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ABSTRACT14

We consider quadrangulations of red and blue points in the plane where each face is15

convex and no edge connects two points of the same color. In particular, we show that16

the following problem is NP-hard: Given a finite set S of points with each point either red17

or blue, does there exist a convex quadrangulation of S in such a way that the predefined18

colors give a valid vertex 2-coloring of the quadrangulation? We consider this as a step19

towards solving the corresponding long-standing open problem on monochromatic point20

sets.21
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23

1. Introduction24

A quadrangulation of a set S of n points in the Euclidean plane is a partition of25

the convex hull of S (denoted by CH(S)) into quadrangles (i.e., 4-gons) such that26

the union of the vertices of the quadrangles is exactly the point set S, and two27

quadrangles share either a common vertex, a common edge, or no point at all.28

Hence, the quadrangulation is also a geometric (straight-line) planar graph with29
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vertex set S. A quadrangulation is a convex quadrangulation if every quadrangle is30

convex.31

It is well-known that a point set admits a quadrangulation if and only if the32

number of points on the convex hull is even. In particular, given a set S of size33

n with h points on its convex hull, i.e., |CH(S)| = h, the number of edges in any34

triangulation of S is 2n−2− h
2 , and the corresponding number of faces is n−1− h

2 .35

Not every such set admits a convex quadrangulation, and deciding this in polynomial36

time is an open problem (tracing back to Joe Mitchell in 199316).37

A graph is vertex k-colorable (in brief k-colorable) if there exists a mapping of38

each vertex of the graph to exactly one of k colors such that no two vertices of the39

same color share an edge. A 2-colorable graph is a bipartite graph. It is known that40

every quadrangulation is bipartite.41

A bichromatic point set is a finite set S of points together with a mapping of42

each point to one of two colors. Throughout this paper, these colors will be red and43

blue.44

Our main question is whether for a given bichromatic point set there is a convex45

quadrangulation such that the colors of the points define a valid 2-coloring of the46

quadrangulation. We call such a quadrangulation valid. Consider a 2-coloring of47

any quadrangulation. There are at least two vertices of each color, and it is easy48

to construct examples of quadrangulations with arbitrarily many vertices that have49

only two vertices of one color. In Section 2, we show that this bound differs for50

convex quadrangulations. In Section 3, using observations of Section 2, we prove51

that deciding whether a bichromatic point set has a valid convex quadrangulation is52

NP-complete. The motivating question whether a (monochromatic) point set admits53

a convex quadrangulation is left open.54

Next, we survey some of the main known results about quadrangulations.55

Quadrangulations Quadrangulations of point sets or polygons were discussed by56

many authors; see the survey by Toussaint16. Since not all polygons or point sets57

admit quadrangulations, even when the quadrangles are not required to be convex,58

the author surveys results characterizing those planar sets that always admit quad-59

rangulations (convex and non-convex) for quadrangulations of orthogonal polygons,60

simple polygons, and point sets.61

Lubiw13 shows that determining whether a simple polygon with holes has a62

convex quadrangulation is NP-complete. In contrast to that, there is a polynomial-63

time algorithm for a generalized variant of rectilinear polygons.64

Bose and Toussaint3 show that a set S of n points admits a quadrangulation65

if and only if S has an even number of extreme points. They present an algorithm66

that computes a quadrangulation of S in O(n log n) time even in the presence of67

collinear points, adding an extreme Steiner point if necessary. If S does not admit68

a quadrangulation, then their algorithm can quadrangulate S with the addition of69

one extra point.70
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Ramaswami, Ramos, and Toussaint14 show that a triangulated simple n-gon P71

can be quadrangulated in linear time with the least number of outer Steiner points72

required for that triangulation, and that bn3 c outer Steiner points are sufficient, and73

sometimes necessary, to quadrangulate P . They further show that bn4 c inner Steiner74

points (and at most one outer Steiner point) are sufficient to quadrangulate P , and75

