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Abstract 13 

Computing a 2D colour map of average U-values pixel-by-pixel could become a challenging task in terms 14 

of complexity and time, especially for entire façades under the influence of anomalies. In a quantitative 15 

IRT test, a thermal image with a resolution of 320 x 240 pixels involves 76800 elements with different 16 

TWALL for each instant “t”. This research aims to create a thermographic 2D U-value map for the 17 

characterization of heavy walls in a stationary regime. The method was divided into three steps: (i) 18 

metrology; (ii) assessment of how mesh discretization affects the image quality by MATLAB; (iii) 19 

development of a 2D map by SURFER. The results demonstrated that all 2D maps were a great reproduction 20 

of the original image, considering as optimum a TWALL mesh comprised of 1600 elements of 8x6 pixels. 21 

The automated data-processing method only took 20 minutes and image quality losses were estimated at 22 

6.65%. 23 

 24 
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1. INTRODUCTION 31 

The building envelope is often considered the largest surface area in contact with the external environment 32 

[Adhikari et al., 2012; Bienvenido-Huertas et al., 2019]. Along this line, several authors have stated that 33 

walls have a greater impact on the energy demand of a building than other construction elements [Dowson 34 

et al., 2012; Battista et al., 2014; Kurtz et al., 2015; Mortarotti et al., 2017; Park et al., 2017]. In the last 35 

decades, the thermal transmittance has become a key parameter for evaluating the built quality and steady-36 

state heat transmission performance [Ferrari et al., 2013; Nardi et al., 2014; Soares et al., 2019]. Hence, an 37 

accurate U-value is crucial to: (i) optimize the design of buildings [Soares et al., 2019]; (ii) evaluate thermal 38 

comfort and estimate the energy requirements (heating, ventilation and air conditioning systems) and the 39 

energy savings in the operational stage [Peng et al., 2008; Melo et al., 2015; Garrido et al., 2018; 40 

Bienvenido-Huertas et al., 2019; Soares et al., 2019]; (iii) protect the built cultural heritage [Avedilidis et 41 

al., 2000; Moropoulou et al., 2013; Soares et al., 2019]; (iv) support decision making for the maintenance 42 

or refurbishment of existing buildings comprised of non-homogeneous assembled materials (often degraded 43 

over time and with unknown properties) [Stimolo et al., 2003; Bashkar et al., 2006; Sassine et al., 2016; 44 

Tejedor et al., 2018]. However, the U-value may be modified by anomalies, which are sometimes invisible, 45 

leading to incorrect adoption of calculation procedures or management strategies for the above purposes. 46 

Indeed, not all European countries consider the impact of thermal bridges in their respective standards for 47 

new buildings and for the refurbishment of the existing ones [Dumitrescu et al., 2016]. Aspects such as 48 

ageing and morphology of the specimen, local hygrothermal data or building pathologies are often 49 

neglected in regulatory calculation procedures (i.e. ISO 6946) [Doran, 2001; Baker, 2013; Lucchi, 2017; 50 

Genova et al., 2018]. For this reason, conventional onsite monitoring systems are essential for a 51 

construction project [Park et al., 2016; Kropp et al., 2018]. Despite this, the inspection of building elements 52 

often depends on manual processes [Garrido et al., 2018a] and vision-based recognition methods do not 53 

deal with interior sites [Kropp et al., 2018]. To overcome these limitations, quantitative infrared 54 

thermography (QIRT) can be implemented as an alternative non-destructive testing (NDT) for measuring 55 

the in-situ U-value. Nevertheless, methodologies to automate the analysis of thermal transmittance pixel-56 

by-pixel are still in progress [Asdrubali et al., 2012; Nardi et al., 2018]. Hence, this paper proposes an 57 

automated data-processing technique to create a 2D U-value map of walls with pathologies based on 58 

internal QIRT. A summary of existing approaches about diagnosis of pathologies in façades and automation 59 

of thermographic evaluations is given in Section 2.  60 
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2. BACKGROUND  61 

2.1. Diagnosis of pathologies in façades by thermography  62 

In recent years, some authors have developed strategies to identify and assess anomalies in façades, 63 

especially those affected by ageing [Cereijo et al., 2014; Edis et al., 2015; Cadelano et al., 2015; Georgescu 64 

et al., 2017; Lucchi et al., 2017; Asdrubali et al., 2018; Martínez-Garrido et al., 2018; Garrido et al., 2018a; 65 

Garrido et al., 2018b; Garrido et al., 2019a; Garrido et al., 2019b; Ruiz Valero et al., 2019]. Martínez-66 

Garrido et al. [2018] and Ruiz Valero et al. [2019] used SURFER [Golden Software, 2018] to map the 67 

distribution of moisture content in historic building envelopes. Rough estimations of the extent of damp 68 

problems were obtained by combining various NDT (i.e. qualitative IRT) with the readings of Electrical 69 

Conductivity Meter (EC) or Electrical Resistance Measuring (ERM). Subsequently, the most intense fronts 70 

were characterized by Electrical Resistivity Tomography (ERT) and Ground Penetrating Radar (GPR) for 71 

better identification of the source of the anomaly. It should be noted that the interpretation of the outcomes 72 

of Moisture Mapping (MM) was mainly geometrical (homogeneity reading) and qualitative (resistivity vs. 73 

moisture) in both studies. Furthermore, some limitations were mentioned in previous studies. For example, 74 

moisture content readings could differ significantly due to the use of a variety of meters in the same 75 

operating conditions [William, 1997; Jukka, 2005] and a single measurement point may not be enough 76 

representative of the status of the entire structure [Göller, 2013].  77 

 78 

Regarding thermal bridges, there is a lack of reliable and simple methodologies for diagnosing entire walls 79 

affected by defects. Indeed, some studies have computed psi-values (also termed linear thermal 80 

transmittance) to quantify the impact of anomalies on façades using a line-meter in the thermographic 81 

analysis or applying simulation tools based on finite elements and fluid dynamics (THERM, FLUENT and 82 

