
TECHNISCHE UNIVERSITÄT BERLIN

MASTERS’ THESIS

Gait analysis methods’ review, extension
and validation using magnetometer-free

inertial data

Author:
Carlos TIANA GÓMEZ

Supervisors:
Dr. Thomas SEEL

Daniel LAIDIG

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in the

Control Systems group
Faculty IV - Electrical Engineering and Computer Science

October 9, 2020

https://www.tu.berlin/
http://www.control.tu-berlin.de/Welcome
https://www.eecs.tu-berlin.de/menue/fakultaet_iv/parameter/en/?no_cache=1/

iii

Declaration of Authorship
I, Carlos TIANA GÓMEZ, declare that this thesis titled, “Gait analysis methods’ re-
view, extension and validation using magnetometer-free inertial data” and the work
presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

v

TECHNISCHE UNIVERSITÄT BERLIN

Abstract
Institute of Energy and Automation Technology

Faculty IV - Electrical Engineering and Computer Science

Master of Science

Gait analysis methods’ review, extension and validation using
magnetometer-free inertial data

by Carlos TIANA GÓMEZ

Gait analysis using inertial measurements units (IMU) offers a wider range of
capabilities and freedom compared to other foot motion capture techniques, such
as optical markers tracking or instrumented treadmills. However, IMU-based gait
analysis is still under development and its accuracy is still being reviewed against
other ground truth reference systems.

This thesis aims to review and make a compendium of the existing methods, cre-
ate a documentation for the gaitt project, and serve as a reference guide to newcom-
ers. Beyond this objective, among its goals are also to implement a new rest phase
detection algorithm and tune one of the parameters of an orientation estimation al-
gorithm previously developed. For these latter two, the experimental framework
consists on recorded data 92 trials of subjects walking on an instrumented treadmill,
and equipped with optical markers and and IMU on each foot. This provides two
ground truth reference frames against which to compare the ones obtained from the
IMU recorded data.

After the implementation, the new rest detection method yields very similar re-
sults to the existing one, both in gait phases duration, average stride length, and
average gait velocity. The tuning of the orientation estimation algorithm was posed
to compute the orientation of the IMU more accurately, but actual results from it
implementation have proven to be diminishing and give no reason to use it whatso-
ever.

HTTPS://WWW.TU.BERLIN/
https://www.eecs.tu-berlin.de/menue/faculty_institutions/institutes/iea/parameter/en
https://www.eecs.tu-berlin.de/menue/fakultaet_iv/parameter/en/?no_cache=1/

vii

Acknowledgements
I would like to thank both my supervisors, Dr. Thomas Seel and Daniel Laidig,
given their generosity in accepting yet another pupil in the circumstances this thesis
had to be done. They have been there whenever I needed and have provided me
with sound advice, insightful remarks and much needed guidance during this the-
sis. They both have had patience and encouraging words whenever I was lost and
have definitely made it easier and more engaging. This thesis would not be the same
had they not been my supervisors.

I want to acknowledge my family too because, even though they have not had
direct contact with the thesis’ contents themselves, they have had contact with me.
They have offered me help, have cheered me up, and have encouraged me to con-
tinue. Their emotional support has been a constant and a major factor in the com-
pletion of this thesis.

ix

Contents

Declaration of Authorship iii

Abstract v

Acknowledgements vii

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 1
1.3 Structure . 1
1.4 State of the art . 2

2 Theory and algorithms 5
2.1 Previous Concepts . 5

2.1.1 General gait terms . 5
2.1.2 Gait phases . 5
2.1.3 Perry gait phases . 6

2.2 Gait Phase Detection . 7
2.2.1 Unilateral Gait Phase Detection 7

GPD-One . 8
GPD-Two . 10
GPD-Three . 10

2.2.2 Gait Phase Mapping . 11
2.3 Gait Analysis . 12

2.3.1 Number of steps . 12
2.3.2 Step Indices . 12
2.3.3 Step Times . 13
2.3.4 Stride duration . 13

Using unilateral gait phases . 13
Using the gait phases of J. Perry 13

2.3.5 Cadence . 14
2.3.6 Stride length . 14

Sensor frame to earth frame . 15
Sensor frame at previous foot-flat to earth frame 16
Velocity in the earth frame . 16
Sensor frame to foot frame . 16
Position in the foot frame of the previous foot-flat 17
Stride length . 17

2.3.7 Velocity . 18
2.3.8 Foot position in the frame of the foot at the first foot-flat 18
2.3.9 Euler Angles . 18
2.3.10 Maximum pitch angle . 18
2.3.11 Maximum swing roll . 18

x

2.3.12 Z-position . 18
2.3.13 Lateral deviation . 19

3 3D Visualization 21
3.1 Post-processing: Correction of the direction of movement 21

3.1.1 Stepwise heading correction . 22
3.1.2 Starting point correction . 22
3.1.3 Overall direction correction . 22
3.1.4 End position correction . 23
3.1.5 Stepwise z-correction . 23

3.2 Creation of a foot mesh . 24
3.2.1 Position and orientation of all foot points 24
3.2.2 Avoid the foot going into the ground 25
3.2.3 Toe orientation . 26

3.3 Change of coordinate system to babylonjs standard 26
3.4 Camera movement . 26

4 Improvements and extensions 29
4.1 gaitt Comprehensive Guide . 29

4.1.1 General Overview . 29
4.1.2 The Python code . 29
4.1.3 The C/C++ code . 31
4.1.4 The Matlab R© code . 31

4.2 Implementation of new rest detection method 34
4.2.1 Velocity in the earth frame . 34
4.2.2 High- and Low-pass filtering . 34
4.2.3 Intelligent bias removal . 36
4.2.4 Grouping and normalization . 36
4.2.5 Rest phase detection . 36

4.3 Parameter optimization on orientation estimation algorithm 36
4.3.1 Framework . 37
4.3.2 IMU inclination . 37
4.3.3 Parameter optimization . 38

5 Experimental results 41
5.1 Experimental framework . 41
5.2 New rest detection method . 42

5.2.1 Discussion . 42
5.3 Parameter optimization on orientation estimation algorithm 44

5.3.1 Exploratory analysis . 46
5.3.2 Parameter tuning . 46
5.3.3 Implementation of the changes 47
5.3.4 Discussion . 49

Parameter tuning . 49
Implementation of the changes 53

5.4 Comparing left and right foot data . 53
5.4.1 Discussion . 56

6 Conclusions 59
6.1 Overview . 59
6.2 Future work . 60

xi

A Detailed code explanations 61
A.1 Python code . 61
A.2 C/C++ code . 66
A.3 Matlab code . 76

