

TÍTOL DEL TFG: Sistema d’ajuda multisensor a la navegació per drons
multiplataforma

TITULACIÓ: Grau en Enginyeria de Sistemes Aeroespacials

AUTORA: Laura Parga Gata

DIRECTOR: Sergi Tres Martínez

SUPERVISOR: Oscar Casas Piedrafita

DATA: 15/11/2020

TREBALL FINAL DE GRAU

Resum

Títol: Sistema d’ajuda multisensor a la navegació per drons multiplataforma

Autora: Laura Parga Gata

Director: Sergi Tres Martínez

Supervisor: Oscar Casas Piedrafita

Data: 15/11/2020

Actualment, i des de principis del mil·lenni, la tecnologia dron es troba en un
continu creixement, a partir del qual s’han anat desenvolupant diferents
tècniques que la fan més accessible i fàcil d’utilitzar en una gran varietat
d’àmbits de treball, així com l’arqueologia. En aquest camp es desenvolupa
una nova proposta de projecte per part d’Hemav Foundation, en la qual es
pretén utilitzar un dron i tècniques de processat de imatge per substituir la
tradicional tècnica de detecció de ceràmiques i l’anàlisi posterior. Per fer-ho,
el vehicle ha de portar incorporada una càmera multiespectral i ha de volar
l’àrea a estudiar de manera autònoma amb ajuda d’un GPS, és a dir, sense
ser pilotat, per la qual cosa necessita ajudes a la navegació. L’altitud de vol
ha de ser suficientment baixa com per tenir una bona resolució i ha de
mantenir-se sempre constant per no afectar a la relació àrea-píxel de les
imatges. Tenint en compte això, es necessiten dos sistemes d’ajuda a la
navegació: un per mantenir l’altitud constant i seguir estrictament la forma que
tingui el terreny sobre el que es vola i un altre per detectar i evitar obstacles,
donat que a baixes altituds hi ha més probabilitat de col·lisió.

L’objectiu d’aquest projecte és el disseny i la implementació d’un sistema de
manutenció d’altitud i un sistema de detecció i evitació d’obstacles.

Primer es duu a terme un estudi de mercat en què s'analitzen tant les diferents
metodologies amb les que es pot mesurar distància com els sensors que
ofereix el mercat actualment, per finalment triar un per cadascun dels
sistemes que s’han de dissenyar. Donada la situació actual, no s’ha pogut
utilitzar el sensor que s’ha considerat més apropiat per utilitzar d’altímetre,
que era el LIDAR-Lite v3, però s’ha pogut aconseguir el TF mini. Per la
detecció d’obstacles s’ha triat la càmera D435. Després d'això, es fa el
disseny dels sistemes. Per una banda, en quant a l’arquitectura hardware:
connexió de la càmera a l’ordinador a bord, que és una Raspberry Pi 4 model
b, i del sensor a la controladora, la Pixhawk Cube. Per una altra banda, en
quant al software: triar un llenguatge de programació, que serà Python,
descarregar i instal·lar les llibreries necessàries per l’obtenció de dades (SDK
de Intel RealSense per la càmera) i per la comunicació (MAVLink i DroneKit)
i, finalment, programar el codi. Una vegada realitzat el disseny dels sistemes,
s’ha de testejar tot: el sensor i la càmera per comprovar les especificacions i
el codi per comprovar el funcionament.

Per una banda, el sensor té bona precisió però triga uns segons en
estabilitzar-se i el rang és insuficient. Per una altra banda, la càmera funciona
molt bé, ja que detecta obstacles de diferents formes i materials a diferents
distàncies. Finalment, el codi funciona prou bé, encara que es podria millorar
l’eficiència.

En resum, el disseny dels dos sistemes es pot implementar i utilitzar
satisfactòriament en el projecte si es canvia el sensor que mesura altitud per
un amb un rang màxim més alt, millor precisió i més estable en la mesura.

Overview

Title: Multisensory help system to multiplatform drone navigation

Author: Laura Parga Gata

Advisor: Sergi Tres Martínez

Supervisor: Oscar Casas Piedrafita

Date: 15/11/2020

Currently, and since the beginning of the millennium, drone technology is in a
continuous growth, from which different techniques have been developed
making it more accessible and easy to use in a variety of work areas, such as
archaeology. In this field, a new project proposal is being developed by
Hemav Foundation, in which is intended to used drones and image processing
techniques to substitute the traditional pottery detection method and the
subsequent analysis. In order to do it, the vehicle must carry on a multispectral
camera and fly the study area in an autonomous way with the help of a GPS,
which means, with no pilot, and so it needs some navigation helps. Flight
altitude of the mission should be low enough to get high-resolution images
and should keep it constant to not influence the area-pixel ratio. With this in
mind, two navigation help systems are needed: one in order to keep altitude
constant and follow strictly the terrain shape it is flying and another one in
order to detect and avoid obstacles due to low altitudes imply more collision
probability.

The aim of this work is the design and the implementation of an altitude
maintenance system and an obstacle detection and avoidance system.

First a market study is done, in which both the methodologies that can be
used and the devices that are available currently in the market are analysed,
in order to finally choose which are the more suitable ones for the two systems
in design. Given the actual situation, the sensor that was selected to measure
altitude, the LIDAR-Lite v3, wasn’t able to use and so another one has been
used: TF mini, which specifications are clearly worse than the other ones. For
obstacle detection camera D435 has been used. After that, the systems
design is done. On one hand, the hardware architecture: connection between
camera and flight controller, Pixhawk Cube. On the other hand, the software:
choose a programming language, which will be Python, download and install
the required libraries for obtaining data (Intel RealSense SDK) and for
communicating with the drone and between internal components (MAVLink
and DroneKit) and, finally, to code the program. After all, some test has to be
done: first the sensor and the camera to check the specifications and the code
to check the behaviour.

On one hand, the sensor has good accuracy but it takes some seconds to
stabilize and the maximum range is not enough. On the other hand, the
camera works so well: it detects obstacles of different shapes and materials
and situated in different locations. Finally, the code works, although it could be
improved in terms of efficiency.

Summarizing, both systems design can be implemented and used in the
project if the altitude sensor is changed by another one with higher maximum
range, lower accuracy and a more stable behaviour.

CONTENTS

1. INTRODUCTION .. 1

1.1. Objectives ... 2

1.2. Project distribution .. 2

2. STATE OF THE ART ... 3

2.1. Drones and archaeology ... 3

2.2. Distance measurement technologies ... 5

2.2.1. Ultrasonic .. 5

2.2.2. Infrared .. 6

2.2.3. LIDAR .. 6

2.2.4. Choice ... 6

2.3. Distance measurement sensors ... 8

2.3.1. Obstacle avoidance ... 8

2.3.2. Altitude maintenance ... 9

3. HARDWARE ARCHITECTURE ... 11

3.1. Drone characteristics and elements ... 11

3.1.1. Pixhawk ... 11

3.1.2. Raspberry Pi .. 12

3.2. Drone connection ... 13

4. SOFTWARE IMPLEMENTATION .. 15

4.1. Programming language ... 15

4.2. Communication between components ... 15

4.3. Required libraries ... 16

4.4. Systems performance .. 16

5. EXPERIMENTAL TESTS ... 19

5.1. TF mini LIDAR test ... 19

5.2. D435 camera test.. 20

5.3. Code test... 21

6. CONCLUSIONS ... 23

REFERENCES ... 25

APPENDIX 1: Code .. 27

APPENDIX 2: TF mini test data .. 32

LIST OF FIGURES

Fig. 1.1. Drone sector evolution worldwide [1]... 1

Fig. 3.1.1.1. Pixhawk 2.1 ports .. 11

Fig. 3.1.2.1. Raspberry Pi 4 ports ... 12

Fig. 3.2.1. Raspberry to Pixhawk connection .. 13

Fig. 3.2.2. D435 camera to Raspberry connection .. 13

Fig. 3.2.3. TF mini LIDAR to Pixhawk connection ... 14

Fig. 4.4.1. Obstacle avoidance system loop .. 17

Fig. 4.4.2. Height maintenance system loop ... 18

Fig. 5.1.1. Real distance VS measured distance ... 19

Fig. 5.2.1. D435 depth image example ... 20

LIST OF TABLES

Table 2.1.4.1. Distance measurement technologies comparison 7

Table 2.2.1.1. Intel RealSense depth cameras comparison 9

Table 2.2.2.1. LIDAR sensors comparison .. 10

INTRODUCTION 1

1. INTRODUCTION

The technological development of the XXI century has allowed a renewable drone
sector, both in design and manufacturing as in their possible applications. Hence,
this sector has been, and still now is, through a continuous growth in a global
level where the point is the innovation; just due to the fact of reinventing itself is
the triggering of this expansion. In addition to the increase in the technical
capabilities, UAS (Unmanned Aerial System) technology has become cheaper
during this process.