GAMBIT among others) [Asdrubali et al., 2012; Martin et al., 2012; Nardi et al., 2015; O’Grady et al., 83 

2017; Baldinelli et al., 2018; O’Grady et al., 2018; Sfarra et al.,2019]. One of the limitations of algorithms 84 

based on the line segment extraction is the creation of descriptors and their dependency on the line length 85 

[Zhang et al., 2013; Zhao et al., 2016; Kropp et al., 2018]. The measured thermo-physical property is linked 86 

to the wall surface temperature of each pixel that comprises the line segment created by the researchers 87 

[Asdrubali et al., 2012]. In other words, a single line segment is evaluated as a representative part of the 88 

effect of the pathology on the entire wall. Hence, the extension of the area of the pixel depends from the 89 

IFOV of the IR camera [Asdrubali et al., 2012]. Besides this, the algorithm implementation and the high 90 
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computation time of 3D models are often considered a disadvantage by not specialized researchers (i.e. 91 

energy auditors) [Gao et al., 2004; Sala, 2008; Lucchi et al., 2017; Lucchi et al., 2018]. Complex models 92 

are characterized to require detailed input data on meteorological observations, stratigraphy, order of the 93 

material layer, and features of each material layer (i.e. thickness, conductivity, density, thermal mass, 94 

vapour pressure resistance, emissivity and risk of surface condensation) [Wróbel et al., 2008; Lehman et 95 

al., 2013; Lucchi et al., 2017; Nardi et al., 2018]. Concerning the IRT analysis, the interpretation of the 96 

thermograms is conducted by a human operator in both building pathologies (thermal bridges and 97 

moisture). The knowledge of the geometry, temperature distribution and test conditions are needed for a 98 

correct identification of the anomaly [Garrido et al., 2018a]. However, the assessment depends on the 99 

subjectivity and expertise of the technician [Garrido et al., 2018a; Garrido et al.,2019a]. Indeed, Hiasa et 100 

al. [2017] affirmed that processing data mathematically could lead to increase the objectivity in the 101 

diagnosis of defects in civil structures. Nevertheless, the automation of the analysis of U-value pixel-by-102 

pixel is still ongoing [Asdrubali et al., 2012; Nardi et al., 2018].  103 

 104 

2.2. Automation of the thermographic analysis pixel-by-pixel under stationary regime 105 

The development of a 2D colour map of average U-values could be challenging due to the complexity and 106 

time required. Calculation procedures based on QIRT from inside or outside the building are complex 107 

[Hoyano et al., 1999; Madding et al., 2008; Albatici et al., 2010; Fokaides et al., 2011; Dall’O et al., 2013; 108 

Liu et al., 2015; Nardi et al., 2016; Tejedor et al., 2017]. Indeed, previous studies highlighted some 109 

shortcomings that arise in the external QIRT in terms of susceptibility of the outdoor environmental 110 

conditions, control of reflection index of objects with unknown thermal status, overestimation of the 111 

convective heat transfer coefficient and effect of the wind speed in the calculation procedure [Hoyano et 112 

al., 1999; Emmel et al., 2007; Palyvos et al., 2008; Fokaides et al., 2011; Rabadiya et al., 2012; Sham et 113 

al., 2012; Dall’O et al., 2013; Liu et al., 2015; Tejedor et al.; 2017]. To avoid the issues mentioned above, 114 

the internal QIRT may be adopted for creating a 2D U-value map. Instantaneous U-values (UQIRT ins) are 115 

expressed as a function that involves convection and radiation heat transfer processes in a stationary regime. 116 

Once all the measurements have been calculated for a total of “N” thermograms, the average measured U-117 

value (UQIRTavg) is defined. Notably, some parameters of the existing numerical models can be assumed to 118 

be constant during the calculation procedure: Stefan-Boltzmann’s constant (σ), air thermal conductivity 119 

(air), wall surface emissivity (εWALL), wall height (L) or even the Rayleigh (Ra) and Prandtl (Pr) numbers in 120 



5 
 

the dimensionless approaches. Other parameters such as the reflected ambient temperature (TREF) and air 121 

environment temperatures (TIN and TOUT) can be incorporated for each instant, regardless the wall area to 122 

be analyzed. In contrast, the wall surface temperature (TWALL) may compromise a lower or higher number 123 

of pixels to be processed depending on whether or not the building element has enough heat flux 124 

homogeneity due to an anomaly. In terms of time consumption, the common technical specifications of an 125 

IR camera establish that a thermal image with dimensions 320 x 240 pixels is composed of 76800 elements 126 

(1 x 1 pixel), which involves a width/height ratio of 1.33. Tejedor et al. [2019] stated that the usual approach 127 

adopted for QIRT could imply manual post-processing from 120 to 7200 thermograms with data acquisition 128 

intervals of 1 min to 1 s respectively. Therefore, 76800 elements with different TWALL should be computed 129 

for each instant “t” to generate a 2D U-value map. Consequently, the simplification of the calculation 130 

procedure should be considered, with larger boxes or elements of average TWALL to work with a simpler 131 

processed image. Nevertheless, the methodologies to automate the thermographic analysis pixel-by-pixel 132 

are still in development [Asdrubali et al., 2012; Nardi et al., 2018].  133 

 134 

The literature review revealed few automated NDT approaches under a stationary regime for the 135 

construction industry field. Brilakis et al. [2011] and Park et al. [2016] applied vision-based tracking 136 

methods to improve the control of the outdoor construction activities on dynamic state and to automate the 137 

on-site progress monitoring. Kropp et al. [2018] focalized their study on the automation of interior 138 

construction state recognition using registered images and a 4D BIM model. Video frames were captured 139 

with a monocular camera system during the inspection. Subsequently, the building model was 140 

superimposed onto the image in an augmented reality, conducting different steps of image registration (i.e. 141 

line segment extraction, fine pose estimation, rough motion estimation etc) and image recognition (i.e. 142 

space reduction and image rectification among others). Montanini et al. [2016], Chrysafi et al. [2017] and 143 