this can be done in linear time. The method can be used to quadrangulate arbitrary76

triangulated domains.77

Convex quadrangulations Most of the work on convex quadrangulations is con-78

cerned with Steiner points. For example, Bremner et al.4 prove that if the convex79

hull of S has an even number of points, then by adding at most 3n
2 Steiner points80

in the interior of its convex hull, we can always obtain a point set that admits a81

convex quadrangulation. The authors also show that n
4 Steiner points are sometimes82

necessary. Heredia and Urrutia9 improve these upper and lower bounds to 4n
5 + 283

and n
3 , respectively.84

Deciding in polynomial time whether a given (monochromatic) point set admits85

a convex quadrangulation without adding Steiner points seems to be a long-standing86

open problem. Only fixed-parameter-tractable algorithms and heuristics are known.87

Fevens, Meijer, and Rappaport8 present a polynomial-time algorithm to determine88

whether a point set S admits a convex quadrangulation if S is constrained to lie on a89

constant number of nested convex polygons. Schiffer, Aurenhammer, and Demuth15
90

propose a simple heuristic for computing large subsets of convex quadrangulations91

on a given point set.92

Quadrangulations of colored point sets Cortés et al.6 discuss aspects of quad-93

rangulations of bichromatic point sets. They study bichromatic point sets that admit94

a quadrangulation, and whether, given two quadrangulations of the same bichro-95

matic point set, it is possible to transform one into the other using certain local96

operations. They present a family of 2-colorings, called onion 2-coloration (which is97

a 2-coloration of a point set such that all its convex layers have an even number of98

points with alternate colors), that are quadrangulatable and for which the graph of99

quadrangulations is always connected. They show that any bichromatic point set100

with convex layers having an even number of points with alternate colors has a valid101

quadrangulation, and any two such quadrangulations can be transformed into each102

other.103

Alvarez, Sakai, and Urrutia2 prove that a bichromatic set S = R ∪ B, where104

R is the set of red points, B is the set of blue points, and |R| = |B| = n, can105

be quadrangulated by adding at most bn−13 c + bn2 c + 1 Steiner points and that m
3106

Steiner points are occasionally necessary, where m is the number of quadrilaterals107

of the quadrangulation. They also show that there are 3-colored point sets with an108

even number of extreme points that do not admit a quadrangulation, even after109

adding Steiner points in the interior of the convex hull.110
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Kato, Mori, and Nakamoto10 define the winding number ω(S) for a 3-colored111

point set S, and prove that a 3-colored set S of n points in general position with112

a finite set P of Steiner points added is quadrangulatable if and only if ω(S) = 0.113

When S ∪ P is quadrangulatable, then |P | ≤ 7n+34m−48
18 , where the number of114

extreme points is 2m. This line of research is continued by Alvarez and Nakamoto1,115

who study k-colored quadrangulation of k-colored sets of points, where k ≥ 2. Since116

not every set of points admits a k-colored quadrangulation, the use of Steiner points117

(choosing the color among the k colors) is required in order to obtain one. They118

show that if ω(S) = 0 or k ≥ 4, then a k-colored quadrangulation of S can always119

be constructed using less than (16k−2)n+7k−2
39k−6 Steiner points. (The authors note that120

ω(S) = 0 for any bichromatic S where red and blue points on CH(S) alternate.)121

2. The red and the blue graph of a convex quadrangulation122

Let Q be a convex quadrangulation with a valid red-blue coloring of its n vertices.123

For every quadrangle, one diagonal connects the two red vertices of the quadrangle,124

and the other connects the two blue ones. We call them the red diagonal and the blue125

diagonal, respectively. Let GR be the graph whose vertices are the red vertices of Q126

and whose edges are the red diagonals of all quadrangles of Q. Let GB be defined127

analogously. Since the colors are interchangeable, all the following statements hold128

equally for both graphs.129

Lemma 1. GR is a simple plane connected graph.130

Proof. GR is simple and plane as every red edge has its own quadrangle and the131

faces (quadrangles) are convex. Suppose that GR is not connected. Then there132

exists a Jordan curve splitting the convex hull of S that separates the red points133

and does not intersect a red edge. Further, there exits such a curve that intersects134

every quadrangle of Q in at most one connected component. Consider an edge e of135