Consequently, companies have seen a great chance to try a business in this
sector so there have been a significant increase in the number of new business
related with the manufacturing of drones, in a global market, as Fig. 1.1. shows.

Fig. 1.1. Drone sector evolution worldwide [1]

In the case of Hemav Foundation [2], a non-profit private organisation, it uses this
technology in order to boost projects with an environmental or a social impact,
being this last one both helping those most in need and spreading the use of
drone technology.

Currently Hemav Foundation is developing a new proposal for a project related
with the visual pottery research using drones and machine learning, substituting
the traditional archaeological method known as “fieldwalking”. This is not an
innovating project, since it comes from a test of two researchers: Dr. Hector A.
Orengo of the Catalan Institute of Classical Archaeology and Dr. Arnau Garcia-
Molsosa of the McDonald Institute for Archaeological Research at the University
of Cambridge, that tried this way of making the detection and the analysis of
potsherds easier for archaeologists. Their idea was to detect pottery fragments
using high-resolution drone imagery, photogrammetry and a combination of
machine learning and geospatial analysis, in order to get better efficiency in the
task. As a result of this test, they conclude it can be a reliable method.

2 MULTISENSORY HELP SYSTEM TO MULTIPLATFORM DRONE NAVIGATION

Hemav Foundation new project intends to improve this idea using a drone
following a preprogramed route by GPS navigation, which is, flying automatically
without human help. Given the characteristics of the mission, the flight altitude is
set according to the area needed in one pixel, and so it is important to maintain it
constant during the entire path, which means the drone has always to follow the
terrain it is flying. Furthermore, this flight altitude has to be lower enough to obtain
high-resolution images, which makes probable the appearance of obstacles
during the path, so the drone has to be able to detect and avoid them. As the
drone will not be remotely piloted, this two mentioned points should be properly
designed and implemented, which is the objective of this work.

1.1. Objectives

The aim of this work is to design, implement and proof two autonomous-drone
navigation systems: one in order to maintain the flight altitude strictly constant
(following the terrain) and the other in order to detect and avoid obstacles
automatically, both in hardware and software. More specifically, the first objective
is to find the most suitable distance measurement devices and so to detect
obstacles and to measure height properly, which means distance to soil. The next
target is to design the obstacle avoidance mission. Finally, the last mark is to be
able to implement the designed code containing both subsystems (altitude
maintenance and obstacle detection and avoidance) in the drone system.

1.2. Project distribution

This project distribution is done as the design process of any system, beginning
with the state of art and ending with tests. In chapter two, the use of drones in
archaeology situation is analysed and then a market study is done: first the
different ways of measuring distance and then the market study about distance
measurement devices, in order to choose the most suitable one. Henceforth the
system design can be done, dividing it in the hardware architecture and the
software implementation, which are the next two chapters. One on hand, in the
hardware part it is important first to take into account the drone characteristics
and elements that it carries, as the flight controller and the processors and then
the previously chosen devices can be connected. On the other hand, in the
software part it is needed to set a programming language, know how hardware
elements communicate between them and look for the needed libraries in order
to do so (compatibles with the chosen language). Finally, some experimental
tests are done in order to determine the specifications of the systems.

STATE OF THE ART 3

2. STATE OF THE ART

During this chapter, the market situation is analysed. On one hand, regarding to
the general project where the navigation systems will be implemented, the use of
drones in archaeological surveys is studied, including benefits and drawbacks.
On the other hand, taking into account that the objective of this work is to design
and implement the altitude maintenance and the obstacle detection and
avoidance navigation systems, a market study on distance measurement devices
is done. First, analysing and comparing the main distance measurement
methodologies, according to parameters like precision and range, and then,
taking into account these different methods, a concrete distance measurement
sensor is finally selected for each one of the systems designed, which means to
select two: one to detect obstacles and another to measure the actual altitude.

2.1. Drones and archaeology

Since drone technology is relatively new, it is not widely used for archaeological
purposes and so there is still a lack of market related with this combination:
drones and archaeology. As it has been said during the introduction, the use of
this technology is suffering a continuous growth in the last recent years, in which
some fields are being studied, including archaeology, where drones are useful to
increase the efficiency of the mission. This increase of efficiency has always been
the main objective of the use of UAS by saving time and/or decreasing the
number of workers in a mission and so doing more than a mission at the same
time. The applications of this technology in this field began some years ago by
monitoring the terrain, which means getting 3D models and digital cartography,
in order to plan an action for the mission to do. It has been widely used to create
digital images by 3D recording of excavations and historic monument. Actually,
the main use of drones in archaeology is to do a photogrammetric survey of
landscapes for the creation of digital surface and terrain. Digital photogrammetry
software so is the most important technology on archaeological researches,
regarding with drones, such as it has become much powerful, easy to use and
accessible due to new developed techniques.

There is an article where the test of the Spanish and English researchers
previously mentioned [3], in which is pretended to substitute the “fieldwalking”
archaeological method by an innovating one using high-resolution drone imagery,
photogrammetry and a combination of geospatial analysis and machine learning,
is analysed in detail. Regarding to the traditional method, it consists of an
archaeological researcher’s team walking a given area following parallel lines
between them and searching pottery in a visual way. During this scanning, they
count all ceramic fragments and collect only those that can provide chronological
and/or typological information about human present. These potsherds then go
through a process of measurement and analysis of the material, among other
things, from which the data about human presence is extracted. Regarding to the
automated method, it is divided into two parts. First, a drone scans a given area
with a high-resolution multispectral camera, which obtains detailed images of the
terrain to analyse. After that, geospatial analysis such as machine learning are
done to identify, isolate and analyse ceramic fragments.

4 MULTISENSORY HELP SYSTEM TO MULTIPLATFORM DRONE NAVIGATION

There are some points explained during the article that are important to take into
account. Regarding to the image acquisition, the multispectral camera to use
must be a high-resolution one, which could lead to detect smaller fragments, and
the area to analyse should be ideally in good light conditions, with the presence
of shadows, in ploughed soils and in sedimentary plains in order to obtain best
detection rates. All these characteristics are the ideal ones, although it is known
it does not depend on the archaeologists, but depending on it (soil, environment
or light) different training data can be applied due to different conditions imply
different processing. It also happens with the pottery colour. In order to detect
different types of potsherds, it is convenient to have and apply different machine
learning processes. Regarding to the image analysis, large computational
resources, good knowledge of machine learning and good experience in training
data engineering are required. Even then, important information such as pottery
date or function cannot be extracted using this method, because in order to know
it the specialist should go to where the potsherd was detected, pick it up and
analyse herself/himself. There is a big trade-off, important in the design of the
image processing: having false positives or achieving lower rates of detection.
Depending on the point of view, it is recommended to detect a higher number of
fragments but having also more false positives or to detect with more precision,
which means less false positives, but discarding some pottery fragments.

This test was conducted both using the traditional and this innovating techniques
and one of the conclusions was that the automated recording method is able to
detect more ceramic fragments and faster than the standard one. The most
difficult part of this technique is the analysis, where all images taken during the
flight have to be processed one by one, so it is also the part that require most of
the time, that will be more than 10h. It is also important to highlight that the main
benefit is that it can be performed by a single person with minimal investment of
time due to all the process is done automated.

