′P − p′N );

εt =
max |ui,Pui−ui,Pui ,old|

∆t
;

t := t+ ∆t;

end
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Algorithm 3: Conjugate Gradient Method

r0 := b−Ax0;
if r0 is sufficiently small then

x := x0;
else

p0 := r0;
k := 0;
while rk < δ do

αk :=
rTk rk

pT
k Apk

;

xk+1 := xk + αkpk ;
rk+1 := rk − αkApk ;
if rk+1 < δ then

Exit loop;
else

βk :=
rTk+1r

T
k+1

rTk r
T
k

;

pk+1 := rk+1 + βkpk;
k := k + 1;

end

end

end
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3.3.2 Fractional Step Method

The Fractional Step Method (FSM) (algorithm 4) is based in the Helmoltz-Hodge theorem,
which states that a divergence-free vector field such as ui in an incompressible flow will be
orthogonal to the divergence of a field, being in this case ∂ip. A more formal approach to the
method is developed in chapter 6.

Thus, the method computes a predictor velocity out of the subspace in which the equations
must remain included and then, due to the application of the pressure gradient, this predictor
velocity is projected in the space. Thus, the FSM may also be known as Projection Method.
(See [4] for further information).

Figure 3.6: Outline of how the Fractional Step Method works in terms of subspaces.

The predictor velocity is obtained by removing the pressure gradient of the momentum
equation, which is discretized using a 2nd order Adams-Bashforth scheme.

Given that it corresponds to a implicit method, its stability will strongly rely on the
timestep taken, which will have to be adapted to the problem using the CFL condition (3.7).

∆t = min

ï
min

Å
0.35

∆x

|u|

ã
,min

Å
0.20

ρ∆2
x

µ

ãò
(3.7)

By using this method, two different cases were solved. First of all, the LDC as done using
the SIMPLER, from Reynolds numbers going from 100 to 3200 and available at [5]. In this
case there is no convergence plot, even though its convergence was also analyzed, providing a
suitable mesh for 100, 400 and 1000 at around 10000 control volumes, whereas for the latter
3200, a converged mesh was not found due to lack of computational power in the laptop used
then. These results can be seen in Appendix C.

On the other hand, a DHC, which is described in Appendix D, was also programmed, by
adding the energy equation on the set solved. This addition modified a little bit algorithm 4,
since a flux term for temperature (3.8) as well as its calculation (3.9) using the same numerical
scheme were added.

RT = − λ

ρCp

∂2T

∂xj∂xj
− uj

∂T

∂xj
(3.8)

Tn+1 = Tn + ∆t

Å
3

2
RnT −

1

2
Rn−1
T

ã
(3.9)

Moreover, the Boussinesq approximation (2.4) had to be included in the momentum equation
so as to consider the changes of density due to temperature, adding a body forces term

ρ(T )gi (3.10)
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Algorithm 4: Fractional Step Method

t := 0 ;
n := 1 ;
for F = N,S,E,W do

aF :=
|nf |∆xf

∆PF
;

end
aP :=

∑
∀F aF ;

while εt > δt do

Ru = 1
Ωx

î
ρ
(
∆y(u

2
w − u2

e) + ∆x(usvs − unvn)
)

+
µe∆y

∆PE
x
uEu +

µw∆y

∆PW
x

uWu+

+µn∆x

∆PN
y

uNu + µs∆x

∆PS
y
uSu −

(
∆y

Ä
µe

∆PE
x

+ µw
∆PW
x

ä
+ ∆x

(
µn

∆PN
y

+ µs
∆PS
y

))
uPu

]
;

Rv = 1
Ωy

î
ρ
(
∆y(uwvw − uev2

e) + ∆x(v2
s − v2

n)
)

+
µe∆y

∆PE
x
vEv +

µw∆y

∆PW
x

vWv+

+µn∆x

∆PN
y

vNv + µs∆x

∆PS
y
vSv −

(
∆y

Ä
µe

∆PE
x

+ µw
∆PW
x

ä
+ ∆x

(
µn

∆PN
y

+ µs
∆PS
y

))
vPv

]
;

upi,Pui
= unP + ∆t

ρ

(
3
2R

n
i − 1

2R
n−1
i

)
;

bP = − ρ
∆t

î
(upPu − u

p
Wu

)∆y + (vpPv − v
p
Sv

)∆x

ó
;

Solve aP pP = aEpE + aW pW + aNpN + aSpS + bP ;

un+1
i,Pui

= upi,Pui
− ∆t

ρ
∂p
∂xi

∣∣∣
Pui

;

t := t+ ∆t;
n := n+ 1;

end

Thus, the case solved, based on [7], was for Pr = 0.71 and Ra = 103, 104, 105, 106, where
Pr is the Prandtl number (3.11) and Ra is the Rayleigh number (3.13).

Pr =
ν

α
(3.11)

where α stands for the thermal diffusivity (3.12)

α =
λ

Cpρ
(3.12)

Ra =
ρ3CpβD

3g∆T

µλ
(3.13)

After implementing the code, the results were compared to De Vahl Davis’ benchmark
[8], the convergence to which was not extremely good even though the convergence of the
code was as expected, as can be seen in Figure 3.7.

Moreover, an analysis of the computational cost as a function of the number of control
volumes as well as the Rayleigh was performed, obtaining its dependance follows tCOMP ∼
O(Ra0.1717).
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Figure 3.7: Convergence plots for velocities and temperature at Ra = 103. Extracted from
[9].
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Chapter 4

Turbulence. Theory

4.1 Introduction to turbulent flows

A basic methodology to classify all sorts of flows corresponds to distinguishing by regime,
where there are two global possibilities: either corresponds to a laminar or a turbulent flow.

Laminar flows follow a deterministic behaviour: if an experiment is done under these
circumstances (characterized generally by Re) the result will be the same, without consid-
ering possible experimental errors, in each and every case, following the classical physics
determinism (as expected given that NS are deterministic equations).

As it can be expected, nonetheless, most flows in nature are turbulent, since the required
conditions for having a laminar flow are seldom available in nature, given that even a small
perturbation can generate a turbulent flow, even at low Re.

Kundu [10] states, nonetheless, five different common characteristics for turbulent flows:

• Randomness: flows in turbulent regime are chaotic and generally unpredictable. Thus,
statistical approaches have to be performed.

• Nonlinearity: turbulent flows, as well as laminar, are nonlinear in the sense that con-
vection is highly nonlinear, provided that the velocity structures transport themselves.
Nonetheless, in the case of turbulent flows, its three-dimensional characteristics induces
a vortex stretching process.

• Diffusivity: due to a high mixing of fluid particles, there is a rapid rate of momentum
diffusion.

• Vorticity: a main characteristic of turbulent flows is the appearance of vorticity struc-
tures (called eddies), whose size range is very wide, going from macroscopical eddies
(e.g. the size of the boundary layer) to microscopical eddies, with the energy flowing
from higher to smaller scales, known as energy cascade.

• Dissipation: when energy reaches the smallest scales, it is dissipated by the viscosity.

4.2 Mean-flow equations

4.2.1 Reynolds equations

Historically, what has been done to deal with the randomness of the turbulent flows is time-
averaging the equations. In order to do so, the time average of a function V will be defined
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as 〈V 〉 in (4.1), where f(V ) is the probability density function (PDF) for V

〈V 〉 =

∫ +∞

−∞
V f(V ) dV (4.1)

The main properties of the mean value used will be summarized, being U and V two
independent functions and a and b two real known parameters, as

〈aU + bV 〉 = a〈U〉+ b〈V 〉

Then, for the case of the velocity field, Reynolds stated that it could be interpreted as
(4.2), being the sum of the mean value and its perturbations.

ui = 〈ui〉+ u′i (4.2)

Thus, the time average of NS has to be done. Nevertheless, all derivations will be done
considering an incompressible flow for the sake of simplicity.

For the case of continuity equation (2.2) it follows that both mean and perturbations will
have a null divergence (4.3).

∂u′i
∂xi

= 0 (4.3a)

∂〈ui〉
∂xi

= 0 (4.3b)

In taking the mean of the momentum equation (2.3), the mean of each term has to be
considered. Even though in most of the cases it is trivial, that does not apply in the convective
term.

Converting it onto the conservative form and taking the average value, (4.4) arises.

∂

∂xj
〈uiuj〉 =

∂

∂xj
〈(〈ui〉+ u′i)(〈uj〉+ u′j)〉 =

∂

∂xj
〈〈ui〉〈uj〉+ u′j〈ui〉+ u′i〈uj〉+ u′iu

′
j〉 (4.4)

Given that the mean value of the perturbations is zero, as shown in section 4.2.1 and that
〈u′j〈ui〉〉 = 〈u′j〉〈ui〉 = 0, (4.4) yields (4.5).

〈uiuj〉 = 〈ui〉〈uj〉+ 〈u′iu′j〉 (4.5)

Thus, the time averaged convective term corresponds to (4.6).≠
Dui
Dt

∑
=
∂〈ui〉
∂t

+ 〈uj〉
∂〈ui〉
∂xj

+
∂

∂xi
〈u′iu′j〉 (4.6)

Now, by defining the mean substantial derivative (4.7), as stated by [2], the Reynolds
equations can be found (4.8), which follow a similar structure to NS, yet with the addition
of an extra term, called as Reynolds stresses.

D̄

D̄t
=

∂

∂t
+ 〈uj〉

∂

∂xj
(4.7)

ρ
D̄〈ui〉
D̄t

= µ
∂2〈ui〉
∂xj∂xj

− ρ
∂〈u′iu′j〉
∂xi

− ∂〈p〉
∂xi

(4.8)
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Proof of the null mean value of the perturbations

Given (4.2):
〈ui〉 = 〈〈ui〉+ u′i〉 = 〈ui〉+ 〈u′i〉 (4.9)

Thus, 〈u′i〉 = 0

4.2.2 Reynolds stresses

Previously the term 〈u′iu′j〉 has been defined as Reynolds stresses.

In order to see this stress meaning, (4.8) can be rewritten as a general momentum con-
servation equation (4.10), where the Reynolds stress now gets its clear meaning, given the
similarity in definition to viscous and pressure stresses.

ρ
D̄〈ui〉
D̄t

=
∂

∂xi

ï
µ

Å
∂〈ui〉
∂xj

+
∂〈uj〉
∂xi

ã
− 〈p〉δij − ρ〈u′iu′j〉

ò
(4.10)

Thus, the actual stress will be, in fact, −ρ〈u′iu′j〉 yet by the definition in (4.8) it is more
natural to define the Reynolds stress as previously detailed.

This, however, implies that more variables appear in the problem: the velocity pertur-
bations, which was what was intended to avoid. Thus, the problem is not closed unless the
Reynolds stresses are determined, being this where the models appear.

At this point, the turbulent kinetic energy will be defined as (4.11).

k =
1

2
tr(〈u′iu′j〉) (4.11)

Nevertheless, now the Reynolds stress tensor can be separated into its isotropic and its
deviatoric part (also called anisotropic). In order to find the latter, aij , (4.12) will be applied.
In fact, the turbulent kinetic energy will be removed yielding just cross terms.

aij = 〈u′iu′j〉 −
2

3
kδij (4.12)

4.2.3 Mean scalar equation

The convection-diffusion equation (4.13), which stands for a conservation equation for differ-
ent scalars (e.g. temperature) can also be time averaged.

∂φ

∂t
+

∂

∂xj
(ujφ) = Γ

∂2φ

∂xj∂xj
(4.13)

Thus, applying (4.2) and its equivalent to the scalar (4.14) to (4.13) using an equivalent
approach to the Reynolds equations, (4.15) is obtained.

φ = 〈φ〉+ φ′ (4.14)

∂〈φ〉
∂t

+ 〈uj〉
∂〈φ〉
∂xj

=
∂

∂xj

Å
Γ
∂〈φ〉
∂xj

− 〈u′jφ′〉
ã

(4.15)

This, nevertheless, will not close the problem since it adds two more variables related to
the scalar: its mean value and perturbations, which appear in the scalar flux (〈u′jφ′〉).
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4.2.4 Closure of the problem

As seen in both (4.8) and (4.15), the problem requires a model for both scalar flux and
Reynolds stresses. These are known as the gradient-diffusion and turbulent-viscosity hy-
potheses, respectively.

Turbulent-viscosity hypothesis

The turbulent-viscosity hypothesis indicates that the deviatoric Reynolds stress (aij) will be
proportional to the mean rate of strain Sij . Thus, (4.16) will be found, at which the turbulent
viscosity is defined:

− ρ〈u′iu′j〉+
2

3
ρkδij = ρνT

Å
∂〈ui〉
∂xj

+
∂〈uj〉
∂xi

ã
(4.16)

Gradient-diffusion hypothesis

The gradient-diffusion hypothesis indicates that the scalar flux can be interpreted as a turbu-
lent transport of the scalar φ from larger to smaller values. Thus, it can be mathematically
interpreted as (4.17), in which the turbulent diffusivity of the scalar is defined.

〈uiφ′〉 = −ΓT∇〈φ〉 (4.17)

4.3 Classical theory of turbulence

4.3.1 The energy cascade

In 1922, Lewis Richardson [11] stated

Big whorls have little whorls,
Which feed on their velocity;

And little whorls have lesser whorls,
And so on to viscosity.

In fact, these lines might seem simple, yet the description of the energy cascade phenom-
ena is clearly described. In fact, large eddies (or whorls, as stated by Richardson), with a
lengthscale similar to L, whereas its characteristic velocity does not differ much from the
reference velocity U ; are characterized by a large unstability, leading them to breaking up
and transferring its energy onto smaller eddies. These, at the same time, go through the same
exact process until the Reynolds number on the eddies is sufficiently small that viscosity can
dissipate the energy.

Thus, energy will be dissipated after a sequence of processes, which will be very important
to determine the rate of dissipation ε. In fact, it will be determined by the energy transfer of
the largest eddies, which are determined by a energy order of u2

0 and a timescale of τ0 = l0/u0.

Thus, ε will be scaled as u2
0/τ ≡ u3

0/l0, being independent of ν, provided that only very
high Re cases are considered.
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4.3.2 Kolmogorov hypotheses

After presenting the energy cascade, Andrey Kolmogorov intended to provide an answer for
different fundamental questions that arise from the theory.

Kolmogorov’s hypothesis of local isotropy

Concerning the size corresponding to the eddies at which viscous dissipation appears, Kol-
mogorov [12] stated that At sufficiently high Reynolds number, the small-scale turbulent mo-
tions are statistically isotropic., which is known as the local isotropy hypothesis.

As a difference to large eddies, which are noticeably affected by the boundary conditions,
this hypothesis implies that, for l < lEI , the eddies will not be affected by external conditions,
being this the reason why the small-scale motions are usually said to be universal.

Kolmogorov’s first similarity hypothesis

This leads onto Kolmogorov’s first similarity hypothesis, which stated that every trubulent
flow with high enough Reynolds number the small-scale, defined at l < lEI behaviour will be
statistically universal and determined by ν and ε.

Thus, the small-scale range will be defined as the universal equilibrium range. This range
will, in fact, have its own length,velocity and time scales, called Kolmogorov scales (4.18).

η = (ν3/ε)1/4 (4.18a)

uη = (εν)1/4 (4.18b)

τη = (ν/ε)1/2 (4.18c)

These scales are determined to characterize the dissipative eddies, which are determined
to have a Re = 1. Thus, from Reynolds number definition,

ν = ηuη

as well as the definition of the rate of dissipation

ε =
u3

0

l0
=
u3
η

η

the relationships between large and small scales as a function of Re can be found.

By the definition of ε, Å
u0

uη

ã3

=
l0
η

Thus, assuming ν = ηuη,

Re =
u0l0
ν

=
u0l0
uηη

=

Å
u0

uη

ã4

Therefore,
uη
u0

= Re−1/4 (4.19)
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By applying it onto Re definition,

Re = Re1/4 l0
η

Hence,
η

l0
= Re−3/4 (4.20)

Eventually, by applying the definition of time scales,

τη
τ0

=
η/uη
l0/u0

=
η

l0

u0

uη

Then,
τη
τ0

= Re−1/2 (4.21)

Kolmogorov’s second similarity hypothesis

Nevertheless, at most turbulent conditions, there will be a set of lengthscales l0 >> l >> η
such that its behaviour will be statistically universal, as previously defined by Kolmogorov’s
first similarity hypothesis, yet there will not be any kind of dissipation. Thus, this hypothesis
states that ”in every turbulent flow at sufficiently high Reynolds number, the statistics of
motion of scale l in the range l0 >> l >> η have a universal form that is uniquely determined
by ε, independent of ν” [2].

Thus, this range will be called inertial subrange that will be limited by lEI , which accounts
for the start of the universal equilibrium range, and lDI , which determines the start of the
dissipation range. This can be summarized by Figure 4.1.

Figure 4.1: Outline for the turbulent behaviour for different lengthscales. Adapted from [2].

Thus, the energy cascade will clearly be explained by the production of energy in the
energy containing range, which at the same time will be transported inertially through the
inertial subrange and finally will be dissipated at the dissipation range, which can be outlined
by Figure 4.2.

4.3.3 Energy spectrum

Starting from a dimensional analysis of the energy spectrum, which corresponds to J·m·kg−1,
yielding L3T−2 and provided that the energy spectrum in the inertial range will just depend
on κ (L−1) and ε (L2T−3), it can be derived that the energy spectrum will be proportional
to ε2/3κ−5/3. Thus, the compensated Kolmogorov spectrum function (Ψ(κη)) will act as the
proportionallity parameter, yielding (4.22).
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Figure 4.2: Outline for the energy cascade at turbulent regime. Adapted from [2].

E(κ) = ε2/3κ−5/3Ψ(κη) (4.22)

Nonetheless, in the inertial range lDI < l < lEI , which converted to wavenumbers will
correspond to κDI > κ > κEI . Thus, the relation will still be valid if multiplied by a constant,
which is in this case η provided that the parameter of interest for Ψ is κη. From here it follows
that κDIη > κη > κEIη.

Since O(lDI) ≈ O(η), κDIη ≈ 1, κ� 1. Thus, Ψ can be considered as a constant, which
will be replaced by K , yielding (4.23).

E(κ) = CKε
2/3κ−5/3 (4.23)

This value p = −5
3 can also be obtained by considering the energy spectrum as a general

power-law spectrum
E = Aκ−p

Thus, following the definitions of energy in a wavenumber range (4.24)

k(κa,κb) =

∫ κb

κa

E(κ) dκ (4.24)

and the definition (see Section 6.5 from [2]) of the dissipation rate in a wavenumber range
(4.25)

ε(κa,κb) =

∫ κb

κa

2νκ2E(κ) dκ (4.25)

it can be seen that the energy contained in all wavenumbers higher than κ corresponds to
(4.26)

k(κ,∞) =

∫ ∞
κ

Aκ−p dκ =
A

p− 1
κ−(p−1) (4.26)

in which the energetic behaviour will be shown. For p < 1, it can be shown that the energy
level will be bounded, whereas for p ≥ 1 the energy level will not be bounded for κ→∞.

On the other hand, the dissipation rate in all wavenumbers lower than κ corresponds to
(4.27).

ε(0,κ) =

∫ κ

0
2νκ2Aκ−p dκ (4.27)

In this case, for p < 3, the dissipation rate will be higher for higher κ, as follows from
Kolmogorov’s second similarity hypothesis, whereas for p = 3 the dissipation rate diverges and
for p > 3 the dissipation rate does not follow the behaviour from Kolmogorov’s hypotheses.

Thus, Kolmogorov spectrum is defined by p = 5
3 provided that it corresponds to the mid

value of the interval (1, 3), in which both dissipation rate and energy contained are physically
and mathematically acceptable.
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4.4 Burgers’ equation

A simple way to see how turbulence behaves is using the Burgers’ equation , which stands
for a unidimensional momentum conservation-like equation without considering the pressure
gradient and, instead, considering a source term f , which yield (4.28).

∂u

∂t
+ u

∂u

∂x
=

1

Re

∂2u

∂x2
+ f (4.28)

Thus, as Kolmogorov’s turbulent theory proposes, the velocity field u can be transformed
onto the Fourier space as (4.29) indicates, where ûk = f(t) while the space dependance will
rely on the trigonometric part.

u =
k=+N∑
k=−N

ûke
ikx (4.29)

From this statement, as well as having f modified using an equivalent method as (4.29),
(4.28) yields (4.30), which will stand for all wavenumbers k desired.