Bibliography 79

xiii

List of Figures

2.1 Illustration of the gait phases and the influence of the contra-lateral
foot on the observed foot’s phases. 6

2.2 Illustration of the new Perry gait phases used in this thesis. 7
2.3 Representation of the GPD-One algorithm used on acc or gyr data to

distinguish motion phases (1) from rest phases (0). 8
2.4 Representation of the intersection used on the GPD-One algorithm to

merge acc and gyr data. 9
2.5 Representation of the GPD-Two algorithm used to detect the begin-

ning of the swing phase using the tilt rate. 10
2.6 Representation of the GPD-Three algorithm, which uses the norm of

the acceleration jerk to detect the initial contact. 11
2.7 Illustration of coordinate systems used. Sensor frame at first foot flat

is not represented, but it would be very similar to the one at previous
foot-flat. 14

2.8 Illustration of the axes used to compute the rotation matrix R. 17

3.1 Illustration of the heading angle δ for any given step. 22
3.2 Illustration of the end correction algorithm. The dashed lines with

dots represent the created linear spaces whereas the black and green
lines represent current and corrected paths, respectively; and in pur-
ple is represented the displacement vector. 24

3.3 Illustration of the process of creating, positioning and orienting the
foot mesh. Each subsection corresponds to a picture on this image. . . 25

4.1 Global project’s code flowchart. Python code is coloured grey, C/C++
code blue, and Matlab R© red. 30

4.2 C/C++ code flowchart. 32
4.3 Detail of gpdFull function, from C/C++ code flowchart. Implementa-

tion of GPD algorithm. 32
4.4 Detail of gait_analysis function, from C/C++ code flowchart. Greater

part of the gait analysis. 33
4.5 Main Matlab R© functions used for 3D visualization 35
4.6 Setup of IMU and optical markers during the trials 37

5.1 Scatter plot of gait phases duration (in %), comparing the new rest
detection method against GPD-One. Bisection of the first quadrant
marked in red. 43

5.2 Scatter plot of stride length and gait velocity, comparing the new rest
detection method against GPD-One. Bisection of the first quadrant
marked in red. 44

5.3 Bland Altman plot of gait phases’ duration of both rest detection method
against ground truth reference system Zebris. 45

xiv

5.4 3D Bar plot of the optimal τacc and accRating parameters and the incli-
nation RMSE (in degrees). Their values are in the horizontal grid, the
inclination RMSE is the height of the bars. 46

5.5 Box-plot of the inclination RMSE for different τacc values. The Individ-
ual refers to the optimal case (each trial with optimal parameters), and
accRating was fixed to 4. 47

5.6 Box-plot of the inclination RMSE for different τacc values, computed
with an alternative orientation estimation algorithm. The markings
on the x-axis refer to the time constant used 48

5.7 Euler Angles of the qsensor
earth quaternion computed with different orien-

tation estimation algorithms and τacc parameters 50
5.8 z Euler Angle of the qsensor

earth quaternion computed with different orien-
tation estimation algorithms and τacc parameters 51

5.9 x Euler Angle of the qsensor
earth quaternion computed with different orien-

tation estimation algorithms and τacc parameters 51
5.10 y Euler Angle of the qsensor

earth quaternion computed with different orien-
tation estimation algorithms and τacc parameters 52

5.11 Bland Altman plot of average gait velocity and average stride length
comparing the orientation estimation algorithms and τacc parameters. . 52

5.12 Box-plot of inclination RMSE separated by foot and scatter plot of dif-
ference in inclination RMSE between feet, with the average marked in
red. 54

5.13 Distances between optical markers by foot, and angle between vectors
used to compute the quaternion describing the optical system frame. . 55

5.14 Detail of the y-position of the front optical marker on the left foot,
with 2 filtered used and raw data. 56

5.15 Inclination RMSE by foot for 2 filtered and unfiltered optical markers
positions. 57

5.16 Overall inclination RMSE and absolute difference between left and
right foot for 2 filtered and unfiltered optical markers positions. 58

xv

List of Tables

1.1 Comparison of papers focused on gait analysis. Taken from [1]. 3

2.1 Mapping of unilateral gait phases into Perry gait phases. 12

xvii

List of Abbreviations

acc accelerometer
EA Euler Angles
fff first foot-flat
GPD Gait Phase Detection
gyr gyroscope
HR Heel Rise
IC Initial Contact
IMU Inertial Measurement Unit
opp opposite and parallel to each other
opt optical marker system
pff previous foot-flat
pos position
q quaternion
ref reference
RMSE Root-Mean-Square Error
TO Toe-Off
TUB Technische Universität Berlin
vel velocity

1

Chapter 1

Introduction

1.1 Motivation

Walking is an ability that society as a whole takes for granted. The world we live in,
the way we interact, our daily lives are conceived with the idea in mind that almost
everyone is able to walk. However, and despite what it may actually seem at first
glance, walking is a complex task that requires many different functions and move-
ments to work to be performed successfully. Pain, functional malformations, muscle
weakness, or loss of sensory function can hinder the proper execution of these tasks
and create problems when walking and, thus, in our lives. Therefore, analyzing a
patient’s gait does not only fulfill the role of correcting and improving the way they
walk, but also finding the root of the problem and, thus, contributing to their health.

There are several options to analyze gait data, even some specifically designed
for this purpose, such as instrumented treadmills. Optical markers have also been
used, since they offer accurate results and can record on 3D too. However, both of
these options require a lab and, therefore, can only be used on clinical environments.
This presents a problem when analyzing such a common activity as walking, since
there are situations that may not arise in these kind of environments, but may be
encountered on our daily lives. The miniaturization of Inertial Measurement Units
(IMU) offers the possibility of solving this problem and contributing to expand gait
analysis to real-life scenarios. In this thesis, the aim is not only to analyze gait data,
but also extend work on the existing algorithms to validate them against the results
of already tested methods.

1.2 Objectives

The objectives of this thesis are three, and will be dealt in this same order. First and
foremost, part of the purpose of this thesis is to be used as an introduction to the gaitt
project at the Control Systems group of the Technische Universität Berlin (TUB). This
way, a newcomer should have an idea of the purpose, structure and algorithms of
the project, as well as an overview of the code. Second, to implement and validate a
new rest detection method. And third, to tune a new algorithm and test and validate
it after.

1.3 Structure

This thesis is organized in 6 Chapters, including this one, which serves as an intro-
duction. Chapter 2 should be the entry point to any newcomer that has never had

2 Chapter 1. Introduction

any relation to gait analysis. It explains general gait concepts, the gait phase de-
tection method and several gait analysis techniques. Chapter 3 is dedicated to the
visualization tool created by student groups within the Control Systems group at
TUB. Even though it is not used for the extensions presented in this thesis, it is still
an important part of the gaitt project and, in line with the first goal presented earlier,
it was deemed worthy of including it. Both Chapters 2 and 3 are greatly based on the
work of E. Kastenbauer [1], and updated wherever necessary with the information
from [2].

Chapter 4 presents and explains the extensions to the gaitt project in this thesis,
which are the fulfillment of the objectives aforementioned. Their results and a dis-
cussion derived from them are finally shown in Chapter 5.

In Chapter 6 are the conclusions of this thesis. It includes a recapitulation of all
other chapters and their main content, contribution and findings. It also proposes
new lines of future work according to the findings on this thesis.

