
Towards Data-Flow Parallelization for Adaptive
Mesh Refinement Applications

Kevin Sala
Barcelona Supercomputing Center (BSC)

Barcelona, Spain
kevin.sala@bsc.es

Alejandro Rico
Arm Research

Austin, TX, USA
alejandro.rico@arm.com

Vicenç Beltran
Barcelona Supercomputing Center (BSC)

Barcelona, Spain
vbeltran@bsc.es

Abstract—Adaptive Mesh Refinement (AMR) is a prevalent
method used by distributed-memory simulation applications to
adapt the accuracy of their solutions depending on the turbulent
conditions in each of their domain regions. These applications
are usually dynamic since their domain areas are refined or
coarsened in various refinement stages during their execution.
Thus, they periodically redistribute their workloads among pro-
cesses to avoid load imbalance. Although the defacto standard for
scientific computing in distributed environments is MPI, in recent
years, pure MPI applications are being ported to hybrid ones,
attempting to cope with modern multi-core systems. Recently, the
Task-Aware MPI library was proposed to efficiently integrate
MPI communications and tasking models, providing also the
transparent management of communications issued by tasks.

In this paper, we demonstrate the benefits of porting AMR ap-
plications to data-flow programming models leveraging that novel
hybrid approach. We exploit most of the application parallelism
by taskifying all stages, allowing their natural overlap. We employ
these techniques on the miniAMR proxy application, which
mimics the refinement, load balancing, communication, and
computation patterns of general AMR applications. We evaluate
how this approach reduces the time in its computation and
communication phases while achieving better programmability
than other conventional hybrid techniques.

Index Terms—Adaptive Mesh Refinement, AMR, MPI, Tasks,
Data-Flow, OpenMP, OmpSs-2, TAMPI, miniAMR

I. INTRODUCTION

As the exascale era approaches, the HPC systems are further
evolving to enormous machines offering tens of thousands of
high-end computing nodes, each of these featuring a large
number of processing units. Those systems connect their
nodes using high-bandwidth and low-latency interconnection
networks, allowing high scalability efficiency across thousands
of nodes. Nevertheless, achieving the full utilization of their
resources has become a severe challenge for the HPC com-
munity. Most scientific applications are parallelized using only
MPI [1], and although it is the defacto programming model
in distributed environments, it is not the best option to exploit
the intra-node parallelism in modern multi-core and many-core
processors. Pure MPI approaches can make applications less
flexible while becoming more sensitive to load imbalance or
differences among processing unit’s throughput.

ORCID: 0000-0001-8233-1185, 0000-0003-1282-8887, 0000-0002-3580-9630

The most widespread solution is the hybrid parallel pro-
gramming technique [2] [3] [4], where distributed and shared-
memory programming models are combined to exploit both
inter- and intra-node parallelism. Hybrid applications usually
combine MPI with OpenMP [5], which is the leading API
for shared-memory parallelism. Hybrid programming is al-
ready a conventional technique but is considered a crucial
component to scale in future exascale systems [6]. Com-
monly, MPI+OpenMP applications parallelize their computa-
tion phases while keeping their MPI communications serial-
ized, in what is called a fork-join approach. In general, this
simple technique does not scale nor permit the overlapping of
phases. There are more advanced techniques, like taskifying
both computation and communication phases and connecting
tasks through data dependencies. This allows removing global
synchronizations by means of inter-task dependencies across
processes, which is crucial for the performance of parallel
applications at large scale [7]. However, MPI and OpenMP
do not currently provide support to implement this approach
safely and efficiently. They were not designed to be combined
and only provide mechanisms to coexist on an application.

The Task-Aware MPI (TAMPI) library [8] [9] was recently
proposed to overcome these limitations. This library integrates
blocking and non-blocking MPI operations with tasking pro-
gramming models, like OpenMP and OmpSs-2 [10], allowing
the efficient execution of MPI operations from within tasks.
TAMPI is responsible for managing the progress of MPI
communications issued by tasks, whereas the tasking model
inherently provides the overlap between tasks of different
phases. This way, application developers can focus on ex-
posing their application’s parallelism without being concerned
about low-level aspects.

Recently, some applications have been studied to leverage
this hybrid data-flow model, as the Gauss-Seidel and IFSKer-
nel [8] benchmarks, and the CREAMS [11] fluid dynamics
application. However, there are no studies on applying this
approach to more dynamic algorithms featuring periodic load
balancing or modifications on the domain space, forcing the
application to increase/decrease the problem complexity dur-
ing its execution. Applications leveraging the Adaptive Mesh
Refinement method [12] match those conditions.

The AMR is a popular method used by several distributed-
memory simulation applications that adapt the accuracy of

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or 
future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for 
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



their solutions depending on the turbulence conditions in each
of their domain’s regions. Usually, turbulence conditions are
produced by the presence of objects from the simulation in
some regions of the domain. These applications increase their
accuracy in these turbulent regions while keeping the rest with
lower accuracy. This method saves both computational and
memory resources compared to static grid approaches where
the whole domain is uniformly refined to the same resolution.
These applications present several opportunities for improve-
ment. Their computation and communication patterns dynam-
ically change depending on the simulated problem due to the
periodic refinement stages, which may increase or decrease
the accuracy in some particular areas. Also, refinement stages
alter the number of areas that each process is responsible
for, meaning that their workload may vary unequally. Thus,
they must perform load balancing stages regularly to avoid
imbalance among processes.

MiniAMR [13] [14] is a proxy application that mimics
the communication, refinement, and load balancing stages of
larger applications, like CTH [15]. This mini-app aims at
facilitating the task of testing new programming techniques
and new computer architectures. Recently, Rico et al. [16]
proposed and implemented a taskification approach for mini-
AMR. They ported the mini-app to the OpenMP tasking model
to be evaluated on a single node. Since they focused on the
shared-memory parallelization, they disabled the MPI com-
munication phases. That makes this application an excellent
opportunity to apply the data-flow model that TAMPI offers.
We aim at having a complete taskification of miniAMR such
that the tasks, connected through data dependencies, conduct
all computation and communication phases, and leveraging
TAMPI to transparently manage MPI operations issued by
tasks. This way, tasks from different phases will be able to
overlap naturally, without sacrificing programmability.

In this work, (1) we propose a complete hybrid data-flow
taskification for AMR applications comprising their computa-
tion, communication, refinement, and load balancing phases,
with the objective of enhancing their programmability and
performance; (2) we explain the porting of miniAMR to this
approach step by step, and (3) we provide an in-depth per-
formance and scalability comparison between our approach,
the MPI-only reference implementation, and a MPI+OpenMP
fork-join variant, using up to 12288 cores.

II. BACKGROUND

A. Adaptive Mesh Refinement, MiniAMR

Scientific and engineering applications that incorporate
Adaptive Mesh Refinement, as CTH [15], are usually large
applications featuring numerous options and modes. They are
too complex for evaluating new programming techniques or
new system architectures. MiniAMR [13] [14] is a mini-
app included in the Mantevo suite [17] that addresses those
limitations. This proxy application mimics the refinement,
coarsening, load balancing, communication, and computation
patterns found in general AMR applications. The reference
implementation [14] of miniAMR is based only in MPI, but

1 foreach timestep or simulation time finished do
2 foreach stage per timestep do
3 foreach communication var group do
4 communicate(group);
5 stencil(group);
6 if checksum stage then checksum(group);
7 end
8 end
9 if refinement timestep then refine();

10 end
Algorithm 1: The main loop of miniAMR.

they also provide an experimental fork-join hybrid variant that
combines MPI and OpenMP threads [14].