∂tûk +
∑
p+q=k

ûpiqûq = − k
2

Re
ûk + F̂k (4.30)

Nonetheless, the turbulent theory does not consider velocity fields yet energy spectra,
which, indeed, will be found for each wavenumber just by using (4.31).

Ek = ûkûk (4.31)

Thus, this equation is easily solvable for a DNS, which allows to see the true solution for
the desired case, which was set for Re = 40, provided that it would generate results similar
to Kolmogorov’s theory.

In order to do so, an Adams-Bashforth second order scheme was used to discretize in
time, whereas a space discretization was not required provided that ûk does not depend on
x.

On the other hand, the convective term was calculated for all positive terms from the
equation p+ q = k, considering that ûk = û−k, where (·) stands for the complex conjugate.

Thus, Figure 4.3 is obtained, where the energy cascade can be clearly observed.

On the other hand, Figure 4.4 shows a case run for kN = 500 and Re = 100, in which
the energy level at higher wavenumbers is higher, yet, in the end, it gets dissipated at the
highest wavenumbers.

In fact, the Burgers’ equation is also an excellent tool to test LES models, which will be
seen in chapter 5, where Burgers’ equation is again used to illustrate the models.

4.5 Laminar boundary layers

Consider a plane flow with a certain viscosity ν and a free stream velocity U past a slender
cylindrical body. Due to the no-slip condition at the wall (ui = 0), the velocity component
tangent to the body will have a gradient in the normal direction from 0 to ui = ui(x), known
as boundary layer. In this region, characterized by its height δ, the velocity gradient will be
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Figure 4.3: DNS of the Burgers’ equation with Re = 40 using a second order Adams-Bashforth
scheme.

Figure 4.4: DNS of the Burgers’ equation with Re = 100 using a second order Adams-
Bashforth scheme.
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very large, being this the reason why the viscosity will have a big implication in the shear
stress, defined by (4.32).

τ = µ
∂ui
∂n̂

(4.32)

Nonetheless, in the outer region to the boundary layer there will not be large viscosity
gradient, being this the reason why the viscosity will not have such an important role. The
flow can be considered frictionless and potential.

This phenomena is illustrated in Figure 4.5, where the dashed line represents the local
height of the boundary layer.

Figure 4.5: Boundary layer flow along a wall. Adapted from [13].

4.5.1 Prandtl Boundary-Layer Equations

From (2.8), the orders of magnitude of each member of the equations can be analyzed. In
order to do so, Schlichting and Gersten [13] state that O(û) = O(x̂) = O(t̂) = 1, whereas
O(v̂) = O(ŷ) = δ̂. On the other hand, analytical solutions from (2.3) show that δ ∼

√
ν (see

Chapter 5 from [13]). Thus, O(Re) = 1
δ̂2

. Thus, in the momentum equation in the x direction

the order of magnitude will correspond to (4.33).

O
Å
∂û

∂t̂
+ û

∂û

∂x̂
+ v̂

∂û

∂ŷ

ã
= O

ï
−∂p̂
∂x̂

+
1

Re

Å
∂2û

∂x̂2
+
∂2û

∂ŷ2

ãò
1 + 1

1

1
+ δ̂

1

δ̂
= O

Å
−∂p̂
∂x̂

ã
+ δ̂2

Å
1 +

1

δ̂2

ã
(4.33)

Moreover, ŷ will have to assume very small values for the boundary layer, it will not be
suitable for it to describe it. Therefore, v̂ will also not be suitable for the same reason. From
this idea follows the boundary-layer transformation (4.34).

(·) = (̂·)
√

Re (4.34)

By doing the exact same procedure for the momentum equation in y direction, as well as
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for the continuity equation, the Prandtl boundary-layer equations (4.35) are derived.

∂û

∂x̂
+
∂v

∂y
= 0 (4.35a)

∂û

∂t̂
+ û

∂û

∂x̂
+ v

∂û

∂y
= −∂p̂

∂x̂
+
∂2û

∂y2 (4.35b)

0 = −∂p̂
∂y

(4.35c)

4.5.2 Wall friction

In this thesis, the aim behind solving and understanding how boundary layers behave is ob-
taining both lift and drag coefficients. Even though some fraction of these forces is generated
by the pressure gradient, most important at the lift, an important part of the drag comes
from the wall friction. Thus, it is very important to compute this magnitude τw. In fact,
provided that the whole development has been done dimensionless, the skin-friction coeffi-
cient cf will be defined by (4.36), in which the wall friction is scaled by the dynamic pressure
1
2ρU

2.

cf (x̂) =
τw(x̂)
ρ
2U2

=
2µ

ρU2

Å
∂u

∂y

ã
w

= · · · = 2√
Re

Å
∂û

∂y

ã
w

(4.36)

Thus, it can be seen that, for all laminar boundary layers, the skin-friction coefficient
tends to zero for Re→∞

4.5.3 Separation point

A particular case is where cf (x̂) = 0, called separation point, which occures with adverse
pressure gradient. Thus, the flow cannot move onto the regions with high pressure due to
its lower kinetic energy - in the potential zone, an adverse pressure gradient just implies a
reduction of velocity - and moves onto lower pressure zones, what implies that the flow has
now separated from the body onto the main potential flow.

4.6 Turbulent boundary layers

In order to understand and develop the theory for turbulent boundary layers, a turbulent
Couette flow will be studied. The Couette flow is defined by a fixed plate separated 2H from
a plate moving at a fixed velocity uwu. For a fully developed flow and constant physical
properties, a constant, time-averaged, shear force 〈τw〉 has to be applied to the upper plate
in order to keep the motion at uwu.

Thus, the balance of forces (4.38) implies that this shear force has to be kept constant
through all the flow.

Considering a time-averaged steady state flow, the mean equations yield, in the x direc-
tion, (4.37)

ρ

Å
〈u〉∂〈u〉

∂x
+ 〈v〉∂〈u〉

∂y

ã
= −∂〈pe〉

∂x
+

∂

∂y
(〈τw〉+ τt) (4.37)
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Since it is a fully developed flow, ∂〈u〉/∂x = 0 and 〈v〉 = 0, and there is no external
pressure applied, it is a pure shear flow [13]. Thus,

∂

∂y
(〈τw〉+ τt) = 0

what yields (4.38)

〈τw〉 = 〈τν〉+ τt = ct. (4.38)

where:

〈τν〉 = ρν d〈u〉dy

τt = −ρ〈u′v′〉

Thus, there are just two methods for transferring momentum: the molecular viscous
transfer from 〈τν〉 and the turbulent momentum transfer from τt.

4.6.1 Wall units

By expanding 〈τw〉, it can be seen that only 〈τw〉/ρ appears. Thus, the velocity field must
depend on 〈u〉 = f(y,H, ν, 〈τw〉/ρ). Following the Π theorem, a new quantity called friction
velocity (or wall friction velocity) uτ (4.39) might be introduced, being ”the characteristic
velocity for turbulent flows given a wall shear stress [13]”.

uτ =

 
〈τw〉
ρ

(4.39)

Thus, dimensionless parameters for the boundary layers follow this definition:

η = y
H

u+ = 〈u〉
uτ

Reτ = uτH
ν

τ+
t = τt

ρu2τ

Applying these parameters, u+ = f(η,Reτ ). Furthermore, this can also be applied at
(4.38), yielding the differential equation from (4.40).

u2
τρ = ρν

∂(u+uτ )

∂(Hη)
+ τt

1 =
νuτ
u2
τH

∂u+

∂η
+ τ+

t

1

Reτ

∂u+

∂η
+ τ+

t = 1 (4.40)

which have to follow at η = 0, u+ = τ+
t = 0 and at η = 1, du+/dη2 = 0. Nonetheless, it

is an open problem given that there are two unknowns u+, τ+
t but just one equation, which

will be solved using turbulence models.
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However, for Reτ → ∞, τ+
t = 1. Thus, all momentum is transferred by the turbulence,

being the viscous momentum transfer negligible. However, this does not satisfy the boundary
condition. Hence, this implies that for high Reynolds flows, there will be a two-layer structure:
the core layer with τ+

t ∼ 1, in which the viscous transfer will be negligible; and the thin wall
layer (or sublayer), in which both transfer methods are present.

The thickness of the thin wall layer, δν , is determined by the viscosity ν and the wall
friction velocity using (4.41).

δν =
ν

uτ
=

H

Reτ
(4.41)

For high Reynolds, hence, it tends to zero, which implies that the wall processes do not
depend on H, being this the reason why this development can be applied to a general case.
Thus, it is natural to define a stretched wall coordinate y+, defined by (4.42).

y+ =
y

δν
=
yuτ
ν

= ηReτ (4.42)

Introducing (4.42) in (4.40) yields

du+

dy+
+ τ+

t = 1 (4.43)

where, at y+ = 0, du+/dy+ = 1, u+ = 0. Thus, close to the wall, in the called pure viscous
sublayer, the wall units will follow (4.44).

u+ = y+ (4.44)

Nevertheless, in all the range for the thin wall layer u+ = f(y+).

Logarithmic overlap law

Thus, the behaviour at the pure viscous sublayer and the core layer is known. Nonetheless,
these layers have to match somehow, which is called to be the overlap layer, on s’ha de complir
(4.45).

ŷ
du+

dŷ
=

1

κ
(4.45)

where ŷ = ηReατ behaves as an intermediate coordinate in the overlap layer, where, at
α = 1, ŷ = y+ and α = 0, ŷ = η; and κ is the von Kármán constant, which value is κ = 0.41.
Thus, at the limit to η → 0 and y+ →∞ it has to match. For the wall layer, thus,

lim
y+→∞

du+

dy+
=

1

κy+

which, integrated, yields (4.46), which integration constant C+ = 5.0 for smooth walls.

lim
y+→∞

u+(y+) =
1

κ
ln y+ + C+ (4.46)

Universal Law of the Wall

Using an indirect turbulence model, Gersten and Herwig [14] found an approximation to the
unversal law of the wall in (4.47)-(4.48).

du+

dy+
=

1

1 + (A+B)(y+)3
+

B(y+)3

1 + κB(y+)4
(4.47)
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u+ =
1

Λ

ñ
1

3
ln

Λy+ + 1√
(Λy+)2 − Λy+ + 1

+
1√
3

Å
arctan

2Λy+ − 1√
3

+
π

6

ãô
+

1

4κ
ln 1 + κB(y+)4

(4.48)
where κ = 0.41,A = 6.1 · 10−4,B = 1.43 · 10−3,Λ = (A+B)1/3,C+ = 5.0, yielding Figure 4.6.
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Figure 4.6: Universal law for u+ and τ+
t considering a smooth wall (C+ = 5.0). Adapted

from [13].

Thus, the wall layer is now fully defined as Table 4.1.

Sublayer y+ range u+ = f(y+)

Pure viscous sublayer 0 ≤ y+ < 5 u+ = y+

Buffer layer 5 < y+ < 70 Eq.(4.48)

Overlap layer 70 < y+ u+ = 1/κ ln y+ + C+

Table 4.1: Regions in the wall viscous sublayer. Adapted from [13].
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Chapter 5

Turbulence. Large Eddy Simulation

In this chapter, the terms ui, pi will stand for the dimensionless magnitudes instead of the
dimension magnitudes.

The Large Eddy Simulation relies on a low-pass frequency filtering (Figure 5.1) for the
scales simulated. Thus, from the energy cascade, the large and mid scales are fully simulated
while the smallest scales are the aim of the models applied. Thus, the model will add an extra
energy dissipation required to fulfill the conservation laws without requiring these scales -
hence allowing the control volumes to be bigger than η.

Figure 5.1: Decomposition of the energy spectrum related to the LES. Extracted from [15].

5.1 Introduction to function filtering

Thus, in order to separate the scales a filter has to be applied. In fact, this filter can be
expressed as a convolution product (5.1),

φ̃(xi, t) =

∫
R4

(
φ(ξi, t

′)G(xi − ξi, t− t′) dt′ d3ξ
)

(5.1)

in which G stands for the convolution filter used, which will be indeed associated to the
cutoff scales in space ∆̃ and time τc. In a reduced notation, (5.1) will be noted as (5.2).

φ̃ = G ? φ (5.2)

Converted onto Fourier space, the relationship yields

ˆ̃
φ = φ̂Ĝ
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where Ĝ corresponds to the transfer function of the convolution kernel. Thus, in this
space there will be their cutoff wavenumber kc associated to the cutoff length scale, as well
as a cutoff frequency ωc, associated to the cutoff time scale.

The unresolved part (thus, the fraction filtered) may be computed as

φ′(xi, t) = φ(xi, t)− φ̃(xi, t) = φ(xi, t)−G ? φ(xi, t)

φ′(xi, t) = (1−G) ? φ(xi, t) (5.3)

which, in Fourier subspace yields φ̂′ = (1− Ĝ)φ̂

This filter, however, will have to verify three different properties to be appliable to Navier-
Stokes equations [15]. First of all, will have to conserve the constants (5.4)

ã = a⇐⇒
∫
R4

G dt d3ξ = 1 (5.4)

Thus, the filter will have to be space-and-time bounded. and scaled to have an integral

equal to 1. Moreover, it has to follow the linearity property flφ+ ψ = φ̃ + ψ̃, which can be
demonstrated easily by the summation of integrals. Eventually, it has be commutative with
derivation. Thus, ›∂φ

∂s
=
∂φ̃

∂s
, s = xi, t, i = 1 : 3

At this point, the commutator operator may be defined as [f, g] (5.5) where f and g are two
operators applied on φ.

[f, g]φ = (f ◦ g)φ− (g ◦ f)φ = f(g(φ))− g(f(φ)) (5.5)

The commutator operator properties, which are trivial to proof using the definition, are
the following:

1. Skew-symmetry [f, g] = −[g, f ]

2. Leibniz identity [f ◦ g, h] = [f, h] ◦ g + f ◦ [g, h]

3. Jacobi’s identity [f, [g, h]] + [g, [h, f ]] + [h, [f, g]] = 0

Thus, applied to the case in concern, it follows thatï
G?,

∂

∂s

ò
= 0

Moreover, in its general form the filter G is not a projector, since G ◦G 6= G, which are
defined as Pn = P,∀n ∈ N+. Thus, in this general case the filter can be interpreted as a
change of variables and, hence, it can be inverted without any loss of information. However,
in the particular case in which G = 1, it will, in fact, be a projector and, therefore, its inverse
will imply information loss.

Now, it the convolution kernel is assumed to be factorized from a four-dimensional to a
product of mono-dimensional kernels, (5.6) follows.

G(xi − ξi, t− t′) = Gt(t− t′)
3∏
j=1

Gj(xj − ξj) (5.6)
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Since the most common technique in LES is space-filtering, the temporal filter can be
expressed as

Gt(t− t′) = δ(t− t′)

where δ is the Dirac function. However, the space kernels may be very varied.

It is important to recall, nonetheless, that the space-filtering implies an implicit time-filter:

Let kc = π
∆̃

and E(k) be the energy spectrum of the exact solution. Then, the kinetic
energy may be expressed as Ek = kE(k). At the cutoff wavenumber, Ekc = kcE(kc). Thus,
the velocity can be scaled as vc =

√
kcE(kc).

Now, defining the timescale as

τc =
∆̃

vc
=

∆̃√
kcE(kc)

where kc depends on ∆̃ as previously defined.

Classical filters

Among all the sets of filters available, some categories arise: symmetric, homogeneous, etc.
However, three classical homogeneous and symmetric filters are presented, even though the
third one will not be valid since it will be defined as a projector.

1. Box filter. Characterized by (5.7) as its convolution kernels in the original domain and
Fourier subspace. Its representation corresponds to Figure 5.2.

G(x− ξ) =

{
1
∆̃

if |x− ξ| ≤ ∆̃
2

0 otherwise
(5.7a)

Ĝ =
sin k∆̃/2

k∆̃/2
(5.7b)
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Figure 5.2: Representation of the box filter kernel in the original domain (left) and in Fourier
subspace (right).
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2. Gaussian filter. Characterized by (5.8) as its convolution kernels, where usually γ = 6.
in the original domain and Fourier subspace. Its graphical representation corresponds
to Figure 5.3.

G(x− ξ) =

Å
γ

π∆̃2

ã1/2

exp

Å−γ|x− ξ|2
∆̃2

ã
(5.8a)

Ĝ = exp

Ç
−∆̃2k2

4γ

å
(5.8b)
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0

0.5
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1.5

Figure 5.3: Representation of the gaussian filter kernel in the original domain (left) and in
Fourier subspace (right).

5.2 Application of the method to Navier-Stokes equations

Applying the filter in its general form to the Navier-Stokes equations, considering the prop-
erties previously detailed, (5.9) is found.

∂ũi
∂xi

= 0 (5.9a)

∂ũi
∂t

+
∂

∂xj
(fiuiuj) = − ∂p̃

∂xi
+

1

Re

∂

∂xj

Å
∂ũi
∂xj

+
∂ũj
∂xi

ã
(5.9b)

The main concern is the nonlinear term in the momentum equation. Thus, it will be
applied that ui = ũi + u′i. Expanding the product terms, (5.10) follows, which is known as
the double decomposition. fiuiuj = fĩuiũj + Â�ũiu′j + u′iũj︸ ︷︷ ︸

Cij

+fiu′iu′j︸︷︷︸
Rij︸ ︷︷ ︸

Tij

(5.10)

Where the subgrid tensor Tij firstly appears. The name double decomposition relies on
this subgrid tensor having two main components, the cross-stress tensor Cij , which concerns
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the interaction between the resolved and the subgrid scales; and the Reynolds subgrid tensor
Rij , in regards to the interactions between the subgrid scales. Thus, applied onto (5.9) it can
be found the solved momentum equation for the double decomposition.

∂ũi
∂t

+
∂

∂xj
(fĩuiũj) = − ∂p̃

∂xi
+

1

Re

∂

∂xj

Å
∂ũi
∂xj

+
∂ũj
∂xi

ã
− ∂Tij
∂xj

(5.11)

Nonetheless, Leonard stated that the nonlinear term should be calculated using just
the filtered variables, without the double filter in the double decomposition case. Thus,fĩuiũj = fĩuiũj + ũiũj − ũiũj . This implies the appearance of a third tensor, the Leonard tensor
Lij in (5.12). fiuiuj = ũiũj + fĩuiũj − ũiũj︸ ︷︷ ︸

Lij

+Â�ũiu′j + u′iũj︸ ︷︷ ︸
Cij

+fiu′iu′j︸︷︷︸
Rij︸ ︷︷ ︸

Tij

(5.12)

Thus, the momentum equation related to this decomposition corresponds to (5.13).

∂ũi
∂t

+
∂

∂xj
(ũiũj) = − ∂p̃

∂xi
+

1

Re

∂

∂xj

Å
∂ũi
∂xj

+
∂ũj
∂xi

ã
− ∂Tij
∂xj

(5.13)

This approach, known as the Leonard (or triple) decomposition, allows the nonlinear term
to be computed with the same fineness as the linear terms [16]. This is the reason why the
remainder of the development will be done under this approach.

Thus, the subgrid scale will be found by obtaining the difference between the full Navier-
Stokes and (5.13) as well as the filtered continuity equation. Thus, it follows that, after
operating algebraically [15], it corresponds to (5.14):

∂u′i
∂xi

= 0 (5.14a)

∂u′i
∂t

+
∂

∂xj
((ũi + u′i)(ũj + u′j)− ũiũj) = − ∂p

′

∂xi
+
∂Tij
∂xj

+
1

Re

∂

∂xj

Ç
∂u′i
∂xj

+
∂u′j
∂xi

å
(5.14b)

5.3 Eddy-viscosity assumption

The eddy-viscosity model considers that the subgrid stress tensor can be modelled as a
function of a model parameter, the eddy viscosity νt, as well as the filtered rate of strain
S̃ij = 1/2(∂j ũi + ∂iũj). Thus, the subgrid stress tensor will be defined as (5.15).

Tij = 2νtS̃ij (5.15)

The model now will be based on how the eddy viscosity is modelled, as previously ex-
plained. Thus, the LES equations will be (5.16).