Summarizing, in terms of time both methods can take more or less the same,
while the increase of efficiency in the case of the automated technique is notable,
by saving specialists working time and detecting a higher number of pottery
fragments. The main drawback is the difficulty of the image processing. Although
the technology is increasingly developed, a team of informatics specialists
experienced in machine learning and training data engineering are needed. It is
also important to highlight that this technology can lead to false positives, which
means to detect different objects, even only shapes, as if it were potsherds.

STATE OF THE ART 5

2.2. Distance measurement technologies

This section is also divided according the main technologies can be found in the
different distance measurement sectors that currently are available on the market
[4], [5], [6]. All of them use the ToF (Time of Flight) or triangulation methods, but
with different wave types: ultrasonic, infrared or LASER.

In the time of flight methodology case, the sensor emitter sends a signal and the
time taken to come back to the receiver is measured, which means the time this
signal has been travelling to the closer obstacle and return. Knowing all types of

waves travel at speed of light (c = 3 · 108 m/s), the distance between the device
and the closer object (d) can be easily compiled by using uniform rectilinear
movement equation with the measured time (∆t) and the speed of light.

 d =
∆t

2
 c (2.1.1.)

In the triangulation case, the sensor consists of two separate modules, emitter
and receiver, by a known distance (dmodules). This time the receiver measures

the angle of incidence (αincidence) of the transmitted signal reflection and so the
distance to the closer obstacle (d) can be found by using trigonometry,
particularly, the tangent definition.

 d =
dmodules

tan(αincidence)
 (2.1.2.)

It is important to take into account that the next distance measurement
methodologies are the principal ones, but there are some sensors that use a
combination of them.

2.2.1. Ultrasonic

An ultrasonic wave is a vibration transmitted through a medium at a frequency
bigger than 20 kHz. Ultrasonic distance sensors use this type of sound waves,
which can be inferred by acoustic signals, and time of flight principle.

The main benefits are the low current they consume (and so power), the multiple
interface options and, as sound waves are used, the result is not affected by
target colour or transparency. Although their advantages, these devices are not
always useful because of their limited range, their low resolution, their slow
refresh rate, which could not be appropriate to detect fast moving targets, and
the incapability of detect objects with extreme textures or surfaces.

6 MULTISENSORY HELP SYSTEM TO MULTIPLATFORM DRONE NAVIGATION

2.2.2. Infrared

Infrared radiation is a type of electromagnetic radiation whose wavelength is
bigger than the visible but smaller than the microwave one. Infrared distance
sensors are also known as LEDs (Light-Emitting Diodes) distance sensors and
can use both time of flight and triangulation methodologies. Their main
advantages are that can work in day-time and night-time usages, their lightweight
and compact form.

In case of ToF technique, there are many benefits: can measure precisely due to
the rapid refresh rates and long-ranges, are easy to use, facilitates multi-sensor
integration and can generate 3D imaging. However, the depth (Z-axis) resolution
is poor and is not recommended to outdoor missions because can be affected by
sunlight. In case of triangulation principle, they are usually the cheapest ones but
offer short-range and are not reliable with additional sensors.

2.2.3. LIDAR

LASER, that stands for Light Amplification by Stimulated Emission of Radiation,
is an artificial type of light that produce a narrow beam made of different waves
all lined up, in peak or phase, and that have similar wavelengths. LIDAR (Light
Detection and Ranging) devices are distance sensors that use a LASER source
with integrated optics that measure the time of flight of a transmitted signal.

This type of sensor can work a long range giving precise and stable measures
with high accuracy and a fast update rate and can also be used both in night and
day time, but are not safe to human eyes and are not reliable when integrated
with other sensors. Their measures can also generate 3D structures. This type of
distance sensors are considered the best detecting objects outdoors and are the
ones with smaller wavelength so also the best detecting small targets, but are the
ones with higher cost and higher current consumption and so power
consumption.

2.2.4. Choice

Given the different distance measurement technologies and their advantages and
disadvantages, it is time to analyse and compare them in order to choose the
more suitable one for these objectives, considering the project characteristics in
which will be implemented these two navigation systems. The following table
summarizes what the previous sections have explained.

STATE OF THE ART 7

Table 2.1.4.1. Distance measurement technologies comparison

Technology Principle Advantages Disadvantages

Ultrasonic Time of flight

· Low current draw and so
low power consumption
· Not affected by object
colour and transparency
· More than one interface
options

· Low resolution
· Slow refresh rate
· Limited range
· Interfered by acoustic
signals
· Not detecting objects
with extreme textures and
surfaces

Infrared

Triangulation

· Compact
· Lightweight
· Low-cost
· Day & night

· Short range
· Low reliability with
additional sensors

Time of flight

· Compact
· Lightweight
· Easy to use
· Reliability with additional
sensors
· Long range
· Fast refresh rates
· High precision
· 3D imaging
· Day & night

· Affected by sunlight
· Z-axis poor resolution

LIDAR Time of flight

· Long and high range
· High accuracy
· 3D imagery
· Fast refresh range
· Detection of small
objects
· Day & night
· High precision
· Stability in measures
· Good detection outdoors

· High cost
· Dangerous to human
eyes
· Low reliability with
additional sensors
· High current draw and
so high power
consumption

First, it is important to take into account that the drone will always fly outdoors.
On one hand, in the altitude maintenance system it is no needed a wide and high
range since the drone will fly always at relatively low altitudes in order to have
good resolution in images but it should be a precise distance measurement
sensor for the area-pixel rate to be constant. On the other hand, in the obstacle
avoiding system the maximum range should be bigger in order to detect obstacles
with anticipation and so avoid them, but neither a hundred of meters.

Precision is a one of the most important requirements and, as it can be seen in
the comparison table, LIDAR sensors and the ones working with infrared waves
and time of flight principle provide high precision. In order to choose between
these two alternatives, is time to take into account that pottery research will be
always outdoors, where LIDAR sensors provide good detection while IR + ToF
sensors detection can be affected under the existence of sunlight. So, is easy to
conclude that the most suitable for this work is to use a LIDAR distance
measurement sensor.

8 MULTISENSORY HELP SYSTEM TO MULTIPLATFORM DRONE NAVIGATION

2.3. Distance measurement sensors

The market research on LIDAR sensors starts on looking in the typical on-line
stores specialized in selling products for electronic use, which includes a large
variety of sensors, including distance measurement sensors.

One of the characteristics of LIDAR is that they can have a wide range, so this is
the first filter to take into account: discarding the long-range ones (e.g. more than
50 m of maximum range) since as it has been previously justified it will never be
needed to measure a large distance.

Digging deeper about different sensors, a line-up of cameras able to measure
distances appeared, which are the Intel RealSense depth cameras. The main
advantage of using this format instead of a sensor is that the distance is
measured pixel by pixel, which will be helpful in the case of obstacle avoidance
system, to detect objects.

During the following sections, this cameras line-up and some LIDAR sensors are
analysed and compared in order to finally choose one distance measurement
device for each system.

2.3.1. Obstacle avoidance

In order to detect obstacles, and then avoid them, one of the Intel RealSense
depth cameras [7] is used. In this section, all of them are analysed and compared
to choose the most suitable one.

The main difference of this line-up with respect to previously explained sensors
is the presence of two receivers, located at a constant distance of the emitter.
Concerning the depth calculation process, two data (from each one of the
receivers) of a small area are received, which are correlated and then the depth
value of a pixel is computed. Doing this for every pixel a 3D image is generated.

There is not a large variety regarding to the specifications of these cameras,
which are summarized in the following table, so maybe some of them are useful
in the project and so can be chosen by price instead of other properties, usually
more important in any system’s design.