1.4 State of the art

The capabilities of IMUs and the lower limitations in environment settings for con-
ducting experiments with them, as opposed to ground truth methods, has increased
the interest in research of their applications in gait analysis. Here are presented ten
papers that deal with the issue, with different approaches: either with different kind
or number of sensors, kind of patients studied or ground truth reference methods.
They, along with the summarizing table that accompanies this section (Table 1.1),
have been directly taken from [1].

The number of sensors used greatly varies across studies. Some papers use, just
as this thesis, a sensor on each foot, like [3]; whereas [4] uses only a single sensor.
Others, like [5] use two sensors per foot, and [6] uses a whole frame. Some even use
different kinds of sensors simultaneously to improve results, such as [7], that uses
optical markers tracking and IMU readings combined; or [8], that uses force and
momentum sensors along the IMU measurements.

The ground truth reference system also changes depending on the considered
study. Whereas some of them use optical markers (see [4], [6], [7], [8] and [9]), others
use the force sensors of an instrumented treadmill, such as [5].

The patients studied is also a differentiating point across papers. From the ten
here discussed, only four of them had not healthy subjects within their patients. [10]
and [11] studied both healthy patients and others affected by Parkinson’s Disease,
whereas [3] focused only on the latter. Finally, [9] compared data obtained from
healthy subjects from trans femoral amputees.

1.4. State of the art 3

TABLE 1.1: Comparison of papers focused on gait analysis. Taken
from [1].

Paper Investigated values System Used Reference
System

Patients

[3] Linear acceleration,
cadence, step length,
step time

IMUs mounted in left
and right soles

3D motion
capture sys-
tem

Affected by
Parkinson’s
disease

[4] Eight phases defined
by J. Perry

Three IMUs on each
shoe (surface, shank an
thigh)

Optical mo-
tion analysis
system

Healthy

[5] Gait speed, swing/s-
tance percent, stride
length

Two IMUs on each foot Instrumented
treadmill

Healthy

[6] Clearance, Toe-Off and
Heel-Strike

Sensor frame Optical mo-
tion capture

Healthy

[7] Step length and foot
angles

camera + inertial sen-
sors

Measuring
with ruler

Not specified

[8] Lateral foot placement,
stride length

Inertial and force/mo-
mentum sensors

Optical posi-
tion measure-
ment

Healthy

[9] Four gait phases, foot
pitch, roll angle

One IMU on the instep
of each foot

Optical mo-
tion capture

Healthy and
trans femural
amputees

[10] Heel-strike, Toe-off,
velocity, stride length

’GaitShoe’ sensor suite
with inertial sensors
and other sensor types

BioMotionLab
(BML)

Healthy and af-
fected by Parkin-
son’s disease

[11] Turning angles, stride
velocity and stride
length

One IMU on each foot Optical mo-
tion capture

Healthy and af-
fected by Parkin-
son’s disease

[12] Stride time, relative
stance, stride length,
velocity

One IMU on the right
foot

Velocity of
instrumented
treadmill

Healthy

5

Chapter 2

Theory and algorithms

2.1 Previous Concepts

2.1.1 General gait terms

There are some concepts related to the gait that will appear throughout this project
and are needed to understand some other core concepts. Besides those ones which
already have physical meaning (such as position, velocity or orientation), the rest of
core definitions and variables that are most used were proposed by Jacquelin Perry
in [13]. They are used extensively in the project and, thus, will be used in this thesis.
Some of these that may need an initial explanation are:

• Initial Contact (IC): Sometimes also referred to as heel-strike. It is the moment
the foot touches the ground.

• Heel Rise (HR): The moment the heel starts to rise from the floor after resting.

• Toe-off (TO): The moment the toe leaves the ground before swinging forward.

• Contra lateral foot: Foot in which the analysis is not focused on, but still influ-
ences the gait.

• Single limb support: Complete body weight is on one foot.

• Step: Interval between Initial Contact and Initial Contact of the contra lateral
foot.

• Stride: Also called gait cycle. Interval between two consecutive initial contacts
if the same foot, which is also equal to two steps.

2.1.2 Gait phases

J. Perry divided the gait cycle into three phases, each of which is in turn divided into
tasks. The phases of the observed and contra lateral foot can be seen in Figure 2.1.
These phases are:

• Weight acceptance: The body weight is shifted to the examined foot, both feet
touching the ground.

1. Initial contact.

2. Loading response: Starts with the Initial Contact of the examined foot and
ends with the Toe-off of the contra lateral foot.

• Single limb support.

6 Chapter 2. Theory and algorithms

FIGURE 2.1: Illustration of the gait phases and the influence of the
contra-lateral foot on the observed foot’s phases.

3. Mid stance: Begins with the Toe-off of the contra lateral foot and ends
with the shifting of weight to the forefoot.

4. Terminal stance: Starts with the Heel rise and finishes with the Initial
contact of the contra lateral foot.

• Limb advancement.

5. Pre-swing: Begins with the Initial Contact of the contra lateral foot and
ends with the Toe-off of the observed foot.

6. Initial swing: Starts with the Toe-off and finishes when the feet are oppo-
site and parallel to each other (opp).

7. Mid-Swing: Begins when the feet are opposite to each other and ends
when the shin-bone is vertical (shin).

8. Terminal swing: Starts when the shin bone is vertical and ends with the
Initial Contact.

2.1.3 Perry gait phases

In this project, the gait cycle division proposed by J. Perry will be slightly modified.
Therefore, in the new “Perry gait phases”, the Initial Contact will be incorporated
to the Loading Response; and the Initial, Mid and Terminal Swing phases will com-
bined into a single Swing phase. The new relationship between the observed foot
and the contra lateral one can be seen in Figure 2.2. The resulting gait phases are:

1. Loading response

2. Mid stance

3. Terminal stance

4. Pre swing

5. Swing

2.2. Gait Phase Detection 7

FIGURE 2.2: Illustration of the new Perry gait phases used in this
thesis.

2.2 Gait Phase Detection

The ultimate goal of the gaitt project, which this thesis is part of, is to analyse gait
data with the information from the 3D gyroscope and accelerometer of an IMU
mounted in each foot. This gait analysis can be achieved via several plots and val-
ues that will be presented later on, but the process must start with the gait phase
detection, or GPD.

2.2.1 Unilateral Gait Phase Detection

The most common division of gait into phases is the one proposed by J. Perry, which
takes into account the involvement of both feet in the gait process. In this project,
there is a preliminary division into 4 different phases using only the information of
the foot in movement at the moment. These phases are:

1. Rest phase: Whenever the foot is completely flat on the floor.

2. Pre-swing: Phase between heel rise to toe-off.

3. Swing: Interval in which the foot is on the air, from toe-off to initial contact.

4. Loading response: Phase between initial contact to complete rest.

These gait phases differ from the ones named as Perry gait phases in that they
are not influenced by the contra lateral foot. Even though this may imply a loss of
information, it also eases significantly the gait phase detection. Moreover, and as
it will be seen in 2.2.2, the information of the contra lateral foot can still be added
afterwards via mapping.