∂ũi
∂xi

= 0 (5.16a)

∂ũi
∂t

+
∂

∂xj
(ũiũj) = − ∂p̃

∂xi
+

∂

∂xj

ïÅ
1

Re
+ νt

ãÅ
∂ũi
∂xj

+
∂ũj
∂xi

ãò
(5.16b)
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5.4 Smagorinsky model

The most used eddy-viscosity model is, in fact, Smagorinsky model [17], which states that
the eddy-viscosity is proportional to a characteristic subgrid scale velocity [16], defined as
(5.17)

v∆ = ∆̃
»

2S̃ijS̃ij (5.17)

In fact, the Smagorinsky’s eddy viscosity [16] corresponds to (5.18).

νt = (CS∆̃)2
»

2S̃ijS̃ij (5.18)

where CS is the Smagorinsky constant, which can be calculated, approximately, as CS ≈
1
π

Ä
3CK

2

ä−3/4
. This, for CK = 1.4 yields CS ≈ 0.18, which is generally acceptable for isotropic

turbulence. In the case of shear flows, nevertheless, it is more preferable to use CS = 0.1 [16].
Thus, CS is not, indeed, a universal constant.

The rate of energy transfer from the resolved scales to the subgrid scales [2] corresponds
to

P = −TijS̃ij = 2νtS̃ijS̃ij (5.19)

Thus, in νt > 0, the energy cascade will be as expected by Kolmogorov’s theory and there
will not be a backscatter of energy [2].

5.5 Burgers’ equation

In chapter 4 a DNS was done on the Burgers’ equation (4.28). In order to obtain rather good
results for Re = 40, a cutoff wavenumber of kN = 100 was required.

In this section, however, the spectral LES model (5.20) will be applied with CK = 0.4523,
which corresponds to the optimal value, and CK = 0.05, which corresponds to a very poor
value; as well as m = 2.ç

νt(k/kN ) = ν+∞
t

Å
EkN
kN

ã1/2

ν∗t

Å
k

kN

ã
(5.20)

where

ν+∞
t = 0.31

5−m
m+ 1

√
3−mC−3/2

K (5.21a)

ν∗t

Å
k

kN

ã
= 1 + 34.5 exp (−3.03(kN/k)) (5.21b)

Thus, a parameter called νeff will be introduced at each k, considering that

νeff =
1

Re
+ νt

.

First of all, the comparison between the LES resolution for a cutoff wavenumber of 20,
with the Kolmogorov constants previously detailed, with the DNS solution at kN = 100 and
k = 20 is displayed in Figure 5.4, which shows that the introduction of a proper LES model
implies that a solution for the problem can be obtained with a much coarser domain.
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Figure 5.4: Results for different studied cases of the resolution of the Burgers’ Equation.

In fact, not just a proper CK is required. In this case, since m is also a parameter in the
model, its implication has to be studied. Thus, Figure 5.5 shows that a proper m will have
the model to be right on the DNS or differ a lot from the actual solution.

Figure 5.5: Influence of the parameter m on the LES solution for Re = 40.

5.6 Invariant framework of LES

The models mostly rely on the use of five different invariants [18] (six, in case of a compressible
flow) all related to the second-order gradient tensor of the velocity field Gij = ∂ui

∂xj
, and the

symmetric (rate of strain, Sij) and skew-symmetric Ωij = 1
2

Ä
∂ui
∂xj
− ∂uj

∂xi

ä
parts of the tensor.
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These invariants (5.22) are the following: QG, RG, QS , RS , V
2, where, QA and RA are

the second and third invariants (being the trace PA the first), respectively, of a second-order
tensor A.

QA =
1

2
[tr2(A)− tr (A2)] (5.22a)

RA =
1

6
[tr3(A)− 3 tr (A) tr (A2) + 2 tr (A3)] (5.22b)

V 2 = 4(tr (S2Ω2)− 2QSQΩ) (5.22c)

Considering that all tensors G,S,Ω are traceless, (5.22) is reduced as follows:

QA = −1

2
tr (A2) (5.23a)

RA =
1

3
tr (A3) (5.23b)

These invariants determine, in its own measure, the performance of the model in all
regions, being the most critical the near wall region. Thus, its use will determine its wall-
behaviour Table 5.1.

Invariant QG RG QS Rs V 2

Wall-behaviour O(y2) O(y3) O(y0) O(y1) O(y2)

Table 5.1: Near-wall behaviour of the five basic invariants. Adapted from [18].

5.6.1 Usual LES models under the invariant framework

Smagorinsky model

As previously defined, Smagorinsky’s eddy viscosity model can be defined as (CS∆)2|S|.
Nonetheless, under this framework, it can be redefined as (5.24), considering that |S| =
(2SijSij)

1/2 = (2 tr (S2))1/2 = 2(−QS)1/2.

νSt = 2(CS∆)2(−QS)1/2 (5.24)

Thus, as it can be seen in Table 5.1, the use of QS as the only invariant in the method
implies that its near-wall behaviour corresponds to O(y0), being this the reason why it cannot
be used when modelling near-wall flows.

WALE model

Firstly defined by Nicoud and Ducros (see [19] for further details in the development), it
is based on the second invariant of the traceless part of the symmetric tensor, yielding the
WALE (Wall-adapting local eddy) model (5.25).

νWt = (CW∆)2 (V 2/2 + 2Q2
G/3)3/2

(−2QS)5/2 + (V 2/2 + 2Q2
G/3)5/4

(5.25)
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Due to the fact that it uses a great number of invariants, its implementation is one of the
most expensive among the common LES models. Nonetheless, its use is justified due to an
excellent near-wall behaviour (O(y3)).

Vreman’s model and S3PQR models

Based on the ration between the second and first invariants of the tensor GG∗. Following the
development in [18], it is derived that

QGG∗

PGG∗
=

V 2 +Q2
G

2(QΩ −QS)

Thus, Vreman’s model yields (5.26)

νV rt = (CV r∆)2

Å
V 2 +Q2

G

2(QΩ −QS)

ã1/2

(5.26)

Due to its simplicity, which yields a near-wall behaviour of O(y), Vreman’s model is a
well-conditioned model.

Trias et al. [18] used a similar approach in considering models based on the invariants of
GG∗, yielding what is known as S3PQR models, which take (5.27) as its general form.

νS3PQR
t = (CS3PQR∆)2P pGG∗Q

q
GG∗R

r
GG∗ (5.27)

It is derived in [18] that, for (5.27), in order to have frequency units, the general form
must be reduced to

νS3PQR
t = (CS3PQR∆)2P pGG∗Q

−(p+1)
GG∗ R

(p+5/2)/3
GG∗

In this case, the performance of the model in regards to near-wall behaviour is better
(O(y3)) than Vreman’s model, while maintaining a quite simple implementation as well as a
rather low computational cost.

Verstappen’s model

Verstappen proposed a third-invariant based eddy viscosity model (5.28), just depending on
the symmetric part, which has a similar behaviour in terms of wall beahviour as well as in
computational cost.

νV et = (CV e∆)2 |RS |
−QS

(5.28)
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Chapter 6

Numerical solution of turbulence

6.1 Symmetry-preserving discretization

As follows from the turbulence theory, the turbulent phenomena consists in the combination
of nonlinear transport and dissipation of energy.

Nonetheless, this energy is just dissipated by the viscous forces. Thus, in an inviscid flow,
the total amount of energy should be maintained. Nonetheless, if there is dissipation, these
levels of energy will not just be maintained but instead get lower.

Thus, if the time and space are discretized keeping the symmetries of the differential
operators, the method will be unconditionally stable and conservative [20].

It is important to remind that turbulence is essentially a tridimensional phenomenon.
Thus, from here on the simulations will be done on tridimensional conditions.

6.1.1 Operator symmetries

The operators appearing in the Navier-Stokes equations are the divergence ∇·, the gradient
∇, the laplacian ∇2 and the convective operator C(~u, φ) = (~u · ∇)φ.

Introducing the inner product of functions as

〈a|b〉 =

∫
Ω
ab dV

, some properties of the operators can be shown [21] by assuming no contribution in any case
from the domain boundary.

〈∇ · ~a|φ〉 = −〈~a|∇φ〉 (6.1a)

〈∇2f |g〉 = −〈∇f |∇g〉 = 〈f |∇2g〉 (6.1b)

〈C(~u, φ1)|φ2〉 = −〈C(~u, φ2)|φ1〉 (6.1c)

Thus, the discretization of each of these operators will have to keep these properties so as
to simulate the turbulent phenomena as good as possible provided that all symmetries will
be maintained.

First of all, it is important to define the reference frame from which the discretization is
going to be developed, which is outlined in Figure 6.1

Nonetheless, why is it important to preserve the operators’ properties?
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y

x
z

xixi-1

yj

yj-1

zk

zk-1

pijk

uijk
wijk

vijk

Figure 6.1: Reference frame of the discretization. Main control volume

Let us consider a discretized convection-diffusion equation [20], without any source term
(6.2), in which ū is assumed to be constant.

Ω
duh
dt

+ C(ū)uh + Duh = 0 (6.2)

Thus, assuming D = 0 (inviscid flow), the transport equation for kinetic energy becomes
(6.3). Thus, the lack of viscosity should imply that the kinetic energy remains constant,
which will only happen, if and only if, C is skew-symmetric.

d

dt
||uh||2 = −u∗h(C + C∗)uh (6.3)

Thus, by using a skew-symmetric convective operator there will not be any additional
energy damping other than the viscosity itself, which is, in fact, inherited from the differential
operator (6.1c).

6.1.2 Convective operator discretization

Applying the Reynolds’ transport theorem (6.4) applied on u discretized on a x-staggered
control volume, the first approach to the convective operator can be found in (6.5), being
Figure 6.2 a bidimensional outline of the control volume. Let ūi,j,k the mass flow through
the control volume boundaries.

d

dt

∫
Ω
f dV =

∫
Ω

∂f

∂t
dV +

∫
∂Ω
f~u · n̂ dA (6.4)

Then,

|Ωi+1/2,j,k|
dui,j,k
dt

+ ūi+1/2,j,kui+1/2,j,k + v̄i+1/2,j,kui,j+1/2,k + w̄i+1/2,j,kui,j,k+1/2−

− ūi−1/2,j,kui−1/2,j,k − v̄i+1/2,j−1,kui,j−1/2,k − w̄i+1/2,j,k−1ui,j,k−1/2 (6.5)
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Figure 6.2: Bidimensional representation of the control volume Ωi+1/2,j,k. Extracted from
[20].

At the staggered control volume faces, the velocity will be approximated using a Central
Difference Scheme:

ui+1/2,j,k =
1

2
(ui+1,j,k + ui,j,k)

Thus, adding these definitions onto (6.5) and operating:

|Ωi+1/2,j,k|
dui,j,k
dt

+
1

2
(ūi+1/2,j,k+v̄i+1/2,j,k+w̄i+1/2,j,k−ūi−1/2,j,k−v̄i+1/2,j−1,k−w̄i+1/2,j,k−1)ui,j,k+

+
1

2
ūi+1/2,j,kui+1,j,k +

1

2
v̄i+1/2,j,kui,j+1,k +

1

2
w̄i+1/2,j,kui,j,k+1−

− 1

2
ūi−1/2,j,kui−1,j,k −

1

2
v̄i+1/2,j−1,kui,j−1,k +

1

2
w̄i+1/2,j,k−1ui,j,k−1 (6.6)

Applying the same methodology to the other two directions, y and z, (6.7) and (6.8),
respectively, are obtained.

|Ωi,j+1/2,k|
dvi,j,k
dt

+
1

2
(ūi,j+1/2,k+v̄i,j+1/2,k+w̄i,j+1/2,k−ūi−1,j+1/2,k−v̄i,j−1/2,k−w̄i,j+1/2,k−1)vi,j,k+

+
1

2
ūi,j+1/2,kvi+1,j,k +

1

2
v̄i,j+1/2,kvi,j+1,k +

1

2
w̄i,j+1/2,kvi,j,k+1−

− 1

2
ūi−1,j+1/2,kvi−1,j,k −

1

2
v̄i,j−1/2,kvi,j−1,k −

1

2
w̄i,j+1/2,k−1vi,j,k−1 (6.7)

|Ωi,j,k+1/2|
dwi,j,k
dt

+
1

2
(ūi,j,k+1/2+v̄i,j,k+1/2+w̄i,j,k+1/2−ūi−1,j,k+1/2−v̄i,j−1,k+1/2−w̄i,j,k−1/2)wi,j,k+

+
1

2
ūi,j,k+1/2wi+1,j,k +

1

2
v̄i,j,k+1/2wi,j+1,k +

1

2
w̄i,j,k+1/2wi,j,k+1−

− 1

2
ūi−1,j,k+1/2wi−1,j,k −

1

2
v̄i,j−1,k+1/2wi,j−1,k −

1

2
w̄i,j,k−1/2wi,j,k−1 (6.8)
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In a general form, (6.6),(6.7) and (6.8) can be synthesized in (6.9)

Ω1
duh
dt

+ C1(ū)uh (6.9)

where

uh = (u1,1,1, . . . , ui,j,k, . . . , unx,ny ,nz , v1,1,1, . . . , vi,j,k, . . . , vnx,ny ,nz , . . . , w1,1,1, . . . , wi,j,k, . . . , wnx,ny ,nz)
∗

Ω1 = diag(|Ωi+1/2,j,k|, |Ωi,j+1/2,k|, |Ωi,j,k+1/2|) ∀i, j, k

and C1 is the convective operator which has to fulfill C1 + C∗1 = 0, given its skew-symmetry
[20, 22]. In order to do so, the diagonal terms have to be equal to zero, which is accomplished
since the velocity approximation is done using a CDS as well as by mass conservation. This
implies that the interface mass fluxes has to be calculated using (6.10) (and its equivalents
for all directions) [20].

ūi+1/2,j,k =
1

2
(ūi,j,k + ūi+1,j,k) (6.10)

6.1.3 Divergence and gradient operators discretization

Obviously, the mass flux has to be computed as a function of the discrete velocity uh, being
then C1(ū) = C1(ū(uh)). Thus, the integration of the mass flux in each direction using the
mid-point rule. Eq. (6.11) states the methodology in u, nonetheless, its extension in v and
w is straightforward.

ūi,j,k = (yj − yj−1)(zk − zk−1)ui,j,k (6.11)

Thus, in each main grid cell, mass conservation ∇ · ~u = 0 gives (6.12)

ūi,j,k + v̄i,j,k + w̄i,j,k − ūi−1,j,k − v̄i,j−1,k − w̄i,j,k−1 = 00 (6.12)

Thus, applying (6.11) to (6.12), and using the compact form, mass conservation yields
(6.13), being M1 the discrete form of the divergence operator.

M1uh = 0 (6.13)

In order to discretize the gradient operator, (6.14) will be used [20], which relates it with
the divergence operator being G1 this gradient operator.

G1 = −Ω−1
1 M∗

1 (6.14)

6.1.4 Diffusive operator discretization

The laplacian of an arbitrary field f can be expressed as

∂

∂x

∂f

∂x
+

∂

∂y

∂f

∂y
+

∂

∂z

∂f

∂z

Let φ = 1
Re∂xu, ψ = 1

Re∂yu and ν = 1
Re∂zu. Then, the integral on all the volume, applying

Gauss’ divergence theorem, ∫
Ω
∇ · ~f dV =

∫
∂Ω

~f · n̂ dA
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In this case, let ~f = ∇u. Then, Gauss theorem enables the possibility of integrating at
the interfaces of the control volumes. Thus, at each control volume it follows that (6.15) can
be used for this purpose at each time t.∫ yj

yj−1

∫ zk

zk−1

φ(xi+1/2, y, z) dz dy −
∫ yj

yj−1

∫ zk

zk−1

φ(xi−1/2, y, z) dz dy+

+

∫ xi+1/2

xi−1/2

∫ zk

zk−1

ψ(x, yj , z) dz dx−
∫ xi+1/2

xi−1/2

∫ zk

zk−1

ψ(x, yj−1, z) dz dx+

+

∫ xi+1/2

xi−1/2

∫ yj

yj−1

ν(x, y, zk) dy dx−
∫ xi+1/2

xi−1/2

∫ yj

yj−1

ν(x, y, zk−1) dy dx (6.15)

Following an equivalent notation to (6.11), each integral can be expressed as follows,∫ yj

yj−1

∫ zk

zk−1

φ(xi+1/2, y, z) dz dy = φ̄i+1/2,j,k = (yj − yj−1)(zk − zk−1)φi+1/2,j,k

where:

φi+1/2,j,k =
1

Re

ui+1,j,k − ui,j,k
xi+1 − xi

ψi,j,k =
1

Re

ui,j+1,k − ui,j,k
yj+1/2 − yj−1/2

νi,j,k =
1

Re

ui,j,k+1 − ui,j,k
zk+1/2 − zk−1/2

This development yields the compact form

φ̄i+1/2,j,k − φ̄i−1/2,j,k + ψ̄i,j,k − ψ̄i,j−1,k + ν̄i,j,k − ν̄i,j,k−1

which, extended, provides the discretization of the laplacian for u component of the
velocity field (6.17). The same exact procedure can be applied for both v and w components
to find its respective fields.

(yj − yj−1)(zk − zk−1)
1

Re

ui+1,j,k − ui,j,k
xi+1 − xi

− (yj − yj−1)(zk − zk−1)
1

Re

ui,j,k − ui−1,j,k

xi − xi−1
+

+(xi+1/2−xi−1/2)(zk−zk−1)
1

Re

ui,j+1,k − ui,j,k
yj+1/2 − yj−1/2

−(xi+1/2−xi−1/2)(zk−zk−1)
1

Re

ui,j,k − ui,j−1,k

yj−1/2 − yj−3/2
+

+(xi+1/2−xi−1/2)(yj−yj−1)
1

Re

ui,j,k+1 − ui,j,k
zk+1/2 − zk−1/2

−(xi+1/2−xi−1/2)(yj−yj−1)
1

Re

ui,j,k − ui,j,k−1

zk−1/2 − zk−3/2

(6.17)

Thus, all these developments can be synthesized on a compact matrix form −D1uh.
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6.1.5 Fractional Step Method

After the proceedings of all previous sections, each and every operator of Navier-Stokes
equations has been discretized, yielding the discrete Navier-Stokes equations (6.18).

M1uh = 0 (6.18a)

Ω1
duh
dt

+ C1(uh)uh + D1uh −M∗
1ph = 0 (6.18b)

Thus, the Fractional Step Method [23] as previously stated, uses a predicted velocity field
to then project it onto the subspace with null divergence.

Let uph be the predictor velocity, defined as

uph = unh + ∆t

Å
3

2
R(unh)− 1

2
R(un−1

h )

ã
where R(uh) = −Ω−1

1 (C1(uh)uh + D1uh) and a Second Order Adams-Bashforth scheme
is used to discretize the time dependance of R. An adaptative method leading to a stable
solution with longer timesteps can be seen in [24].

On the other hand, the current step velocity field can be defined as

un+1
h = uph + ∆tΩ

−1
1 M∗

1p
n+1
h (6.19)

Thus, the current step pressure field is required. In order to do so, the divergence operator
M1 is applied to (6.19), provided that M1u

n+1
h = 0. Thus, the system of equations for the

pressure is found (6.20).

M1Ω
−1
1 M∗

1ph = − 1

∆t
M1u

p
h (6.20)

Generally, the relation −M1Ω
−1
1 M∗

1 is defined as the Laplacian operator L1 [22], negative-
definite and symmetric. Nonetheless, provided that it will be solved using a Conjugate
Gradient Method, which requires a positive-definite matrix, the operator will not be defined
since it would not be mathematically accurate.

6.1.6 Sample case

In order to test the Symmetry-preserving discretization, a Lid-Driven Cavity was imple-
mented. In this case, nonetheless, the ”spanwise” direction had periodic boundary conditions
in order to obtain a false bidimensional flow in case of a laminar implementation. Hence,
only three control volumes will be distributed along the periodic direction in this analysis.

Thus, the domain simulated may be structured by the following boundary conditions
Figure 6.3.

Non-slip boundary condition

In order to preserve the properties in a non-slip boundary condition, a ghost (out-of-domain)
control volume had to be added [22]. In this section it will be developed in a two-dimensional
case (Figure 6.4). Nonetheless, its extension to a three-dimensional case is straightforward.

In this case, the normal velocity to the wall (dotted arrow) will be directly imposed as
the staggered control volume directly appears in the boundary. Thus, in Figure 6.3a, that
would be the case for u in the lateral walls (YZ plane) and v for the bottom wall (XZ plane).
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(a) Non-slip walls u = v =
w = 0.

(b) Periodic boundary condi-
tions.

(c) Non-slip moving lid u = 1,
v = w = 0.