The physical domain of miniAMR is a rectangular mesh
representing a unit 3D cube. The mesh is divided into blocks
along all three dimensions. The application provides options
to configure the number of MPI processes, the initial number
of blocks per process, and the block size, all of them in each
dimension. Therefore, each MPI process holds a specific initial
number of blocks, and that initial configuration represents the
coarsest level of the mesh.

MiniAMR provides options to define multiple input objects,
which are simulated during the application’s execution. There
are up to 16 types of objects: rectangles, spheroids, cylinders,
etc. Each object specifies its initial position, initial size,
movement rate, growth rate, and whether the object should
bounce when colliding with the mesh boundaries. MiniAMR
considers all these input objects when deciding which regions
of the mesh need more precision and should be refined. For
instance, blocks containing boundaries of an object could be
refined into finer blocks. The refinement of a block consists
of doubling its resolution in each dimension by splitting that
block into eight new blocks. Although each block has a
specific refinement level, all have the same size (or number
of grid cells), causing the most refined blocks to provide
a higher simulation accuracy. Conversely, the coarsening of
blocks produces a consolidation of eight refined blocks into
a single coarser, reducing the simulation accuracy in that
region. Then, communications, either inter- or intra-process,
involve exchanging the block boundary faces (or ghost values)
between neighboring blocks. To reduce the complexity of these
communications, miniAMR forces neighboring blocks to be at
a maximum difference of one refinement level.

Grid cells are comprised of a user-defined number of
variables, and stencil algorithms are independently applied to
the variables in each cell. There are several stencils, but we
focus on the 7-point stencil, which computes the value of a
cell as the average of itself and its six 3D neighboring cells.

Algorithm 1 shows the main loop of the miniAMR executed
by each MPI process. The mini-app runs during a specific
number of timesteps or during a maximum simulation time.
Timesteps are divided into various stages, where it takes
place the communication of neighboring block faces, and
then, the computation applying the stencil algorithm to all
process’ blocks. Communication and stencil functions handle
cell variables by communication variable groups, where users
specify the number of groups to use. Each communicate and



1 foreach dir in X, Y, Z directions do
2 foreach proc in neighbors[dir] do
3 foreach face in recvfaces[dir][proc] do
4 MPI Irecv(recvbuf[face]);
5 end
6 end
7 foreach proc in neighbors[dir] do
8 foreach face in sendfaces[dir][proc] do
9 pack face(face, sendbuf[face]);

10 MPI Isend(sendbuf[face]);
11 end
12 end
13 intraprocess communication();
14 while any recvbuf[*] pending do
15 id = MPI Waitany(recvbuf[*]);
16 face = recvfaces[id];
17 unpack face(face, recvbuf[face]);
18 end
19 MPI Waitall(sendbuf[*]);
20 end

Algorithm 2: The communicate function.

stencil call handles a single group of variables, however, in
realistic simulations, there is usually a single group.

The communicate function performs both the intra- and
inter-process exchanges of boundary block faces (ghost values)
among neighboring blocks. Algorithm 2 shows the pseudocode
of this function. Exchanges are performed in a single direction
at a time. The loop at line 2 starts receiving the required
boundary faces for every remote neighbor process in that
direction. Then, the loop at line 7 packs each of the boundary
faces that must be sent to a neighbor. The packing consists
of copying the face data from the mesh block to a contiguous
communication buffer. Once packed, at line 10, the face data
stored in the sending communication buffer is sent through
MPI. While the MPI communications are in-flight, at line
13, the intra-process exchanges take place. That exchange
involves the local copy of the bordering faces for each pair
of neighboring blocks that are both stored in the current MPI
process. Then, the loop at line 14 iterates as long as there are
pending receivings. Once a face is received, at line 17, the
mini-app unpacks the face data that is stored in the receiving
communication buffer. The unpacking consists of copying the
face data from the receiving buffer to the corresponding mesh
block. Finally, at line 19, it waits until all sending operations
complete before starting the exchanges for the next direction.

The code shows that each face is sent/received in a sepa-
rate message, although that behavior is only enabled by the
--send_faces option. By default, all faces exchanged with
a remote process are grouped into a single MPI message.
Communications are always done using non-blocking MPI
operations, trying to overlap intra- and inter-process commu-
nications. Send/receive operations for the same direction can
be performed concurrently because each face has a specific
section in the global send/receive buffer. However, directions
must be processed sequentially since they use the same com-
munication buffers. MPI messages are tagged with the face’s
identifier, which both sender and receiver know beforehand.

Back in the main loop, miniAMR checks the correctness of
the solution every specific number of stages. The checksum
involves a local array reduction over all variables, followed

by a global array reduction over the arrays of all processes.
Furthermore, every specific number of timesteps, the mini-app
moves the objects based on their movement rate, and then,
it carries out a refinement stage. During that stage, blocks
of the mesh may be refined or coarsened, considering the
characteristics of the intersecting objects.

The miniAMR that we have explained is the MPI-only
version that we will use in the evaluation to compare with our
hybrid approach. This MPI-only baseline corresponds to the
reference implementation [14] with two changes introduced by
Rico et al. [16]. The first change is that the stencil function
handles a group of variables instead of a single variable.
Secondly, each block has a pointer to a contiguous array
storing all its variables for the three dimensions, instead of
having disaggregated arrays for each variable and dimension.

B. Hybrid Parallel Programming

The MPI [1] and OpenMP [5] standards are the program-
ming models par excellence for scientific and engineering
applications in distributed environments. MPI is the principal
message-passing standard that targets the inter-node paral-
lelism. OpenMP is the main portable API for shared-memory
parallelism. They are usually combined in applications to get
the benefits from both models, in what is called hybrid parallel
programming. Although it is not a novel technique, it is still
one of the key elements for efficiently leveraging the resources
of current and future exascale systems [6].

OpenMP offers different ways to define parallelism, but
the main two are through the thread fork-join and tasking
models. The fork-join model allows defining parallel regions
and loops that are concurrently executed by multiple threads,
which are managed by an underlying runtime library. In
contrast, the tasking model allows to define tasks, which are
independent pieces of code that are scheduled and executed
asynchronously. Users define the input and output data for
each task and the runtime library tries to run them in parallel
respecting their execution order constraints. As an alternative,
OmpSs-2 [10] is the second generation of the OmpSs [18]
programming model and defines a full tasking model with
advanced dependency features.

The most common practice in hybrid applications is the
combination of MPI and OpenMP in a fork-join approach.
Computation phases are parallelized with OpenMP, while
MPI communication phases are performed sequentially. The
parallelism is closed before starting a communication phase,
or just a small portion is parallel. Although it is a simple
approach, it generally does not scale as well as the MPI-
only version. A more advanced approach is the taskification
of both computation and communication phases. Task data
dependencies connect both task types and guarantee a cor-
rect execution order. In this way, the taskification offers a
natural overlap of computation and communication phases,
which is a challenging objective in other approaches. This
strategy follows the data-flow paradigm principles, where
computational processes are broken into individual work units
handling smaller portions of data concurrently. However, MPI



and OpenMP were not designed to be combined efficiently. In
fact, MPI only defines the MPI threading levels [1] to interact
with other parallel programming models.

The Task-Aware MPI library [8] [9] was recently proposed
to overcome these limitations. TAMPI allows the safe and
efficient taskification of MPI communications, including all
blocking, non-blocking, point-to-point, and collective opera-
tions. The TAMPI library allows calling MPI communication
operations from within tasks. Blocking MPI operations pause
the calling task until the operation completes, but in the
meantime, the tasking runtime system may execute other tasks.