D’Accardi et al. [2018] developed algorithms to process thermograms under transient conditions for 144 

manufacturing processes, to enhance the readability of images. In some studies, related to bioinformatics 145 

applications or NDT for measuring material deformation, the pattern recognition and image processing 146 

methods were mainly focused on the 2D correlation coefficient [Kaur et al., 2012; Blaber et al., 2015; 147 

Mohapatra et al., 2018]. Pearson’s correlation coefficient (R) is one of the most commonly used statistical 148 

tool to determine the linear correlation degree in pixel-by-pixel intensity between two data sets A and B 149 

[Mohapatra et al., 2018]. To achieve this, both images should be assumed to be arrays, where A refers to 150 
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the original image and B is a simpler processed image. Although it is computationally intensive, the 151 

dimensionless index R is a single scalar value that is invariant to linear transformations and insensitive to 152 

variations in brightness or contrast across the image [Kaur et al., 2012]. Hiasa et al. [2017], Sultan et al. 153 

[2017] and Milovavic [2019] detected pixel-by-pixel surface delamination in concrete bridge decks and 154 

other concrete structures by means of active IRT, finite elements and the statistical tool PCA (Principal 155 

Component Analysis). Only some Spanish and Italian studies adapted the existing visible image processing 156 

techniques to automate the identification of pathologies in walls by IRT [González-Jorge et al., 2012; 157 

Cereijo et al., 2014; Asdrubali et al., 2018; Garrido et al., 2018a; Garrido et al., 2018b; Garrido et al., 2019a; 158 

Garrido et al., 2019b]. Garrido et al. [2018a] proposed an improvement of Cereijo’s approach, reducing the 159 

number of false thermal bridges detected from outside the building through the computation of the linear 160 

thermal transmittance and increasing the accuracy by an image rectification procedure based on geometrical 161 

characterization. The implementation of the photogrammetric technique was used as a map for the 162 

characterization of a thermal bridge in terms of width or height. It should be noted that the image 163 

rectification process (horizontal and vertical direction) was necessary to correct the sum of distortions 164 

(projection, perspective and radial) caused by the lens of a IR camera hitched to a mobile inspection vehicle. 165 

Garrido et al. [2018b] used two thermal criteria and PCT (Principal Component Thermography) method to 166 

process raw data in order to detect and classify 3 thermal bridges and 3 areas with moisture. The 167 

thermograms were acquired from internal and external surfaces of building envelopes. This study was 168 

focused on qualitatively assessing the temperature distribution of each transition phase between each defect 169 

and its undisturbed surroundings. A pre-processing and a post-processing steps were required, specifically 170 

to eliminate the noise of the image and to extract the geometrical boundaries of the anomaly. Along this 171 

line, Garrido et al. [2019a] implemented three techniques of image post-processing: thresholding, bilateral 172 

filtering and findContours to external walls with moisture. The main goal was to increase the difference in 173 

pixels between the moisture areas and undisturbed areas, to remove the existing noise in the image and to 174 

implement a geometric and a thermal filter. The authors also stated that the temperature distribution of a 175 

thermogram could be assumed as pseudo-bimodal distribution with two Gaussian bells combined. Garrido 176 

et al. [2019b] presented some algorithms to automatically detect and characterize heritage structures with 177 

moisture from outside the building. The methodology was also focused on two thermal criteria and a semi-178 

automatic image rectification process. Skewness and kurtosis values were checked to determine moisture 179 

candidate regions.  180 
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2.3. Problem statement and research objectives 181 

As described earlier, the determination of an accurate U-value is an essential in terms of built quality and 182 

energy savings. However, the analysis pixel-by-pixel of an entire façade with pathologies has become a 183 

challenging task for the building inspection, especially in steady-state conditions. The extensive literature 184 

review shows that: (i) the diagnosis of pathologies is mainly qualitative; (ii) calculation procedures are 185 

complex and time consuming; (iii) a thermographic mapping of the façade often requires the use of 186 

complementary approaches to determine the thermal transmittance (i.e. complex CFD models in transient 187 

regime, a set of image processing techniques or additional measurement methods -ERT, GPR, EC-); (iv) a 188 

line segment is adopted as a representative part of the effect of the pathology. Furthermore, the most 189 

advanced methods only provide a processed image of the construction material in grayscale with the real 190 

contours of the existing anomalies in red lines.  191 

 192 

To solve these problems, the current paper aims to create a 2D U-value map based on quantitative internal 193 

IRT under stationary regime. Assuming the thermal image as a temperature matrix, and according to the 194 

background, the decision criterion of the proposal should be focused on the 2D correlation coefficient. In 195 

this way, it could be possible to work with a simpler processed thermogram and observe easily the 196 

associated dispersions of the measured U-value under the influence of pathologies, along vertical and 197 

horizontal axes of the building element. Within this context, the conceptual framework of the paper 198 

addresses the specific research objectives that are presented below. Firstly, the impact of mesh 199 

discretization in the quality of the thermal image was evaluated by means of MATLAB [Mathworks, 2018]. 200 

Secondly, a 2D colour map was developed using SURFER [Golden Software, 2018]. To demonstrate the 201 

applicability of the proposed innovative technique, three common constructive solutions in Southern 202 

European countries were selected and assessed by QIRT method reported in Tejedor et al. [2017]. 203 

Subsequently, the reliability and quality of the process was checked through an alternative NDT such as 204 

HFM (Heat Flux Meter), applying ISO 9869-1:2014 [International Organization for Standardization, 2014]. 205 

Notably, performance metrics of the detection system (recall, precision and F-score) were not determined, 206 

since image recognition and rectification techniques were not applied.   207 

 208 

 209 

 210 
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3. DEVELOPMENT OF THE METHOD 211 

The method, which is represented in Figure 1, is fully described in Sections 3.1 (Metrology: Non-212 

destructive testing and materials), 3.2. (Influence of mesh discretization on the quality of the processed 213 

image) and 3.3. (Development of a U-value map).  214 

 215 

 216 

Figure 1. Flowchart of the proposed method 217 

Step 1. 
Metrology: NDT and materials

Capture thermal images

Step 2. 
Influence of mesh discretization on the quality of 

the processed image

Obtain Original Thermal Image
(Data set A)