STATE OF THE ART 9

Table 2.2.1.1. Intel RealSense depth cameras comparison

 L515 D455 D435/D435i D415 SR305

Technology LIDAR
Active IR
Stereo

Active IR
Stereo

Active IR
Stereo

Coded light

Range 0.25 – 9 m 0.4 – 20 m 0.105 – 10 m 0.16 – 10 m 0.2 - 1.5 m

Resolution
(pixels)

Up to
1024 x 768

Up to
1280 x 720

Up to
1280 x 720

Up to
1280 x 720

Up to
640 x 480

Frame rate
(frame/s)

30 Up to 90 Up to 90 Up to 90 Up to 60

Outdoor
detection

No Yes Yes Yes No

Dimensions
(mm)

61 diameter
26 height

124 x 26 x 29 90 x 25 x 25 99 x 20 x 23 139 x 26 x 12

Price 298€ 204€ 153€/170€ 127€ 67.5€

First to discard are the ones that cannot detect obstacles outdoor, because are
not useful in this project. Regarding the other three, D455 highlights due to the
maximum range but actually the minimum is a dangerous property. Although the
system is created to detect obstacles at a distance of 2 m, if necessary, it should
detect them at 30 or 40 cm, which could not be possible with D455. As a
maximum range of 10 m is higher enough for the purpose, D455 is also
discarded.

Between the other three, which characteristics are almost the same, it is not
important which one to choose. Between D435 and D435i the only difference is
the presence of an IMU (Inertial Measurement Unit), a combination of
gyroscopes, magnetometers and accelerometers, which is not useful in this
project, so it is discarded. Finally, the distinctive is the minimum range, so it is
easy to choose the smaller one, but taking into account the price gap, if
necessary, D415 is also valid.

Summarizing, the optimal option is to use the D435 [8] camera of Intel RealSense
depth line-up, which provides depth frames of up to 1280 per 720 pixels with a
frequency of up to 90 Hz in a range between 0.105 m and 10 m long.

2.3.2. Altitude maintenance

In order to measure flight altitude in a precise way a research on some distance
sensors has been done looking for them in different specialized on electronic
devices Internet webs. Some candidates of all possible sensors on market have
been selected to compare between them and finally choose the most suitable
one justifiably.

Is previously discussed the choice of LIDAR among the other technologies, but
there were another valid distance measurement sensor methodology: the one
that measures by time of flight principle using infrared waves, so one of this type
is included in the comparison. Furthermore, one with a huge (for the purpose)
maximum range is also included although it was a filter used in the research.

10 MULTISENSORY HELP SYSTEM TO MULTIPLATFORM DRONE NAVIGATION

In next table are summarized the most important specifications and price, which
would be also compared in case of similar properties. It is important to say that
all prices have been extracted from a distributor that works in Spain [9].

Table 2.2.2.1. LIDAR sensors comparison

TeraRanger

One [10]
TERABEE

LIDAR-Lite
v3 [11]

GARMIN

Leddar One

[12]
LeddarTech

TF mini [13]
seeed

LW20/C [14]
LightWare

Technology IR + ToF LIDAR LIDAR LIDAR LIDAR

Maximum
range (m)

Indoor: 14
Outdoor: 6

40 40
Indoor: 12
Outdoor: 6

100

Resolution
(cm)

0.5 1 0.3 1 1

Speed (Hz) 1000 500 140 1000 10000

Accuracy
(cm)

2 2.5 5 6 10

Weight (g) 10 22 14 12 20

Dimensions
(mm)

18 x 29 x 35 20 x 48 x 40
51 diameter
30.6 height

15 x 36 x 16 20 x 30 x 43

Price 64 € 132 € 128 € 31 € 316 €

First thing to focus on is the maximum range: in the case of LW20/C it is much
bigger than needed, which is not a problem if the other specifications meet the
requirements; but in TeraRanger One and TF mini cases this is too small taking
into account that the drone will always fly outdoors in this project. Therefore,
these two sensors are discarded and the other three are, for now, options.

Regarding to the resolution the best one is Leddar One, but this is not the most
important factor to take into account. However, a precise and accurate
measurement is needed so it is easy to select LIDAR-Lite v3 due to accuracy.
The other parameter is speed, in which LW20/C highlights, but this is not a
primordial point and, furthermore, this sensor is the less accurate and the most
expensive.

In this case, the optimal option is to choose LIDAR-Lite v3 from GARMIN, that
provides depth data with an accuracy of 2.5 cm, a resolution of 1 cm and a refresh
rate of 500 Hz in a range up to 40 m. However, given the current situation, has
been only possible to get TF mini of seeed, which most important lost regarding
to the selected sensor is that the maximum range is not enough for the purpose,
so it can cause real problems while flying. Furthermore, the accuracy, which is
another of the important requirements, is also worse than the selected one. In
contrast, it has higher refresh rate, but summarizing it is a bad change.

HARDWARE ARCHITECTURE 11

3. HARDWARE ARCHITECTURE

In this chapter is designed the hardware part. First is needed to know both the
drone type and elements as controller or processor that make part of the drone
used, ignoring the ones related to pottery acquirement as can be the potsherds
detection camera. Once these characteristics are known, the design of the
hardware architecture can be done by adding the two distance measurements
sensors chosen in the previous section.

3.1. Drone characteristics and elements

The drone is intended to use in this project is a quadcopter, so that it could do
any type of movement (change altitude or speed or address to a concrete
location) during the avoidance mission in an easy way.

Regarding to hardware elements that already take part of this drone, it is needed
to know it has a Pixhawk 2.1 as a flight controller with a GPS module incorporated
and a Raspberry Pi 4 de 4 GB as a computer, which are connected between
them.

3.1.1. Pixhawk

Pixhawk is an open standard that provides guidelines and hardware specification
for drone’s systems development and currently offers six low-cost flight
controllers. For this project, Pixhawk 2.1 [15], or Pixhawk Cube, is used in order
to make the drone do any movement to follow the fly path or execute a mission.
It is usually said that flight controller would be to UAS the equivalent of the brain
to an animal, meaning that controls and monitors all the drone do. It is able to
change flight direction, sense and speed by varying motor’s angular speed.

Fig. 3.1.1.1. Pixhawk 2.1 ports

12 MULTISENSORY HELP SYSTEM TO MULTIPLATFORM DRONE NAVIGATION

The flight controller must always have a battery connected to power it, which is
usually a Li-Po battery. In fact, in the case of quadcopter a power module is what
is connected directly to the flight controller, since it must have also connected the
ESC [Electronic Speed Controller], in order to power these elements that control
the motors speed.

Furthermore, flight controller can have other modules as, for example, a buzzer
for sound warnings or a telemetry module, that transmits data about the drone
status to a receiver device, which is usually the pilot’s computer.

In this case, it is important to take into account that the drone has a GPS module,
which is also connected to the flight controller, providing position data in 3D from
satellites.

3.1.2. Raspberry Pi

Raspberry Pi is a series of cheap and small single-board computers made of a
processor and a graphic module, initially created to promote technological
science. For this project, the newest one is used, Raspberry Pi 4 Model B [16]
with 4 GB of RAM. This device is used to process data and is the one containing
the code designed for the obstacle avoidance mission.

Fig. 3.1.2.1. Raspberry Pi 4 ports

HARDWARE ARCHITECTURE 13

3.2. Drone connection

Now the used drone is known and which hardware elements does it use, the
connection of previously selected distance measurement devices has to be done.

Raspberry sends processed data to Pixhawk and so they have to be connected.
Regarding to hardware, they are joined with cables from one TELEM port of
Pixhawk to serial GPIO of Raspberry.

Fig. 3.2.1. Raspberry to Pixhawk connection

On one hand, the Intel camera transmits frames using a USB-C 3.1 Gen 1, which
is not supported by Pixhawk and so it has to be connected to Raspberry USB 3.