Non-blocking operations can be bound to a task through two
API functions named TAMPI_Iwait and TAMPI_Iwaitall,
which have the same parameters as the standard MPI_Wait

and MPI_Waitall, respectively. These two TAMPI functions
are non-blocking and asynchronous and can be used to bind
the completion of the calling task to the finalization of the MPI
requests passed as parameters. The calling task will not release
its dependencies until (1) the task finishes its execution and
(2) all bound MPI operations complete. Its successor tasks will
be ready to execute only once its dependencies are released.

We must highlight that a task can call those TAMPI
functions several times, binding multiple MPI requests during
its execution. Moreover, TAMPI offers a wrapper function
for each non-blocking MPI operation, which performs the
standard non-blocking operation, and then, it automatically
calls TAMPI_Iwait with the resulting MPI request. The
TAMPI_Isend and TAMPI_Irecv are an example.

III. RELATED WORK

Since the Adaptive Mesh Refinement method [12] was
proposed, several studies have been conducted on AMR ap-
plications and their parallelization. Different hybrid fork-join
MPI+OpenMP approaches were studied [19] [20]. Recently,
a MPI+OpenMP stealing mechanism was proposed by Sam-
fass et al. [21] that enables distributed work-stealing among
processes to avoid the common load imbalance in AMR
applications. A communication thread per rank is used to
coordinate the work-stealing, while OpenMP tasks conduct
computations. Prat et al. [22] studied the taskification of
computations in AMR applications using OpenMP tasks and
dependencies, combined with cache blocking and vectoriza-
tion techniques. However, they did not include the study of
communication patterns. As previously mentioned, miniAMR
[13] was proposed to facilitate the testing of new programming
techniques and architectures. Rico et al. [16] ported miniAMR
to OpenMP tasks, focusing only on single node executions. In
this paper, we take their parallelization as the base for our full
taskification of miniAMR.

Several frameworks provide APIs for building parallel AMR
applications. AMReX [23] is a framework based on the ideas
of BoxLib [24] and Chombo AMR [25], which facilitates the
building of block-structured AMR applications and supports
hybrid MPI+OpenMP parallelism. AMReX divides the domain
into smaller boxes and distributes them among MPI ranks
transparently. Each rank is responsible for computing its

boxes. These computations can be parallelized at two levels: a
box is entirely computed by a single OpenMP thread, or it can
be processed by multiple threads. Zhang et al. [26] presented
the idea of tiling in AMR, where they logically divide each
box into tiles of a specific size. Each tile is then computed by
a thread, so multiple tiles can be processed in parallel.

Farooqi et al. [27] extended the AMReX framework with
an API to support the asynchronous execution of AMR
computation phases, which can overlap the internal AM-
ReX communications. They implement a runtime system that
manages the dependencies among AMR phases and their
required communications. They use a few threads dedicated to
performing communications, along with other threads running
the computation phases. This API could probably be imple-
mented using OpenMP/OmpSs-2 and TAMPI, leveraging task
dependencies to overlap computation and communication tasks
transparently. This way, AMReX would not need to implement
the management of parallelism and dependencies. Also, the
dedicated communication threads would disappear because
communication tasks would run in parallel with other tasks
in any available core.

Finally, some applications were already studied to benefit
from the TAMPI [8] features. The Gauss-Seidel and IFSKernel
[8] benchmarks were ported to a similar approach that we
are studying in this paper for AMR. Also, the CREAMS
[11] computational fluid dynamics application was studied and
ported to TAMPI+OmpSs-2. These three applications achieved
better scalability than the rest of their non-TAMPI variants.

IV. DATA-FLOW PARALLELIZATION FOR MINIAMR

In this section, we describe the data-flow parallelization that
we propose for miniAMR. We focus on exploiting most of
the mini-app parallelism by taskifying the heaviest parts: the
intra- and inter-process communication, stencil, checksum, and
some refinement and load balancing sections. Our objective
is to design an approach that combines tasks across differ-
ent stages through data dependencies, avoiding implicit and
explicit barriers, which could break the data-flow execution
model and limit the potential parallelism. That allows us to
overlap computation and communication tasks from the same
phase but also between different phases. Although we explain
the parallelization for miniAMR, most transformations should
apply to other larger AMR applications.

We take as a base the taskification of the intra-process
code sections made by Rico et al. [16]. They taskified the
stencil, checksum, and intra-process communications with
OpenMP tasks. They disabled the MPI communication part,
as they evaluated miniAMR only on a single node. Thus,
they modified the stencil, checksum, and communicate

functions from Algorithm 1 to instantiate tasks to process the
blocks of the mesh. Firstly, the stencil function creates
a task per block, declaring an input-output dependency on
the block’s data section that corresponds to the group of
variables being processed. In this case, blocks are computed
in parallel. Secondly, they applied a similar approach in
checksum, where the local reduction is performed in parallel



1 foreach dir in X, Y, Z directions do
2 foreach proc in neighbors[dir] do
3 foreach face in recvfaces[dir][proc] do
4 #pragma omp task out(recvbuf[face])
5 TAMPI Irecv(recvbuf[face]);
6 end
7 end
8 foreach proc in neighbors[dir] do
9 foreach face in sendfaces[dir][proc] do

10 #pragma omp task in(face) out(sendbuf[face])
11 pack face(face, sendbuf[face]);
12 #pragma omp task in(sendbuf[face])
13 TAMPI Isend(sendbuf[face]);
14 end
15 end
16 intraprocess communication();
17 foreach proc in neighbors[dir] do
18 foreach face in recvfaces[dir][proc] do
19 #pragma omp task out(face) in(recvbuf[face])
20 unpack face(face, recvbuf[face]);
21 end
22 end
23 end

Algorithm 3: The taskified communicate function.

using a task per block. These tasks only read the block’s data,
thus they directly depend on the updates made by stencil

tasks. Next, parallelism is closed with an OpenMP taskwait

after the local reduction, and then, the global MPI reduction
takes place across all processes. Then, they modified the
communicate function, previously shown in Algorithm 2,
by disabling the pack/unpack of boundary block faces and
their remote transmission. They taskified the intra-process
communication, which corresponds to the local copies between
neighboring blocks in the same process. As all these tasks
are connected through data dependencies, they achieved the
overlapping of these three phases. Parallelism was only closed
during the stages with a checksum and before starting a
refinement phase. Taking their taskification as a base, in the
following subsections, we describe our parallelization strategy
step by step for all the mini-app phases.

A. Inter-Process Communication
Our first step is to integrate the inter-process communication

into the current taskification, such that MPI communication
tasks naturally combine along with the rest of existing tasks.
In this step, we will leverage the features offered by the
TAMPI library [8] [9], explained in Section II-B. Since the
reference version of miniAMR already leverages non-blocking
MPI communication, we use the TAMPI support for non-
blocking operations, e.g., TAMPI_Isend.

Algorithm 3 shows the taskification of the miniAMR’s
communication phase. The structure of the function is similar
to the one from the MPI-only baseline. We start by taskifying
the receiving of faces at line 4. Since the receive operation
stores data into the receiving buffer, we declare an output
dependency on that buffer. We substitute the MPI_Irecv for
a TAMPI_Irecv call, such that the task performs a standard
MPI_Irecv and binds the task completion to the finalization
of the resulting MPI request. As explained in Section II-B,
the TAMPI function is non-blocking and asynchronous, so
the task may finish its execution before receiving the data.

Therefore, the data must not be consumed inside the task.
Once the receive operation finishes, the task will complete
and release its data dependencies, marking its successor tasks
as ready to execute. Only at this point, the content of the buffer
can be safely consumed.