The whole GPD algorithm is composed by three smaller algorithms applied se-
quentially, named GPD-One, GPD-Two and GPD-Three, each one detecting the beginning-
end of one of the phases aforementioned. The result of the GPD algorithm is an array

8 Chapter 2. Theory and algorithms

FIGURE 2.3: Representation of the GPD-One algorithm used on acc
or gyr data to distinguish motion phases (1) from rest phases (0).

composed of 0-1-2-3 values, which correspond to the gait phases, each being a sam-
ple from the IMUs.

GPD-One

This algorithm aims to distinguish between motion and rest phases, and encodes
them in an array (gpdone) with values 1 and 0, respectively. The result can be seen in
Figure 2.3.

Foot-flat detection: First, it computes the norms of the gyroscope and accelerom-
eter readings, and subtracts the value of gravity (9.81m/s2) to the latter. With each
one of them, it performs acausal thresholding by forwards and backwards hystere-
sis; and threshold ath and hysteresis factor ha. For the accelerometer norm, the pro-
cess is as follows:

r ∗a (tk) =


1 a(tk) > (1 + ha)ath

0 a(tk) < (1− ha)ath

r∗a (tk−1) otherwise

(2.1)

ra(tk) =


1 r∗a (tk) = 1
0 a(tk) < (1− ha)ath

r∗a (tk+1) textotherwise
(2.2)

Then, zero-phases shorter than a defined duration T0,min and one-phases shorter
than T1,min are removed.

The same process of acausal thresholding and short phases removal is repeated
for gyroscope readings, with threshold ωth and obtaining signal rω(tk)

2.2. Gait Phase Detection 9

FIGURE 2.4: Representation of the intersection used on the GPD-One
algorithm to merge acc and gyr data.

Intersection: The result of this first sub process is two arrays of data, each with
its own motion and rest phases. The information from them both is combined into a
single array, gpdone, in which the resulting rest phases are the intersection of the rest
phases of both arrays (it will only be at rest if both and are at rest simultaneously).
This also means that if either is in motion, the resulting phase will be in motion too.
This is represented in Figure 2.4. Afterwards, the short phases which may have ap-
peared in this process are eliminated again, using a new set of thresholds.

Automatic threshold adaptation: The result of the algorithm is very sensible
to the defined thresholds ath and ωth. These values can be found via tuning, and
then implemented manually. However, the amplitude of both the accelerometer and
the gyroscope signal depends on the gait velocity and other factors. Therefore, an
iterative algorithm was developed that was able to tune the thresholds for each trial
based on measured data, similar to the one in [14]. The procedure is as follows:

ath,0 =
1
2

(
max

tk∈[t1,tn]
a(tk) + min

tk∈[t1,tn]

)
(2.3)

T+ = {tk ∈ [t1, tn]|a(tk) > ath,l} (2.4)
T− = {tk ∈ [t1, tn]|a(tk) ≤ ath,l} (2.5)

ath,l+1 =
wa

|T−| ∑
tk∈T−

a(tk) +
1− wa

|T+| ∑
tk∈T+

a(tk) (2.6)

Where l is the iteration index, wa is a weight factor and ath,0 (the initial value) is
the average accelerometer reading’s norm. Even though it is an iterative algorithm
and should be stopped by convergence, it is actually very cheap computationally-
wise, and it is therefore stopped at ath,200. As before, the tuning process for ωth is

10 Chapter 2. Theory and algorithms

homologous to the one presented.

GPD-Two

This second process uses the tilt rate of the foot to detect the beginning of the swing
phase. First, the tilt rate is defined as:

Γ =

∫ t
0 gyr(τ)dτ∥∥∥∫ t

0 gyr(τ)dτ
∥∥∥

2

(2.7)

The tilt rate signal usually presents two local maximums. The start of the swing
phase is located somewhere between the first local maximum and the first zero-
crossing after it. To find them, the algorithm looks first only at the first half of the
swing phase. There, it looks for the maximum value within that window, and then
searches for the first value which is greater than half said maximum. Then, it looks
for the first zero-crossing after that point.

The start of the swing phase is located somewhere in between the found local
maximum and the zero-crossing; it is defaulted to the latter, but it can be adjusted
via weighting (i.e.: changed the default place to a given, fixed point of the interval
between the maximum and the zero-crossing). It takes then the array from GPD-One
and the values from that point until the next foot-flat phase are shifted from 1 to 2.
Figure 2.5 displays the result of applying the GPD-Two algorithm.

FIGURE 2.5: Representation of the GPD-Two algorithm used to detect
the beginning of the swing phase using the tilt rate.

GPD-Three

This third and last phase aims to find the beginning of the loading response, which
is marked by the initial contact. It uses the jerk of the acceleration, which is its
derivative, computed as:

jerk(t) =
d
dt

acc(t) (2.8)

2.2. Gait Phase Detection 11

The algorithm looks on the last 30% of the swing phase determined up until this
moment (which are those samples where the result of the GPD-Two had a 2 as a
value). Within that interval, it searches for the maximum jerk norm, and marks it as
the initial contact. All the values from there on until the next rest phase, and those
immediate previous values that are higher than a fixed threshold (considered as a
percentage of the achieved maximum), are marked as 3 for the GPD. The final result
of the GPD algorithm can be seen on Figure 2.6.

FIGURE 2.6: Representation of the GPD-Three algorithm, which uses
the norm of the acceleration jerk to detect the initial contact.

The result, as stated before, is an array of samples which has sequences of 0-1-2-3
values, and form the GPD array. With it, every sample from the IMU can be mapped
into the associated gait phase.

2.2.2 Gait Phase Mapping

As it was foreshadowed, the Perry gait phases can still be obtained mapping the in-
formation of the studied foot and the contra lateral one. The mapping used is shown
in table 2.1.

There are a few corner cases that are worth an explanation. In cases where the
subject walks slow (such as an elderly person), it can happen that the Initial contact
of the contra lateral foot appears before the Heel rise of the observed foot (cases (3,0)
and (0,3)). Those are assigned to the pre-swing phase and loading response, respec-
tively.

The other case is when the subject is walking extremely slow, where moments of
double support can appear and, as such, both feet are at rest simultaneously. In this
situation, the phases of both feet are (0,0), but it is also the case of a mid-stance. To
separate these three cases, an additional variable has been created, valprev, that holds
the value of the last Perry gait phase. By default, the algorithm assigns the Perry gait
phase to -1 (mid stance phase), unless valprev has value 1 or 3. Therefore, the three
cases are (represented with a sub-index in the Perry gait phases in the table):

12 Chapter 2. Theory and algorithms

• valprev = 1: Perry gait phase = 1.

• valprev = 3: Perry gait phase = 3.

• else: no changes on Perry gait phase.

TABLE 2.1: Mapping of unilateral gait phases into Perry gait phases.