Fig. 3.2.2. D435 camera to Raspberry connection

14 MULTISENSORY HELP SYSTEM TO MULTIPLATFORM DRONE NAVIGATION

On the other hand, the TF mini sends data by UART o I2C ports, so it can be
connected to both Pixhawk TELEM ports and Raspberry GPIO serial ports. As
these last ones are occupied by Raspberry to Pixhawk connection, the LIDAR is
connected to Pixhawk, which can send the altitude data to Raspberry for the
avoidance mission.

Fig. 3.2.3. TF mini LIDAR to Pixhawk connection

SOFTWARE IMPLEMENTATION 15

4. SOFTWARE IMPLEMENTATION

As it has been mentioned, the drone has a previously charged mission and flies
the path in an autonomous way. In order to give the mission it has to run a code
[17], which also contains the two navigation systems designed during this work:
altitude maintenance and obstacle detection and avoidance.

This code is designed only to test it, it is not in the context of the real
archaeological project. It creates a simple mission, which is moving forward 100
m in the heading direction, and, during this mission, flight altitude can be checked
(altitude maintenance system) and an obstacle has to appear, in order to detect
and avoid it (obstacle detection and avoidance system).

4.1. Programming language

Given his general nature and the facility of the language, Python has been chosen
to code this work, which has been developed first in a laptop and then, after
configuring it and installing his operating system, in the Raspberry Pi.

Python is a language created on latest years of 1980s and first released on 1990,
currently developed under an open-source license with a philosophy of a
readable syntax. It is highly used due to their general characteristics and
applications and due to the fact it is free to use.

The IDE (Integrated Development Environment) chosen to code has been Visual
Studio Code because of the ease to develop code remotely in Raspberry Pi using
SSH (Secure Shell) protocol and also of using git.

Visual Studio Code is a free source-code editor first released in 2015 so popular
because of it allows to code in a variety of programming languages and can so
develop a variety of applications.

4.2. Communication between components

In order to get or transmit data to the drone or between his components, a
communication protocol is used. In this case MAVLink [18], that stands for Micro
Aerial Vehicle Link, is used. MAVLink is a lightweight protocol, in concrete to
micro UAV (Unmanned Aerial Vehicle), that uses messages for the
communication, which are defined within .xml files and so can be use in a large
variety of languages.

For the two-way data transmission between the flight controller and the computer,
DroneKit [19] is used. DroneKit is an API (Application Programming Interface)
that uses MAVLink communication to easily create Python applications in order
to develop autonomous flight drones, by controlling the drone movements
directly. Furthermore it allows a direct access to vehicle data, meaning it
telemetry, status and other parameters.

16 MULTISENSORY HELP SYSTEM TO MULTIPLATFORM DRONE NAVIGATION

4.3. Required libraries

In order to get data from the Intel RealSense camera, it has to be used a SDK
(Software Development Kit) that allows to work with the line-up of D400 cameras
and whose name for Python wrapper is ‘pyrealsense’ [20].

For the communication between the GCS (Ground Control Station) and the flight
controller, MAVLink library has to be used. In the case of Python language it is
named ‘pymavlink’ [21] and can be easy installed using pip.

Finally for the flight controller to computer communication DroneKit library, called
also ‘dronekit’ [22], is used, which is directly written in Python and also can be
easily installed using pip.

All these three used libraries used are free open-source libraries, which is a high
advantage because of the existence of other users’ code on-line, in addition to
the official ones. It is important to install all the libraries in the Raspberry Pi, in
order to work on the drone.

4.4. Systems performance

This last section explains finally the logic of the two systems, separately. As
expected, the avoidance system is the difficult one and is made of a big loop,
containing other ones inside. For the sake of simplicity, the way in which it avoids
objects is increasing altitude.

First of all, it is important to take into account that when the D435 camera detects
an obstacle, the initial mission of the drone is saved in a vector and then is
stopped. After avoiding the obstacle, the one where avoidance has finished
(which corresponds to the actual location) substitutes the point where initial
mission was stopped and then the drone goes on with the mission since there.

it has been explained before, the fact of a pixel per pixel depth measure is a big
advantage in order to detect obstacles, compared with sensors, which only do
one measure. On the contrary, for reading and analysing data it is annoying, since
the code has to get the distance of every pixel. As this data is used to determine
the existence of an obstacle, the method used is to count how many pixels detect
something at a distance less than the security one and then compare this sum
with a previously set threshold, which state from which account of pixels is
considered to have an obstacle.

Therefore, for the obstacle detection, two parameters have to be set: the security
distance and the minimum account of pixels. Furthermore, for the obstacle
avoidance there are also some parameters to be set: the increases (one on
altitude and the other one on distance) and a bigger security distance, which are
∆ℎ, ∆𝑑 and 𝑑, respectively in the avoidance loop image. In addition, a last
parameter (it does not appear in the image) accounts for the number of times that
altitude is increased.

SOFTWARE IMPLEMENTATION 17

Fig. 4.4.1. Obstacle avoidance system loop

When an obstacle is detected, the height is increased and, in every increase it
does, the code looks if there is an obstacle at a distance less than the large
security one. When it gets an altitude where there is no obstacle, the drone moves
on a distance equal to the subtraction of the two security distances and check
again if there is an obstacles at a distance less than the smaller security one. If
there is, it keeps in this loop of increasing altitude and checking the existence of
an object on the flight direction. When finally there is not an obstacle in this
direction it has to check if the obstacle is still under the drone and it is done with
the LIDAR data. In order to do so it compares what should be the current altitude
(flight altitude plus the multiplication of the counter with the altitude increment)
with the distance it measures. In the case of smaller measured distance (obstacle
still under the drone), it has to move on by increments of distance in order to pass
the obstacle but before moving it has to check if there is obstacle behind.

18 MULTISENSORY HELP SYSTEM TO MULTIPLATFORM DRONE NAVIGATION

Now the obstacle avoidance is explained, the height maintenance loop is much
easier and only in one loop can be done. The code looks for the altitude data from
the TF mini altimeter and compares it with what should be the flight altitude. If
these two compared distances are not the same, a message is sent to Pixhawk
in order to change flight altitude. It is important to mention that it is made to detect
as equal differences that are below a 5% error, because it is considered the
accuracy of the sensor.

Fig. 4.4.2. Height maintenance system loop

EXPERIMENTAL TESTS 19

5. EXPERIMENTAL TESTS

First both distance measurement devices are analysed in order to study the
functioning. On one hand, it is needed to check the accuracy and the range of
the sensor. On the other hand, the camera resolution has to be checked and the
two parameters of obstacle detection loop should be set by testing it. Finally, the
entire code will be tested by moving the drone as if it was doing it alone.

In a try of recreate possible flight conditions, all three tests has been performed
outdoors.

5.1. TF mini LIDAR test

A small code test has been written in order to only read and print the measured
distance of this sensor. As it has been seen in the market study (section 2.3.2.),
this sensor works within a range from 30 cm to 6 m outdoors providing an
accuracy of 6 cm with 1 cm resolution.

In order to check these specifications, some measures have been done, both with
the TF mini sensor and manually with a measuring tape, which results are shown
in Fig. 5.1.1. in meters.

Fig. 5.1.1. Real distance VS measured distance

Generally, the previous figure shows that the sensor is accurate in measure, but
it is needed to take into account that I had to stay some seconds holding it and
waiting because it is so unstable when it is moved and, during first seconds, it
returns oscillating values, which are so different between them.

20 MULTISENSORY HELP SYSTEM TO MULTIPLATFORM DRONE NAVIGATION

The output distance value is given in centimetres without any decimals so, as the
specifications indicate, the resolution is 1 cm. Computing the average error in the
measured distance, an accuracy of 2 cm is get but, as it can be seen, the
maximum one is 8 cm, which is more than the accuracy on the specifications
datasheet.

Regarding to the range, when it detects something closer than 30 cm,
automatically the output is 30 cm, which is the minimum range. According to the
official seeed webpage data, the maximum range indoors is 12 m and outdoors
6 m, but actually it detected obstacles at distances up to 7 or 8 m (which data is
not included in Fig. 5.1.1.). Although the LIDAR can measure it, the output value
is even more unstable than usually and sometimes it goes further than 600 m,
which indicates that has reached the maximum value, so the best option is to
consider 6 m as the maximum range, as the datasheet indicates.