CH(S) intersected by the curve. The two endpoints of e have different colors and e136

is adjacent to a quadrangle q. Since the curve does not intersect a red edge, one blue137

point b of q is separated from the other points of q. Due to our assumption, there has138

to be a red point on the same side of the curve as b, and therefore there is another139

quadrangle q′ sharing an edge with q that is intersected by the curve. However, q′140

can again only have b as the only point on one side of the curve. Continuing this141

process until the curve reaches again the boundary of the convex hull, we see that142

it only separates b from the remaining points, a contradiction.143

Lemma 2. Every minimal cycle of GR contains exactly one blue point, and every144

inner blue point is contained in a minimal cycle of GR. Blue extreme points are145

separated from the remaining set by a path in GR.146

Proof. Consider the quadrangles that are adjacent to an inner blue point. The147

red diagonals of the quadrangles form a cycle that contain the blue point. Further,148
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consider any minimal cycle of GR and any edge therein. This edge corresponds to a149

quadrangle and there is one blue point of the quadrangle on each side of the edge.150

Observe that every blue point on the convex hull boundary is separated by a red151

path from the other blue vertices.152

Theorem 1. Let nR and nB be the number of red and blue vertices, respectively,153

of a 2-colored convex quadrangulation. Then nB ≤ 2nR − 2.154

Proof. Observe that GR and GB have the same number e of edges. By Euler’s155

Polyhedral Formula we have156

nB − e + fB = 2 ,

where fB is the number of faces in the blue graph (including the outer face).157

Lemma 2 implies nR = fB − 1 + h
2 , where h is the number of extreme points.158

Hence, we get159

nB + nR −
h

2
− 1 = e .

Since GR is a plane geometric graph, we have e ≤ 3nR − 3 − h
2 . By plugging this160

into the previous equation we get the claimed inequality.161

Note that the inequality e ≤ nR−3−h
2 is tight if and only if GR is a triangulation.162

Fig. 1 shows an example where the bound is tight.163

Fig. 1. An example showing that the bound on the relation between the red (round) and blue

(squared) points in a convex quadrangulation (with thick black edges) is tight.

The structure of the red and the blue graph reveals a necessary condition of a164

bichromatic point set that allows a convex quadrangulation: Every segment between165

two red points must be intersected by a segment between two blue points. Cortés166

et al.5 give a quadratic-time algorithm to check for this property. However, this167

condition is not sufficient.168
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3. NP-completeness169

In this section we prove that the problem of deciding whether there exists a valid170

convex quadrangulation of a given bichromatic point set is NP-hard. Our reduction171

is from planar 3-SAT (cf. Ref. 12). The construction is based in large parts on placing172

two red points sufficiently close to a crossing between two segments between blue173

points, such that exactly one of these blue segments is a diagonal of a quadrilateral in174

any convex quadrangulation, and that the state of variables is propagated between175

the gadgets. We show that once there is a valid choice of these blue diagonals176

(corresponding to a satisfying variable assignment), they are part of a valid convex177

quadrangulation, and argue that the construction has coordinates of polynomial178

size.179

In a planar 3-SAT instance, we are given a Boolean formula in conjunctive180

normal form; the corresponding incidence graph consists of variables and clauses181

as vertices, in which an edge between a variable and a clause indicates an occur-182

rence, and which is known to be planar. As common in this type of reductions, we183

transform an embedding of the incidence graph of a planar 3-SAT instance to a184

bichromatic point set by replacing elements of the graph drawing by gadgets. For185

simplicity, we may consider the drawing to consist of edges that are represented by186

a sequence of orthogonal line segments (actually, one bend suffices, see Ref. 11).187