Generate Processed Thermal Image
(Data set B)

Compute 2D Pearson’s Coefficient (R)
(Determine the linear correlation degree in pixel-by-pixel 

intensity between two data sets A and B)

Set optimum number of elements (M)
to subdivide the original thermal image

Assess the effect of the mesh discretization
in the quality of the processed image

Create 2D plot of B
for each level of mesh discretization

Visualize the distortion of B

Create 3D plot of B 
for each level of mesh discretization

Observe TWALL range for each pixel

Calculate loss of quality image
for each level of mesh discretization

If LIQ < 10%, then B is OK

Step 3. 
Development of the 2D U-value map

Compute the average TWALL 

for each element M of data set B and instant “t”

Compute the measured U-value
for each element M of data set B and instant “t”

Obtain data file of average U-value in XYZ 
format to be read in surface mapping software

Create 2D U-value map
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3.1. Metrology: Non-destructive testing (NDT) and materials 218 

Laboratory testing for the thermal characterization of homogenous and non-homogeneous building 219 

structures or composite assemblies under steady-state conditions is considered one of the diagnosis 220 

techniques that has the lowest measurement errors, since it does not depend on climate conditions [Chen et 221 

al., 2012; Soares et al., 2019]. Thus, measurements were conducted in a walk-in climatic chamber 222 

(FITOCLIMA 1000, EDTU) of the Laboratory of Building Physics of FEUP (Faculty of Engineering of 223 

the University of Porto), as seen in Figure 2.   224 

 225 

     226 

Figure 2. Inside and outside the climatic chamber of FEUP 227 

 228 

To implement QIRT by the methodology proposed by Tejedor [2017], the walls were pre-conditioned in 229 

the climatic chamber. In this way, a stable temperature gradient and homogeneity of the heat flux were 230 

ensured. Taking into account that the TOUT and RHOUT were by default 18 -20ºC and 40% respectively, the 231 

inner environmental parameters were configured to be TIN= 35ºC and RH=50% before and during the tests. 232 

As regards the measuring equipment, an IR camera (NEC TH9100MR) and aluminum crinkled foil were 233 

positioned inside the metering box, to monitor the wall surface temperature (TWALL) and the reflected 234 

ambient temperature (TREF). This IR camera was characterized to present a temperature range from -20ºC 235 

to 100ºC, a resolution of 320 x 240 pixels and an accuracy of ±2% reading. In addition, inner and outer air 236 

ambient temperature were collected by two encapsulated temperature sensors and data loggers (HOBO 237 

UX100), with a resolution of 0.024ºC and an accuracy of ±0.21ºC. The wall surface emissivity (WALL) was 238 

determined with an emissometer (D&S Model AE1), obtaining a value of 0.93 for all walls. All the IRT 239 

tests only took 2h and the data acquisition interval was set to 1 minute, so that a total of 120 thermograms 240 

were captured. To perform the HFM method for subsequent validation of 2D maps, two transducers and 241 

data loggers (TPD TND-TH PU3.2) with an accuracy of ±5 were added to the experimental procedure. Data 242 
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were recorded for 72h with a sampling frequency of 10 minutes, following ISO 9869-1:2014 243 

recommendations [International Organization for Standardization, 2014].    244 

 245 

Concerning case studies, three heavy walls were chosen as representative samples of Southern European 246 

constructions. Different kinds of anomalies were built to alter the external or internal configuration of the 247 

wall, to observe variations in the thermal behavior of the wall and to check the limitations and potentials of 248 

the proposed automated data-processing technique. W1 consisted of a single-leaf wall of 0.25 m of 249 

lightweight concrete. The specific characteristic of this sample was the existence of air voids in the internal 250 

structure of the brick that could have affected the thermal behavior of the building component. W2 was a 251 

heavy multi-leaf wall that had superficial thermal bridges (0.06 x 0.06 m2) of different depths (0.025 m, 252 

0.050 m and 0.065 m). The internal configuration of this wall (from the outside to the inside) was: 0.25 m 253 

of lightweight concrete, 0.01 m of lightweight mortar, 0.065 m of projected thermal plaster, 0.005 m of 254 

bonding mortar with fiberglass and 0.010 m of mineral mortar. W3 was a heavyweight multi-leaf wall with 255 

0.250 m of lightweight concrete, 0.010 m of lightweight mortar, 0.060 m of EPS and 0.005 m of 256 

plasterboard. In this case study, the main feature was a large internal horizontal thermal bridge (0.88 x 0.20 257 

m2). The composition of the three walls is shown in Figure 3 by means of a schematic section. Notably, the 258 

metering box was sufficiently large to evaluate full-scale components of 1.9 m height.  259 

 260 
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 261 

Figure 3. Schematic section of the walls. (a) Single-leaf wall with internal air voids (W1); (b) Multi-leaf 262 

wall with superficial thermal bridges (W2); (c) Multi-leaf wall with internal horizontal TB (W3) 263 

 264 

Fig. 3 (b). Multi-leaf wall with superficial thermal bridges (W2)
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Fig. 3 (c). Multi-leaf wall with internal horizontal thermal bridge (W3)

1 2 3 4

0.325 m

1 Lightweight concrete
2 Lightweight mortar
3 Insulation EPS
4 Plasterboard

1.
90

0 
m

Fig. 3 (a). Single-leaf wall with internal air voids (W1)

O
ut

si
de

In
si

de

1.
90

0 
m 1 Lightweight concrete

1

0.250 m



12 
 

3.2. Influence of mesh discretization on the quality of the processed image 265 

Before a 2D U-value map is created, the features of the processed image needed to be defined to achieve a 266 

reliable automated tool. Therefore, this section was divided into two steps. The first one was to determine 267 

the optimum number of elements to subdivide the original thermal image (A). The second step was to assess 268 

the effect of mesh discretization on the quality of the processed image (B) that will be used later to develop 269 

the 2D U-value map.  270 

 271 

Taking into account the aspects mentioned in the literature review, Pearson’s correlation coefficient (R) 272 

was computed between the original thermogram (A) and the same processed image (B), as defined in 273 