5.2. D435 camera test

A small code has been developed in order to do the test. It consists of the D435
functions file of the main code and a program that only start the connection and
continuously prints if there is an obstacle or not, using the continuously sent depth
frames of the camera.

Before doing the test and check the specifications and set the code loop
parameters, Intel RealSense Viewer has been installed in order to see how the
camera measures distance. An example of a photograph is in Fig. 5.2.1. (with no
edit), which shows a depth image oh my desktop and is also attached a thumbnail
of the colour stream image of the camera at the lower left corner.

Fig. 5.2.1. D435 depth image example

EXPERIMENTAL TESTS 21

As it can be seen in the previous figure, the ratio is not the same for the stereo
module depth stream than for the colour stream of the camera. In the depth
image, for example, all the computer display is seen while in the colour one only
the left half of the screen is seen. So, the resolution of this two modes is different.
For the code, it is important to know exactly the resolution of the depth image
because it is needed while running the code in order to scan all positions of the
matrix containing the depth data of each pixel. From the specifications, it is known
that resolution is up to 1280x720 pixels. Therefore, the first test is to simply debug
the code and see the depth frames dimensions, which were 640x480 pixels.

Then, the relation between altitude and the security distance parameter has to be
known, taking into account that the vertical field of view of the camera is 58º. The
following inequality, which comes from using basic trigonometry, is computed in
order to not detect the ground as an obstacle while flying.

 ℎ ≥ 𝑑𝑠𝑒𝑔 · tan (58º) (5.2.1.)

So from now on, the flight altitude is 1 m and the security distance as 50 cm in
order to test it without having problems with terrane. When using the drone in the
archaeological project, the flight altitude will be stablished depending on the
images resolution and, using this equation, the security distance can be set.

The other parameter used during the obstacle avoidance mission is the threshold
that stablish which is the minimum number of pixels detecting an obstacle that
implies that an object is an obstacle. It is important to choose it with criteria
because if it is too small can lead to a lack on efficiency on the code, which is not
a big problem, but if it is too big can cause a collision with the obstacle. In the first
case, the code thinks there is an obstacle and tries to avoid it but it maybe is not,
which would not be efficient. In the last case, when the threshold is set bigger
than needed, the code needs a big or a close object, which could imply to not
decide to avoid or to take this decision when the drone has no longer time to
avoid it. After some tests, the value is set as 1000, because it has not failed in
the detection, testing with some different obstacles, varying the position (taking
into account the field of view) and the distance (checking the range).

5.3. Code test

As the LIDAR is not useful in a drone, it has not been possible to test the code in
a drone real flight, but a simulation has been done for testing the systems design
and implementation. First, all hardware has been connected and subjected to a
multiplatform drone frame in a realistic way. Then, the code has been adapted to
use it without flying. The changes done were to comment all lines that execute
functions in which DroneKit is used to make the drone move itself (e.g. changing
altitude or moving forward a certain distance) and to replace all these lines by
‘print’ ones (e.g. “Initial mission saved” or “Increasing altitude 0.3 m”). This way,
the movements done manually are what the printed lines indicate.

22 MULTISENSORY HELP SYSTEM TO MULTIPLATFORM DRONE NAVIGATION

Regarding to the altitude maintenance system, in terms of code it worked
perfectly since it is a really easy design. However, as it has been repeatedly said
before, the LIDAR performance is not good enough to make it work in this use,
although it was inside the working range. With respect to the obstacle detection
and avoidance system, the detection part also worked perfectly, which indicates
detection parameters and functions were correctly set and designed, but the
avoidance part had some difficulties. On one hand, it is needed to take into
account that during the avoidance mission, the code needs to use de altitude data
coming from TF mini, so it is easy to think that the problem is again the sensor,
since all fails always came from the moment in which is needed to measure
height. On the other hand, the method used to test the code is not precise since
my movements were estimating in distance because I was giving a premium to
time.

One of these tests was recorded and it is available on YouTube [23], in which
both the drone movement (done manually by me) and the code output can be
seen. This video is uploaded without audio, but in the real situation I was helped
by two people: one of them reading to me the output of the code, indicating the
movement I had to do, and the other one recording the image.

CONCLUSIONS 23

6. CONCLUSIONS

The aim of this work is to design, implement and proof two navigation systems in
order to help an autonomous-flight drone, in the context of an archaeological
survey project. The research of pottery is done with a multispectral camera, so
the altitude must be constant during all the flight, following the terrain it is flying.
Because of this, one of the systems designed during this work, is to maintain
strictly constant the height. Furthermore, it is needed to have good resolution in
the images, so the flight altitude has to be lower enough to photograph a small
area per pixel with high resolution. Due to the low flight altitude, it is highly
possible to have some obstacles during the flight, so the other navigation help is
an obstacle detection and avoidance system.

On one hand, in order to measure the height, which is the distance to soil, a
LIDAR has been used. In the market study, GARMIN LIDAR Lite-v3 has been
considered the most suitable one, but, given the current situation, the only one
available was seeed TF mini. This sensor provides 1000 data per second with an
accuracy of 6 cm and a resolution of 1 cm of objects from 30 cm to up to 6 m
away outdoors. As it had been said while doing the market study, the
specifications that this LIDAR provides are not appropriate for the use since the
most important ones, accuracy and maximum range, are not good enough. After
testing the device, the minimum range and the resolution are exactly the ones of
the datasheet, but the accuracy is 8 cm and the range is 1 or 2 m bigger. Although
the specifications are not the most appropriate, the bigger drawback is the
instability of the measures. Every time the distance between the LIDAR and the
closer object changes, the output distance value takes some second to stabilize
itself and, during this time, it varies on a big range of values. So, as the use is to
put in in a continuously moving object (drone), it is not useful since the measures
read will be these ones of instability.

On the other hand, in order to detect obstacles, a depth camera has been chosen
and used. The Intel RealSense depth camera provides up to 90 depth frames of
up to 1280x720 pixels per second within a range between 10.5 cm and 10 m, with
vertical, horizontal and diagonal fields of view of 58º, 87º and 95º, respectively.
Given the specifications, this device seems useful for the detection mission,
which has been checked after some tests. During the tests, the resolution get is
640x480 pixels, which is also enough for the use, and the vertical field of vied has
been used to stablish the relation between the flight altitude and the security
distance set, in order to not detect the ground as an obstacle. After that, an
altitude of 1 m and a security distance of 50 cm have been used. Regarding to
the parameter that stablish how many pixels detecting an obstacle are enough to
establish that it is really an obstacle, it has been set as 1000, in which case the
test code did not have any problem to detect some different objects in different
positions and distances inside the range, from 10.5 cm to 10 m.

24 MULTISENSORY HELP SYSTEM TO MULTIPLATFORM DRONE NAVIGATION

Summarizing, in respect of the distance measurement devices used, the altimeter
is not useful in terms of range, accuracy and time and must be changed in order
to use it in a drone and the obstacle detection camera has good specifications
and results and so is a good choice.

After concluding that the LIDAR is not able to use in a drone, have been not
possible to test the code in a flight, but a simulation has been done. In this
simulation, the drone was moved manually as it was flying in order to approach
to the real situation. The main problems during this test came from, on one hand,
doing it manually with distance movements not measured (approximate) and, on
the other hand, the instability of the LIDAR measurements.

Summarizing, in order to get a better design of these two navigation help
systems, the most important thing is to change the altimeter sensor by one with
better accuracy and, if it is possible, higher maximum range. The next step would
be to do the LIDAR tests again to check the specifications and, if they are good
enough, to try again the simulation. It is expected to get then better results,
although not a perfect work because of the approximation of movements, but
enough to know if it is ready to do a real flight test, which would approve (or not)
the design of the avoidance mission.