An edge in this drawing carries the truth value of a variable to the clause gadgets188

(possibly via a negation).189

3.1. Gadgets190

Each edge of the incidence graph are is represented by a chain of link gadgets. Each191

link gadget contains four blue points in convex position and two red points close to192

the crossing they define. Hence, one of the two blue edges must be a diagonal in any193

valid convex quadrangulation Q (if it exists). See Fig. 2. If one of the segments is a194

diagonal of Q (say, the one from bottom-left to top-right), the link gadget carries195

true (and the line segment is called the T-diagonal of the link gadget); if the other196

segment (being called the F-diagonal) is a diagonal of Q, the edge gadget carries197

false. Two of these links are joined such that the T-diagonal of the previous link198

crosses the F-diagonal of the next link and vice versa, and thus Q cannot have a199

T-diagonal and an F-diagonal in the same edge gadget.200

The gadgets for variables, bends, and negations are shown in Figures 3, 4, and 5,201

respectively, together with a possible valid convex quadrangulation and more de-202

tailed descriptions in the caption.203

A variable gadget works by connecting three edge gadgets in a way that they204

all have either the T-diagonal or the F-diagonal as a diagonal; an arbitrary number205

of edges from the same variable vertex can be connected in that way. The variable206

gadget is shown in Fig. 3. Further, we need bends in the edge gadgets to connect207

horizontal and vertical parts, as well as negation gadgets. All of these are mere208
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c

c′

Fig. 2. A link gadget to model edges in the graph. The middle red points are that close to the
crossing of the solid blue segments such that there is no other blue segment passing between them

(as indicated by the dashed lines). (Note that to this end, the three-point “caps” at the ends

of the segments have to have slightly different width, like those indicated by c and c′.) Exactly
one of the blue segments has to be a diagonal of the quadrangulation, and combining these links

propagates that decision. A possible quadrangulation is shown to the right. The link gadgets can

be concatenated to form edges, as shown below.

appropriate combinations of link gadgets, figures and exact descriptions of these209

gadgets are provided in the appendix.210

A clause gadget is shown in Fig. 6. In its center, there are two red points that are211

intersected by exactly three blue segments. There is exactly one combination of the212

diagonals of the three involved link gadgets that prevents each of these blue segments213

to become a diagonal, the one where all three link gadgets carry false. Fig. 7 shows214

valid convex quadrangulations for gadgets representing satisfied clauses for all seven215

possible variable settings.216

3.2. Quadrangulating the remaining parts of the convex hull217

For quadrangulating the parts of the convex hull between the gadgets, note that218

these regions are simple polygons with red and blue vertices alternating on the219
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Fig. 3. A variable gadget (top), showing the possible set of blue diagonals (solid and dashed).

It “splits” an edge, propagating the truth value it carries. Again, the close red points are only
separated by two segments between blue points. Note that the upper edge of the incidence graph

carries the negated value, which has to be compensated by adding a negation gadget along it Two

possible quadrangulation are shown at the bottom.

boundary. (We thus have an even number of vertices). For the reduction, we are free220

to choose a polynomial number of Steiner points in the interior of the polygon, whose221

color we then choose according to the quadrangulation. There are several papers on222

quadrangulations using Steiner points, in general trying to minimize their number223

(which is not our concern here). We were not able to find the exact required result224

in the references (e.g., the convex quadrangulation in Ref. 7 uses Steiner points225

on the polygon boundary), but it easily follows from the following considerations.226