Figure 6.3: Tridimensional boundary conditions.

Figure 6.4: Non-slip boundary discretization.

Tangential-to-the-wall velocities, nonetheless, will be indirectly imposed. Let ub be the
velocity required to be imposed in the wall. Then, the same interpolation method applied in
the interior nodes (CDS) will be applied at the boundaries considering the ghost velocity ug,
which will appear in the discretization equations in its general form, allowing the code to avoid
special cases in the walls when solving transport equations in the boundary nodes. Thus, the
ghost velocity will be considered as (6.21) shows. Let ui,b be the velocity corresponding to
the node next to the boundary:

ub =
1

2
(ug + ui,b)

ug = 2ub − ui,b (6.21)

Moreover, no pressure boundary condition will be required, since the construction of the
operators directly imposes the pressure behaviour using the divergence operator.

6.1.7 Validation of the symmetry-preserving code

The validation of the symmetry-preserving code will require not just the correct resolution
of the Navier-Stokes equations, which will be checked using the classic Lid-Driven Cavity
benchmark [6], yet the correct behaviour of the operators will also have to be validated.
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In order to do so, given the three main operators (M,C,D), three different tests arise,
one for each operator.

First of all, the incompressibility of the velocity field has to be ensured. Thus, Muh = 0,
being this the first of the tests, which will be done repeatedly during the execution of the
programme given its dependance on the solution field.

On the other hand, the symmetry of the diffusive operator D will be validated only at the
beginning of the execution provided its dependance on the grid and the Reynolds number.
Thus, no update of the velocities will be required to validate this test. In order to do so,
v∗Dw = w∗Dv. Thus, the implemented test will verify that

v∗Dw −w∗Dv = 0

Eventually, the skew-symmetry of the convective operator will also be validated using
an equivalent method. In this case, the relation that has to be verified corresponds to
v∗Cw = −w∗Cv. Thus, the implemented test will verify that

v∗Cw + w∗Cv = 0

Steady-state solution

In order to determine a steady-state solution a stopping criterion has to be determined. In
this case, this criterion will correspond to the timestep-modified L2-norm of the variation of
the velocities in every direction.

Let δτ be the pondered variation of the velocities:

δτ =

»∑
∀i,j,k (un+1

i,j,k − uni,j,k)2 +
∑
∀i,j,k (vn+1

i,j,k − vni,j,k)2 +
∑
∀i,j,k (wn+1

i,j,k − wni,j,k)2

∆t
(6.22)

Solution validation

Using Ghia’s benchmark, the solution of the equations has been verified. In order to do
so, the norm of the difference of the values at the centerline has been computed using a
MATLAB c© script which linearly interpolated the results from the output positions to the
benchmark positions, allowing the comparison process.

Let ug and vg be the velocities from the benchmark [6], ng the number of points from
the benchmark, and us,g and vs,g the velocities from the output file interpolated onto the
benchmark points. Then, the error corresponds to (6.23), being equivalent for v.

εu =

Ã
ng∑
i=1

Å
ugi − us,gi

ugi

ã2

(6.23)

Thus, for Re = 100, the error is summarized in Table 6.1, yielding the convergence plot
for Re = 100 in Figure 6.5.
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N εu εv Computation time [s]

300 0.7138 2.3580 0.1050

1200 0.4823 0.1453 0.8890

2700 0.2490 0.0971 4.8057

4800 0.1829 0.0758 16.3375

7500 0.1475 0.0628 42.4443

10800 0.1207 0.0542 99.8913

24300 0.0790 0.0409 554.8682

30000 0.0700 0.0385 892.9747

36300 0.0627 0.0364 1338.3020

120000 0.0322 0.0277 19477.7700

Table 6.1: Relative error for both u in the vertical midplane (0.5, y, z) and v in the horizontal
midplane (x, 0.5, z) for Re = 100 in comparison to [6] with Nz = 3.

Figure 6.5: Convergence plot for Re = 100 using (6.23).

Thus, in the finer case, the solution yield the velocity distribution from Figure 6.6.
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Figure 6.6: Velocities distribution (u, left; v, right) in a Lid Driven Cavity along the lines
y = 0.5; z = 0.5 and x = 0.5; z = 0.5, respectively, of a Re = 100 simulation using 120000
control volumes. The results are compared to the benchmark [6].

To ensure the validity of the solution, it was checked for a second Reynolds (Re = 400),
by doing the same procedure as in the last case, yielding its convergence table (Table 6.2)
and plot(Figure 6.7).

N εu εv

300 0.8689 0.6083

1200 0.5331 0.3442

2700 0.3656 0.1942

4800 0.2681 0.1411

7500 0.2373 0.1118

10800 0.1864 0.0939

24300 0.1304 0.0641

30000 0.1124 0.0581

36300 0.0982 0.0538

120000 0.0544 0.0349

Table 6.2: Relative error for both u in the vertical midplane (0.5, y, z) and v in the horizontal
midplane (x, 0.5, z) for Re = 400 in comparison to [6] with Nz = 3.
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Figure 6.7: Convergence plot for Re = 400 using (6.23).

Mass conservation

The mass conservation test was ran for all inner control volumes where the pressure was
solved. The test consisted on verifying the conservation of mass in each and all of them by
applying (6.24).

(Mu)i,j,k = ūi,j,k + v̄i,j,k + w̄i,j,k − ūi−1,j,k − v̄i,j−1,k − w̄i,j,k−1 (6.24)

Thus, each and every value should be 0. In order to validate the result, the L2-norm
(6.25) of the vector was calculated, which had to be equal to zero.

|Mu| =
√∑
∀i,j,k

(Mu)2
i,j,k (6.25)

In this case, the test provided the best results O(10−11) the finer the grid, even though a
similar order of magnitude was obtained in all situations.

Symmetry of the diffusive term

In order to do so, the diffusive operator was distributed as Du,Dv,Dw. Then, the test
vectors, provided that each operator contribution just affects the corresponding direction of
the field, were also splitted using the same methodology. Thus, the actual operation applied
was

v∗uDuwu + v∗vDvwv + v∗wDwww −w∗uDuvu −w∗vDvvv −w∗wDwvw

which produced an exact 0.0.

Given that the diffusive operator has no dependance on the velocity field, this test was
just performed at the beginning of the program execution.
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Skew-symmetry of the convective term

In order to test the skew-symmetry of the convective term, a vector fulfilling the boundary
conditions was required. Thus, the same velocity vector uh was used.

Moreover, the same exact procedure was developed as for the diffusive term, by splitting
the full matrix in its three main parts, as well as each vector (6.26).

u∗hCuh + u∗hCuh = 0 (6.26)

By doing so, the result obtained in the finest grid for Re = 100, for the first 100 iterations
is displayed in Figure 6.8, with an average absolute value of 3.3527× 10−12.

Figure 6.8: Evolution of the result of the convective skew-symmetry test for 120000 control
volumes in a Re = 100 Lid-Driven Cavity case.

6.2 LES implementation

The first consideration when implementing a Large-Eddy Simulation program is to choose
a proper eddy viscosity model. Hence, it is very important to consider a tradeoff between
the computational cost provided that the simulations are performed using 1 CPU and the
near-wall behaviour of each model Table 5.1.

Thus, provided its simplicity and a rather low computational cost as well as a O(y3) near-
wall behaviour, a S3PQ model [18] was selected over other complex models such as WALE.
A simple model such as Verstappen’s was also programmed to compare the performance of
both models. Moreover, due to the simplicity of every model implementation and the fact
that all invariants are computed, Vreman’s model was also implemented.

Eventually, the improper behaviour of Smagorinksy’s model in these kind of wall-bounded
flows is alse discussed and compared to the other, proper, LES models.

For the sake of simplicity, in this and further sections concerning the implementation of
a Large-Eddy Simulation technique, ui will be replacing ũi.
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6.2.1 Invariant computation

The basic element to compute the invariant corresponds to the velocity gradient tensor Gij =
∂xjui. Thus, its computation in each control volume has to be discussed.

In order to do so, the method will be developed in a 2D scenario, given that the 3D
expansion is straightforward.

Thus, for any given control volume (Figure 6.9), velocities can be interpolated at the
desired points so as to proceed with the gradient (6.27), where vi+1/2,j−1/2 = (vi,j + vi,j−1 +
vi+1,j + vi+1,j−1)/4, being an identical procedure for the other interpolated velocities.

Figure 6.9: Outline of the mesh for the derivation of Gij .

∂u

∂x
=
ui,j − ui−1,j

xi − xi−1
(6.27a)

∂u

∂y
=
ui−1/2,j+1/2 − ui−1/2,j−1/2

yj − yj−1
(6.27b)

∂v

∂x
=
vi+1/2,j−1/2 − vi−1/2,j−1/2

xi − xi−1
(6.27c)

∂v

∂y
=
vi,j − vi,j−1

yj − yj−1
(6.27d)

Once the gradient is computed, the computation of each and every invariant requires
simple algebra and, thus, is straightforward.

6.2.2 Validation of the LES implementation

Verification of the implementation

In order to verify the model implementation, the wall behaviour of the calculations has been
computed. Thus, provided that the S3PQ model’s wall behaviour is O(y3) (Table 5.1), near
the walls, this behaviour has to be followed.

In order to verify this result, the results at the line x = 0.5, z = 0.5 at the plane with
normal (1, 0, 0) have been extracted. The behaviour has been checked for a 900k control
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volumes (100x100x90) in the top and bottom sections of the plane, yielding an error to a
cubic behaviour of 2.8416× 10−10 (right) and 3.4370× 10−11 (left), respectively Figure 6.10.

Figure 6.10: Eddy viscosity behaviour in the near wall (top wall, right; bottom wall, left) at
the line x = 0.5, z = 0.5 at the plane with normal (1, 0, 0). The straight line represents the
calculated eddy-viscosity, while the dashed line corresponds to the cubic interpolation of the
results.

Inaction under laminar conditions

First of all, it is very important to verify that the model does not interfere with the resolution
of laminar flows. Thus, for Re = 100, all three models have been tested in a coarse grid
(40x40 in plane XY) and in a fine grid (100x100 in plane XY), with the discretization in the
z direction adapted to the skewness of the grid.

In order to do so, the results (Table 6.3) have been compared to the benchmark [6] as
well as to the DNS solution previously developed.

Coarse mesh (40x40) Fine mesh (100x100)

Model εu εv εDNS,u εDNS,v εu εv εDNS,u εDNS,v
No model (DNS) 0.1829 0.0758 - - 0.0700 0.0385 - -

S3PQ 0.1873 0.0763 0.0240 0.0066 0.0713 0.0382 0.0185 0.0078

Verstappen 0.1829 0.0759 0.0000 0.0013 0.0701 0.0385 0.0014 0.0000

Vreman 0.2177 0.0981 0.1903 0.2942 0.0826 0.0429 0.1800 0.1143

Smagorinsky 0.1249 0.1153 0.3171 0.5211 0.0491 0.0563 0.2986 0.4623

Table 6.3: Comparison of the error with Ghia of the DNS solution (Table 6.1) as well as the
LES cases in a laminar condition.

In the coarse mesh, just smaller than Kolmogorov’s lengthscale (∆x = ∆y = 0.025;
η = 0.0316) in the predominant dimensions, the behaviour of S3PQ and Verstappen’s model
is excellent, with errors of 2.40% and 0.66% the first and 0.00% and 0.13% the latter when
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comparing these results with the obtained DNS solution. The results obtained by Verstap-
pen’s model are surprisingly good recalling that its near-wall behaviour follows O(y1). This
might be explained, though, by the small gradient present at the walls in the set laminar
conditions, which allows a linear model to perform correctly.

This behaviour, however, can be clearly seen in Vreman’s model, having an important
leap in the magnitude of the error (19.03% for u and 29.42% for v), which can be explained by
this lower near-wall resolution. Nonetheless, the model with a worse behaviour in comparison
to the DNS corresponds to the classical Smagorinsky’s model, which differs from the DNS in
a 31.71% for u and 52.11% for v, having by an important margin the biggest difference when
compared to the DNS results.

In regards to the fine mesh, the behaviour is exactly the same as for the coarse, with a
general decrease of the difference between the modelled simulations and the DNS.

6.3 Turbulent simulation of a Lid-Driven Cavity

After validating the LES code, a Lid-Driven Cavity turbulent simulation was performed.
In order to do so, a Re = 10000 case was considered, even though its simulation until a
statistically steady-state was not possible due to the sake of the code, which was serial and
implied a much longer, and inaccessible, computing time. Thus, the simulation was performed
up to t = 30.

The LES model used corresponds to the S3PQ previously used in the validation, and the
discretization scale corresponded to ∆x = ∆y = ∆z ≈ 8η. This implies that the control
volumes are, approximately, 512 times bigger than Kolmogorov’s scale.

The control volumes used were exactly cubical, provided that some problems appeared in
the LES solution when more skew control volumes were used.

Even though for a 2D frameset, [6] a steady state solution is proposed at Re = 10000,
considering a tridimensional case turbulent phenomena appears mainly in the third dimen-
sion. In fact, at t = 30, with just the turbulent phenomena starting to appear, that several
fluctuations appear in all three velocity components (see Figure 6.11).

In fact, the standard deviation of these values correspond to a 1.59% for u, 4.63% for v
and 1.75% for w. On the other hand, in a non turbulent condition, such as Re = 100 these
values get reduced to 6.734× 10−14%, 4.4289× 10−6% and 1.3229× 10−6%, respectively.

A much finer mesh would have been optimal, yet the laptop used processing capacity with
just a processor made it unfeasible.

This is due to the fact that for Re = 10000, provided the results obtained at t = 30,
y+/y = 858.24. Thus, each ∆y corresponded to ∆y+ = 7.152. Thus, the viscous sublayer has
not been solved in this simulation at the north wall, but the buffer layer has been simulated
with kind of enough good detail.

Up to t = 10, the variable evolution was the following for u (Figure 6.12), v (Figure 6.13)
and p (Figure 6.14). It is very clear the formation of the main eddy, which, due to the
turbulent regime of the fluid, has an irregular shape in terms of u and v. Nevertheless, in
terms of pressure, the depression is almost perfectly cylindrical - reminding that the case is
three-dimensional - with the exception of Figure 6.14a, which, due to the low development of
the case, the pressure just depends on the movement of the lid, thus providing a high pressure
zone at the top-right corner of the domain (which appears in all time steps considered) and
a low pressure zone at the top-left, which, in fact, will still be there for the remainder of the
simulation yet its importance decreases with the appearance of the main eddy.
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Figure 6.11: Velocity spacial fluctuation at the midline x = y = 0.5 of a Lid-Driven Cavity
at t = 30 with Re = 10000 for ∆x = ∆y = ∆z = 1/120 using a S3PQ LES model.

(a) t = 0.1. (b) t = 1.

(c) t = 5. (d) t = 10.

Figure 6.12: u distribution in plane XY and z = 0.5 of Re = 10000 simulation under a S3PQ
model and ∆x = ∆y = ∆z = 1/120 up to t = 10.
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(a) t = 0.1. (b) t = 1.

(c) t = 5. (d) t = 10.

Figure 6.13: v distribution in plane XY and z = 0.5 of Re = 10000 simulation under a S3PQ
model and ∆x = ∆y = ∆z = 1/120 up to t = 10.

(a) t = 0.1. (b) t = 1.

(c) t = 5. (d) t = 10.

Figure 6.14: p distribution in plane XY and z = 0.5 of Re = 10000 simulation under a S3PQ
model and ∆x = ∆y = ∆z = 1/120 up to t = 10.

One of the interesting points in simulating turbulent flows is analyzing the boundary layer

JOSEP PLANA RIU 55



SP DISCRETIZATIONS APPLIED TO LES TECHNIQUES IN NS EQUATIONS UPC

generated by the main flow, and comparing the behaviour to the theoretical approach. Thus,
the wall units were computed in this case for two reasons:

1. Validating that the mesh density is enough to simulate all boundary layer layers.

2. Comparing the results to the theoretical approach.

Since the previous approach did not fulfill the first point, with any point inside the viscous
sublayer, a denser mesh had to be used. In order to do so, a 240x240x50 mesh was used (2.88M
control volumes), which, known the approximate y+/y ratio previously determined, should
imply that at least a node is placed inside the layer itself (∆y = 0.0042, being approximately
4η).

Hence, the wall stress τw = 1
Re

∂u
∂n had to be computed. In order to do so, a MATLAB

algorithm was used to obtain a cubic approach of u = f(y) in the near wall region and then
easily computing the derivative.

Once obtained the derivative, the frictional velocity was easily obtained as uτ =
√
τw.

Nonetheless, in order to compute u+ to behave as expected, the computation changed to

u+ =
1− u
uτ

A similar approach was taken for y+, yielding Figure 6.15

y+ =
1− y
δν

= (1− y)Reuτ

y+ u+

1.6966 1.6654

5.0989 4.6878

8.4982 7.0698

11.8974 8.7704

15.2967 9.8969

18.696 10.5995

22.0952 11.0159

25.4944 11.2524

Table 6.4: Results of the simulation at t = 10 in regards to the wall units in the north wall
of a Lid-Driven Cavity at Re = 10000

As detailed in chapter 4, three different zones are defined: the viscous sublayer, charac-
terized by u+ = y+; the buffer layer, and the outlaw layer.

In regards to the viscous sublayer, as Table 6.4 shows, the node clearly inside the viscous
sublayer (y+ = 1.6966) has an error of 0.01838, whereas the node placed in the boundary
between the viscous sublayer and the buffer layer has a bigger error in 0.08063. This may
be caused by the lack of points inside the corresponding layer, which could build, with more
detail, the behaviour of the flow in this near wall region.

Moreover, provided that the simulating time (t = 10) was extremely short given the
computational performance of the laptop used, a full turbulent boundary layer in the north
wall might not be still fully developed. Thus, the development of a proper buffer layer
and outlaw layer, following the theoretical approach to turbulent boundary layers, was not
complete, being this the reason why its similarity to the theoretical shape (Figure 4.6) is
mere coincidence.
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Figure 6.15: u+ = f(y+) in a Lid-Driven Cavity north wall following x = 0.49; z = 0.49 at
Re = 10000 using Verstappen’s model at t = 5, with ∆x = ∆y = 1/200,∆z = 1/50.
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Chapter 7

Conclusions and future research

7.1 Approach to turbulent flows

As stated in the Introduction of this thesis, one of the main goals of this thesis was un-
derstanding and getting familiar to how turbulence works and how can be modelled to be
simulated. Thus, in chapter 4 as well as in chapter 5 this objective is achieved.

First of all, chapter 4 develops the theoretical general approach to turbulence, in which
both the approaches of Reynolds with the mean-flow equations as well as Kolmogorov’s,
more from a statistical point of view in regards to the energy distribution among all possible
lengthscales. Moreover, a small simulation of the Burgers’ equation is also developed, which
shows, in a simple manner, the energy cascade predicted by Kolmogorov.

Moreover, one of the most interesting features of turbulent flows, the boundary layer,
has been deeply studied, firstly considering Prandtl’s laminar approach to then put more
emphasis on the turbulent boundary layer, in which the wall units play a signficant role, thus
developing its approach in the corresponding chapter.

On the other hand, chapter 5 develops the theoretical approach to the Large Eddy Sim-
ulation method as well as its application to the Navier-Stokes Equations, being this the case
of interest of this thesis. Thus, after developing the eddy-viscosity assumption, the classic
Smagorinsky model is developed and its own pros and cons are discussed. This discussion
yields that the model is not suitable for the near-wall region. Thus, a different framework
approached by some invariants of the tensor divergence of velocity is developed, with some
models considered and compared to the classic Smagorinsky model.

Furthermore, as done in the classical approach, a Burgers’ equation is also solved by
applying to the same framework a spectral LES model such that the behaviour is accurately
modelled by using a 20% of the wavenumbers used in the classical DNS approach. However,
it was very important to tune correctly the model. Thus, the importance of correctly tuning
all LES models arose in that approach to the Burgers’ equation.

Thus, at this point all the theoretical basis of turbulence was set so that results obtained
from simulations could be well interpreted, being this the reason why the first objective of
the thesis was achieved.

7.2 Symmetry-preserving discretizations

During the previous work summarized in chapter 3, the cases regarding Navier-Stokes equa-
tions were discretized using various methods, without having any objective apart from making
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it possible to solve the equations using an own code.