Equation 1: 274 

 275 

𝑅 =
∑ ∑ ̅ ·

∑ ∑ ̅ · ∑ ∑

                (1) 276 

 277 

Where i and j are the number of rows and columns in the image arrays. Aij and Bij are the intensities of pixel 278 

ij from the data sets A and B. �̅� and 𝐵 can be defined as the mean pixel intensities of data sets A and B. 279 

Notably, array B was defined for different levels of discretization (Table 1), but the width/height ratio of 280 

the reference thermogram was always maintained. For example, if B was divided into 1600 elements, the 281 

thermal image contained 40x40 elements of 8x6 pixels each one and 1.33 of width/height ratio. Then, the 282 

average wall surface temperature (TWALL) was calculated for each one of these elements, leading to the same 283 

value for 8 pixels in horizontal and for 6 pixels in vertical. 284 

 285 

Table 1. Levels of discretization and n-elements to subdivide the thermal image  286 

Levels of discretization 

(Number of Pixels for each element in array B) 

Width/Height 

ratio 

M  

(Number of total elements to subdivide the image) 

8 x 6 1,333 1600  (40 x 40) 

16 x 12 1,333 400 (20 x 20) 

32 x 24 1,333 100 (10 x 10) 

64 x 48 1,333 25 (5 x 5) 

160 x 120 1,333 4 (2 x 2) 

 287 

 288 
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The measure of similarity between images did not consider luminance, contrast and structure during the 289 

quality assessment, in comparison with other image recognition studies. The main reason is that these three 290 

parameters were the same in all cases. Neither the “aliasing” filter was applied, since the resolution of data 291 

sets A and B was the same (320 x 240 pixels) and the only variant factor was the number of elements.  292 

 293 

After calculation of the 2D correlation coefficient, the mesh for each level of discretization was plotted in 294 

3D and 2D by MATLAB [Mathworks, 2018]. The 3D graph allowed the observation of average TWALL 295 

values for each pixel in array B with dimensions 320 x 240 pixels, while the 2D graph clearly highlighted 296 

the distortion of processed image B. To assess the effect of level discretization, the loss of image quality 297 

(LIQ) was calculated by Equation 2 and plotted against the number of elements to subdivide the thermal 298 

image.  299 

 300 

𝐿𝐼𝑄 = (1 − 𝑅 ) · 100                   (2) 301 

 302 

If R was close to 1, this indicated that the loss of information was minimum (LIQ < 10%) when pixel 303 

intensities Aij and Bij were compared (data sets A and B were linearly correlated images). If R was equal 304 

or close to 0, then the impact of level discretization was significant and the quality of the processed image 305 

B was not representative enough to create a 2D U-value map.  306 

 307 

3.3. Development of the 2D U-value map  308 

When QIRT tests had been completed and the optimum number of elements had been determined to 309 

subdivide the thermal image (1600 of 8x6 pixels), the next step in the method was to develop the 2D colour 310 

map to identify the distribution of the thermal transmittance throughout the entire wall area under stationary 311 

regime.  312 

 313 

For this purpose, a computer program was developed to automate the computation of the processed image 314 

(B) with average TWALL values and subsequently, to obtain the average thermal transmittance of each 315 

element of the array through the formulation extensively reported in Tejedor et al., [2017] and briefly shown 316 

in Equations 3 and 4.  317 

 318 
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 321 

The output was a data file in XYZ coordinate format to be read by SURFER [Golden Software, 2018]. With 322 

the contouring and 3D surface mapping software, 2D U-value maps could be generated with the same scale 323 

of colours as a thermogram. To check the reliability of the process, all maps were compared with the local 324 

measurements provided by HFM tests according to Section 3.1. It should be noted that the formulation of 325 

the measured U-value had already been validated in several Spanish residential buildings with different 326 

features [Tejedor et al., 2017; Tejedor et al., 2018; Tejedor et al., 2019]. Considering that the laboratory of 327 

Building Physics of FEUP allowed to test the specimens in controlled environmental conditions, possible 328 

computation errors in the development of the U-value map could be easily detected. 329 

 330 

4.  DISCUSSION OF RESULTS  331 

4.1. Influence of mesh discretization on the quality of the processed image   332 

This section is designed to discuss how mesh discretization of the thermal image could influence the quality 333 

of outcomes in the second stage of the proposed automated data-processing method, the generation of the 334 

processed image B. By way of example, and according to Section 3.2, the results of 2D correlation 335 

coefficients with different levels of discretization for sample W1 are presented in Figures 4 and 5. At the 336 

outset, the original thermogram (A) is shown with its respective 3D plot by MATLAB, to see where the 337 

temperature peaks were produced. Afterwards, the same structure was used to visually analyse the evolution 338 

of the processed image (B) with lower levels of discretization (8x6 pixels, 16x12 pixels, 32x24 pixels, 339 

64x48 pixels and 160x120 pixels). In contrast to other studies [Garrido et al., 2018b], this research did not 340 

pretend to obtain the acquisition of the contour of each anomaly by means of the PCT method and additional 341 

criterions, since PCT is normally applied in active IRT and their PCs (Principal Components) partially 342 

describe the temperature changes of pixels over time.  343 

 344 
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As can be observed, 3D and 2D plots presented an evident distortion along the variations in data set B. The 345 

range of the average wall temperatures was greater for high levels of mesh discretization (3D plots of 346 