Our taskification continues at the sending loop, at line 9,
where we instantiate a task for each packing and sending
function call respectively. Firstly, the pack_face function
copies the face data from the mesh block to the corresponding
sending buffer. Hence, the packing task must declare an input
dependency on the face, located in a mesh block, and an output
dependency on the sending buffer section. Then, the buffer’s
data is sent by a task through TAMPI_Isend. In this case,
the sending task declares an input dependency on the buffer
because MPI reads it. This task will fully complete when
the send operation finishes, meaning that it is safe to reuse
the buffer. The next phase, at line 16, is the intra-process
communication, where tasks perform copies among local
neighboring blocks. This part was already taskified by Rico
et al. [16], thus we have not modified it. We made sure that
tasks from both intra- and inter-process communication (local
copy and TAMPI tasks) are safely combined and connected
through data-flow dependencies.

The last phase is the unpacking of the received faces, at
lines 19-20. Once a face is received, and the corresponding
receiving task (line 4) completes, another task can unpack the
data. The unpack_face function copies the face data from
the receiving buffer to the corresponding mesh block. Conse-
quently, an unpacking task must declare an input dependency
on the receiving buffer section and an output dependency on
the face, which is located in a mesh block.

Notice that we removed all calls to MPI_Waitany and the
complexity of managing asynchronous MPI requests disap-
peared. In our approach, TAMPI transparently manages the
MPI operations and their progress, while the tasking model
naturally grants the overlapping of phases. Hence, we can
completely focus on exposing the application’s parallelism
instead of being concerned about low-level aspects.

These tasks are instantiated for each of the X, Y, and
Z directions, but miniAMR uses the same communication
buffer space for all directions. That can reduce the parallelism
when sending/receiving faces through MPI because tasks
from different directions may depend on the same buffer
section. To address this issue, we introduce a new option
called --separate_buffers, which reserves a send/receive
buffer for each direction. This way, tasks from different
directions use distinct communication buffers, preventing any
false dependency. This option is convenient for tasking models
that do not support region dependencies, since buffer section
sizes may differ among directions. Tasking models featuring
region dependencies (e.g., OmpSs-2) would support that case
naturally, but with OpenMP, we would need to express the
tasks’ dependencies using multi-dependencies [5].

The structure shown in Algorithm 3 represents the behavior
when --send_faces is enabled. However, as mentioned in
Section II-A, the default is to communicate all faces of a



1 foreach timestep or simulation time finished do
2 foreach stage per timestep do
3 foreach communication var group do
4 communicate(group);
5 stencil(group);
6 if checksum stage then checksum local(group);
7 end
8 if checksum stage then
9 #pragma omp taskwait

10 checksum remote(all groups);
11 end
12 end
13 if refinement timestep then
14 #pragma omp taskwait
15 refine();
16 end
17 end
Algorithm 4: The main loop in our taskified miniAMR.

direction and neighbor arranged into a single MPI message.
We support that case by instantiating a single communication
task per direction and neighbor. Now, a sending task may
depend on multiple packing tasks because each of these
latter writes to a section of the sending task’s buffer. Thus,
we express its dependencies on all its buffer sections with
OpenMP/OmpSs-2 multi-dependencies. The same occurs with
the receiving tasks and their succeeding unpackers.

Regarding the number of communication tasks, we have
added another option called --max_comm_tasks that expects
a non-negative integer. It is only considered when enabling
--send_faces and indicates the maximum number of com-
munication tasks (thus messages) per direction and neighbor.
This option allows us to control the parallelism exposed in
this phase. The default value is zero and means that we
create a communication task and message per face. Generally,
four or eight communication tasks (messages) per direction
and neighbor are sufficient to obtain satisfactory parallelism.
Since computation tasks usually have finer granularities than
communication ones, when a communication task completes,
it satisfies the data dependencies of multiple computation
tasks. Once again, we use multi-dependencies to implement
this feature.

Lastly, communication tasks must use a well-defined space
of MPI tags to identify face messages. As mentioned in
Section II-A, the MPI-only baseline uses face identifiers as
MPI tags, known by both the sender and receiver beforehand.
In our case, we can continue using face identifiers to compute
MPI tags. However, since communication tasks from different
directions may run in parallel, we must define a distinct tag
space for each of the three directions. For simplicity, we divide
the tag space into three sub-spaces, allowing a sufficiently
large arbitrary number of tags per direction. Notice we could
use other mechanisms instead, like using a different MPI
communicator per direction.

B. Refinement & Load Balancing

The next crucial phase is refinement, where mesh blocks
are refined or coarsened depending on the objects moving
across the mesh. This phase may also perform a load balance
stage to equilibrate the number of mesh blocks per process.

The refinement phase is performed every specific number of
timesteps, and before starting this phase, we have an explicit
barrier (taskwait) that waits until all previous tasks finish.
The call to the refinement function is shown at the end
of Algorithm 4. In our experiments, the time spent in this
phase does not take more than 10% of the total execution
time, however, the percentage significantly grows when the
rest of the application is parallelized. Notice that the MPI-
only version implicitly parallelizes the refinement because it
executes with more ranks (e.g., one rank per core) than hybrid
runs (e.g., one rank per socket). There are fewer mesh blocks
per rank in MPI-only because the refinement work is naturally
divided across all ranks.

The taskification for this stage must be designed smartly
to compete with the inherently parallel MPI-only version.
This phase is not easy to parallelize because most of the
code operates with control data structures. Nevertheless, some
code sections work with mesh block data and are reasonably
parallelizable. We first focused on profiling this phase, and
then, we taskified the most time-consuming parts. One of these
heaviest sections is when a mesh block is refined and split
into new eight finer blocks. Similarly, another time-consuming
section is the consolidation of eight refined blocks into a
coarser block. The time spent in these two sections is around
25% of the total refinement time. In the splitting section, the
original block data is copied to finer blocks, while in the
coarsening section, the eight blocks are copied back to the
coarser. We taskify these copies since they can run in parallel.

There is another function that takes up to 70% of the re-
finement time. The exchange function transmits mesh blocks
that were marked to be moved to other processes using point-
to-point MPI operations. The function is complex because its
algorithm needs both control and data MPI messages to coor-
dinate the exchange operation. The source and destination of
each block are known beforehand. The receiver must send an
acknowledgment (or ACK) message to the sender, indicating
whether it has space for the block. Once the sender receives a
positive ACK message, it packs and sends the corresponding
mesh block using MPI_Send. In turn, the receiver waits for
the block and unpacks it once it arrives. The exchange

function may return with blocks pending to exchange when
the available space in the MPI processes is very limited, so a
subsequent call to the function is required.

The packing, unpacking, sending, and receiving of blocks
can be taskified with dependencies, and we can communicate
blocks through non-blocking TAMPI, as in Section IV-A. The
main thread sends/receives all control messages sequentially,
while tasks handle the heavy work. We close the parallelism
before returning from the exchange function, once we have
exchanged the required blocks. In our taskification, we add
an extra control message to facilitate the offloading of mesh
block data communications. After receiving a positive ACK
from the receiver, the sender sends the block identifier as a
control message. This way, both processes know the block
identifier before starting the data exchange. We use that
identifier to tag the MPI message containing the data. We



continue using standard blocking MPI operations for control
messages (sequentially issued by the main thread) to reduce
their latency, as in the reference MPI-only version.

Our taskification strategy removes nearly 80% of the total
refinement time compared to our previous sequential refine-
ment. Although this stage is not fully parallelized, we obtain
reasonable performance compared to MPI-only.

C. Checksum & Validation

Our last step is to reduce the impact of the remaining
explicit barriers (taskwait). One of the barriers is located
before a checksum validation, which are performed every
specific number of stages. The checksum process, shown in
Algorithm 4, is divided into two functions. Firstly, we call
checksum_local for each group of variables, where several
tasks are created to perform the local checksum reduction.
Then, before ending that stage, we wait until all instantiated
tasks from communicate, stencil, and checksum_local

complete (line 9). Lastly, we call the checksum_remote

function that performs the MPI reduction across all processes
and validates the reduced values. After the validation, the loop
of stages keeps iterating and creating tasks from the other
phases until the next stage with checksum. Our checksum
strategy differs slightly from the taskification of Rico et al.
[16]. In our case, we close the parallelism after finishing the
whole stage, instead of closing it after processing each group
of variables. This way, we reduce the number of taskwaits
when there are multiple groups.