Nonetheless, due to the complexity of turbulence, and in regards to wanting to preserve
the physical properties of the flow, turbulent flows are more likely to be accurately solved
using a discretization such that the properties of the equations’ operators are preserved,
which implies that the flow properties will not be perturbed by the model itself. These are
the symmetry-preserving discretizations, first introduced by [20].

In the original case, Verstappen and Veldman developed a fourth-order approach, yet due
to the complexity of the method, the second-order approach was used in this case.

In chapter 6 this approach is developed to a three-dimensional structured grid and its
properties are discussed. Moreover, since all cases in chapter 3 were two-dimensional, the
method is tested under laminar conditions in a Lid-Driven Cavity, being its results compared
to [6].

With this being validated, the implementation of the LES invariant framework detailed
in chapter 5 is performed for multiple methods and, eventually, is verified in the near-wall
region considering the order of the approach at that region as well as its inaction under
laminar conditions. After considering all different approaches, S3PQ and Verstappen models
are selected to perform the turbulent simulation, provided the better wall resolution from the
first, as well as the simplicity of the latter.

Thus, a turbulent simulation from a flow at Re = 10000 in a Lid-Driven Cavity was
performed to ensure that its performance would be accurate in turbulent conditions in the
use of a LES model. Nonetheless, and due to the lack of computational power of a laptop,
the viscous sublayer was not properly simulated, since the mesh was still too coarse, even
using 1.728M control volumes.

Hence, a finer mesh (240x240x50) was used for a simulation up to t = 10 under the same
exact conditions, which allowed the obtention of some nodal points inside the viscous sublayer
as Table 6.4 shows. Moreover, the most inner points had the most similar behaviour to the
predictions of the theory, yet, in the outer layers, the flow behaviour was not as expected.
This may have happened due to the following reasons: first of all, the mesh might still be
too coarse to compute properly the turbulent boundary layer, even though it was fine enough
to obtain physically solid results in the nearest points; and, on the other hand, a too short
simulating time, which did not allow the turbulent boundary layer to fully develop and, thus,
providing not accurate results.

7.3 Future research

7.3.1 High-Performance Computing

Up to this point, all of the codes used perform in just a single CPU, yet the field of CFD is
based on a parallel framework of computing: multiple CPUs - and even GPUs - will perform
much strongly than a single processing unit. Thus, the extension of the code - mainly the
solver, the other parts are quite trivial - to a parallel framework is important.

For this reason, a two-dimensional conjugate gradient solver has been implemented in a
parallel framework and tested against other solvers in both serial and parallel frameworks (see
Figure 7.1). This has been done in the subject High Performance Computing in Aerospace
Engineering.

Thus, this parallel code has to be extended to a three-dimensional case, as well as im-
proving the performance of the code by optimizing the domain division and the halo updates
such that a division in all dimensions could be performed, and not just a single dimension
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Figure 7.1: Comparison of the results of a serial two-dimensional CG solver with the parallel
code for Np = 2 and Np = 4, with δ = 10−6.

division as Figure 7.2 shows, which correspond to the code developed.

Figure 7.2: Domain division for 4 CPUs in the case of Figure 7.1.

This would allow the computation of denser meshes for extended simulating times in
smaller computing times, yielding a more efficient code that would be able to provide the
results not reached in this Bachelor’s thesis.

7.3.2 More efficient linear solvers

Even though the conjugate gradient used is not an extremely bad linear solver for a big
number of equations (5M equations are solved in my laptop in approximately a minute) in a
serial code, much more efficient solvers - and relatively easy to parallelize - can be found such
as the Multigrid [25], which is based on the residual equation and the use of coarser grids
than the original to obtain an accurate yet quick solution to the system of equations. Some
cases have been unsuccessfully coded, thus, much work has to be put on this case to obtain
an efficient solver.
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Another line to work on corresponds to the preconditioning of the conjugate gradient
method, such that its performance is boosted. This case has also been unsuccessfully tested
during this thesis and thus has not been used, even though its effectiveness is proven and
could be effectively used to provide faster solutions to the system of equations.

7.3.3 Better understanding of turbulent phenomena

Even though the development of this thesis has been a mind-opener about the turbulent
phenomena, it has not developed an excellent knowledge of the theoretical developments
around this phenomena. Thus, in order to successfully progress in this field, a very deep
knowledge on the physics of turbulence should be a must. Thus, there is a lot of work to do
in this field so as to being able to give a helping hand in the research fields concerning this
phenomena.
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Appendix A

2D Conduction

A.1 Introduction

A.1.1 Problem definition

A very long rod is composed of four different materials (M1 to M4), represented with different
colours in Figure A.1, where all the lines are parallel to the corresponding coordinate axis,
where p1 = (0.50, 0.40) m, p2 = (0.50, 0.70) m and p3 = (1.10, 0.80) m.

M1

M2

M3

M4

p1

p2

p3

Figure A.1: General outline of the problem’s rod. Extracted from [26]

Each material from the rod will have the properties specified in Table A.1, whereas the
boundary conditions for the rod will be described in Table A.2.

ρ [kg/m3] cp [J/kgK] λ[w/mK]

M1 1500.00 750.00 170.00
M2 1600.00 770.00 140.00
M3 1900.00 810.00 200.00
M4 2500.00 930.00 140.00

Table A.1: Physical properties of the materials. Extracted from [26]

A.2 Governing equations

Since the assignment is about a conduction problem, first of all the theoretical background
must be stated. In fact, conduction’s background is based around Fourier’s Law (A.1).

1Inlet heat flux
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Wall Boundary condition

Bottom Isotherm at T = 23.00 ◦C
Top Uniform Qflow = 60.00 W/m 1

Left In contact with a fluid at Tg = 33.00 ◦C and a heat transfer coefficient h = 9.00 W/m2K
Right Uniform temperature T = 8.00 + 0.005t ◦C, where t is the time in seconds

Table A.2: Boundary conditions. Extracted from [26]

q = −λ∇T (A.1)

where λ stands for the thermal conductivity, which is characteristic of each material.

Since the main objective of this assignment, as well as any conduction problem, is deter-
mining the temperature field. Following the procedure of pp. 82-85 of [27], for a single
control volume, the Heat Diffusion equation will be obtained (A.2).

∂

∂xi

Å
λ
∂T

∂xi

ã
+ q̇v = ρcp

∂T

∂t
(A.2)

A.2.1 Finite Volume Approach

In order to program (A.2), some kind of discretization must be done. In this case, a Finite
Volume Method (or Control Volume Method) will be applied. Hence, the equation has to be
integrated for two dimensions in our case (i = 1, 2 in (A.2)). This process is going to be done
following [3] in a one dimensional situation, and then extrapolating the results 2.

From
∂

∂x

Å
λ
∂T

∂x

ã
= ρcp

∂T

∂t
(A.3)

Integrating (A.3) within a control volume limited by points w and e (Figure A.2) and
over a time interval t to t+ ∆t

TP TE

ew

TW

(δx)w (δx)e

Figure A.2: Control volumes at 1D

This leads to

ρcp

∫ e

w

∫ t+∆t

t

∂T

∂t
dt dx =

∫ e

w

∫ t+∆t

t

∂

∂x

Å
λ
∂T

∂x

ã
dt dx

In this case, where the discretization will be set to be a node-centered scheme, λe and λw
will be considered as the harmonic mean between the λ values at E and P (in the case of λe)
and P and W (in the case of λw). For the first case, with a natural extension to the second
one, this mean is defined by (A.4).

2Remark that the source is now not considered, it will be introduced further.
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λe =
(δx)e

λE
(δx)+

+ λP
(δx)+

(A.4)

Where δx)+ and δx)− are the distances from the interface to E and from P to the interface,
respectively.

The first member of the equation can be rewritten as ρcp∆x(TP − T 0
P ), where T 0

P stands
for the latest temperature known of the corresponding point P .

Now considering that temperature varies linearly between each node, the second term will
be expressed as ∫ t+∆t

t

ï
λe(TE − TP )

(δx)e
− λw(TP − TW )

(δx)w

ò
dt

Assuming that temperature varies in time following a general expression (A.5) ruled by
a weighting factor f between 0 and 1, (A.6) is found.

∫ t+∆t

t
TP dt = [fTP + (1− f)T 0

P ] ∆t (A.5)

ρcp
∆x

∆t
(TP−T 0

P ) = f

ï
λe(TE − TP )

(δx)e
− λw(TP − TW )

(δx)w

ò
+(1−f)

ï
λe(T

0
E − T 0

P )

(δx)e
−
λw(T 0

P − T 0
W )

(δx)w

ò
(A.6)

where ∆x is the distance between the two interfaces of a 1D discretization control volume.

Rearranging values, and introducing the source term, which was linearized as q̇∆x∆t =
SC+SPTP , and considering f = 1, which is called a fully implicit scheme, (A.7) is derived,
what is called the Fully Implicit Discretization Equation.3

aPTP = aETE + aWTW + b (A.7)

where

• aE = λe
(δx)e

• aW = λw
(δx)w

• a0
P =

ρcp∆x
∆t

• b = SC∆x+ a0
PT

0
P

• aP = aE + aW + a0
P − SP∆x

Now, considering a 2D discretization, a north and south terms will appear, as well as some
extra terms for the constants regarding the surfaces of the extra dimension control volumes
(A.8).

aPTP = aETE + aWTW + aNTN + aSTS + b (A.8)

where

3In the case where f = 0.5, the scheme is called Crank-Nicholson, while at f = 0, the scheme is called
explicit
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• aE =
λe∆y

(δx)e

• aW =
λw∆y

(δx)w

• aN = λn∆x
(δy)n

• aS = λs∆x
(δx)s

• a0
P =

ρcp∆x∆y

∆t

• b = SC∆x∆y + a0
PT

0
P

• aP = aE + aW + a0
P − SP∆x∆y

In order to solve, now, this 2D problem numerically, a Gauss-Seidel line by line Method
using a TriDiagonal Matrix Algorithm will be used.

A.2.2 TriDiagonal Matrix Algorithm (TDMA)

The TriDiagonal Matrix Algorithm is a solver for linear system of equations based on
the fact that the coefficient matrix of the correspoding system is a tridiagonal matrix

a0 b0
c1 a1 b1

. . .
. . .

. . .
. . .

. . .
. . .

cN aN


Then, the system of equations in a conduction system takes the form of (A.9).

aiTi = biTi+1 + ciTi−1 + di (A.9)

By operating algebraically with the fact that a Ti = PiTi+1 +Qi relation is being seeked, the
values of Pi and Qi can be easily obtained using (A.10) and (A.11).

Pi =
bi

ai − ciPi−1
(A.10)

Qi =
di + ciQi−1

ai − ciPi−1
(A.11)

Hence, since it is possible to know the last temperature (in our case is given for all the time
domain analysed), once known all the Pi and Qi values, the temperatures for a 1D problem
will be found.

A.2.3 Gauss-Seidel line by line

Now, the 2D domain can be integrated line by line by considering the north and south terms
in the independent term of each equation. Hence, by considering

aijTij = a(i+1)jT(i+1)j + a(i−1)jT(i−1)j + ai(j+1)Ti(j+1) + ai(j−1)Ti(j−1) + bij

• ai = aij
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• bi = a(i+1)j

• ci = a(i−1)j

• di = ai(j+1)T
∗
i(j+1) + ai(j−1)T

∗
i(j−1) + bij

where T ∗ stands for the last iteration temperature in the Gauss-Seidel iterative cycle. Hence,
for each j a TDMA can be applied in order to integrate all the 2D Domain.

A.3 Numerical approach to the problem

In order to get the numerical approach to the problem, the rod’s section must be discretized.
Generally, an input of a numerical problem corresponds to the number of control volumes.
Nevertheless, in the corresponding case, due to the fact that the rod has four well defined
materials, it is interesting to have the control volumes corresponding to the boundaries of
each material, as it can be seen in Figure A.3.

Material boundary

Control volume boundary

Figure A.3: Control volumes disposition in material boundaries

Hence, not all the number of control volumes will be the easier way to obtain a good
solution of the problem, since equilibrium for control volumes will be easier to determine. In
order to do so, the lengths for the x and y direction can be normalized, allowing the problem
to have the discretization applied.

Since in x direction, the length corresponds to 1.1 m, by normalizing the distances with
this maximum length the fact that the distance must be divided by a multiple of 11 is
obtained.

Following the same reasoning, in y direction the distance must be divided by a multiple
of 8.

In order to do so, once chosen the number of control volumes of the solver, this will give
the steps in the x and y direction, starting at (0.0, 0.0) m and finishing at (1.1, 0.8) m. Hence,
the mid position in x and y directions of each and every control volume will correspond to
the node.

A.3.1 Boundary conditions

Once discretized the space studied, the boundary conditions have to be applied. Due to the
fact that all the boundary conditions are different, every part of the boundary has to be taken
in account differently.
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Left boundary condition

On the left side of the rod, a fluid with h = 9.00 W/m2K at Tg = 33.00 ◦C keeps contact
with the left wall. By convection (A.12) rises. Hence, the equilibrium in the boundary would

be described by a∗PT
(L)
B = a1T1 + h(Tg − T (L)

B )∆x⇒ (a∗P + h∆x)T
(L)
B = a1T1 + ∆xhTg, as it

can be seen in Figure A.4.

qB = h(Tg − TB) (A.12)

F
lu

id
Figure A.4: Left Boundary Condition applied onto a discretized domain

Right boundary condition

.

On the right side, a condition of T = 8.00 + 0.005t ◦C is applied. This is the simplest
condition that can be given, since the temperature at the boundary will not have to be

calculated, as it would happen in a heat flux or a fluid. Then, T
(R)
B is uniform in all the

distribution of y, but varies in time.

Top boundary condition

In this case, an inlet heat flux of q = 60 W/m2 will be considered. Hence, as it was done in
the left boundary condition, the heat equilibrium must be applied here in order to consider
the boundary condition. Hence, using the discretized equations in a 1D domain (y, vertical):

aPT
(T )
B = aSTS + q∆y (A.13)

Nevertheless, since Gauss-Seidel will be applied in horizontal lines, the vertical variations
will not be considered directly, what forces the substitution of the top boundary condition
at the equations when j corresponds to the last of free nodes ((A.13)).

Beginning from

aijTij = a(i+1)jT(i+1)j + a(i−1)jT(i−1)j + ai(j+1)Ti(j+1) + ai(j−1)Ti(j−1) + bij

If j is the last value, j+ 1 terms will correspond to the top boundary condition. Hence, since

T
(T )
B can be obtained from (A.13), where now TS = Tij , and aP = aS = λs

(δy)s
. (A.13) can be

modified to obtain T
(T )
B = Tij +

q∆y

aP
= Tij + qtop. Now, substituting in the general equation

and operating algebraically, the new TDMA equation for this condition will be (A.14).

(aij − ai(j+1))Tij = a(i+1)jT(i+1)j + a(i−1)jT(i−1)j + ai(j−1)T
∗
i(j−1) + bij − ai(j+1)qtop (A.14)

Bottom boundary condition

Finally, the bottom boundary condition corresponds to a uniform and constant temperature
of 23.00 ◦C. Its application correspond to the right boundary condition (See section A.3.1).
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Implementation of the boundary conditions

The boundary conditions will be implemented taking in account bounded nodes, which can
be studied by considering two different options:

• Half control volumes

• Infinitesimal control volumes

In the case concerning this report, the second option will be chosen, as it can be seen in
Figure A.4, for instance. This will give a discretization corresponding to Figure A.5.

Figure A.5: Discretization with bounded (red) and free (black) nodes

A.4 Algorithm

In this section, the algorithm used will be summarized.

1. Introduce the geometrical, material, physical properties and numerical conditions for
the problem solver.

2. Define the mesh

3. Calculate the time independent coefficients aN , aS , aE , aW , aP , a
0
P

4. Solve the problem. For each timestep:

(a) Calculate the b coefficient.

(b) Update T
(boundary)
R

(c) Process Gauss-Seidel line by line.

i. For each line, use TDMA considering the last temperature field is solution.

ii. Calculate the norm of equation

aPTP − aNTN − aSTS − aETE − aWTW − b = 0

iii. If tolerance is achieved, next time step. Else, restart the process of Gauss-
Seidel.

(d) Store definitive values in corresponding matrices

5. Print results
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A.5 Results obtention

Once the code is written using the Finite Volume Method (FVM), the results demanded must
be obtained. In order to do that, by considering the fact that the points asked are not exactly
any of the points in the mesh, an interpolation must be done. In this case, the method used
is going to be a bilinear interpolation, since the case corresponds to a 2D scalar field, with
small difference in between the grid points. Furthermore, temperature has been considered
to vary linearly in time. Hence, considering a spatial linear variation can be considered.

Once this is implemented, the code was used with different mesh sizes in order to evaluate
the variation in the results. Once this analysis is done, the temperature is set to keep getting
constant to a value.

As it is developed in subsection A.6.3, a smaller mesh size tends to a constant value as
a result of the numerical simulation. Nevertheless, what also has to be taken in account is
the fact that for a smaller mesh size, the computational time will be higher. Therefore, it is
important not just to obtain real values after the simulation within a margin of error, but
obtaining this values by minimizing the computational cost. This has also been studied in
this report

After the program development, a functionality of obtaining the temperature field at a
desired point in time was implemented. With that functionality, a RESULTS.dat document
was obtained in which the temperature field at that point in time was represented in a matrix,
ready to get used by a MATLAB code originally developed that represents the temperature
field as a color map. Using that, the temperature distributions from Figure A.6 were found.

Figure A.6: Temperature distribution at t = 5000 s

A.6 Numerical properties’ analysis

In order to evaluate the efficiency of the code as well as the relationship between the inputs
- precision, mesh size, time step - and the execution time and the results. This evaluation
would help to get the optimal inputs in order to run the code as fast as possible by getting
realistic results.
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A.6.1 Tolerance

In order to evaluate the efficiency of the code, the tolerance imposed to the code when the
convergence is analysed is an important factor that determines the processing time of the
code. In fact, it can also determine whether the code is able to converge or not, since the
convergence criterion from the code may tend to a limit value (in this case, the convergence
criterion is set to be the norm of the value of the discretization equation for each control
point, what leads to a final value of ≈ 3 · 10 − 9) that will limit the maximum tolerance for
a determined mesh and timestep.

In this case, the fixed properties were set with the following values:

• Nx = 99→ ∆x = 0.0111 m

• Ny = 72⇒ ∆y = 0.0111 m

• ∆t = 1.0 s

When the code was ran with the data from Table A.3, the results available in Figure A.7,
Figure A.8 were obtained. What can be observed from the results is the fact that they are
as they were expected to be, since for a smaller tolerance, the computing time gets bigger,
while the change in the results can just be noticed for a 10−2 tolerance and smaller. For all
the other cases, the results are exactly the same for the code developed. Hence, a tolerance
smaller than 10−5 is not necessary in the conditions studied in this analysis.

Tolerance 10 1 10−1 10−2 10−3

Computing time (s) 7.54576 15.7812 24.8119 33.4917 42.8075

T(x1,5000 s) (◦C) 23.6756 24.4631 24.5363 24.5425 24.543

T(x2,5000 s) (◦C) 24.6279 25.3932 25.4596 25.4647 25.4652

Tolerance 10−4 10−5 10−6 10−7 10−8

Computing time (s) 52.6539 62.9471 72.2749 82.4067 92.1626

T(x1,5000 s) (◦C) 24.5431 24.5431 24.5431 24.5431 24.5431

T(x2,5000 s) (◦C) 25.4652 25.4652 25.4652 24.5431 25.4652

Table A.3: Data from the convergence analysis
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Figure A.7: Computing time from 0 to 5000 s as a function of the convergence tolerance, by
keeping constant ∆t, ∆x and ∆y.

Figure A.8: Temperature in the required points (x1 and x2) at t = 5000 s as a function of
the convergence tolerance, by keeping constant ∆t, ∆x and ∆y.

A.6.2 Time step

In this case, the time step ∆t was changed from rather small values (e.g ∆t = 0.2 s) given
the complexity of the problem to large values (e.g ∆t = 10 s) just to demonstrate that for
a larger time step, the precision of the results will be poorer, whereas the processing time
will reduce a remarkable amount of time. These simulation data is available in Table A.4,
whereas the graphical results can be seen in Figure A.9,Figure A.10.