Figures 4 and 5). In the case of the reference image (A), the scale of TWALL was from 26 to 34ºC. For levels 347 

of discretization of 4 elements (where each one contains 160 x 120 pixels), the scale of TWALL for array B 348 

was found to be between 30.4 and 31ºC. In fact, and in terms of the 2D correlation coefficient, R was equal 349 

to 0.287, which means that only 8.23% of the processed thermal image B can be attributed to the original 350 

thermogram A. Therefore, the loss of information in data set B could strongly affect in the development 351 

and accuracy of transmittance mapping. Besides this, an alteration in TWALL distribution was detected for 352 

arrays with < 400 elements (2D plots of Figures 4 and 5). In terms of applicability for the future 2D U-353 

value map, this aspect could make it harder for technicians to define the proportions of brick and mortar, 354 

the borders of the aluminium crinkled foil that should be avoided during the analysis of QIRT and so on.  355 

 356 
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  357 

Figure 4. Determination of 2D Correlation Coefficient for different levels of discretization I. (a) Original 358 

thermogram; (b) Processed image with a mesh discretization of 8x6 pixels; (c) Processed image with a mesh 359 

discretization of 16 x12 pixels 360 
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 361 

 362 

Figure 5. Determination of 2D Correlation Coefficient for different levels of discretization II. (a) Processed image 363 

with a mesh discretization of 32x24 pixels; (b) Processed image with a mesh discretization of 64x48 pixels; (c) 364 

Processed image with a mesh discretization of 160 x120 pixels 365 
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The parameter of assessment and quantification of image quality for data set B potentially decreased as 366 

levels of discretization were greater (Figure 6). Indeed, it could be drawn a curve defined by Equation 5.  367 

 368 

𝐿𝐼𝑄 = 186.26 · 𝑀 .                   (5) 369 

 370 

Where LIQ is the loss of image quality in [%] and M is referred to as the number of elements to subdivide 371 

the thermal image. This could help to determine the LIQ in future studies, without the need to calculate and 372 

plot a new data set B.  In addition, this analysis corroborated the results of Figures 4 – 5 and demonstrated 373 

that the optimum number of elements in which to subdivide a thermogram should be 1600 (40 x 40 elements 374 

of 8x6 pixels each one), giving only 6.65% of LIQ.  375 

 376 

 377 

Figure 6. Impact of mesh discretization in the quality of the processed image (B).  378 

 379 

4.2. Reliability and quality of the automated process  380 

Three heavy walls were tested in a climatic chamber by quantitative infrared thermography (QIRT) and 381 

heat flux meter (HFM) under steady- state conditions. Figures 7 – 9 show the 2D U-value maps that were 382 

computed by SURFER [Golden Software, 2018], following the procedures explained in Sections 3.2. and 383 

3.3. In the interpretation of these maps, it is important to note that the blue colour corresponds to cold spots 384 

with greater disturbance of the reference value and red spots refer to warmer areas. In addition, the areas of 385 

the aluminium crinkled foil were indicated with a discontinuous line in the IR images (temperature pattern) 386 

and 2D U-value maps.  387 
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 388 

 389 

Figure 7. IR Image and 2D U-value map for the single-leaf wall (W1) 390 

 391 

 392 

Figure 8. IR Image and U-value map for the multi-leaf wall with superficial thermal bridges (W2) 393 

 394 

 395 

Figure 9. IR Image and 2D U-value map for the multi-leaf wall with internal horizontal thermal bridge (W3) 396 

 397 
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Generally speaking, all 2D contour maps were a great reproduction of the thermograms, since the parts with 398 

a higher proportion of mortar as well as anomalies of different depth or geometry were perfectly identified. 399 

For W1, it could be affirmed that the existence of air voids in the internal structure of the brick comprised 400 

the thermal behavior of the building component (Figure 7). For W2, the automated process allowed an easy 401 

interpretation of the thermal behaviour of each hole (Figure 8). In fact, it could be extrapolated that any 402 

significant deviation was detected for depths under 0.025 m, since the measured U-value inside the hole 403 

was practically equal to the surroundings. For W3, the automated process provided a completely 404 

identification of the internal cavity as well as its area of impact, which highlighted the distribution of 405 

thermal transmittance throughout the entire wall area (Figure 9). This aspect would be quite impossible 406 

with other NDT, since the common standardized methods (i.e. HFM) only provide local measurements. 407 

With this innovative tool, the technician could observe where the sample had intense fronts that urgently 408 

required solutions. 409 

 410 

Regarding the reliability and quality of the automated process, readings of the 2D contour map were 411 

compared with HFM measurements. A brief description is reported below. In the case of W1 (Figure 7), 412 

the central area of the bricks of W1 had a U-value measured by QIRT similar to the outcomes obtained by 413 

HFM: UQIRT map = 1.1 -1.3 W/m2·K in the map; UHFM_W1= 1.308 W/(m2·K) with SD= 0.683 W/(m2·K). 414 

Notably, the internal thermal bridge and the borderlines among bricks could lead to variations in the 415 

thermophysical property above 53% (UQIRT map = 2 – 2.5 W/m2·K). The second case study W2 (Figure 8) 416 

presented an alteration of 47% in the bottom of the wall area (UQIRT map = 0.4-0.8 W/m2·K). For depths 417 

under 0.025 m, the U-value measured inside the hole was practically equal to the reference values. Thermal 418 

transmittance only fluctuated in the borderlines of the hole. For depths of 0.050 m, the thermal transmittance 419 

was found to be 0.4 W/m2·K in the delimitation of the superficial thermal bridge and 1- 1.2 W/m2·K in the 420 

central area of the anomaly. For depths of 0.065 m, the impact of the defect could derive to an increase in 421 

the U-value up to 10 times higher. As concerns normal operative conditions, the thermal transmittance was 422 

equal to 0.297 W/(m2·K) with SD= 0.058 W/(m2·K) using HFM. This value was within the range of the 2D 423 

map that was from 0.2 to 0.4 W/m2·K. Finally, the readings of automated process for the case study W3 424 