We can still reduce even more the impact of the explicit
barriers thanks to an OmpSs-2 feature: the taskwait with
dependencies [10]. The idea is to validate the last checksum
stage instead of the current one, delaying the true data de-
pendency between the stencil and the barrier at line 9 in
Algorithm 4. For this purpose, we leverage two checksum data
structures: one for the current checksum stage and another
for the previous one. In a stage with checksum, the tasks
from checksum_local are instantiated to perform the local
reduction on the current checksum structure. However, the
taskwait blocks until the structure of the previous checksum
stage can be consumed and validated. Therefore, we avoid
closing all the parallelism by waiting for the previous check-
sum and allowing the next stages to start executing. Notice
that if the validation process detects an error, we will abort
the program after executing some more stages.

D. Task Granularities

At this point, we have already parallelized the most time-
consuming phases following a data-flow strategy. Our tasks
ensure that concurrent work from different phases will nat-
urally overlap during the execution. The last point to dis-
cuss is task granularities. Most tasks work at the level of
a mesh block and for a specific range of variables in that
block, as the stencil, communicate, and checksum_local

tasks. Thus, their granularity is directly affected by the block
size and the number of variables per group specified with
--comm_vars. We will show in the next section that we

did not use more than one group because we already had a
reasonable granularity. Additionally, we feature other options
to tune the granularity of communication tasks. These are the
new --separate_buffers and --max_comm_tasks, but
also the original --send_faces, which are explained in Sec-
tions IV-A and II-A, respectively. These options determine the
granularity of communication tasks, and thus, the parallelism
exposed during communication stages.

We must highlight that our tasks declare their dependencies
on the range of variables in the block that they are processing,
independently of which block parts are accessing. For sim-
plicity, we do not distinguish between depending on a single
face or the whole block. Dependencies only consider the mesh
blocks and their range of variables, not faces nor geometric
subsets. We also want to remark that our strategy focuses on
taskifying high-level functions but, if there was not enough
parallelism, we could easily use task nesting to uncover more.

V. EVALUATION

In this section, we evaluate how our data-flow approach
behaves when compared to the reference MPI-only and a
conventional MPI+OpenMP fork-join approach. We first de-
scribe the evaluation environment, and then, we explain the
performance results we have observed for each version. We
perform the evaluation on the Marenostrum4 supercomputer,
which is located at the Barcelona Supercomputing Center.
Each node has two sockets Intel Xeon Platinum 8160 with 24
cores each, working at 2.10GHz, featuring 48 total cores, and
96 GB of main memory per node. We scale up to 256 nodes in
our scaling experiments, which corresponds to a maximum of
12288 total cores. Throughout all our evaluation, we use GCC
7.2.0 and Intel MPI 2017.7 for all variants. All programs are
compiled with the maximum optimization options available
for this architecture, including floating-point optimizations.
We use the OpenMP implementation provided by GCC 7.2.0,
OmpSs-2 2020.06, and TAMPI 1.0.1.

We will evaluate three different variants of miniAMR.
Firstly, MPI-only is the pure MPI version that we explained
in Section II-A. It is composed of the MPI-only reference
[14] after applying the data and code structure modifications
proposed by Rico et al. [16]. This version always leverages
one rank per core; 48 ranks per node in Marenostrum4. Sec-
ondly, MPI+OMP fork-join is the experimental hybrid variant
included in the official miniAMR repository [14] that com-
bines MPI and OpenMP threads. This version parallelizes the
stencil computations, the intra-process communication and
block face packing/unpacking in communicate, and the local
checksum reduction. To carry out a fair comparison against
our taskified approach, we have parallelized also the split-
ting/coarsening of blocks and the block packing/unpacking in
the refinement phase. All its parallel regions use OpenMP for

directives with static scheduling. Notice that since this variant
follows a fork-join strategy, all its MPI communications are
executed by the master thread. Lastly, TAMPI+OSS is the
hybrid approach that we propose in this paper, which combines
MPI, OmpSs-2, and TAMPI. By leveraging OmpSs-2, we can



benefit from the checksum optimization that we proposed in
Section IV-C.

Another relevant aspect to discuss is the input objects
for the miniAMR simulations. Throughout this section, we
leverage two input problems, both of them taken from previous
miniAMR articles. The first was used in the work by Rico et
al. [16] and represents a big sphere that starts from outside the
mesh. During the execution, the sphere enters the mesh from a
lower corner provoking the refinement of the intersecting mesh
regions. The second input problem is taken from the work
by Vaughan et al. [13] and represents four spheres moving
inside the mesh. Two spheres are positioned in one side of
the mesh and move along the positive X-axis, while the other
two spheres are in the opposite side and move in the negative
direction. Their position and size allows for them to get close
with each other when approaching the center of the mesh
without colliding. We compute their movement rate based on
the timesteps that we want to run, such that they arrive at the
opposite side of the mesh without reaching its borders. Note
that the first input may produce a bit more imbalance across
processes during the first simulation timesteps because the
sphere enters the mesh from a corner, provoking the processes
responsible for that area to refine their blocks.

A. Configuration of Ranks per Node

The first step is to find the optimal configuration of ranks
per node for the hybrid variants. As previously mentioned,
we will execute the MPI-only variant always with 48 ranks
per node, filling each compute node. Hybrid variants can
execute with different configurations, leveraging more or fewer
ranks per node. When changing the number of ranks in
each node, we are also modifying the number of cores per
rank that OpenMP/OmpSs-2 can leverage. To find the most
suitable configuration, we run the single sphere input on four
nodes, which is enough to extract conclusions in this step.
We simulate that problem during 20 timesteps, with 60 stages
per timestep, blocks of 18x18x18 grid cells, and each cell
holding 60 variables. We perform a refinement stage every five
timesteps and a checksum validation every ten stages. In the
case of TAMPI+OSS, we also enable the --send_faces and
--separate_buffers options to expose all the parallelism
in the communication phases. Table I shows the execution
times of both hybrid variants when varying the ranks per node.
We evaluate from 1 rank/node (48 cores/rank) to 16 ranks/node
(3 cores/rank). We show for each variant the total execution
time, the time spent in the refinement phase, and the time in
the rest of phases, labeled as No Refine.

In all our experiments, we have tried to place consecutive
ranks and OpenMP/OmpSs-2 threads of the same rank in
adjacent cores at the same NUMA domain. As expected,
the worst configuration for both variants is one rank/node
because Marenostrum4’s nodes have two NUMA domains, one
per socket. Having a rank executing in two sockets usually
performs worse due to NUMA effects. For MPI+OMP, the
first configuration that gets a reasonable performance on both
total time and non-refinement time is 4 ranks/node. The next

TABLE I
THE TIME (S) VARYING THE NUMBER OF RANKS PER NODE ON 4 NODES.