By keeping ∆x = 0.0111 m, ∆y = 0.0111 m and a tolerance of 10−5, the results found
are consistent with what it was expected. In fact, the variation in time step for the values
of 0.1 s, 0.2 s is not notable, while in the computing time, the difference is around a minute
for simulations with a final time of 5000 s and a quite small mesh (7128 control volumes),
what would results in greater time delays in finer meshes and longer simulations. This is the
reason why a time step of 1 s or 0.5 s would be the best options when the decision on what
time step is optimal is taken.
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Time step 0.1 0.2 0.5 1.0 5.0 10.0

Computing time (s) 188.929 122.813 78.8031 63.1045 46.8505 43.4436

T(x1,5000 s) (◦C) 24.5433 25.5433 24.5432 24.5431 24.542 24.5406

T(x2,5000 s) (◦C) 25.4655 25.4654 25.4653 25.4652 25.4641 25.4628

Table A.4: Data from the time step analysis

Figure A.9: Computing time from 0 to 5000 s as a function of the time step, by keeping
constant the tolerance, ∆x and ∆y.

Figure A.10: Temperature in the required points (x1 and x2) at t = 5000 s as a function of
the time step, by keeping constant the tolerance, ∆x and ∆y

A.6.3 Mesh size

One of the most important parameters for a numerical solution is the size of the discrete
domain, which can be easily parametrized by the number of control volumes. In this case,
the number of control volumes has varied from 88 to 35000, in order to have an important
range of values in which evaluate the results, which are available in Table A.5.
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Number of control volumes 88 352 792 1408 2200 3168 4312

Computing time (s) 0.308343 0.97062 2.60933 5.00929 8.08852 18.0348 23.6782

T(x1,5000 s) (◦C) 24.9627 24.4959 24.6513 24.4883 24.5866 24.4848 24.5587

T(x2,5000 s) (◦C) 24.9464 25.4941 25.2771 25.5067 25.3936 25.3185 25.4466

Number of control volumes 5632 7128 8800 35000

Computing time (s) 41.6088 62.4084 79.3887 1533.78

T(x1,5000 s) (◦C) 24.4851 25.5431 24.4855 24.4854

T(x2,5000 s) (◦C) 25.370 25.4652 25.4116 25.4211

Table A.5: Data from the mesh size analysis

This results can be summarized in Figure A.11, Figure A.12. In the first of the both
graphical representations, as it could be expected, the strong relationship between number
of control volumes and time is represented. In this case, the time does not correspond to the
total time of the system, yet to 5000 s which corresponds to the middle point of the simulation
requested. Even though there are some small variations on the results when introducing a
big number of control volumes, the code seems to converge to a finite value for both points
at 5000 s.

Figure A.11: Computing time from 0 to 5000 s as a function of the number of control volumes,
by keeping constant the tolerance and ∆t.
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Figure A.12: Temperature in the required points (x1 and x2) at t = 5000 s as a function of
the number of control volumes, by keeping constant the tolerance and ∆t

A.7 Conclusion

This report summarizes the development and analysis of a Finite Volume Method (FVM)
code that solves (A.2) in the case described in the Introduction. It is important to remark the
fact that this problem has a lot of interest, since all the elementary boundary conditions for
a problem of this kind are applied (constant and uniform temperature, variable yet uniform
temperature, heat flux and a fluid moving), what makes the implementation more interesting
and complete in order to fully understand the theoretical behaviour of all of them.

After studying the behaviour of the code in section A.6, once seen the results in all the
figures in the corresponding section, probably a configuration of Table A.6 could be a good
standard for this corresponding case.

Tolerance ≤ 10−5

Time step ≤ 1.0 s
Number of control volumes > 8800

Table A.6: Minimum specifications for converged results

Once implemented the code, the analysis part was very important to fully understand
the Numerical Methods, since it was my first contact with them. Understanding the basic
concepts behind the results in Table A.3,Table A.4 and Table A.5 is important for any
beginner in Numerical Methods, and this is one of the best methods to do it.
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Appendix B

Smith-Hutton problem

B.1 Introduction

A solution for the Smith-Hutton problem has to be obtained, being (B.1) the PDE needed
to solve.

∂(ρφ)

∂t
+∇ (ρ~uφ) = ∇ (Γ∇φ) + S (B.1)

B.1.1 Problem definition

In a rectangular domain with a velocity field (B.2), with the boundary conditions from Table
B.1, solve the φ field knowing previous numerical results.

u(x, y) = 2y(1− x2)
v(x, y) = −2x(1− y2)

(B.2)

Boundary condition x-range y-range

φ = 1 + tanh [(2x+ 1)α] −1 < x < 0 y = 0
φ = 1− tanh [α] x = −1 0 < y < 1

−1 < x < 1 y = 1
x = 1 0 < y < 1

∂φ
∂y 0 < x < 1 y = 0

Table B.1: Boundary conditions, with α = 10

B.2 Discretization equation

Beginning from (B.1) and by considering a permanent problem without source terms, the
process yields (B.3), which ends to the standard discretization equation format (B.4), where
the coefficients can be calculated using (B.5).

∂

∂x
(Γφu) +

∂

∂y
(Γφv) =

∂2φ

∂x2
+
∂2φ

∂y2
(B.3)

aPφP = aEφE + aWφW + aNφN + aSφS + b (B.4)
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aE = DeA(|Pee|) + max (−Fe, 0) (B.5a)

aW = DwA(|Pew|) + max (Fw, 0) (B.5b)

aN = DnA(|Pen|) + max (−Fn, 0) (B.5c)

aS = DsA(|Pes|) + max (Fs, 0) (B.5d)

aP = aE + aW + aN + aS (B.5e)

Where A(|Pe|) = max (0, (1− 0.1|Pe|)5)

B.3 Algorithm

1. Data input

• Physical properties (Γ, ρ, Lx, Ly, u, v)

• Numerical properties (Nx, Ny, δ)

2. Initial calculations (∆x, Di, Fi, Pei, φin)

3. Discretization coefficients

4. Start Line by Line

(a) For each line, P and Q calculations

(b) TDMA

(c) It is the norm lower than the tolerance?

• If yes, go to 5. If not, set φant = φact, and return to 4.

5. Print results

6. End

B.4 Mesh analysis

As it was done previously for the other problems, a mesh convergence analysis must be
developed in order to prove that the solution does not depend on the mesh size. Hence, as
this is meant to be a code that is able to compute this phenomena for all P , three different
Péclet Numbers (represented by ρ/Γ) were used, providing a wide range of convergence
analysis. These results are summarized in Figure B.1. Furhtermore, an analysis on execution
time and number of iterations can be also found in Figure B.2
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Figure B.1: Convergence analysis for Problem 4 at different ρ/Γ numbers

Figure B.2: Execution time and number of iterations analysis for Problem 4 at different ρ/Γ
numbers

The results from this analysis will be found in the following tables 1.

1All the results in Problem 4 are done using a 10−8 convergence tolerance.
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N φ(x = 0.5, y = 0) ε [%] t [s] Number of iterations

9 2.06 · 10−9 - 0.000795 36

100 0.5851 2.83 · 1010 0.003547 135

900 0.686907 17.39993 0.027999 336

2500 0.735266 7.04011 0.087269 509

5625 0.776631 5.62586 0.238093 691

10000 0.80535 3.69790 0.506782 894

15625 0.826612 2.64009 0.972182 1084

19600 0.83693 1.24859 1.34992 1165

21904 0.841737 0.57400 1.53892 1215

24025 0.845745 0.47616 1.83908 1240

25600 0.848266 0.29808 2.06796 1289

27889 0.851843 0.42168 2.26241 1313

30625 0.855558 0.43611 2.71766 1359

32400 0.85767 0.24686 2.8242 1407

34225 0.859672 0.23342 3.13948 1417

Table B.2: Convergence analysis for ρ/Γ = 1

N φ(x = 0.5, y = 0) ε [%] t [s] Number of iterations

9 2.06 · 10−9 - 1.93 · 10−4 8

100 0.708852 34391092251 5.72 · 10−4 14

900 0.776138 9.49224944 0.006156 35

2500 0.866145 11.59677789 0.015299 56

5625 0.890771 2.84317291 0.032047 82

10000 0.905539 1.657889626 0.068858 108

15625 0.915578 1.108621495 0.126216 134

19600 0.922903 0.800041067 0.173759 149

21904 0.925482 0.279444319 0.20696 158

24025 0.928424 0.317888408 0.226862 165

25600 0.928976 0.059455594 0.262069 170

27889 0.931583 0.280631577 0.297801 177

30625 0.933507 0.206530175 0.340923 185

32400 0.931879 0.174396121 0.363627 183

34225 0.932066 0.020066983 0.404876 188

Table B.3: Convergence analysis for ρ/Γ = 100
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N φ(x = 0.5, y = 0) ε [%] t [s] Number of iterations

9 2.06 · 10−9 - 1.40 · 10−4 6

100 0.707589 34329815779 0.000467 13

900 0.774558 9.464392465 0.00522 33

2500 0.864394 11.59835674 0.013089 53

5625 0.888869 2.83146343 0.028643 78

10000 0.903565 1.653336993 0.065814 103

15625 0.913541 1.104071096 0.122917 128

19600 0.920847 0.799745167 0.164457 143

21904 0.923414 0.278765093 0.201745 151

24025 0.926346 0.317517387 0.22786 158

25600 0.92689 0.058725357 0.251848 163

27889 0.929489 0.280400047 0.28829 170

30625 0.931403 0.205919597 0.333183 178

32400 0.931879 0.051105698 0.372556 183

34225 0.932066 0.020066983 0.407184 188

Table B.4: Convergence analysis for ρ/Γ = 10000

N φ(x = 0.5, y = 0) ε [%] t [s] Number of iterations

9 2.06 · 10−9 - 2.35 · 10−4 6

100 0.602228 29218057780 0.000663 13

900 0.645687 7.21636988 0.003526 33

2500 0.717606 11.1383689 0.012093 53

5625 0.733063 2.153967497 0.028404 78

10000 0.742075 1.229362279 0.063702 103

15625 0.748042 0.804096621 0.12247 128

19600 0.753234 0.694078675 0.165739 143

21904 0.754866 0.216665737 0.195337 151

24025 0.756994 0.281904338 0.233567 158

25600 0.757066 0.009511304 0.258393 163

27889 0.758947 0.248459183 0.293912 170

30625 0.760132 0.156137385 0.322531 178

32400 0.760203 0.009340483 0.363381 183

34225 0.76003 0.022757079 0.403192 188

Table B.5: Convergence analysis for ρ/Γ = 1000000
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B.5 Results

Figure B.3: φ field for a 180× 180 mesh with ρ/Γ = 1

Figure B.4: φ field for a 180× 180 mesh with ρ/Γ = 106

Figure B.5: φ field for a 180× 180 mesh with ρ/Γ = 10−3
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Appendix C

Lid-Driven Cavity. Comparison
between FSM and SIMPLER

C.1 Introduction

The purpose of this chapter is to compare both Fractional Step Method (FSM, henceforth)
[4] and Semi-Implicit Method for Pressure-Linked Equations Revised (SIMPLER,
henceforth) [3] in its behaviour in the numerical resolution of the Navier-Stokes1 equations
(C.1) using the Finite Volume Method. In order to do so, Ghia’s publication on the numerical
solution of the problem known as Driven Cavity [6] will be used to check the correction of
the results obtained in this report.

∂ρ
∂t + ρ∂ui∂xi

= 0

ρ∂ui∂t + ρuj
∂ui
∂xj

= µ ∂2ui
∂xj∂xj

− ∂p
∂xi

(C.1)

The problem can be described as a 2D problem based in which a square domain of analysis
in which all the boundaries are solid and isolating walls, where the bottom, left and right
are static, whereas the top wall is moving at a horizontal velocity u = 1. This sets the
boundary condition outline available in Figure C.1. Regarding the pressure, a non-gradient
of the pressure in the normal direction to the wall also has to be included.

This problem is solved for Re = 100, 400, 1000, 3200, 5000, 7500, 10000, which will give
a wide view on the response with both resolution schemes for the Navier-Stokes equations,
where Re can be defined by (C.2).

Re =
ρV0L

µ
(C.2)

In order to apply these properties defined by the Reynolds number, all will be set to 1,
with the exception of ρ, which will be considered to be equal to Re

C.2 SIMPLER Resolution

The SIMPLER method (described by Patankar, in 1979) stands for the revision of the first
described by Patankar and Spalding in 1972 Semi-Implicit Method for Pressure-Linked Equa-

1Remark that the energy equation, which is part of the Navier-Stokes equations , will not be used in this
report. Nevertheless, its implementation will not be difficult when the flow field is calculated
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Figure C.1: Boundary conditions outline for Lid-Driven Cavity[6].

tions (SIMPLE), in order to avoid some difficulties in the resolution of the problem, which
might be solved by using underrelaxation (See [3]) and to increase the rate of convergence.

C.2.1 Staggered grid

In order to avoid the checkerboard problem (see [3] for further information), either a staggered
or a collocated mesh has to be used. In this case, the staggered grid will be used, which is
based in the displacement of the flow field control volumes either in the horizontal direction
for the u velocity field or in the vertical direction for the v velocity field. This kind of grid, in
which some bounded nodes for all three grids which are used on this code are used in order
to simplify the imposition of boundary conditions.

In this corresponding case, a non uniform grid will be used in order to give more impor-
tance to the points next to the boundary, in which a boundary layer will be generated, which
study and more detailed simulation is of great importance for the numerical solver.

In order to do so, a full cosine distribution was used (C.3) in both x and y directions,
which is represented in Figure C.2, with its corresponding staggered grid situation.

xi =
L

2

ï
1− cos

Å
i

Nx
π

ãò
(C.3a)

yi =
L

2

ï
1− cos

Å
i

Ny
π

ãò
(C.3b)

C.2.2 Algorithm

1. Data introduction
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(a) x−staggered grid. (b) y−staggered grid. (c) Main grid.

Figure C.2: Representation of the staggered grid. In all representations, the dark cell corre-
sponds to just a control volume, whereas the light cells correspond to all the domain.

(a) Physical properties

(b) Numerical properties

2. Previous calculations

3. Set the guessed velocity field: ug(x, y) = u0(x, y), vg(x, y) = v0(x, y). This field will be
considered to be zero in all points in which its value is unknown.

4. Calculation of the momentum coefficients of a convection-diffusion equation (C.4),
where Γ = µ, S = −∇p and φ = u or φ = v, by considering a staggered grid, by
taking in consideration the boundary conditions from Figure C.1, using any of the
schemes described in [28] and previously used in [29].

∂(ρφ)

∂t
+∇ (ρ~uφ) = ∇ (Γ∇φ) + S (C.4)

The evaluation of the velocities in the interfaces of the non-staggered control volumes
is done using a Central Difference Scheme (henceforth, CDS) in both u(x, y) and
v(x, y).

5. Calculation of the pseudovelocities û, v̂ using (C.5) with the guessed velocity field,
where Pu stands for the node of the staggered grid equivalent to the conventional grid
P .

ûPu =

∑
anbunb + b

aPu
(C.5)

6. Solve the pressure field p∗, by computing the coefficients as (C.6)

aE = ρede∆y (C.6a)

aW = ρwdw∆y (C.6b)

aN = ρndn∆x (C.6c)

aS = ρsds∆x (C.6d)

aP = aE + aW + aN + aS (C.6e)

b =
(ρ0
P − ρP )∆x∆y

∆t
+ [(ρu∗)w − (ρu∗)e] ∆y + [(ρv∗)s − (ρv∗)n] ∆y (C.6f)

7. Solve the momentum equations to obtain u∗, v∗, by considering the pressure gradient
term as ∇p∗
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8. Solve de pressure field p
′
, by computing the coefficients as (C.6), replacing the u∗ and

v∗ by its starred versions.

9. Correct the u∗ and v∗ fields with the pressure gradient using (C.7).

uPu = u∗Pu + de(p
′
P − p

′
E) (C.7)

10. Has the velocity field converged? In this case, a relative variation of both velocity
fields (C.8) was calculated and it was expected to be under a certain tolerance, which
corresponds to a numerical input of the solver.

max

Å |u(x, y)− uli(x, y)|
|uli|

ã
< δu (C.8)

Where uli stands for the last iteration velocity. In the literature, the notation used is
u∗. Nevertheless, this might generate some confusion in this context, therefore, this
new notation is used.

• Yes: Step 12

• No: Back to Step 4 with the seed velocities as the guessed (ug(x, y) = u(x, y),
vg(x, y) = v(x, y))

11. If there is convergence on all the fields, considering the research of a stationary field,
next time step?

• Yes: Back to point 1 with the last temperature. This will be accomplished when
(C.8) is achieved in the time perspective.

• No: Step 13

12. Last calculations and print results

13. End

C.2.3 Results

In order to validate the results generated by this solver, two different solvers for linear systems
of equations were considered:

• Gauss-Seidel Line-by-Line (henceforth, LBL), in all cases.

• Conjugate Gradient Method (henceforth, CG) for solving pressure fields, and LBL for
velocity fields.

The use of the latter is justified by the fact that the number of iterations required by the
first one to converge was so large that the simulating time was too large, as observed in [30],
which completely justifies this implementation. Nevertheless, at the date in which this report
has been written the CG algorithm implementation is in revision, which is the reason why
the results are found using the LBL algorith.

Re = 100

Using the Gauss-Seidel line-by-line algorithm, for Re = 100, the results from Figure C.3 were
obtained. In the figure, this results are compared with its corresponding points in [6].

On the other hand, similar analysis the same analysis can be done for CG algorithm.
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Figure C.3: Comparison between the results at the specified points calculated using the
SIMPLER algorithm with the pressure solved using a LBL method and the results given in
[6] using a 80× 80 mesh.

Convergence analysis

In order to evaluate the results, a convergence analysis was done for both mesh size and
timestep, since convergence has to be ensured for both discretized domains. From the point
of view of the mesh, the results are available at Table C.1, and its graphical representation
can be found in Figure C.4.

(a) εu with respect to N = 10000. (b) εv with respect to N = 10000.

Figure C.4: Mesh size analysis with Re = 100.

Computational cost analysis

Since relaxation is on concern, its affect to the computational costs was studied using different
mesh sizes for a constant timestep (∆t = 0.01 s), which results are available at Table C.3

JOSEP PLANA RIU 88



SP DISCRETIZATIONS APPLIED TO LES TECHNIQUES IN NS EQUATIONS UPC

and are represented in C.5.

Figure C.5: Influence of the relaxation factor in different number of control volumes (N =
1600, 2500, 3600) per a timestep ∆t = 0.01 s.

On the other hand, computational time per timestep has been calculated for this problem
(Figure C.6). In order to see the exact results, visit Table C.4.

Re = 1000

For this Reynolds number, the development was done for both LBL (Figure C.7) and CG
(Figure C.8), which are almost identical, being this an indication on the fact that the solution
using both solvers is equivalent.

Figure C.7: Comparison between the results at the specifiec points calculated using the
SIMPLER algorithm using the LBL method and the results given in [6] using a 80×80 mesh.
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Figure C.6: Influence of the timestep ∆t for N = 2500 and fr = 0.90.

Figure C.8: Comparison between the results at the specifiec points calculated using the
SIMPLER algorithm using the CG algorithm and the results given in [6] using a 80 × 80
mesh.
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C.3 FSM Resolution

C.3.1 Method derivation

Beginning from the Navier-Stokes equations (C.1) in its incompressible form (C.9),

∇ · ~u = 0 (C.9a)

ρ
∂~u

∂t
+ ρ(~u · ∇)~u = −∇p+ µ∇2~u (C.9b)

(C.9b) can be rewritten as (C.10), in which there is a term ~R(~u) that includes momentum
transport and momentum diffusion.

ρ
∂~u

∂t
= ~R(~u)−∇p (C.10)

Where:

~R(~u) = −ρ(~u · ∇)~u+ µ∇2~u

Hence, if (C.10) is discretized in the time domain using an Adams-Bashforth scheme for
~R(~u), the new set of equations becomes (C.11).

∇ · ~u n+1 = 0 (C.11a)

ρ
~u n+1 − ~u n

∆t
=

3

2
~R(~u n)− 1

2
~R(~u n−1)−∇p n+1 (C.11b)

Now, by applying the Helmholtz-Hodge Theorem (henceforth, HH) (C.12),

~u p = ~u n+1 +
∆t

ρ
∇pn+1 (C.12)

the momentum equation is projected onto this new HH space, which yields (C.13), an equation
from which the predictor velocity can be extracted2

ρ

∆t

Å
~u p − ∆t

ρ
∇pn+1

ã
=

3

2
~R(~u n)− 1

2
~R(~u n−1)−∇p n+1

ρ
~u p − ~u n

∆t
=

3

2
~R(~u n)− 1

2
~R(~u n−1) (C.13)

Regarding the continuity equation (C.11a), it is also modified by the HH Theorem, yield-
ing the problem’s equation to solve (C.14).