(Figure 9) were also in line with the HFM measurements. On the top of the thermogram and away from the 425 

horizontal TB, the thermal transmittance fluctuated between 0.3 - 0.5 W/m2·K, which was really similar to 426 

the HFM readings (UHFM_W3= 0.397 W/(m2·K) with SD= 0.086 W/(m2·K)). Nevertheless, values between 427 
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0.7 and 0.9 W/m2·K were given for the main area without a thermal bridge. In the disturbed area, the impact 428 

of the internal cavity leads to UHFM_W3 TB= 1.102 W/(m2·K) with SD= 0.188 W/(m2·K), which was within 429 

the range of the 2D map (0.9 - 1.3 W/m2·K in the contour line).   430 

 431 

Table 2 shows a comparative analysis of the common quantitative IRT strategies for homogenous and 432 

heterogeneous walls. Until now, an improvement in the inspection from inside the building was developed 433 

for homogeneous walls with different internal configurations, assuming instantaneous measured U-values 434 

as a stochastic process constituted by a constant signal plus white noise [Tejedor et al., 2019]. This aspect 435 

was an advantage in terms of automated inspection, since 30 minutes could be enough to assess 436 

homogenous heavy walls. In the current research, the potential of computing a 2D U-value map enhances 437 

the post-processing stage during quantitative IRT assessments for non-homogeneous walls in terms of 438 

complexity and time consumption. As seen in the above section, each IRT test can involve from 4 to 76800 439 

elements to subdivide a thermal image, and this can imply more or less complexity of data management 440 

during the calculation procedure to determine the U-value. Concerning time consumption, it could be 441 

expressed as the sum of the sampling duration (time needed to perform the inspection) and the time required 442 

to draw up the data-processing (Equation 6). According to previous studies and Table 2, test duration is set 443 

from 120 to 180 minutes for heterogeneous walls, while tdata-processing  is found to be 3 hours per specific wall 444 

area or individual point without a 2D map.  445 

 446 

𝑇𝑖𝑚𝑒 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑜𝑓 𝑄𝐼𝑅𝑇 = 𝑡 + 𝑡               (6) 447 

 448 

According to UNE EN 1934:1998 [International Organization of Standardization, 1998] and Lucchi et al. 449 

[2018], an experimental procedure for inhomogeneous specimens should contain between 21 and 35 sensors 450 

to determine parameters such as the heat flux and wall surface temperatures at different points. However, 451 

from 6 to 30% of the measurement errors could be attributed to the features of sensors (i.e. size and location 452 

of the heat flux plate) [Meng et al., 2015; Cucumo et al., 2018; Soares et al., 2019] and 20% to the data 453 

processing methods [Cesaratto et al., 2013; Evangelisti et al., 2018]. The mapping proposal means that in-454 

depth analysis of a building enclosure can be undertaken for several points at the same time, compared to 455 

the usual local diagnosis of the wall (without a 2D map) that requires the collection of IRT data in several 456 

wall areas and under the influence of changing test conditions over time (Table 2). Therefore, the automated 457 



22 
 

process implies an increase in robustness of the QIRT as a non-invasive technique with an acceptable loss 458 

of image quality (6.65%) and a notably reduction of costs and measurement errors related to the sensor 459 

network, to certify the built quality in new buildings and to decide on refurbishment solutions for existing 460 

buildings. Within the European context, Spain and Portugal have similarities in terms of climate zones and 461 

less demanding requirements in the thermal transmittance [Bienvenido-Huertas et al., 2019b]. Most of 462 

Spanish residential buildings were built between 1940 and 1979 (before the first thermal regulation) [Kurtz 463 

et al., 2015; Gangolells et al., 2016] and the U-values are higher than the limit set by the Spanish Technical 464 

Building Code [Kurtz et al., 2015], exceeding >100% the maximum energy loss value of façades [Moyano 465 

Campos et al., 2017]. However, progressive degradation of buildings could also be attributed to the lack of 466 

building maintenance plans [Bienvenido-Huertas et al., 2019c]. Along this line, Fantozzi et al. [2019] 467 

mentioned that the improvement of façades, the effect of thermal bridges and air ventilation rate should be 468 

considered to achieve nZEB in mild climate countries. Taking into account that the refurbishment is one of 469 

the passive strategies for energy optimization and building protection in the Mediterranean and Atlantic 470 

climate [Serrano et al., 2015; Suárez et al., 2016; Moyano Campos et al., 2017; Bienvenido-Huertas et al., 471 

2019b; Fantozzi et al., 2019], the 2D U-value map could help to check the level of maintenance and safety 472 

of the existing and new buildings. The degree of heterogeneity in the distribution of heat flux and wall 473 

surface temperature means that the technician must make a considerable effort if he or she wants to quantify 474 

thermal transmittance and incorporate more insulation in those damaged structures or increase tasks of 475 

preventive maintenance. With this automated process, technicians can work with a simpler processed image 476 

through short-lasting evaluation, since 20 minutes could be enough to generate the 2D U-value map.   477 

 478 

 479 

 480 

 481 

 482 

 483 

 484 

 485 

 486 

 487 
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Table 2. Potentialities of the 2D U-value map  488 

Homogeneous walls  (without 2D U-value map) 

Test duration by the usual QIRT approach 

(Stochastic process by Tejedor et al. [2019]) 
30 minutes with a data acquisition interval = 1 minute 

Number of thermograms  30 thermograms for a specific wall surface area 

Estimated time for data-processing  30 minutes for a specific wall surface area 

Non-homogeneous walls (without 2D U-value map) 

Test duration by the usual QIRT approach 120 – 180 minutes with a data acquisition interval = 1 minute 

Number of thermograms  Minimum 120 thermograms 

Estimated time for data-processing 

3 hours to analyse each wall surface area or spot with anomaly 

 The distribution of the U-value in the different regions 

influenced by a defect cannot be identified 

 The U-value needs to be known for the undisturbed area 

to be taken as a reference 

 To assess multiple areas, 76800 elements with different 

TWALL should be computed 

 Additional measurement techniques (EC, ERM, ERT and 

GPR) or complex CFD simulations need to be 

implemented to quantify the impact of the anomalies 

Non-homogeneous walls (with 2D U-value map) 

Test duration by the usual QIRT approach 120 – 180 minutes with a data acquisition interval = 1 minute 