Ranks MPI+OMP TAMPI+OSS
x Node Total Refine No Refine Total Refine No Refine

1 485.2 43.2 442.0 469.8 19.8 450.0
2 375.4 39.5 335.9 303.9 23.5 280.4
4 352.0 36.0 316.0 306.2 21.6 284.6
8 348.6 30.5 318.1 314.5 18.3 296.2
16 344.0 29.1 314.9 322.3 19.4 302.9

two configurations get slightly more performance mainly due
to the refinement time, which may vary between different
configurations. The 8 ranks/node configuration takes a bit more
time in the non-refinement part than the 4 ranks/node, while
the last one is too extreme since it only uses three cores per
rank. For these reasons, we have decided to use 4 ranks/node
from now on, which is a reasonable configuration when there
are two NUMA domains. For TAMPI+OSS, we have decided
to run with 2 and 4 ranks/node since both perform similarly.
Although 2 ranks/node is a valid configuration, we have seen
in other experiments that it can be worse during the refinement
phase. This is because the refinement is not fully parallelized
with OmpSs-2/OpenMP and the refinement work per rank is
naturally reduced as the number of ranks increases.

The refinement with one rank per node is a special case.
The nature of the single sphere input may produce even more
imbalance when running with fewer ranks, so most of the
pressure falls on the load balancing section. In this part,
the TAMPI+OSS’s parallelization performs better than the
MPI+OMP’s, but we will see that the difference is not relevant
when scaling to more nodes.

B. Trace Analysis & Additional Options

We continue the evaluation by analyzing the execution
traces of MPI-only and TAMPI+OSS using their optimal con-
figuration. We extract traces using Extrae [28] and we visualize
them on Paraver [29]. For graphical reasons, these executions
should be relatively small in terms of nodes and time, so we
have prepared a small input problem that mimics the one that
we will use in the scaling analysis. This experiment simulates
the four spheres problem on two nodes during nine timesteps.
The mini-app will perform 20 stages per timestep, a refinement
every five timesteps, and a checksum validation every ten
stages. Mesh blocks are composed of 12x12x12 grid cells,
each holding 20 variables. Lastly, we decrease the maximum
refinement level of blocks to reduce the problem size.

Figure 1 shows the execution traces for MPI-only (upper)
and TAMPI+OSS (lower) on the same time scale. The MPI-
only has 96 ranks and the TAMPI+OSS has 8 ranks with
12 cores/rank. The former shows the MPI communication
calls, while the latter shows the execution of OmpSs-2 tasks.
Four different parts can be distinguished in both traces. The
first part is the initial refinement phase, which is executed
before starting the main loop of miniAMR. Refinement phases
are shown in the upper trace as dense pink areas, which
mainly correspond to collective operations. In the lower trace,
in the same region, they predominate various colorful tasks
that perform the block packing/unpacking, sending/receiving,



Fig. 1. Execution traces for MPI-only (upper) and TAMPI+OSS (lower) on 2
nodes at the same scale. The Y-axis shows MPI ranks/OmpSs-2 threads and
the X-axis is the timeline.

Fig. 2. Execution trace zooming in the stencil, communication and checksum
phases for MPI-only on 2 nodes, showing several execution stages.

and splitting/coarsening, which are only present in refinement
phases. The next region is the execution of the first five
timesteps. Inside that region, there are stencil computations,
intra- and inter-process communications, and checksums. In
the TAMPI+OSS trace, stencil tasks are shown in gray. How-
ever, we will zoom into that region to see that more task types
are being executed. Notice that the non-refinement region is
significantly smaller in our variant, achieving an approximate
speedup of 1.3x. Next, there is a second refinement, and then,
the execution of the remaining four timesteps.

We focus on the non-refinement parts since they are the
largest ones. However, in our experiments, the refinement
time is usually around 8 and 10% of the total, while here
is 3%. Figure 2 zooms into a non-refinement portion from the
previous MPI-only trace. This figure shows the MPI calls in
different colors, whereas the empty parts (in black) represent
the regions without MPI (e.g., computations and control code).
We clearly distinguish the execution of different loop stages,
where colorful regions belong to communication phases. The
green parts represent the calls to MPI_Waitany made in
the communicate function. The red and pink dots represent
the execution of MPI_Isend and MPI_Irecv operations,
respectively, which are small due to their non-blocking nature.
Lastly, the black parts are the block face packing/unpacking,
the intra-process communication, and the stencil.

Similarly, the upper trace in Figure 3 zooms into a non-
refinement part of the TAMPI+OSS trace. In the previous
hybrid trace, we saw only stencil tasks in non-refinement areas
due to graphical filtering. However, in these zoomed traces,
we can see the execution of multiple types of tasks. Although
the predominant are still the stencil tasks (gray), there are

Fig. 3. Execution traces zooming in the stencil, communication and checksum
phases for TAMPI+OSS on 2 nodes. The upper trace shows several execution
stages, while the lower trace zooms in the red rectangular region.

also intra-communication (pink) and block face unpacking
tasks (electric green). We hardly see MPI communication tasks
because they call non-blocking MPI/TAMPI functions, so they
are very small. In fact, MPI communications are transparently
overlapped with the rest of tasks thanks to TAMPI.

The execution is very dense in the sense that almost all cores
are running tasks constantly, and also, tasks from different
phases are overlapping. However, there are a few spaces
without parallelism. These empty regions take less than three
milliseconds, and they are mainly produced because there
are TAMPI communications in-flight waiting for data coming
from other ranks. The lower trace zooms into the highlighted
area in the upper trace. There, in the first rank, some unpacking
tasks (in electric green) are executed immediately after the
blank space. That means that some data has arrived, and the
unpacking tasks can now execute. Once an unpacking task
finishes, the next stencil task (in gray) can run to update
the corresponding mesh block. Notice that this pattern is also
repeated in the sixth rank.

Nevertheless, some blank spaces are not followed by un-
packing tasks but by packing or intra-process communication
tasks, e.g., the second rank. Although it needs further inves-
tigation, it seems that those spaces are produced by system
noises. It is not a vital problem because they only take three
milliseconds and they appear occasionally.

We have investigated the difference in performance between
our approach and both MPI-only/MPI+OMP using Paraver.
The four causes of our improvement are that (1) computation
and communication phases are clearly overlapping, (2) com-
munication tasks can be reordered, (3) we are less sensitive to
load imbalance, and (4) we significantly improve the number
of instructions per cycle (IPC). In our approach, tasks have
lower cache miss ratios because the tasking runtime enables
an immediate successor execution policy. Once a CPU finishes
a given task, the same CPU starts executing its successor task
such that it can reuse the data on the cache.

During this analysis, we have not seen any problem with the
granularity of tasks, therefore, we will keep this configuration
for the rest of experiments. Regarding the MPI+OpenMP
execution, we have not added any execution trace because



TABLE II
THE NON-REFINEMENT TIME (S) VARYING THE NUMBER OF

COMMUNICATION TASKS PER NEIGHBOR AND DIRECTION ON 64 NODES.

Tasks 1 2 4 8 16 all
Time(s) 612.5 600.0 594.9 595.5 597.8 627.5

there is no relevant information to show. The only aspects
to highlight are that the execution time is almost the same as
the MPI-only variant and that all communications are done
sequentially from the main thread.

We have also executed our TAMPI+OSS variant on 64 nodes
to find the most suitable value for the --max_comm_tasks

option. It controls the number of communication tasks (and
MPI messages) per neighbor and direction that are instantiated
in the communicate phase, when --send_faces is enabled.
In this experiment, we simulate the four spheres problem on 64
nodes. We show the total execution time of all non-refinement
stages in Table II. The refinement time is not considered
because that option should not affect that part. Firstly, we
have executed from 1 to 16 communication tasks per neighbor
and direction. Then, we have executed the program without
limiting the parallelism, instantiating a task per block face to
be transmitted. Notice that this last configuration, named as all
in Table II, exposes all parallelism in that phase. The range
of best values for that option is from 4 to 16. From now on,
we use eight communication tasks per neighbor and direction,
since it is the value that offers both reasonable performance
and parallelism. Note that none of these options apply to MPI-
only and MPI+OMP variants.