∇ · ~u n+1 → ∇ ·
Å
~u p − ∆t

ρ
∇pn+1

ã
∇~u p =

∆t

ρ
∇2pn+1 (C.14)

Hence, the projected velocity can be computed from (C.13) for all the field. Then, intro-
ducing its value onto (C.14) and solving it, the pressure field will be computed, which will
yield, eventually, the flow field using (C.12).

2Recall that all the other variables have been computed at this point of the derivation
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Evaluation of ~R(~u)

Consider the derivation in the x direction. Then, R(u) = −(ρ~u · ∇)u + µ∇2u. Integrating
this expression in the domain Ωx := [∆x,∆y] ⊂ Ωx,∫

Ωx

R(u) dΩx = −
∫

Ωx

(ρ~u · ∇)u dΩx +

∫
Ωx

µ∇2u dΩx

Now, by applying Gauss’ Divergence Theorem (C.15), the integral form will be calculated
(C.16). ∫

S
f(x, y) dS =

∫
V
∇f(x, y) dV (C.15)∫

Ωx

R(u) dΩx = −
∫
∂Ωx

ρ~u · n̂u dA+

∫
Ωx

µ∇un̂ dA (C.16)

Integrating over each subdomain Ωx, the value for each R(u) will be found (C.17)

R(uPu)Ωx = −
[
ρu2

e∆y − ρu2
w∆y + ρunvn∆x − ρusvs∆x

]
+

+µe
uEu − uPu

∆PE
x

∆y − µw
uPu − uWu

∆PW
x

∆y + µn
uNu − uPu

∆PN
y

∆x − µs
uPu − uSu

∆PS
y

∆x

R(uPu) =
1

Ωx

ï
ρ
(
∆y(u

2
w − u2

e) + ∆x(usvs − unvn)
)

+
µe∆y

∆PE
x

uEu +
µw∆y

∆PW
x

uWu+

+
µn∆x

∆PN
y

uNu +
µs∆x

∆PS
y

uSu −
Ç

∆y

Å
µe

∆PE
x

+
µw

∆PW
x

ã
+ ∆x

Ç
µn

∆PN
y

+
µs

∆PS
y

åå
uPu

ô
(C.17)

Now, the issue is the calculation of the lateral velocities from the staggered grid. Even
though all velocities can be calculated using a CDS, this will not happen only for the vertical
speeds, which will be computed using a weighted scheme. Then, (C.18) details how to
compute all the different velocities.

ue =
uEu + uPu

2
(C.18a)

uw =
uWu + uPu

2
(C.18b)

un =
uNu + uPu

2
(C.18c)

us =
uSu + uPu

2
(C.18d)

vn =
vPvdwP + vEvdPe

∆x
(C.18e)

vs =
vSvdwP + vSEvdPe

∆x
(C.18f)

Regarding R(v), following an equivalent derivation; it can be calculated using (C.19) .

R(vPv) =
1

Ωy

ï
ρ
(
∆y(uwvw − uev2

e) + ∆x(v2
s − v2

n)
)

+
µe∆y

∆PE
x

vEv +
µw∆y

∆PW
x

vWv+

+
µn∆x

∆PN
y

vNv +
µs∆x

∆PS
y

vSv −
Ç

∆y

Å
µe

∆PE
x

+
µw

∆PW
x

ã
+ ∆x

Ç
µn

∆PN
y

+
µs

∆PS
y

åå
vPv

ô
(C.19)
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Resolution of the laplacian equation

Integrating (C.14) over its domain Ω := [∆x,∆y] ⊂ Ω, corresponding to the control volume
domain. ∫

Ω
∇2pn+1 dΩ =

ρ

∆t

∫
Ω
∇ · ~u dΩ

By applying the divergence theorem (C.15), the integral form (C.20) is found.∫
∂Ω
∇pn+1n̂ dS =

ρ

∆t

∫
∂Ω
~up · n̂ dS (C.20)

Hence, the discretization equation (C.21) is found, with its corresponding coefficients (C.22).

aP p
n+1
P = aEp

n+1
E + aW p

n+1
W + aNp

n+1
N + aSp

n+1
S + bP (C.21)

aE =
∆y

∆PE
x

(C.22a)

aW =
∆y

∆PW
x

(C.22b)

aN =
∆x

∆PN
y

(C.22c)

aS =
∆x

∆PS
y

(C.22d)

aP = aE + aW + aN + aS (C.22e)

bP = − ρ

∆t

î
(upPu − u

p
Wu

)∆y + (vpPv − v
p
Sv

)∆x

ó
(C.22f)

Then, this equation has to be solved using Conjugate Gradient so as to obtain quick and
accurate results.

C.3.2 Courant-Friedrichs-Levy condition

Even though the CFL condition is only strongly required in explicit numerical schemes in
order to force them onto a valid and physically correct solution, it was also considered in
this case, in order to make sure the proper values are computed. In order to do so, and as
[4] provides, the maximum Courant number that can be provided to the numerical scheme
is 0.35. In the case of the SIMPLER Algorithm, due to the fact that it is not fully explicit,
the timesteps can be a bit larger, which are one of the key factors in choosing SIMPLER-like
algorithms in the resolution in the RANS model of turbulence, which seeks the average value
of the flow field. Nevertheless, and since the most common turbulence models (Large Eddy
Simulator (LES) and Direct Numerical Solution (DNS)) are solved using explicit solvers, such
as FSM, this method is implemented. In this case, the timestep will be defined using (C.23).

∆t = min

ï
min

Å
0.35

∆x

|u|

ã
,min

Å
0.20

ρ∆2
x

µ

ãò
(C.23)

C.3.3 Results

In the case of FSM only the resolution using CG was considered. In this case, the timestep
analysis was not done since the timesteps were determined using the CFL condition.
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Re = 100

Figure C.9: Comparison between the results at the specific points calculated using the FSM
algorithm using the CG algorithm and the results given by [6] using a 50 × 50 mesh in
Re = 100.

Re = 400

Figure C.10: Comparison between the results at the specific points calculated using the FSM
algorithm using the CG algorithm and the results given by [6] using a 80 × 80 mesh in
Re = 400.
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Re = 1000

Figure C.11: Comparison between the results at the specific points calculated using the FSM
algorithm using the CG algorithm and the results given by [6] using a 80 × 80 mesh in
Re = 1000.

Re = 3200

Figure C.12: Comparison between the results at the specific points calculated using the FSM
algorithm using the CG algorithm and the results given by [6] using a 80 × 80 mesh in
Re = 3200.

Computational time analysis

The time required per different Re for the same mesh sizes is quite similar, with differences
getting bigger as the Reynolds number increases, in the case of the FSM, as it can be seen
in Figure C.13. Even though, the higher Reynolds is, at each and very mesh configuration,
the most expensive solution, as its complexity gets increased.
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Figure C.13: Computational time spent on the resolution of each different Re for this problem.

C.4 Conclusion

This report was written to present the development of both SIMPLER and FSM algorithms
applied to the Lid-Driven Cavity, which is one of the basic problems in the Computational
Fluid Dynamics.

The results obtained using the SIMPLER algorithm solved with a LBL scheme suggest
that the development of the code has been correct, with a mesh refinement sufficiently elevated
which provide solid results when compared to the ones obtained in [6]. Furthermore, the use
of the full cosine distribution of the mesh implies that a lower number of control volumes
are required to obtain plausible results, since the difference between the resultd obtained by
the original code and the results extracted from [6] are quite similar even if the number of
control volumes used is quite lower (80 for 129).

Nevertheless, the use of LBL was too slow for higher-Reynolds simulations, which led to
the implementation of Conjugate Gradient, a more efficient solver which is capable of being
parallelized, being this one of the reasons why it is commonly used in any kind of numerical
methods. At this point, the velocity of the simulations was increased and, combined with the
higher timestep that SIMPLER allows due to its semi-implicit properties, the resolution was
faster.

What outstands from the latter is the fact that the calculation time at different mesh sizes
is approximately constant, which implies that, given a mesh, the time required for Re = 100
or Re = 1000 does not differ a lot. This ”constant” resolution time has its sense in the fact
that a constant timestep as provided by the CFL condition at each iteration will make the
computational time similar.

It is important to remark that in some of the reference results in [6] an error does appear,
as happens in Re = 400 or Re = 3200, where some points do not follow the natural tendency
of the fluid. These points are not taken in consideration.

Hence, the basic conclusions which can be extracted from the results is that, for lower
Reynolds numbers, SIMPLER is generally faster, since the physical timestep (defined as the
time scale of the fluid motion) is big enough so that with wider timesteps as SIMPLER allows,
its convergence onto valid results is faster.
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On the other hand, at slightly higher Reynolds numbers, insofar as its value is closer
to the transition from laminar to turbulent inside of a duct (which is generally tabulated
at approximately 2900), yet also for Re = 1000 the FSM becomes faster, due to timestep
physical size, which becomes smaller than the latter case, being the variable timestep set by
the CFL condition more accurate to catch these movement that the bigger timesteps used in
the semi-implicit method.

C.5 Results

C.5.1 SIMPLER

Re = 100

Grid size dependance

N u(0.50, 0.50) v(0.50, 0.50) εu εv εG,u εG,v tcomp (s)

100 -0.1452 0.0330 0.2965 0.3891 0.2944 0.3951 2.57

400 -0.1778 0.0409 0.1389 0.2431 0.1363 0.2506 23.32

900 -0.1912 0.0456 0.0739 0.1554 0.0711 0.1637 86.27

1600 -0.1976 0.0485 0.0430 0.1026 0.0401 0.1115 252.41

2500 -0.2010 0.0503 0.0263 0.0689 0.0233 0.0781 491.19

3600 -0.2031 0.0515 0.0164 0.0460 0.0133 0.0554 1155.01

4900 -0.2034 0.0524 0.0148 0.0295 0.0117 0.0391 2363.44

6400 -0.2053 0.0531 0.0055 0.0172 0.0024 0.0268 4321.65

8100 -0.2060 0.0536 0.0023 0.0076 0.0007 0.0174 6696.65

10000 -0.2064 0.0540 - - 0.0031 0.0098 9544.33

Table C.1: Convergence analysis results for Re = 100, a relaxation factor fr = 0.90, a time-
variation tolerance of 10−7 and ∆t = 0.01 s, where εG stands for the difference with Ghia [6]
reference results for both u and v.

Timestep analysis

∆t (s) u(0.50, 0.50) v(0.50, 0.50) εu,min εv,min tsim (s) tcomp (s)

10 -0.201013 0.05028 0.000502708 0.000435371 140 232.523

1 -0.201013 0.05028 0.000502708 0.000435371 37 285.204

0.5 -0.201013 0.05028 0.000502708 0.000435371 29.5 294.73

0.1 -0.201012 0.0502801 0.00049773 0.000433383 22.3 399.777

0.05 -0.201012 0.0502802 0.00049773 0.000431395 20.6 434.119

0.01 -0.201008 0.0502811 0.000477821 0.000413503 17.29 491.191

0.005 -0.201003 0.0502822 0.000452935 0.000391635 16 771.204

0.001 -0.200962 0.050291 0.000248865 0.000216692 13.044 2063.22

0.0005 -0.200912 0.0503019 - - 11.789 3306.46

Table C.2: Time discretization convergence analysis results for Re = 100, a relaxation factor
fr = 0.90, a time-variation tolerance of 10−7 and 2500 control volumes.
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Relaxation analysis

fr N = 1600 N = 2500 N = 3600

0.70 217.331 484.947 991.414

0.80 206.874 472.207 989.519

0.90 200.585 468.740 986.017

1.00 198.348 469.865 999.080

1.10 201.086 467.863 1023.860

1.20 207.753 479.654 1143.670

Table C.3: Influence of the relaxation factor por different number of control volumes per a
timestep ∆t = 0.01 s in Re = 100.

Tolerance analysis

δ u(0.50, 0.50) v(0.50, 0.50) εu,10−10 εv,10−10 tsim (s)

10−2 -0.048662 0.001219 0.757914 0.975749 28.50

10−3 -0.137663 0.024801 0.315154 0.506742 121.56

10−4 -0.195489 0.050554 0.027481 0.005442 280.01

10−5 -0.200512 0.050382 0.002492 0.002029 416.61

10−6 -0.200963 0.050291 0.000249 0.000209 520.06

10−7 -0.201008 0.050281 2.4874× 10−5 2.18775× 10−5 621.57

10−8 -0.201012 0.050280 4.9748× 10−6 3.97772× 10−6 637.08

10−10 -0.201013 0.050280 - - 767.46

Table C.4: Tolerance analysis results for Re = 100, a relaxation factor fr = 0.90, a timestep
∆t = 0.01 s and 2500 control volumes.

Re = 400

Grid size dependance

N u(0.50, 0.50) v(0.50, 0.50) εu εv εG,u εG,v tcomp (s)

100 -0.0919 0.0627 0.2631 0.0099 0.1994 0.2091 7.05

400 -0.1293 0.0923 0.0374 0.4576 0.1270 0.7801 59.25

900 -0.1365 0.0895 0.0950 0.4134 0.1896 0.7261 206.93

1600 -0.1350 0.0820 0.0825 0.2949 0.1760 0.5813 458.36

2500 -0.1324 0.0761 0.0619 0.2015 0.1536 0.4673 916.20

3600 -0.1301 0.0519 0.0438 0.1813 0.1340 0.0001 1695.70

4900 -0.1283 0.0688 0.0292 0.0860 0.1181 0.3263 2939.41

6400 -0.1269 0.0664 0.0174 0.0492 0.1053 0.2813 4824.95

8100 -0.1257 0.0647 0.0079 0.0220 0.0949 0.2480 9502.09

10000 -0.1247 0.0633 - - 0.0864 0.2212 14682.80

Table C.5: Convergence analysis results for Re = 400, a relaxation factor fr = 0.90, a time-
variation tolerance of 10−7 and ∆t = 0.01 s, where εG stands for the difference with Ghia [6]
reference results for both u and v.
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C.5.2 FSM

Re = 100

Grid size dependance

N u(0.50, 0.50) v(0.50, 0.50) ε6400,u ε6400,v tcomp (s) N. of iterations

100 -0.15656 0.07040 0.21804 0.12752 0.305956 1494

400 -0.18743 0.06868 0.06385 0.09999 23.2854 17758

900 -0.19676 0.06603 0.01727 0.05753 302.703 72914

1600 -0.20058 0.06449 0.00181 0.03293 316.676 192617

2500 -0.20227 0.06368 0.01024 0.01990 1391.4 398457

3600 -0.20274 0.06329 0.01260 0.01361 2788.27 703817

4900 -0.20214 0.06302 0.00962 0.00929 6373.42 1110746

6400 -0.20021 0.06244 - - 20052.4 1607333

Table C.6: Convergence analysis results for Re = 100, using a relaxation factor of f = 0.9, a
time variation tolerance of 10−6 and variable timestep set by the CFL condition.

Re = 400

Grid Size Dependance

N u(0.50, 0.50) v(0.50, 0.50) ε6400,u ε6400,v tcomp N. of iterations

100 -0.05631 0.07262 0.86540 0.18935 0.31824 1479

400 -0.07300 0.06336 0.43904 0.07081 19.6751 12747

900 -0.08255 0.05839 0.27258 0.00816 288.211 51000

1600 -0.08886 0.06445 0.18223 0.08653 399.044 138196

2500 -0.09356 0.05589 0.12282 0.05331 1782.57 301758

3600 -0.09751 0.05620 0.07727 0.04758 3750.74 572678

4900 -0.10123 0.05718 0.03768 0.02957 8891.02 974727

6400 -0.10505 0.05887 - - 27095.8 1532319

Table C.7: Convergence analysis results for Re = 400, using a relaxation factor of f = 0.9, a
time variation tolerance of 10−6 and variable timestep set by the CFL condition.
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Re = 1000

Grid size dependance

N u(0.50, 0.50) v(0.50, 0.50) ε6400,u ε6400,v tcomp N. of iterations

100 -0.02399 0.03883 0.52890 0.34654 0.557517 2601

400 -0.03475 0.03651 0.31750 0.26621 20.5396 13132

900 -0.04023 0.03290 0.20997 0.14100 274.874 47725

1600 -0.04354 0.03068 0.14488 0.06381 424.593 118080

2500 -0.04550 0.02928 0.10656 0.01549 2031.31 229622

3600 -0.04726 0.02856 0.07187 0.00950 3958 396087

4900 -0.04905 0.02832 0.03667 0.01797 7664.36 638632

6400 -0.05092 0.02884 - - 14680 1004425

Table C.8: Convergence analysis results for Re = 1000, using a relaxation factor of f = 0.9,
a time variation tolerance of 10−6 and variable timestep set by the CFL condition.

Re = 3200

Grid size dependance

N u(0.50, 0.50) v(0.50, 0.50) ε6400,u ε6400,v tcomp Number of iterations

100 -0.01480 0.02874 0.40375 0.78112 1.67204 7589

400 -0.01579 0.02481 0.36389 0.53763 48.0134 31504

900 -0.01858 0.02087 0.25142 0.29371 386.56 63931

1600 -0.02083 0.01894 0.16072 0.17372 546.059 117472

2500 -0.02227 0.01756 0.10291 0.08808 2483.73 217793

3600 -0.02337 0.01672 0.05835 0.03627 4468.29 389905

4900 -0.02468 0.01606 0.00573 0.00488 15808.4 671327

6400 -0.02482 0.01614 - - 21660.1 1078018

Table C.9: Convergence analysis results for Re = 3200, using a relaxation factor of f = 0.9,
a time variation tolerance of 10−6 and variable timestep set by the CFL condition.
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Appendix D

Differentially Heated Cavity

The purpose of this chapter is to solve a differentialy heated cavity problem using the Frac-
tional Step Method in order to validate a Navier-Stokes laminar solver which has incorporated
the energy equation as well as the consideration of mass forces (gravity) using Boussinesq’s
approximation (C.1).

Where ui stands for the velocity field in dimension i, which is defined using xi; ρ0 stands
for the density at a reference temperature T0, µ for the dynamic viscosity, p for the pressure
field, β for the coefficient of volumetric expansion, Cp for the specific heat at constant pressure
and λ stands for the thermal conducitivity.

The problem, then can be defined as follows (adapted from [7]):

Consider the two-dimensional flow of a fluid with Pr = 0.71 on am upright square cavity
described in terms of 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 with y vertically upwards and a Prandtl number
of 0.71. Assume that both components of the velocity are zero on all the boundaries, that the
boundaries at z = 0, 1 are insulated and that T (0, y) = T1 and T (1, y) = T2 = T1 −∆T .

Calculate the fow and thermal field for Rayleigh numbers (D.1) of 103, 104, 105, 106, sup-
plying the following results:

• Average Nusselt number.

• Nusselt number at the hot wall and at the vertical mid-plane

• Maximum vertical velocity on the horizontal mid-plane and its location.

• Maximum horizontal velocity on the vertical mid-plane and its location.

Ra =
ρ3CpβD

3g∆T

µλ
(D.1)

Then, an outline for the problem can be found in Figure D.1. Whereas the air properties
used will be recopilated in Table D.1, which are extracted and interpolated from [31].

Hot temperature (K) 373.15

Density, ρ (kg ·m−3) 0.9458

Specific heat, Cp (J · kg−1K−1) 1009

Thermal conductivity, λ (W ·m−1K−1) 0.03095

Dynamic viscosity, µ (kg ·m−1s−1) 2.181× 10−5

Table D.1: Air properties for Pr = 0.7111 extracted from [31].
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Figure D.1: Outline for the problem. Adapted from [7].

D.1 Evaluation of the convective-diffusive term for tempera-
ture

Following the same procedure as for the velocity components, in the end, (D.2) is found.