Number of thermograms  Minimum 120 thermograms 

Estimated time for data-processing  

20 minutes for an entire wall area 

 Distribution of the U-value in any point of the building 

material, regardless the degree of homogeneity  

 1600 elements with different TWALL 

 Acceptable loss of the quality image (6.65%) 

 Great reproduction of the original thermogram 

 Non additional techniques are required  

 Improvement of the robustness 

 489 

 490 

 491 
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5. CONCLUSIONS 492 

The main contribution of this research is the development of a method to create 2D U-value map for entire 493 

façades in operating conditions by means of in-situ QIRT tests, leading to a better and accurate energy 494 

diagnosis tool without additional measurement techniques (i.e. EC, ERM, ERT and GPR) or simulation 495 

(i.e. FLUENT, THERM etc). The formulation of the in-situ measured thermal transmittance was based on 496 

a validated internal QIRT method that had been executed on the real built environment (existing and new 497 

buildings of Spain with different features) under stationary regime [Tejedor et al., 2017; Tejedor et al., 498 

2018; Tejedor et al., 2019]. For this research, three common constructive solutions in Southern European 499 

countries were reproduced in a climatic chamber. In this way, it could be easier to detect errors in the 500 

computation process of the 2D U-value map, since the environmental conditions of the laboratory were 501 

monitored and controlled in real time. Hence, the current study is a proof concept that deserves further 502 

research in future. 503 

 504 

The analysis of the impact of mesh discretization in the processed image allowed to determine the optimum 505 

number of elements in which to subdivide a thermal image through the 2D Correlation Coefficient. The 506 

results revealed that 1600 elements of 8x6 pixels should be considered to generate the processed image, 507 

assuming a loss of quality of the image of around 6%. Regarding the obtained 2D U-value maps, all of them 508 

successfully reproduced the original thermogram. The automated process shows a good reliability and 509 

quality, since the readings of the 2D U-value maps are in line with the HFM measurements. Hence, the 510 

innovative tool allows: (i) the provision of information about the thermal behaviour of opaque façades along 511 

the vertical and horizontal axis; (ii) the definition of the geometric shape of the building element and its 512 

anomalies; (iii) the reduction of the complexity and time consumption of the current methodologies in terms 513 

of data management, executing several points of analysis at the same time.  514 

 515 

The findings of the comparative analysis between current calculation procedures and strategies during the 516 

data-processing stage demonstrated the effectiveness of automating thermographic assessments. The 517 

innovative tool took just 20 minutes to evaluate the 2D effect of any anomaly, for homogeneous and 518 

heterogeneous construction materials. Furthermore, it avoided the manual collection and evaluation of a 519 

greater number of local measurements in several wall areas and under the variations of boundary conditions 520 

over time.  521 
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In terms of applicability, this automated data-processing technique could help to better understand the 522 

thermal behaviour of the wall when some anomalies arise by ageing or climatic conditions. In contrast to 523 

previous studies focused on the automated interpretation of building pathologies, the 2D colour map allows 524 

to identify the distribution of the measured thermal transmittance instead of only giving the linear U-value 525 

or the contour of the candidate to be a thermal bridge or a moisture region. It neither requires additional 526 

visual image processing techniques (thresholding, filtering etc) nor statistical tools such as PCT. It should 527 

be noted that internal or external walls can present pathologies that damage the structure and influence on 528 

energy demand [Dowson et al., 2012; Battista et al., 2014; Kurtz et al., 2015; Dumitrescu et al., 2016; 529 

Mortarotti et al., 2017; Park et al., 2017; Garrido et al., 2018a]. Furthermore, construction project 530 

documents cannot be obtained in most cases because the information in paper disappeared [Tejedor et al., 531 

2017] or properties of the wall (stratigraphy and modularity) are unknown [Doran 2001; Baker et al., 2011; 532 

Litti et al., 2015; Lucchi et al., 2018] and consequently, an energy audit could imply a high cost in terms of 533 

money and time [Garrido et al., 2018a]. This research pretends to offer a fast, economic and easy tool for 534 

specialized researchers, energy auditors or other stakeholders related to construction field (civil engineers, 535 

industrial engineers or architects). In Southern European countries, where the residential building stock is 536 

characterized by being erected between 1940 and 1979 and having less demanding thermal requirements 537 

[Kurtz et al., 2015; Gangolells et al., 2016], refurbishment is presented as one of the passive strategies for 538 

optimizing energy use and building protection [Serrano et al., 2015; Suárez et al., 2016; Moyano Campos 539 

et al., 2017; Bienvenido-Huertas et al., 2019b; Fantozzi et al., 2019]. Therefore, the 2D U-value map could 540 

be a useful building diagnosis tool in the improvement of the façade as well as the design of preventive 541 

maintenance and safety plans. In the same way, and regarding the historic preservation, mapping the 542 

building’s conservation state could help to define specific strategies to enhance the weaknesses of the 543 

structure.  544 

 545 

Concerning the robustness of the equipment, this proposed tool leads to reduce the cost and measurement 546 

errors related to the sensor network. The number of sensors for heterogeneous walls is only 3 with the 2D 547 

U-value map (IR camera and two thermocouples) in comparison with regulations or previous studies where 548 

the metering section required a maximum of 35 sensors [UNE EN 1934:1998 - International Organization 549 

of Standardization, 1998-; Lucchi et al., 2017]. As mentioned in the literature, the subjectivity and expertise 550 

of the technician can play an important role in the correct identification of building pathologies [Garrido et 551 
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al., 2018]. Hence, human errors or procedural flows could be eliminated as a root-cause of inaccuracy if 552 

the 2D-value map is used. The execution of the QIRT from inside the building also makes possible to avoid 553 

the distortions of the thermograms caused by the lens of the IR camera. As regards, the integration of the 554 

2D U-value map into digital tools, future steps of the research should involve a unique platform where all 555 

softwares interact with each other (i.e. FLIR TOOLS+ or InfRec Analyser, MATLAB and SURFER). 556 
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