C. Weak Scaling
Our next experiment is to evaluate the scalability of the

three variants up to 256 nodes, simulating the four spheres
problem. The execution consists of 99 timesteps and 40 stages
per timestep, mesh blocks of 12x12x12 grid cells, and cells
with 40 variables. The refinement stage is performed every
five timesteps and the checksum validation every ten stages.
We also limit to one the refinement levels that a mesh block
can be refined during a refinement stage. For TAMPI+OSS,
we use --separate_buffers and --send_faces, we limit
the communication tasks per neighbor/direction to eight, and
we enable the checksum optimization.

The idea is to double the problem size when doubling the
number of nodes, performing a weak scaling analysis. Note
that each variant uses its optimal configuration of ranks per
node, so that they will leverage a distinct total number of
ranks. We design the experiment focusing on the constraint
that all variants must have the same initial mesh. Thus, the
total number of initial blocks in all variants is the same. Also,
each variant may have different number of ranks in a particular
direction, but they all have the same total number of blocks in
that direction. These constraints guarantee the same conditions
such that we can fairly compare them. Notice that the most
restrictive configuration is MPI-only, which has 48 ranks per
node. Thus, we decided to use one initial block per rank in
MPI-only, and arrange the ranks in the three directions as
uniformly as possible. We mimic the same block arrangement

 0

 20

 40

 60

 80

 100

 120

 140

4 8 16 32 64 128 256

T
h
ro

u
g

h
p

u
t 

(G
FL

O
P
S

)

MPI-Only
MPI+OMP

TAMPI+OSS

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

1 2 4 8 16 32 64 128 256

Pa
ra

lle
l 
E
ffi

ci
e
n
cy

Nodes

MPI-Only
MPI+OMP

TAMPI+OSS
MPI-Only (NR)

MPI+OMP (NR)
TAMPI+OSS (NR)

Fig. 4. The weak scaling’s throughput (upper) from 4 to 256 nodes and the
efficiency (lower) from 1 to 256 nodes. The lower shows the efficiency for
both the total time and assuming a negligible refinement time (NR).

in hybrid variants by placing more initial blocks per rank and
direction. In this way, all have the same mesh shape and size
while maintaining a fixed block size. Then, when doubling the
number of nodes, we double the number of total blocks in one
of the directions following a round-robin fashion.

Figure 4 (upper) shows the throughput in GFLOPS from 4
to 256 nodes for all three versions. We compute the throughput
dividing the total number of floating-point operations by the
total execution time. The number of operations is already
reported by the mini-app and counts the total operations
performed during the stencil phases. As we can see, our
TAMPI+OSS approach is getting the best performance in all
cases. For instance, we obtain a 1.50x and 1.49x throughput
speedup w.r.t. MPI-only on 128 and 256 nodes, respectively.

Our refinement takes 8.1% of the total execution time on
256 nodes. Our speedup in the non-refinement part reaches its
maximum value 1.54x on 256 nodes, following an increasing
tendency in the speedup as we increase the number of nodes.
In this figure, we only show the best configuration for our
approach, which is four ranks/node. The two ranks/node con-
figuration has a similar throughput in non-refinement stages,
but the refinement time increases significantly. This deterio-
ration is because the refinement is not fully parallelized, and
the work per rank with four ranks/node is smaller than with
two. As an example, the refinement time with two ranks/node
takes 1.31x more time than the time with four. In contrast,
the MPI+OMP fork-join, also with four ranks/node, does not
exceed the 1.06x speedup w.r.t. MPI-only, and only achieves a
1.06x speedup in the non-refinement phases. Moreover, it does
not reach the MPI-only throughput from one to four nodes.

Finally, we plot their parallel efficiency in the weak scaling
experiment in Figure 4 (lower). This figure helps understand-
ing how efficiently each of the variants scale. The efficiency



is computed with respect to each variant’s throughput in one
node. We show the efficiency of the whole execution time,
but also the efficiency without considering the refinement
time (marked as NR). Conceptually, the NR efficiency is the
one we could see in an ideal execution where the refinement
would take negligible time to run. That allows us to observe
the impact of the refinement phases. Again, our approach is
the one that best scales across all executions. Our efficiency
starts to decrease steadily on eight nodes and ends with a
0.86 efficiency on 256 nodes. Our non-refinement efficiency
is significantly better and reaches 0.94 on 256 nodes, which
is relatively high when leveraging this amount of resources.
Conversely, the efficiency for MPI-only and MPI+OMP on
256 nodes reaches 0.72 and 0.75, respectively. As expected,
their non-refinement efficiency is significantly better.

D. Strong Scaling

Our last experiment evaluates the strong scalability of the
three variants, keeping a constant problem size. We simulate
the four spheres problem during 79 timesteps, 40 stages per
timestep, and mesh blocks of 10x10x10 40-variable grid cells.
The total number of blocks per direction is the same as in the
weak scaling experiment on 256 nodes. However, the resource
requirements (computation time and memory) of that input
were too high when running with 1 to 8 nodes, so we have
fairly divided it by 16 in those cases.

Figure 5 shows the throughput’s speedup (upper) and the
efficiency (lower) when varying the number of nodes. We
compute the speedup with respect to the throughput of the
MPI-only variant in one node and taking into account the
whole execution time. The efficiency is computed with respect
to each variant’s throughput in one node. We only show the
four ranks/node configuration for the hybrid variants. Again,
our TAMPI+OSS approach is the one performing and scaling
better in all cases. On 256 nodes, we still have a 0.88 overall
efficiency, and we are 1.60x faster than MPI-only.

In contrast, the fork-join MPI+OMP variant is slightly better
than MPI-only from 8 to 128 nodes, but its efficiency drops
faster as we increase the amount of nodes, so it ends perform-
ing worse on 256 nodes. Notice both MPI-only and MPI+OMP
have similar behavior in the efficiency. It decreases initially,
then it stabilizes when using 8 to 32 nodes, and finally, it
decreases again from 64 nodes. Note that the MPI-only version
stops the drop of efficiency on 256 nodes, and thus, it exceeds
the MPI+OMP’s throughput. These efficiency drops are not
observed in TAMPI+OSS, which smoothly decreases during
the experiment, meaning that our approach is less sensitive to
the increase of communications and neighbors.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have fully taskified the miniAMR proxy
application, including the computation, communication, refine-
ment, and load balancing phases. We describe the steps and
modifications required to go from an MPI-only version to a
hybrid one using the OmpSs-2 programming model and the
TAMPI library, which are straightforward to apply in most

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

T
h
ro

u
g

h
p

u
t 

S
p

e
e
d

u
p

MPI-Only
MPI+OMP

TAMPI+OSS

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

1 2 4 8 16 32 64 128 256

Pa
ra

lle
l 
E
ffi

ci
e
n
cy

Nodes

MPI-Only
MPI+OMP

TAMPI+OSS
MPI-Only (NR)

MPI+OMP (NR)
TAMPI+OSS (NR)

Fig. 5. The strong scaling’s speedup (upper) and the efficiency (lower) from
1 to 256 nodes. The lower shows the efficiency for both the total time and
assuming a negligible refinement time (NR). Due to the memory available in
each node, we use a large input for the experiments from 16 to 256 nodes,
and a 16x smaller input for the experiments from 1 to 8 nodes.

cases. Our in-depth evaluation shows the benefits of a pure
data-flow execution model when running AMR applications
at scale. We have evaluated our approach comparing it to the
reference MPI-only version and a hybrid MPI+OpenMP fork-
join version. On a weak scaling with up to 12288 cores, we
observed that our hybrid variant achieves a speedup of 1.5x
w.r.t. MPI-only, while the fork-join does not exceed 1.06x.
That improvement is due to the data-flow execution model of
our hybrid version, which can effectively overlap application
phases, naturally reorder communication tasks, and signifi-
cantly increase the IPC of computation tasks. The increase
in the IPC is due to the OmpSs-2 scheduling heuristics that
leverage the task-graph to exploit temporal locality. We also
show that by exposing application parallelism through anno-
tations, a data-flow execution model can significantly improve
application performance without sacrificing programmability.