R(TP ) =
1

Ω

ñ
λe∆y

∆PE
x

TE +
λw∆y

∆PW
x

TW +
λn∆x

∆PN
y

TN +
λs∆x

∆PS
y

TS −
Å
λe∆y

∆PE
x

+
λw∆y

∆PW
x

+ (D.2)

+
λn∆x

∆PN
y

+
λs∆x

∆PS
y

å
TP + ρCp(∆y(uwTw − ueTe) + ∆x(vsTs − vnTn))

ô
D.2 Algorithm of resolution

In order to solve the problem, the following algorithm has been developed:

1. Data input: physical and numerical data

2. Basic and preliminary calculations, corresponding to the mesh, the properties, the
time step and the initial conditions. Furthermore, the first stage R vectors have been
also computed. Furthermore, and considering that its value is a constant throughout
the problem, the pressure coefficients have also been computed.

3. Fractional Step Method: which will be divided into the following steps:

(a) Calculation of R for both temperature and velocity fields using (D.2), (C.17) and
(C.19).

(b) Calculation of temperature for this time step using (D.2).

(c) Computation of the predictor velocity field using (C.13).

(d) Solve the pressure equation using the Conjugate Gradient.

(e) Correct the predictor velocity in order to obtain the velocity field at this timestep
using (C.12).
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(f) If convergence has been achieved (D.3), then, move to 4. If not, then, return to
(a) with Rn−1 = Rn and ~un−1 = ~un.

max(δu, δv, δT )

∆t
< δ (D.3)

where δξ =
»∑

∀i,j (ξn+1
ij − ξnij)2, being ξ a dummy variable for u, v, T

4. Postprocessing: calculate dimensionless velocities and temperatures, compute Nus-
selt number.

5. End

D.3 Results

In order to compare the results, both temperature and velocities fields are obtiained. Then,
since the deliverables of the problem are the average Nusselt number as well as the maximum
and the minimum local Nusselt number at the hot wall. Then, these dimensionless numbers
have to be defined.

In order to do so, non-dimensional parameters have to be defined. In the case of velocities,
they will be given their dimensionless velocity, which corresponds to (D.4a). In the case of
temperatures, and considering the main dependance is on its gradient, the dimensionless
value vill be given by (D.4b).

ūi =
uiLx
α

=
uiLxρCp

λ
(D.4a)

θ =
T − T2

T1 − T2
(D.4b)

Then, as stated by [8], the dimensionless heat flux, also known as Nusselt number, in any
position could be estimated as (D.5), where x̄ = x/Lx.

Nux(x, y) = ūiθ −
∂θ

∂x̄i
(D.5)

In order to obtain the derivative of θ, three different methods depending on the position
of the control volume regarding the x direction have been considered. First of all, for the
boundary-neighbour nodes, the temperature field will be approximated using a parabolic
approach (D.6) for a given y position, which solution will be available at section D.6.

θ(x) ≈ a+ bx+ cx2 (D.6)

Therefore, the parameter required for (D.5) is its derivative. Thus, its derivative will be used
to determine the heat flux.

For its neighbors, a CDS has been applied, considering the derivatives at the boundaries
of the control volume, which can be calculated using a first order Taylor-like approximation
for both sides. Then, developing the expression, (D.7) will be obtained.

∂θ

∂x̄
=
θi+1(xi − xi−1) + θi(xi+1 − xi−1) + θi−1(xi+1 − xi)

2(xi − xi−1)(xi+1 − xi)
(D.7)

Eventually, for all inner nodes, a fourth order interpolation, considered using the a five-
point-stencil-like interpolation (D.8), has been performed, so as to find the proper and most
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accurate values, which has been done after considering that subtracting combinations of the
δ values at a power higher than 1 are much smaller than the first power parameters.

∂θ

∂x̄
=
θi+1 − θi−1 − θi+2 + θi−2

δ1 − δ2 + δ3 − δ4
(D.8)

where:

δ1 = xi+1 − xi

δ2 = xi+2 − xi

δ3 = xi − xi−1

δ4 = xi − xi−2

Then, this could be seen as the Nusselt in any position (x̄, ȳ). Hence, in order to find the
values for any position x̄ and its average, (D.9) will be considered.

Nux =

∫ 1

0
Nux(x, y) dy (D.9a)

Nu =

∫ 1

0
Nux dx (D.9b)

D.3.1 Ra = 103

First of all, the calculations for a Rayleigh of 1000 were done. Hence, after applying the
methodology previously explained in a general case, the results were obtained, being summa-
rized in Table D.3, regarding temperature, horizontal and vertical speed in the same notation
as [8]. The maximum values, nevertheless, differ (difference stabilized at around 5%, value
evolution available at Table D.4) from the reference benchmark at [8]. Furthermore, a grid
convergence analysis was also performed, as well as an analysis of computational cost in terms
of computational time, which results are available in Table D.4.

Regarding the convergence of the method, and as it can be seen in Figure D.2a, which is
calculated as (D.10).

εξ =

∣∣∣∣ξ − ξ10000

ξ10000

∣∣∣∣ (D.10)

As it can be seen, the behaviour is as expected, with the exception in the horitzontal
speed u, the error of which increases for 900 control volumes. Nevertheless, given the fact
that it corresponds to a such a coarse mesh, the validity of the results is negligible, being this
the reason why only denser meshes will be considered when doing further analysis.

On the other hand, the computational time (Figure D.2b) follows an almost linear log-log
behaviour of order O(N3) (2.991), even though Conjugate Gradient should be a O(N logN)
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(a) Convergence plots for velocities and tem-
perature at Ra = 103.

(b) Computational time in seconds for Ra =
103.

Figure D.2: Results for Ra = 103.

Eventually, the Nusselt number has been computed, which results can be seen in Fig-
ure D.3, even though the recopilation of results is available at Table D.11. This result
indicates the magnitude of the heat transfer due to convection compared to the magnitude
of heat transfer due to diffusion.

In order to complement the results in the table, the calculations have also been performed
for N = 10000, with the results from Table D.2.

Nu0 Nu1/2 Nu

1.1000 1.1081 1.0960

Table D.2: Nusselt calculations for N = 10000 and Ra = 103.

Figure D.3: Nusselt number at the hot wall, at the vertical mid-plane and global average for
Ra = 103.

As it can be seen, in this scenario, the heat transfer is equally distributed between both
phenomena, convection and conduction, given that its value is around 1. Hence, this is the
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explanation why the temperature field [9] follows a distribution which is similar to a 1D
conduction case (or a 2D conduction with adiabatic top and bottom), with just a slightly
deviation of the isotherms, indicating the presence of buoyancy.

D.3.2 Ra = 104

After obtaining the latter results, the calculations for Ra = 104 were performed, which results
are described in Table D.5. Its velocity fields can be seen in [9]. In this case, the difference
between the results and [8] is at around a 3%.

Regarding the convergence of the grid, the same calculations as in the first case can be
performed, which result in Figure D.4a, whereas the computational time follows also a O(N3)
behaviour (2.975), as it can be seen in Figure D.4b.

Finally, the Nusselt number has also been computed, yielding Figure D.5, which result
represents that the heat transfer due to convection will be significantly more important than
the same phenomena due to conduction.

(a) Convergence plots for velocities and tem-
perature at Ra = 104.

(b) Computational time in seconds for Ra =
104.

Figure D.4: Results for Ra = 104.

D.3.3 Ra = 105

Following the same exact procedure, the results for Ra = 105 can be obtained. Considering
the grid convergence, Figure D.6a was obtained, showing that the grids should be much more
denser in order to obtain pretty good converged results.

On the other hand, the time complexity of the case follows an equivalent computational
cost as the results previously presented (Figure D.2b,D.4b), yet with higher values given the
higher complexity of the case, yielding Figure D.6b.

Finally, the Nusselt number has also been computed, yielding a greater convection than
diffusion weight in the heat transfer process, as it was expected due to its higher Rayleigh
number. Its behaviour and convergence can be seen at Figure D.7.
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Figure D.5: Nusselt number at the hot wall, at the vertical mid-plane and global average for
Ra = 104

(a) Convergence plots for velocities and tem-
perature at Ra = 105.

(b) Computational time in seconds for Ra =
105.

Figure D.6: Results for Ra = 105.

D.3.4 Ra = 106

Eventually, the same procedure was developed for Ra = 106, which yield Figure D.8a for
the grid convergence and Figure D.8b in terms of computational cost, which, in fact, follow
similar tendencies as the latter values.

Finally the importance of convection regarding diffusion has also been studied, yielding
Figure D.9.
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Figure D.7: Nusselt number at the hot wall, at the vertical mid-plane and global average for
Ra = 105

(a) Convergence plots for velocities and tem-
perature at Ra = 106.

(b) Computational time in seconds for Ra =
106.

Figure D.8: Results for Ra = 106.

D.4 Conclusions

In this report, the solution and comparison with a benchmark solution [8] of a Differentially
Heated Cavity problem is intended. In order to do so, a Finite-Volume Discretization (FVM)
has been developed, at which the Fractional Step Method (FSM) is applied, following the
trend developed in [5], solving the system of equations resulting of the discretization using a
Conjugate Gradient.

The main challenge in this problem was the introduction of the buoyancy factor in the
momentum equation, which is computed using Boussinesq’s approximation; as well as the
introduction of the energy equation, all of them developed in (C.1). Furthermore, the use
of realistic physical properties also required the interpolation of different factors in order to
provide a solid starting point for the program.
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Figure D.9: Nusselt number at the hot wall, at the vertical mid-plane and global average for
Ra = 106

Furthermore, the use of the L2-norm in calculating the error in all magnitudes, as well
as the division by the timestep used, made the convergence of the program much complex,
but much more stable in terms of results obtained in comparison with some other simpler
methods such as an absolute or relative error, which only take in consideration the maximum
deviation of the process.

After performing all corresponding calculations, different conclusions can be extracted
from the results.

First of all, regarding the flow behaviour and the heat transfer phenomenology, it can
be seen that for Ra = 103, the dominant heat transfer phenomena was heat diffusion, as
the temperature distribution follows clearly a diffusive pattern (see any conduction case
with adiabatic top and bottom boundaries, which can be approximated to a 1D-conduction-
case). Nonetheless, regarding all other cases studied, the dominant heat transfer method was
convection, in which the temperature boundary layer is more determined for higher Rayleigh
numbers [9]. This behaviour is also explained by the Nusselt number assigned onto each and
every case, which results can be recalled at Table D.11.

Moreover, in regards to the convergence of the results, even though it is quite good for the
mesh sizes developed in this report, a deeper analysis with denser grids should be developed
in order to obtain exactly the results expected and proposed in the reference document [7].
Hence, the results obtained in this case are not precisely coherent with the results proposed in
[8], yet are good enough to be considered as acceptable. This can be explained, among other
possible reasons, by the use of slightly different properties, given that the actual Prandtl
number used corresponds to 0.7111, instead of 0.71; which, in fact, determine whether the
dimensionless magnitudes correspond, or not, to the benchmark solution.

Furthermore, the convergence within the code follows an expected trend, being this the
reason why the results can be ensured to be good for denser grids. Furthermore, it is im-
portant to remark that the grid convergence would require denser grids for higher Rayleigh
numbers, which in fact is shown when considering the errors within the most dense grid
studied in this report.

In regards to the computational complexity of the problem, it has been seen that for
a higher Rayleigh number, the time spent in reaching the steady state situation increases
following an almost O(N3) in all cases, being this a descending number for an increasing
Rayleigh.
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Furthermore, an almost linear behaviour in log-log plots can be obtained, as showed in
Figure D.10.

Figure D.10: Computational time as a function of the mesh used as well as the Rayleigh
number.

This yields a behaviour in which (D.11) is deduced, for the code used in the solution
of this problem, without considering the mesh size, which scales the actual time consumed,
being this an absolutely empirical value.

tCOMP ∼ O(Ra0.1717) (D.11)

D.5 Numerical results

Recall that the benchmark positions for maximum dimensionsless velocities specified at the
tables differ from [8], given that the hot and cold walls are placed differently in this report.
Furthermore, the results for Ra = 104, 105, 106 are calculated for a Pr = 0.7111, being this
the reason why they differ from the benchmark solution. Nonetheless, in order to verify the
code, Ra = 103 is calculated using a Pr = 0.71.

N umax(0.50, y) yu,max vmax(x, 0.50) xv,max θ(0.50, 0.50)

400 3.6399 0.1763 4.1182 0.8237 0.6020

900 3.4582 0.1858 3.6408 0.8531 0.5429

1600 3.5735 0.1907 3.6587 0.8391 0.5038

2500 3.5992 0.1937 3.6735 0.8305 0.4990

3600 3.6160 0.1754 3.6867 0.8246 0.4997

6400 3.6508 0.1829 3.6985 0.8171 0.4935

10000 3.6607 0.1874 3.7082 0.8247 0.4957

Benchmark 3.649 0.187 3.697 0.822 -

Table D.3: Numerical results for Ra = 103.
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N εu,10000 εv,10000 εu,DAV IES εv,DAV IES εθ tCOMP (s) tPHY S (s)

400 0.0057 0.1106 0.0025 0.1139 0.2145 9.83 4543.09

900 0.0553 0.0182 0.0523 0.0152 0.0952 42.74 3107.91

1600 0.0238 0.0133 0.0207 0.0104 0.0164 235.11 3445.84

2500 0.0168 0.0094 0.0137 0.0064 0.0067 1018.42 3613.45

3600 0.0122 0.0058 0.0090 0.0028 0.0081 4102.52 3745.69

6400 0.0027 0.0026 0.0005 0.0004 0.0044 26092.40 3933.60

10000 - - 0.0032 0.0030 - 94385.10 4072.40

Table D.4: Computational performance for Ra = 103.

N umax(0.50, y) yu,max vmax(x, 0.50) xv,max θ(0.50, 0.50)

400 16.5891 0.1763 20.8517 0.8790 0.4510

900 16.3378 0.1858 20.9440 0.8880 0.4842

1600 16.6369 0.1609 20.8111 0.8924 0.4840

2500 16.6764 0.1695 20.6948 0.8949 0.4902

3600 16.6889 0.1754 20.6750 0.8801 0.4923

4900 16.6857 0.1796 20.6495 0.8837 0.4934

6400 16.6821 0.1679 20.6082 0.8864 0.4936

10000 16.7028 0.1753 20.5393 0.8802 0.4947

Benchmark 16.178 0.177 19.617 0.881 -

Table D.5: Numerical results for Ra = 104 at (0.50, 0.50).

D.6 Parabolic approach equations

Given the wall-boundary point as well as its two horizontally speaking closer points, (D.12)
will be obtained. Ñ

1 xi x2
i

1 xi+1 x2
i+1

1 xi+2 x2
i+2

éÑ
a
b
c

é
=

Ñ
θi
θi+1

θi+2

é
(D.12)

By using MATLAB symbolic package, and assigning xi = A, xi+1 = B, xi+2 = C,θi = X,
θi+1 = Y and θi+2 = Z ; it has been solved, yielding (D.13)

a = −ZAB(B −A) + Y AC(A− C) +XBC(C −B)

(A−B)(A− C)(B − C)
(D.13a)

b =
A2(Y − Z) +B2(Z −X) + C2(X − Y )

(A−B)(A− C)(B − C)
(D.13b)

c = −X(C −B) + Y (A− C) + Z(B −A)

(A−B)(A− C)(B − C)
(D.13c)
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N εu,10000 εv,10000 εu,DAV IES εv,DAV IES εθ tCOMP (s) tPHY S (s)

400 0.0068 0.0152 0.0254 0.0629 0.0883 21.29 9814.35

900 0.0219 0.0197 0.0099 0.0676 0.0213 58.57 3573.76

1600 0.0039 0.0132 0.0284 0.0609 0.0218 365.94 4603.16

2500 0.0016 0.0076 0.0308 0.0549 0.0092 1528.54 4676.92

3600 0.0008 0.0066 0.0316 0.0539 0.0048 5892.41 4723.18

4900 0.0010 0.0054 0.0314 0.0526 0.0026 15940.60 4762.08

6400 0.0012 0.0034 0.0312 0.0505 0.0022 44323.00 4813.98

10000 - - 0.0324 0.0470 - 201231.00 4859.74

Table D.6: Computational performance for Ra = 104.

N umax(0.50, y) yu,max vmax(x, 0.50) xv,max θ(0.50, 0.50)

400 36.5068 0.1210 72.2937 0.9250 0.4569

900 36.3233 0.1469 73.5182 0.9449 0.4721

1600 36.1952 0.1331 72.9889 0.9359 0.4792

2500 35.8784 0.1466 71.8086 0.9302 0.4830

3600 35.7698 0.1374 72.0434 0.9393 0.4858

4900 35.6932 0.1465 71.8242 0.9348 0.4878

6400 35.6411 0.1396 71.4848 0.9409 0.4894

10000 35.5578 0.1410 71.4377 0.9343 0.4915

Benchmark 34.730 0.145 68.590 0.934 -

Table D.7: Numerical results for Ra = 105 at (0.50, 0.50).

N εu,10000 εv,10000 εu,DAV IES εv,DAV IES εθ tCOMP (s) tPHY S (s)

400 0.0267 0.0120 0.0512 0.0540 0.0703 56.69 26459.40

900 0.0215 0.0291 0.0459 0.0719 0.0394 103.19 4453.55

1600 0.0179 0.0217 0.0422 0.0641 0.0250 480.39 3959.05

2500 0.0090 0.0052 0.0331 0.0469 0.0172 1981.36 4465.13

3600 0.0060 0.0085 0.0299 0.0503 0.0115 6342.50 4478.49

4900 0.0038 0.0054 0.0277 0.0472 0.0074 18012.80 4489.37

6400 0.0023 0.0007 0.0262 0.0422 0.0043 57195.50 4499.62

10000 - - 0.0238 0.0415 - 234164.00 4513.72

Table D.8: Computational performance for Ra = 105.

N umax(0.50, y) yu,max vmax(x, 0.50) xv,max θ(0.50, 0.50)

400 66.9982 0.1210 239.7890 0.9605 0.4515

900 65.7943 0.1120 240.3410 0.9662 0.4687

1600 66.4097 0.1331 234.7240 0.9687 0.4767

2500 66.0594 0.1466 230.1050 0.9702 0.4815

3600 66.2216 0.1374 231.8270 0.9618 0.4846

4900 66.1574 0.1465 231.7060 0.9639 0.4869

6400 66.1145 0.1396 230.7360 0.9655 0.4885

10000 66.0957 0.1410 229.7380 0.9619 0.4908

Benchmark 64.630 0.150 219.360 0.9621 -

Table D.9: Numerical results for Ra = 106 at (0.50, 0.50).
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N εu,10000 εv,10000 εu,DAV IES εv,DAV IES εθ tCOMP (s) tPHY S (s)

400 0.0137 0.0437 0.0366 0.0931 0.0800 107.03 51254.60

900 0.0046 0.0462 0.0180 0.0956 0.0450 139.72 3586.71

1600 0.0048 0.0217 0.0275 0.0700 0.0287 825.22 3728.34

2500 0.0005 0.0016 0.0221 0.0490 0.0190 3091.40 3731.98

3600 0.0019 0.0091 0.0246 0.0568 0.0126 9126.99 3736.11

4900 0.0009 0.0086 0.0236 0.0563 0.0080 32866.20 3741.27

6400 0.0003 0.0043 0.0230 0.0519 0.0047 74433.70 3905.62

10000 - - 0.0227 0.0473 - 232321.00 4060.18

Table D.10: Computational performance for Ra = 106.

Ra = 103 Ra = 104

N Nu0 Nu1/2 Nu Nu0 Nu1/2 Nu

900 1.6207 1.0658 1.0940 2.1129 2.2963 2.2572

1600 1.1763 1.0853 1.0785 2.2594 2.3146 2.2720

2500 1.0462 1.0960 1.0840 2.2745 2.3086 2.2767

3600 1.0912 1.1009 1.0878 2.2669 2.3051 2.2799

6400 1.0758 1.1036 1.0917 2.2719 2.3003 2.2824

Benchmark 1.117 1.118 1.118 2.238 2.243 2.243

Ra = 105 Ra = 105

N Nu0 Nu1/2 Nu Nu0 Nu1/2 Nu

900 4.5983 4.5936 4.5501 8.9458 8.9408 8.8431

1600 4.5881 4.6179 4.5836 8.9509 8.9568 8.9003

2500 4.5888 4.6177 4.5927 8.9546 8.9608 8.9248

3600 4.5954 4.5909 4.5846 8.9570 8.9629 8.9379

6400 4.5955 4.5902 4.5885 8.9603 8.9592 8.9473

Benchmark 4.509 4.519 4.519 8.817 8.799 8.800

Table D.11: Nusselt number at the hot wall, at the midplane and the average on the domain
for different Rayleighs and different mesh sizes.
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