Gait phase of studied foot 0 0 3 1 0 1 1 2 2 2 0 3 3
Gait phase of contra lateral foot 0 2 2 2 3 3 0 3 0 1 1 0 1
Perry gait phase −1else 11 33 -1 -1 0 1 1 1 2 2 2 3 3 3

2.3 Gait Analysis

The following section presents several methods to compute variables of interest to
perform a gait analysis. These variables are either used as gait analysis tools, to
compare different signal acquisition systems, or as intermediate variables for the
computation of other values. In those cases where it is necessary to use the gait
phases, the unilateral phases will be used unless specified otherwise.

2.3.1 Number of steps

A step is a full sequence of phases 0-1-2-3-0, and it must include all of them and in
that order. Therefore, the algorithm counts the number of 0-1-2-3-0 sequences in the
GPD array to find the number of steps.

2.3.2 Step Indices

The GPD array contains the associated gait phase of every single sample recorded.
However, this information can be summarized into an array of arrays (one for each
step), called stepindices. These second level arrays are formed by 6 values: the first
index of the step, the indexes associated to the first sample of each phase within the
step, and the last sample for the step. They are found as follows:

1. Index of the first sample of the step. Found via:

(a) Find number of samples on the foot-flat phase before the step:

num0_samples = indexstart1 − indexstart0 (2.9)

Being start1 and start0 the first sample of the pre-swing phase and the
first sample of the foot-flat phase, respectively.

(b) Find the index of the first sample of the step:

indexstepStart =

⌈
indexstart1 −

num0_samples

2

⌉
(2.10)

2.-5. Index of the first sample of the pre-swing/swing/loading response/rest phase.

6 Index of the last sample of the step, found via:

(a) Find the number of samples in the foot-flat phase after the step, as in step
1.

2.3. Gait Analysis 13

(b) Find the index of the last sample of the step:

indexstepStop =

⌈
indexstart0 +

num0_samples

2

⌉
(2.11)

2.3.3 Step Times

With the previous information and knowing the sampling rate, it is possible to com-
pute the duration of each phase at each step. This produces again an array of arrays
(steptimes), being the content of each array(all measures in seconds):

1. Time at the beginning of the step.

2. Duration of the rest phase.

3.-5. Duration of the. pre-swing/swing/loading response phase.

6. Time at the end of the step.

The duration of each phase can be easily computed sing the following formula:

durationphase =
indexphase_end − indexphase_start

rate
(2.12)

Where indexphase_start and indexphase_end are the start and end indices for the studied
phase, respectively, that are found in the previous result, stepindices.

Recalling Equations 2.10 and 2.11, there is a rounding in both of them. This
causes that, whenever the number of samples in rest phase is uneven, the index of
the last sample of a step and the first sample of the next step do not coincide. This
means that there can appear a gap between two consecutive steps. To solve this, the
duration of this gap is computed and split evenly across the rest phases of the two
involved steps. Note too that the rest phase has been split in two, so it is necessary
to merge the duration of the two halves.

2.3.4 Stride duration

With the information of the previous results, steptimes and stepindices, the duration
of every stride can be computed.

Using unilateral gait phases

The duration of each stride, using the unilateral gait phase definition, can be com-
puted using just steptimes and a simple summation of the duration of each gait phase
within it. Moreover, it is useful to compute too the percentage of the stride duration
corresponding to each gait phase, done by:

percentagegaitphase =
durationgaitphase

durationtotal
100 (2.13)

Using the gait phases of J. Perry

Since when this was created the step duration had not yet been described, the per-
centage duration of the Perry gait phases (described in Section 2.1.3) can be com-
puted using the indices of each phase found in Section 2.3.2. Given that the sampling

14 Chapter 2. Theory and algorithms

rate is constant, the proportion of the duration of each phase in number of samples
over the total number of samples in a step is the same as if it were computed with
duration instead. Therefore, the samples of each phase can be known via the map-
ping described in Section 2.2.2, and its respective duration is just a division of the
number of samples in each phase with the number of (valid) samples in the step.

2.3.5 Cadence

Cadence is defined as the number of steps per minute, and each stride is two steps.
Therefore, knowing the duration of each stride, cadence for the stride i can be com-
puted as:

cadencei =
60s

1
2 · strideduration

(2.14)

2.3.6 Stride length

The coordinate system of the IMUs mounted on the feet do not need to align with
the coordinate system of the foot, which requires some kind of coordinate axes trans-
form in order to achieve the desired results. To describe each necessary axis and
make the transformations necessary, quaternions will be used. The used frames,
shown in Figure 2.7, are presented below:

• Sensor frame

• Global earth frame

• Foot frame

• Sensor frame at previous foot-flat (pff)

• Sensor frame at first foot flat (fff), necessary for further analysis later on Section
2.3.8

FIGURE 2.7: Illustration of coordinate systems used. Sensor frame at
first foot flat is not represented, but it would be very similar to the

one at previous foot-flat.

2.3. Gait Analysis 15

Stride length is nothing more than the difference in positions at the beginning
and end of the stride; but these need to be computed first. Thus, a position esti-
mation algorithm is used to retrieve these positions in the appropriate frames (note
that, due the IMUs being mounted on the foot too and it being on movement, not
even their frames on two consecutive foot-flats have to be the same). The steps of
this algorithm are the following:

Sensor frame to earth frame

The quaternion that gives the rotation between the sensor and the earth frames,
qsensor

earth , must be computed by an orientation estimation algorithm. Currently, there
are two existing methods: the one that will be explained here, which is the default
one; and another one similar to the one described in [15].

The process first starts with an arbitrary initial quaternion q(0) = [1 0 0 0]T, and
then performs strapdown integration from the gyroscope readings:

qω(tk) = qω(tk−1)⊗
[
cos

(
Ts
2 ‖ω(tk)‖

)
ω(tk)

T

‖ω(tk)‖
sin
(

Ts
2 ‖ω(tk)‖

)]T
(2.15)

Afterwards, the measured acceleration can be converted to an inertial frame us-
ing that same quaternion:

aω(tk) = qω(tk)⊗ a(tk)⊗ qω(tk)
−1 (2.16)

In this new frame, the gravitational acceleration will always pull from the same
direction, not matter the sensor orientation. Moreover, when integrating, the accel-
eration and the deceleration will cancel each other out. Using this property, each
component of this new acceleration aω(tk) is filtered using a zero-phase acausal fil-
ter using a moving average filter with a window size of Ta forwards and backwards.
Once filtered, and assuming that the velocity changes from two consecutive samples
will be small, the filtered acceleration will be dominated by gravity. When moving
it back to sensor frame:

a f (tk) = qω(tk)
−1 ⊗ aω(tk)⊗ qω(tk) (2.17)

It is possible to correct the inclination of the gyroscope strapwdown integration
quaternion qω(tk) by using this acceleration a f (tk) as a vertical reference.