REFERENCES 25

REFERENCES

[1] Spain Government, “Strategic plan for civil sector drones development in
Spain.” https://www.fomento.gob.es/NR/rdonlyres/7B974E30-2BD2-46E5-
BEE5-26E00851A455/148411/PlanEstrategicoDrones.pdf (accessed Sep. 03,
2020).

[2] Hemav Foundation, “Hemav Foundation.”
http://hemavfoundation.com/sobre-hemavfoundation/ (accessed Aug. 19, 2020).

[3] H. A. Orengo and A. Garcia-Molsosa, “A brave new world for
archaeological survey: Automated machine learning based potsherd detection
using high-resolution drone imagery,” J. Archaeol. Sci., p. 12, 2019.

[4] TERABEE, “Choosing the right distance sensor for your application.”
https://www.terabee.com/choosing-right-distance-sensor-your-
application/#:~:text=Distance sensors equipped with IR,is reflected in all
directions. (accessed Sep. 25, 2020).

[5] seeed studio, “Types of distance sensors.”
https://www.seeedstudio.com/blog/2019/12/23/distance-sensors-types-and-
selection-guide/ (accessed Sep. 25, 2020).

[6] Sparkfun, “Distance sensor comparison guide.” 25/9/2020, [Online].
Available: https://www.sparkfun.com/distance_sensor_comparison_guide.

[7] Intel RealSense, “Depth cameras comparison.”
https://www.intelrealsense.com/compare-depth-cameras/ (accessed Sep. 26,
2020).

[8] I. RealSense, “D435 depth camera.”
https://www.intelrealsense.com/depth-camera-d435/ (accessed Sep. 26, 2020).

[9] RobotShop, “RobotShop webpage.”
https://www.robotshop.com/es/es/?___store=es_es&___from_store=eu_en
(accessed Sep. 27, 2020).

[10] TERABEE, “TeraRanger One.” https://www.terabee.com/shop/lidar-tof-
range-finders/teraranger-one/ (accessed Sep. 26, 2020).

[11] GARMIN, “LIDAR-Lite v3.” https://buy.garmin.com/es-ES/ES/p/557294
(accessed Sep. 26, 2020).

[12] LeddarTech, “Leddar One.” https://leddartech.com/lidar/leddarone/
(accessed Sep. 26, 2020).

[13] seeed studio, “TF mini.” https://www.seeedstudio.com/Seeedstudio-
Grove-TF-Mini-LiDAR.html (accessed Sep. 27, 2020).

26 MULTISENSORY HELP SYSTEM TO MULTIPLATFORM DRONE NAVIGATION

[14] LightWare, “LW20/C.” https://lightwarelidar.com/products/lw20-c-100-m
(accessed Sep. 27, 2020).

[15] Pixhawk, “Pixhawk 2.1.”
https://docs.px4.io/v1.9.0/en/flight_controller/pixhawk-2.html (accessed Oct. 12,
2020).

[16] Raspberry Pi, “Raspberry Pi 4 model B.”
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/ (accessed Oct. 12,
2020).

[17] L. Parga Gata, “Github repository,” 22/10/2020, 2020.
https://github.com/laurapg98/CollisionAvoidance_test.

[18] MAVLink, “MAVLink protocol.” https://mavlink.io/en/ (accessed Oct. 22,
2020).

[19] DroneKit, “DroneKit API.” https://dronekit.io/ (accessed Oct. 20, 2020).

[20] I. RealSense, “pyrealsense2 Python library.”
https://github.com/IntelRealSense/librealsense/tree/master/wrappers/python
(accessed Oct. 15, 2020).

[21] MAVLink, “mavlink Python library.” https://github.com/ArduPilot/pymavlink
(accessed Oct. 20, 2020).

[22] DroneKit, “dronekit Python library.” https://github.com/dronekit/dronekit-
python (accessed Oct. 20, 2020).

[23] L. Parga Gata, “Obstacle detection and avoidance test.”
https://www.youtube.com/watch?v=YHlUhO3HOCQ&feature=youtu.be
(accessed Oct. 23, 2020).

APPENDIX 1: Code 27

APPENDIX 1: Code

Main.py script

Import functions
from D435functions import start_D435, exists_obstacle_ahead, stop_D435
from DRONEfunctions import start_connection, stop_connection, stop_mission,

save_mission, get_flight_altitude, change_altitude, move_forward,

add_current_waypoint, test_mission, exists_obstacle_under, upload_mission

Flight parameters
flightaltitude = 1 # m ***
speed = 5 # m/s ***

Camera parameters
serialnumber_D435 = "829212070982"
x_pixels = 640
y_pixels = 480

Security parameters
securitydistance = 0.5 # m ***
minpixels = 1000 # pixels ***

Connection with D435 camera
pipe_D435 = None
while pipe_D435 == None:
 pipe_D435 = start_D435(serialnumber_D435)

Connection with drone
vehicle = None
while vehicle == None:
 vehicle = start_connection()

Upload mission
test_mission(vehicle, flightaltitude, speed, 100)

try:
 while True:

 # Check altitude (maximum 5% error)

 while (altitude >= 0.95 * flightaltitude and altitude <= 1.05 *

flightaltitude):
 #get_flight_altitude(vehicle, flightaltitude)
 print("CHANGE TO FLIGHT ALTITUDE (" + str(flightaltitude) + "m)

| Current altitude: " + str(altitude) + " m")
 altitude = vehicle.rangefinder.distance
 print("Flying at " + str(altitude) + " m")
 print("Altitude OK\n")

 # Obstacle detected
 if (exists_obstacle_ahead(pipe_D435, securitydistance, x_pixels,

y_pixels, minpixels) == True):
 print("Obstacle detected")
 print("Starting avoidance mission\n")

 # Save initial mssion
 initialmission = save_mission(vehicle)
 print("Initial mission saved\n")

 # Stops the initial mission
 #stop_mission(vehicle)
 print("Initial mission stopped\n")

 # Obstacle avoidance parameters
 Ah = 0.3 # m *** IT MUST

BE SMALLER THAN SECURITY DISTANCE

28 MULTISENSORY HELP SYSTEM TO MULTIPLATFORM DRONE NAVIGATION

 Ad = 0.3 # m *** IT MUST

BE SMALLER THAN SECURITY DISTANCE
 d = 1.5 # m *** IT MUST

BE HIGHER THAN SECURITY DISTANCE

 # Obstacle avoidance loop
 counter = 0
 while (exists_obstacle_ahead(pipe_D435, securitydistance,

x_pixels, y_pixels, minpixels) == True):

 print("[while 1] Obstacle at less than " +

str(securitydistance) + " m\n")
 while (exists_obstacle_ahead(pipe_D435, securitydistance,

x_pixels, y_pixels, minpixels) == True):
 print("[while 2] Obstacle at less than " +

str(securitydistance) + " m\n")
 while (exists_obstacle_ahead(pipe_D435, d, x_pixels,

y_pixels, minpixels) == True):
 print("Obstacle at less than " + str(d) + " m")
 #change_altitude(vehicle, Ah)
 print("INCREASE ALTITUDE " + str(Ah) + " m\n")

 counter += 1
 #move_forward(vehicle, d - securitydistance, speed)
 print("MOVE " + str(d - securitydistance) + " m\n")
 obstacle_under = True
 while (exists_obstacle_ahead(pipe_D435, securitydistance +

Ad, x_pixels, y_pixels, minpixels) == False and obstacle_under == True):
 print("Obstacle under the drone")
 print("No obstacle at less than " + str(Ad) + " m\n")
 if (exists_obstacle_under(vehicle, flightaltitude,

counter*Ah) == False):
 print("No obstacle under the drone")

 #get_flight_altitude(vehicle, flightaltitude)
 print("DECREASE ALTITUDE TO " + str(flightaltitude)

+ " m (flight altitude) \n")
 obstacle_under = False
 else:
 print("Obstacle under the drone")
 #move_forward(vehicle, Ad, speed)
 print("MOVE " + str(Ad) + " m\n")