Note that any non-convex quadrilateral can be transformed into five convex ones by227

adding four Steiner points in the vicinity of the only diagonal. As any polygon with228

an even number of vertices can be quadrangulated using O(n) inner Steiner points4,229

we have this last ingredient for our reduction. After adding these Steiner points to230

our construction, there is a bichromatic convex quadrangulation of our point set231

if and only if the corresponding planar 3-SAT instance is satisfiable. Finally, let232

us remark that the points can be placed in general position using coordinates of233

polynomial size. Before placing two “arbitrarily” close red points, inspecting the234
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Fig. 4. A bend gadget to allow routing the edges orthogonally. Possible quadrangulations for the
two truth settings are shown at the bottom.

arrangement of all segments spanned by two blue points allows us to place the235

points sufficiently close to each other (possibly after perturbing the set).236

Theorem 2. Given a set of red and blue points, it is NP-complete to decide whether237

there is a valid convex quadrangulation of that point set.238

4. Conclusion239

The problem of constructing a convex quadrangulation of a point set is NP-hard240

when we add additional constraints. The bichromatic setting is a way to forbid241

certain edges in the quadrangulation. For our reduction, it is sufficient to forbid242

those between the close red points in the gadgets. We do not know how to achieve243

this in an unconstrained setting, which would allow us to apply our reduction idea244

in the unresolved monochromatic case.245
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Fig. 5. A negation gadget. The structure is similar to a variable gadget. It performs a bend, which

may have to be compensated by up to three bend gadgets. Two possible quadrangulations for the
different truth values carried by the edge are shown.
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J. Valenzuela, and M. T. Villar. Reporting bichromatic segment intersections from257

point sets. Int. J. Comput. Geometry Appl., 22(5):421–438, 2012.258



June 25, 2018 16:55 WSPC/Guidelines quadrangulations

Convex Quadrangulations of Bichromatic Point Sets 11

Fig. 6. The clause gadget. The two red points in the middle connected by a red segment are closer

than drawn. The only combination of blue diagonals for the link gadgets that cannot happen is
the one including all three solidly drawn segments. We negate the top-left edge to make this the

configuration with all literals set to false.

6. C. Cortés, A. Márquez, A. Nakamoto, and J. Valenzuela. Quadrangulations and 2-259

colorations. In Proc. 21st EuroCG, pages 65–68, 2005.260

7. H. Everett, W. J. Lenhart, M. Overmars, T. C. Shermer, and J. Urrutia. Strictly261

convex quadrilateralizations of polygons. In Proc. 4th CCCG, pages 77–82, 1992.262

8. T. Fevens, H. Meijer, and D. Rappaport. Minimum convex partition of a constrained263

point set. Discrete Appl. Math., 109(12):95 – 107, 2001.264

9. V. M. Heredia and J. Urrutia. On convex quadrangulations of point sets on the plane.265

In CJCDGCGT, volume 4381 of LNCS, pages 38–46, 2005.266

10. S. Kato, R. Mori, and A. Nakamoto. Quadrangulations on 3-colored point sets with267

steiner points and their winding numbers. Graphs Combin., 30(5):1193–1205, 2014.268

11. D. E. Knuth and A. Raghunathan. The problem of compatible representatives. SIAM269

J. Discret. Math., 5(3):422–427, 1992.270

12. D. Lichtenstein. Planar formulae and their uses. SIAM J. Comput., 11(2):329–343,271

1982.272

13. A. Lubiw. Decomposing polygonal regions into convex quadrilaterals. In Proc. 1st273

SoCG, pages 97–106, 1985.274

14. S. Ramaswami, P. Ramos, and G. Toussaint. Converting triangulations to quadran-275

gulations. Comput. Geom., 9(4):257 – 276, 1998.276

15. T. Schiffer, F. Aurenhammer, and M. Demuth. Computing convex quadrangulations.277

Discrete Appl. Math., 160(45):648 – 656, 2012.278

16. G. T. Toussaint. Quadrangulations of planar sets. In WADS, volume 955 of LNCS,279

pages 218–227, 1995.280



June 25, 2018 16:55 WSPC/Guidelines quadrangulations

12 A. Pilz, C. Seara

Fig. 7. Quadrangulations for each valid input to the clause gadget.