Taking qa(0) = [1 0 0 0], the acceleration can once again be brought to sensor
frame:

ar(tk) = qa(tk−1)⊗ qω(tk)⊗ a f (tk)⊗ (qa(tk−1)⊗ qω(tk))
−1 (2.18)

Then, the inclination can be corrected:

16 Chapter 2. Theory and algorithms

n(tk) = ar(tk)×
[
1 0 0

]T (2.19)

α(tk) = arccos(
[
1 0 0

]T ar(tk)

‖ar(tk)‖
(2.20)

qa(tk) = qa(tk−1)⊗
(

cos
(

α(tk)
2)
)

n(tk
‖n(tk)‖

sin
(

α(tk)
2

))
(2.21)

And, finally, by quaternion multiplication between the gyroscope strapdown in-
tegration quaternion and the accelerometer correction quaternion, the desired quater-
nion can be computed:

qsensor
earth (tk) = qa(tk)⊗ qω(tk) (2.22)

Sensor frame at previous foot-flat to earth frame

From the previous result, qsensor
earth , and the information contained in stepindices, it is

possible to obtain the quaternion that transforms from the middle of the previous
foot-flat to the earth frame, qsensor_p f f

earth .

Velocity in the earth frame

The velocity in earth frame can be obtained from the accelerometer readings, that
are in sensor frame. They are transformed into earth frame using the previously
computed quaternions, as such:

qacc_earth(t) = qsensor(t)
earth qacc_sens(t)qearth

sensor(t) (2.23)

Being qacc_sens(t) = [0, ax(t), ay(t), az(t)]T, and ai(t) the acceleration in the global i
direction. The velocity in earth frame can now be determined by integrating the
newly transfomred acceleration:

vel_earth(t) =
∫ t

0
acc_earth(τ)dτ (2.24)

A linear drift correction is applied too to this velocity, so that it is effectively 0 in
the middle of the next foot-flat (nff), with the following formula:

velcorrected
i (t) = vi(t)−

t
tn f f

vn f f
i (2.25)

Where vi(t) is the velocity on the i axis (i ∈ x, y, z), and vn f f
i is the velocity at the

next foot-flat, or v(tn f f).

Sensor frame to foot frame

To get the quaternion that relates the foot frame to the sensor one, the rotation matrix
composed by the X, Y and Z axes of the foot frame on the sensor frame needs to be
computed first. The process, which can be seen in Figure 2.8, is the following one:

1. Z: During foot-flat phases, as the foot is still and lying on the ground, the only
acceleration present is (or should be) gravity. Therefore, the average of the
accelerometer z readings during that phase can be equaled is the same as the
one of the foot frame.

2.3. Gait Analysis 17

2. X’: This is an auxiliary, but necessary, axis, used to later compute the actual X
axis. This axis points in the forward direction of movement, and is obtained
using the velocity in earth frame vel_earth(t). To do so, it computes the nor-
malized average of this velocity on the middle 50% window time interval of
the swing phase (when the foot is moving forward, leaving the first and the
last 25% outside the window).

3. X and Y: Since Z and X’ form a plane, it is possible to find the remaining axes
using by forcing orthogonality:

Y = Z× X′ (2.26)

X = Y× Z (2.27)

FIGURE 2.8: Illustration of the axes used to compute the rotation ma-
trix R.

From these 3 axes it is possible to obtain a rotation matrix, R = [X, Y, Z], and from
it the quaternion qsensor

f oot .

Position in the foot frame of the previous foot-flat

The multiplication of the quaternions qsensor_p f f
earth and the inverted quaternion qsensor

f oot

yields q f oot_p f f
earth , which is the quaternion between the frame of the foot at previous

foot-flat and the earth frame. With it, it is possible to determine the velocity in the
foot frame at the previous foot-flat:

vel f oot f rame_p f f [k] = velearth ⊗ qearth
f oot_p f f (2.28)

This velocity can be integrated to obtain the position, but since its frame changes at
every instant, the operation is:

pos f oot_p f f _i[k] = h
k

∑
n=s

vel f oot f rame_p f f _i[n] for i ∈ {x, y, z} (2.29)

Being s the number of strides.

Stride length

Now it is possible to know the x and y coordinates of the foot at the middle of the
foot-flat, referenced to the previous foot-flat. Thus, the distance is:

dist =
√
(xk − xs)2 + (yk − ys)2 (2.30)

18 Chapter 2. Theory and algorithms

2.3.7 Velocity

Knowing the stride length and duration, it is possible to compute the velocity (in
m/s) at every stride i with just a simple division:

vel[i] =
stride_length[i]

stride_duration[i]
(2.31)

2.3.8 Foot position in the frame of the foot at the first foot-flat

The procedure is the same as the one used when computing the position in the foot
frame of the previous foot-flat in 2.3.6, but referencing the first foot-flat instead.

2.3.9 Euler Angles

Euler angles can be derived from any of the available quaternions. There are three
that have been deemed interesting and, thus are computed and then saved. These
are (EA stands for Euler Angles):

• EA f oot
earth

• EAsensor
sensor_p f f

• EA f oot
f oot_p f f

2.3.10 Maximum pitch angle

The third component of the Euler angle EA f oot
f oot_p f f3

stores the pitch angle. Thus, from
all samples i, the maximum value is found and transformed from radians to degrees.
This will give and idea of the mobility of the subject.

pitch[i] =
180
π
· EA f oot

f oot_p f f3
[i] (2.32)

2.3.11 Maximum swing roll

The second component of the same Euler angle as before, EA f oot
f oot_p f f2

, encodes the
roll of the foot. In this case, the maximum is only looked at during swing phases,
instead of the whole movement.

roll[i] =
180
π
· EA f oot

f oot_p f f2
[i] (2.33)

2.3.12 Z-position

It takes the Z-position in foot frame at pff for every step and corrects the linear drift
that may appear. To do so, it is assumed that the subject is walking on level ground
and it is imposed that the final global Z-position (endPos) at every step is 0.

Z[i] = Zold[i]− endPos · i
Ns − 1

(2.34)

Where i ∈ [0, Ns − 1] and Ns is the number of steps.

2.3. Gait Analysis 19

Besides that, a moving average filter is applied to smooth results, and the maxi-
mum Z-position at every step is saved too.

2.3.13 Lateral deviation

The lateral deviation from the straight path between the start and end point of a
stride can be computed for every sample. Both the start (0), end (N, number of
samples on the step), and current position (i), referenced to the pff can be found as
in section 2.3.6. The formula for lateral deviation of sample i is:

latdevi =
|(yN − y0) · xi − (xN − x0) · yi + xN · y0 − yN · x0|

stride_length
(2.35)

As with the Z-position, the lateral deviation is smoothed with a moving average
filter and then the maximum value of every step is saved too.

21

Chapter 3

3D Visualization

Within the scope of the gaitt project is also a tool to visualize the gait recorded from
a given trial. The program was created by two student project groups at TU-Berlin,
and it is based on the babylonjs framework by JavaScript. This visualization displays
the movement of the foot in four different angles and grants the user some control
over the simulation, such as: change the reproduction speed, start and stop the sim-
ulation, play it backwards, and move around the cameras. No changes were done in
this thesis, but it was deemed part of the project and, thus, worthy of being included.