As future work, we plan to investigate how other challeng-
ing applications can benefit from a pure data-flow execution
model when running at scale, and how we could integrate that
model into AMReX/BoxLib applications.

ACKNOWLEDGMENTS

We thank Dr. Courtenay T. Vaughan and Dr. Clay Hughes
(Sandia National Laboratories, Albuquerque, NM, USA) for
assisting us in the process of understanding the details of
miniAMR and giving advice on relevant input problems for
our experiments. This work has been supported by the Euro-
pean Union H2020 Programme through the DEEP-EST project
(agreement No. 754304), the Spanish Government through
the Severo Ochoa Program (SEV-2015-0493), the Spanish
Ministry of Science and Innovation (PID2019-107255GB), and
the Generalitat de Catalunya (2017-SGR-1414).



REFERENCES

[1] Message Passing Interface Forum, MPI: A Message-Passing Interface
Standard. Version 3.1. University of Tennessee, Jun. 2015.

[2] R. Rabenseifner and G. Wellein, “Comparison of Parallel Programming
Models on Clusters of SMP Nodes,” in Proceedings of the International
Conference on High Performance Scientifc Computing, Mar. 2003.

[3] R. Rabenseifner, “Hybrid parallel programming: Performance problems
and chances,” in 45th Cray User Group Conference, 2003, pp. 12–16.

[4] G. Jost, H. Jin, and F. F. Hatay, “Comparing the OpenMP, MPI, and
Hybrid Programming Paradigms on an SMP Cluster,” NASA, Tech.
Rep., Sep. 2003.

[5] OpenMP Architecture Review Board, OpenMP Application
Programming Interface: Version 5.0, Nov. 2018, available at
https://www.openmp.org/specifications.

[6] J. Dongarra, P. Beckman, T. Moore, P. Aerts, G. Aloisio, J.-C. Andre,
D. Barkai, J.-Y. Berthou, T. Boku, B. Braunschweig et al., “The inter-
national exascale software project roadmap,” The international journal
of high performance computing applications, vol. 25, no. 1, pp. 3–60,
2011.

[7] A. Amer, H. Lu, P. Balaji, and S. Matsuoka, “Characterizing MPI and
hybrid MPI+ Threads applications at scale: case study with BFS,” in
2015 15th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing. IEEE, 2015, pp. 1075–1083.

[8] K. Sala, X. Teruel, J. M. Perez, A. J. Peña, V. Beltran, and J. Labarta,
“Integrating blocking and non-blocking MPI primitives with task-based
programming models,” Parallel Computing, vol. 85, pp. 153–166, 2019.

[9] Barcelona Supercomputing Center, “Task-Aware MPI (TAMPI) Library.”
[Online]. Available: https://github.com/bsc-pm/tampi

[10] ——, “OmpSs-2 Specification.” [Online]. Available:
https://pm.bsc.es/ompss-2-docs/spec/

[11] J. Ciesko, P. J. Martı́nez-Ferrer, R. P. Veigas, X. Teruel, and V. Bel-
tran, “HDOT—An approach towards productive programming of hybrid
applications,” Journal of Parallel and Distributed Computing, vol. 137,
pp. 104–118, 2020.

[12] M. J. Berger, P. Colella et al., “Local adaptive mesh refinement for shock
hydrodynamics,” Journal of computational Physics, vol. 82, no. 1, pp.
64–84, 1989.

[13] C. T. Vaughan and R. F. Barrett, “Enabling tractable exploration of the
performance of adaptive mesh refinement,” in 2015 IEEE International
Conference on Cluster Computing. IEEE, 2015, pp. 746–752.

[14] C. T. Vaughan, “MiniAMR Adaptive Mesh Refinement (AMR)
Mini-app.” [Online]. Available: https://github.com/Mantevo/miniAMR

[15] J. McGlaun, S. Thompson, and M. Elrick, “CTH: A three-
dimensional shock wave physics code,” International Journal of Impact
Engineering, vol. 10, no. 1, pp. 351 – 360, 1990. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0734743X90900713

[16] A. Rico, I. S. Barrera, J. A. Joao, J. Randall, M. Casas, and M. Moretó,
“On the benefits of tasking with OpenMP,” in International Workshop
on OpenMP. Springer, 2019, pp. 217–230.

[17] Mantevo Organization, “Mantevo Project.” [Online]. Available:
https://mantevo.github.io

[18] Barcelona Supercomputing Center, “OmpSs Specification.” [Online].
Available: https://pm.bsc.es/ompss-docs/specs/

[19] D. S. Balsara and C. D. Norton, “Highly parallel structured adaptive
mesh refinement using parallel language-based approaches,” Parallel
Computing, vol. 27, no. 1-2, pp. 37–70, 2001.

[20] H.-Y. Schive, U.-H. Zhang, and T. Chiueh, “Directionally unsplit hy-
drodynamic schemes with hybrid MPI/OpenMP/GPU parallelization in
AMR,” The International Journal of High Performance Computing
Applications, vol. 26, no. 4, pp. 367–377, 2012.

[21] P. Samfass, J. Klinkenberg, and M. Bader, “Hybrid MPI+ OpenMP Re-
active Work Stealing in Distributed Memory in the PDE Framework sam
(oa)ˆ 2,” in 2018 IEEE International Conference on Cluster Computing
(CLUSTER). IEEE, 2018, pp. 337–347.

[22] R. Prat, L. Colombet, and R. Namyst, “Combining task-based paral-
lelism and adaptive mesh refinement techniques in molecular dynamics
simulations,” in Proceedings of the 47th International Conference on
Parallel Processing, 2018, pp. 1–10.

[23] W. Zhang, A. Almgren, V. Beckner, J. Bell, J. Blaschke, C. Chan,
M. Day, B. Friesen, K. Gott, D. Graves, M. Katz, A. Myers, T. Nguyen,
A. Nonaka, M. Rosso, S. Williams, and M. Zingale, “AMReX: a
framework for block-structured adaptive mesh refinement,” Journal of
Open Source Software, vol. 4, no. 37, p. 1370, May 2019. [Online].
Available: https://doi.org/10.21105/joss.01370

[24] J. Bell, A. Almgren, V. Beckner, M. Day, M. Lijewski, A. Nonaka,
and W. Zhang, “Boxlib user’s guide,” github. com/BoxLib-Codes/BoxLib,
2012.

[25] P. Colella, D. T. Graves, T. Ligocki, D. Martin, D. Modiano, D. Serafini,
and B. Van Straalen, “Chombo software package for amr applications
design document,” Available at the Chombo website: http://seesar. lbl.
gov/ANAG/chombo/(September 2008), 2009.

[26] W. Zhang, A. Almgren, M. Day, T. Nguyen, J. Shalf, and D. Unat,
“Boxlib with tiling: An adaptive mesh refinement software framework,”
SIAM Journal on Scientific Computing, vol. 38, no. 5, pp. S156–S172,
2016.

[27] M. N. Farooqi, T. Nguyen, W. Zhang, A. S. Almgren, J. Shalf, and
D. Unat, “Phase asynchronous amr execution for productive and perfor-
mant astrophysical flows,” in SC18: International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE,
2018, pp. 880–893.

[28] Barcelona Supercomputing Center, “Extrae.” [Online]. Available:
https://tools.bsc.es/extrae

[29] ——, “Paraver.” [Online]. Available: https://tools.bsc.es/paraver