 # Return to initial mission
 print("Avoidance mission done. Going on with initial

mission.\n")
 initialmission_edit = add_current_waypoint(vehicle,

initialmission, flightaltitude)
 upload_mission(vehicle, initialmission_edit)

finally:

 # Connection with camera
 stop_D435(pipe_D435)

 # Connection with drone

 stop_connection(vehicle)

APPENDIX 1: Code 29

DRONEfunctions.py script

Import libraries
from dronekit import connect, VehicleMode, Command, LocationGlobal
from pymavlink import mavutil

import serial
from math import asin,cos,pi,sin

Starts connection with the drone (controller)
def start_connection():
 vehicle=connect('/dev/serial0', baud=921600, wait_ready=True)
 return vehicle

Stops connection with the drone
def stop_connection(vehicle):
 vehicle.close()

Stops the initial mission
def stop_mission(vehicle):
 vehicle.commands.clear()
 vehicle.commands.flush()

Saves the actual mission & Returns it in a vector
def save_mission(vehicle):
 # Save mission
 vehicle.commands.download()
 vehicle.commands.wait_ready()
 # Store mission
 missionvector=[]
 for waypoint in vehicle.commands:
 missionvector.append(waypoint)
 return missionvector

Changes to fligh altitude
def get_flight_altitude(vehicle, flightaltitude):
 # Current position
 latitude = vehicle.location.global_frame.lat
 longitude = vehicle.location.global_frame.lon
 # Final position
 newLocation = LocationGlobal(latitude, longitude, flightaltitude)

 # Move drone
 vehicle.gotoGPS(newLocation)

Changes (+ increase, - decrease) the altitude Ah m
def change_altitude(vehicle, Ah):
 # Current position
 latitude = vehicle.location.global_frame.lat
 longitude = vehicle.location.global_frame.lon
 currentAlt = vehicle.location.alt
 # Final position
 newAlt = currentAlt + Ah

 newLocation = LocationGlobal(latitude, longitude, newAlt)
 # Move drone
 vehicle.gotoGPS(newLocation)

Moves along Ad m
def move_forward(vehicle, Ad, speed):
 At = Ad / speed
 vehicle.send_global_velocity(speed, 0, 0, At)

Adds current location as waypoint in a mission
def add_current_waypoint(vehicle, missionvector, flightaltitude):

 new_wp = Command(0, 0, 0, mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT,

mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 0, 0, 0, 0, 0, 0,

vehicle.location.global_relative_frame.lat,

vehicle.location.global_relative_frame.lon, flightaltitude)

30 MULTISENSORY HELP SYSTEM TO MULTIPLATFORM DRONE NAVIGATION

 missionvector.append(new_wp)
 return missionvector

Uploads a vector of waypoints as a mission
def upload_mission(vehicle, missionvector):
 for waypoint in missionvector:
 vehicle.commands.add(waypoint)
 vehicle.commands.upload()

Creates a mission (move along distance m) in order to test the code
def test_mission(vehicle, flightaltitude, speed, distance):
 # Current position
 lat = vehicle.location.global_frame.lat
 lon = vehicle.location.global_frame.lon
 heading = vehicle.heading
 # Final position
 finalPoint = pointRadialDistance(lat, lon, heading, distance/1000)
 # Create the mission
 # Take-Off:
 vehicle.commands.add(Command(0, 0, 0,

mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT,mavutil.mavlink.MAV_CMD_DO_SET

_HOME, 0, 0, 1, 0, 0, 0, 0, 0, flightaltitude))
 vehicle.commands.add(Command(0, 0, 0,

mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT,
mavutil.mavlink.MAV_CMD_DO_SET_HOME, 0, 0, 1, 0, 0, 0, 0, 0,flightaltitude))
 vehicle.commands.add(Command(0, 0, 0,

mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT,
mavutil.mavlink.MAV_CMD_NAV_TAKEOFF, 0, 0, 20, 0, 0, 0, 0, 0,

flightaltitude))
 vehicle.commands.add(Command(0, 0, 0,

mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT,mavutil.mavlink.MAV_CMD_DO_CHA

NGE_SPEED, 0, 0, 0, speed, 0, 0, 0, 0, flightaltitude))
 # Mission
 vehicle.commands.add(Command(0, 0, 0,

mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT,mavutil.mavlink.MAV_CMD_NAV_WA

YPOINT, 0, 0, 0, 0, 0, 0, finalPoint.lat, finalPoint.lon, flightaltitude))
 # Landing
 vehicle.commands.add(Command(0, 0, 0,

mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT,mavutil.mavlink.MAV_CMD_DO_LAN

D_START, 0, 0, 0, 0, 0, 0, finalPoint.lat, finalPoint.lon, flightaltitude))
 vehicle.commands.add(Command(0, 0, 0,

mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT,mavutil.mavlink.MAV_CMD_NAV_LA

ND, 0, 0, 0, 0, 0, 0, finalPoint.lat, finalPoint.lon, flightaltitude))
 # Upload the mission
 vehicle.commands.upload()
 # Arm the drone
 vehicle.mode = VehicleMode("AUTO")
 vehicle.armed = True

Computes the final point given the current position (lat, lon) [º],

bearing angle [º] and the distance [km] to move (straight)
def pointRadialDistance(lat1, lon1, bearing, distance):
 # Earth average radius

 rEarth = 6371.01 # km
 # Threshols for floating-point equality
 epsilon = 0.000001
 # Conversions
 rlat1 = lat1 * pi/180
 rlon1 = lon1 * pi/180
 degreeBearing = ((360-bearing)%360)
 rbearing = degreeBearing * pi/180
 rdistance = (distance) / rEarth
 # Compute new latitude
 rlat = asin(sin(rlat1) * cos(rdistance) + cos(rlat1) * sin(rdistance) *

cos(rbearing))
 # Compute new longitude
 if cos(rlat) == 0 or abs(cos(rlat)) < epsilon: # Endpoint a pole
 rlon=rlon1

APPENDIX 1: Code 31

 else:
 rlon = ((rlon1 - asin(sin(rbearing)* sin(rdistance) / cos(rlat))

+ pi) % (2*pi)) - pi
 # Conversions to degrees
 lat = rlat * 180/pi
 lon = rlon * 180/pi
 # New location (don't mind about altitude)
 return LocationGlobal(lat, lon, 0)

Compares altitudes in order to know if there is an obstacle (True) or not

(False) under the drone
def exists_obstacle_under(vehicle, flightaltitude, Ah):
 if (vehicle.rangefinder.distance < 0.95 * (flightaltitude + Ah)): # With

a 5% of error
 return True
 else:
 return False

D435functions.py script

Import libraries
import pyrealsense2 as libRS

Starts connection with the camera
def start_D435(serialnumber):
 pipe_D435 = libRS.pipeline()
 cfg_D435 = libRS.config()
 cfg_D435.enable_device(serialnumber)
 cfg_D435.enable_stream(libRS.stream.depth) # depth
 pipe_D435.start(cfg_D435) # start recording
 return pipe_D435

Establish (True, False) if there is an obstacle ahead
def exists_obstacle_ahead(pipe_D435, securitydistance, x_pixels, y_pixels,

minpixels):

 # Get depth data
 frames_D435 = pipe_D435.wait_for_frames() # frames
 depthframes = frames_D435.get_depth_frame() # filter --> only depth

frames

 # Number of pixels at a distance less than the security one
 counter = 0

 # Read depth data
 x = 0
 while x < x_pixels:
 y = 0
 while y < y_pixels:
 if(depthframes.get_distance(x,y) != 0 and

depthframes.get_distance(x,y) < securitydistance):
 counter+=1
 y+=1
 x+=1

 # Establish if there is (True) (False) or not an obstacle
 if counter > minpixels:
 return True
 else:
 return False

Stop the connection with the camera

def stop_D435(pipe_D435):
 pipe_D435.stop()

32 MULTISENSORY HELP SYSTEM TO MULTIPLATFORM DRONE NAVIGATION

APPENDIX 2: TF mini test data