This 3D visualization uses then the gait analysis data obtained in Chapter 2 and
re-processes it, creates a foot mesh, positions it using that data, and creates the gait
animation. The data handling part is done in Matlab R©, while the visualization pro-
gram itself is written in babylonjs, based on the JavaScript framework.

The changes that need to be made are:

1. Change the data into the babylonjs standard.

2. Show the movement of the entire foot, not just the sensor.

3. Prevent the foot from moving into the ground.

4. Make the toes have a realistic movement: give them their own orientation.

5. Align the direction of movement of both feet to each other and to a global
coordinate system.

6. Correct, as much as possible, the drift in sensor data.

3.1 Post-processing: Correction of the direction of movement

As stated above, there is a series of corrections that can be performed to improve the
visualization. Unless stated otherwise, these corrections are optional and have to be
initialized by their corresponding flags when first executing the simulation. Besides
this initialization, the starting position of both feet in global coordinate system and
the position of the sensor, heel, mid-foot and toe (the foot’s key points) in global co-
ordinate system must be provided too. Finally, the foot’s middle orientation (q f oot

earth),
the sensor position (pos_earth), the gait phases (GPD), the step indices of each foot,
and the sampling rate are loaded from the gait analysis results.

22 Chapter 3. 3D Visualization

3.1.1 Stepwise heading correction

This algorithm was created by Daniel Laidig. The aim is to find the overall walk-
ing direction and make it the x-axis of a global coordinate system, all under the
assumption that the subject walks along a straight path. Afterwards, the positions
and orientations are transformed into this new global reference frame. The process
is as follows:

1. Find the heading of each step and the corresponding heading angle, and save
it into the variable δ (represented in Figure 3.1

2. Low-pass filter δ into δLP.

3. With δLP, find the correction quaternion qdelta as follows:

qdelta =
[
cos

(
−δLP

2

)
0 0 sin

(
−δLP

2

)]
(3.1)

4. Differentiate position to find velocity in each step.

5. Correct velocity and orientation with the computed quaternion qdelta.

6. Integrate the corrected velocity to find the new position.

FIGURE 3.1: Illustration of the heading angle δ for any given step.

3.1.2 Starting point correction

Since in the previous section 3.1.1 the position of both feet was corrected, and it was
assumed that each started at the origin of the global coordinate system, the result
would be that both feet would walk over the same line, stepping one on top of the
other. To avoid this, the distance between them is measured and its half is added or
subtracted (depending on the foot) so as to separate them from the middle line.

3.1.3 Overall direction correction

Note that this correction is not used by default, due to it being unnecessary when
the other corrections are applied. The goal of this correction is to ensure that the
subject is walking along an approximately straight line along the global x-axis. To
achieve this, the vector between the start and end position is computed; and with it
the angle that represents the deviation from a straight line is computed and used to
correct the position. The process is as follows:

3.1. Post-processing: Correction of the direction of movement 23

~diroriginal = posend − posstart (3.2)

~dircorrected =

1
0
0

 (3.3)

anglecorrection = arccos

(
~diroriginal · ~dircorrected

‖ ~diroriginal‖ · ‖ ~dircorrected‖

)
(3.4)

The position can be adjusted by rotation it anglecorrection around the global ver-
tical z-axis; whereas the orientation correction is achieved by means of quaternion
multiplication.

3.1.4 End position correction

There are several assumptions that are taken in the algorithm used to correct the
end position. Firstly, it is assumed that the end y-difference (the lateral deviation
from the middle of the straight path followed) is the same for both feet. The initial
x-position for both feet is considered the same, and it equals the average between the
two of them after the previous corrections are applied. Lastly, the global z-position
is assumed to be 0.

Since the drift depends on velocity, and this changes at each moment of a step,
the position correction will be done based on location. First, 2 linear spaces are cre-
ated with 100.000 samples each: one from the corrected start to the corrected end
(i.e.: a straight line between both desired positions with 100.000 points in between),
and the other from the current start to the current end (i.e.: a straight line from the
actual start to the actual end, with 100.000 points too, that approximately resembles
the actual path taken by the subject). For each point (sample) of the path, it finds the
sample on the current space that is closest to it and, from it, finds the displacement
vector to the corrected space (the vector that relates the chosen point in current space
to the comparable point in the corrected space). Afterwards, this vector is applied to
the point in the path, effectively moving and correcting it.

Figure 3.2 shows the process of the end position correction. In black, the current
path, and in green, the corrected path. The purple arrows represent the displacement
vector; first found between both linear spaces (dashed lines with multiple dots), and
then applied to one position on the current path.

3.1.5 Stepwise z-correction

This correction is always done, no matter the flags selected. It corrects the drifts in
the z-position under the assumption that the ground is level. The algorithm finds the
beginning, end, and middle point of the rest phase, where it is assumed that the foot
is standing still. Then, it performs a linear drift correction over the movement period
by setting that middle point of the rest phase to zero. Also, to avoid discontinuities,
the last value of the correction is subtracted to all z-positions in all following steps.
The formula to do so is:

z_posnew = z_posold −
t
n
· zs,t −

(
st−1

∑
i=0

zi

)
(3.5)

24 Chapter 3. 3D Visualization

FIGURE 3.2: Illustration of the end correction algorithm. The dashed
lines with dots represent the created linear spaces whereas the black
and green lines represent current and corrected paths, respectively;

and in purple is represented the displacement vector.

Where zs is the (uncorrected) z-position in the middle of the next rest phase after
step s; st is the current step, t ∈ [1, n] is the number of samples within it, and n is
the number of samples between the end of the rest phase of the current step and the
beginning of the next one. Note that, since the value of t is clipped between 0 and
n, if the movement has not yet started it will have a value of 0, whereas if that has
already finished, it will have a value of n.

3.2 Creation of a foot mesh

Up until now, the position of a single point of a foot was specified, but it is not
sufficient to accurately position and orientate (and, thus, visualize) the whole foot.
Therefore, more points are necessary, which are: the heel, the mid-foot, and the tip
of the toes. Since the corrections performed previously only dealt with the position
and orientation of the sensor, the rest of the points of the foot will have to be rotated
and positioned too, while taking care that they are, at all times, above the ground.
Also, note that as the toes can move differently than the rest of the foot, they will
need their own orientation. The whole process can be seen in Figure 3.3

3.2.1 Position and orientation of all foot points

The middle orientation quaternion was already loaded when initializing all neces-
sary variables in section 3.1. This quaternion will allow to rotate all the points of
the foot mesh to the adequate orientation. The vector relating the difference in the
sensor position between the original one and the newly rotated one, computed by
simple subtraction between both positions, will allow to translate the all the other
points of the mesh to their actual position.

3.2. Creation of a foot mesh 25

FIGURE 3.3: Illustration of the process of creating, positioning and
orienting the foot mesh. Each subsection corresponds to a picture on

this image.

3.2.2 Avoid the foot going into the ground

The z-position correction done in 3.1.1 only took into account the position of the sen-
sor, but it could be that other parts of the foot still lie beneath the ground. Thus, all
key points barring the toes (that will be changed later on), are shifted upwards in
the z direction until all of them are above the ground.

Once all other points are corrected, the toes’ orientation needs to be changed, fit
the actual gait movement. To achieve so, is is interpreted that, whenever the toes
are under the ground (and all points are already above it), they should be rotated -
their orientation will be different than that of the rest of the foot -. In this case, they
will be rotated upwards so they lie flat on the ground. There are three geometric
assumptions that allow to achieve it:

1. The ratio between the global x and y distance between the mid-foot and the
toe position remains constant. This is true because the direction of the toes and
the mid-foot in the horizontal plane should be the same.

xdist = xtoe_global − xmid f oot_global (3.6)

ydist = ytoe_global − ymid f oot_global (3.7)

ratio =
xdist

ydist
= constant (3.8)

2. The distance between the mid-foot and the toe point of the foot mesh, which is
called the toe length, remains also constant:

lengthtoe =
√

x2
dist_new + y2

dist_new + z2
dist_new = constant (3.9)

3. The new z-coordinate distance is the opposite of the global mid-foot z-position,
in order for the tip of the toe to stay above the ground.

zdist_new = −zmid f oot_global (3.10)

26 Chapter 3. 3D Visualization

With these conditions, xdist_new and ydist_new can be computed:

ydist_new = ±

√
length2

toe − z2
dist_new

1 + ratio2 (3.11)

xdist_new = ydist_new · ratio (3.12)

Where the sign of ydist_new is the same as the original one. Finally, the new posi-
tion of the foot can be found via:

postoe_new = posmid f oot_global +

xdist_new
ydist_new
zdist_new

 (3.13)

3.2.3 Toe orientation

Even though all key points have been already positioned, the orientation of the
points in the toes still has to be corrected for the visualization. The steps to achieve
it are:

1. For each sample, set toe orientation to to mid-foot orientation.

2. Determine current y-axis of the foot frame by rotation the global y-axis with
the quaternion of the mid-foot orientation.

3. With the heel, mid-foot and toe key points find the correction angle between
the toe segment and the main foot.

4. With this angle and the y-axis, the correction quaternion can be computed.
With it, the orientation of the points of the toes can be adjusted for every time
instant.

3.3 Change of coordinate system to babylonjs standard

The coordinate system used by babylonjs uses a different coordinate system than the
one used up until now. The change of frames should be:

1. The x-coordinate has to be the new third coordinate.

2. The y-coordinate has to be the new first coordinate.

3. The z-coordinate has to be the new second coordinate.

Positions are changed by just switching the order of coordinates, whereas the orien-
tations are shifted by quaternion multiplication with two normalized constant cor-
rection quaternions defined within the code.

3.4 Camera movement

The cameras that follow the feet during gait need also position and orientation so
that the visualization is successful. In this case, whenever only one foot was se-
lected, it was chosen the mid-foot position as the one the cameras must follow. If it

3.4. Camera movement 27

is of interest to follow both feet simultaneously, the chosen point is the average be-
tween both mid-foot positions. Since it can cause problems of smoothness, a moving
average filter is performed over a window of 1 second.

29

Chapter 4

Improvements and extensions

4.1 gaitt Comprehensive Guide

Part of the purpose of this thesis is to serve as a comprehensive guide to the gaitt
project for newcomers. The intent is not to explain or further extend gait concepts
or analysis techniques (those were already discussed in the previous chapter) but
rather present the used and tested code in an structured way and serve as an entry
point to the project.

It is important to point out that this project also makes use of some of the bigdata
project’s tools. Among them, the most remarkable here is the use of DataFile. These
is a custom created file format saved in .mat files (in this project, .gaitt.mat) that is
able to store many different kinds of data. For more information regarding this and
other tools, refer to the bigdata project documentation.

4.1.1 General Overview

The code is written in Python, C/C++ (with Cython scripts being the nexus between
both) and Matlab R© , with some files encoded in .json format too. The Python files
are mostly related to processing and creating different kind of files, organizing and
formatting the data, creating plots and calling several sub-processes, such as the
C/C++ and Matlab R© functions. The code written in C/C++ is related to gait phase
detection and gait analysis, and the Matlab R© deals with the 3D representation of
the foot and gait movement: creating and positioning the foot mesh, correcting the
movement for visualization, and saving it into .json files for its later use. Appendix
A contains tables with a more detailed description of the functions used.

The overview of the whole code can be appreciated in Figure 4.1. The Python
files are coloured grey, the C/C++ are coloured blue, and the Matlab R© are coloured
red. The figure represents a flowchart of the function calls, in a nested structure,
with the file they belong to stated atop the coloured rectangle. Thus, represented se-
quential functions indicate a function call within the previous function; whereas par-
allel function calls indicate successive function calls within the function they stem
from (for instance, checking the Matlab R© code, the functions align_direction, footV2,
find_ground, quaternionMultiply and append_to_json are called one after the other in-
side the create_json function).

4.1.2 The Python code

The entry point is demo.py, that accepts several types of inputs, and proceeds ac-
cordingly:

30 Chapter 4. Improvements and extensions

FIGURE 4.1: Global project’s code flowchart. Python code is coloured
grey, C/C++ code blue, and Matlab R© red.

4.1. gaitt Comprehensive Guide 31

• IMU data streams: It records data received on real time from active IMUs.

• raw IMU data files: recorded information from a IMU trial in .txt format.

• .mat data files: recorded information already saved in an appropriate .gaitt.mat
DataFile.

• .json files: Already processed information containing all necessary data for
simulation in a .json file.

Regardless of the input, the demo will run all necessary scripts and will end with the
simulation, and save important files while doing so. Therefore, all available inputs
beyond the first one are also byproducts of the demo, which saves time when doing
re-runs (so, for example, when entering a .txt file, it will create a .json file as well
during the demo, which can be used as an input too on another run).

The code itself deals mostly with receiving the inputs and preparing them so
the data they contain to those required by the GPD and gait analysis algorithms,
and later on for the 3D visualization on Matlab R©. It is in charge of retrieving this
information too and saving it into appropriate files (.gaitt.mat, .json, or others); and
plotting and saving some variables of interest contained in this data. These plots are
saved in a .pdf file too so they are easier to access and read. For more information
regarding the functioning of any of the existing functions, refer to A.1.

4.1.3 The C/C++ code

The C/C++ code is the implementation of the algorithms presented in Chapter 2:
the GPD and gait analysis. The overview of the C/C++ code can be observed in
Figure 4.2, along with all the useful outputs. This schematic represents the most im-
portant functions called, this time in a sequential manner (so, gait_analysis is called
after gpdFull, not within it). For the sake of readability, constant inputs (such as
the sampling rate) have been omitted, and some arrows have coloured (they have
no particular meaning). Versions of the functions that include the Perry gait phases,
instead of the 4 originally defined in this project, have been omitted too, since their
functioning, besides the mapping, is mostly identical.

Figures 4.3 and 4.4 represent detailed flowcharts for the greatest functions among
the C/C++ code. The former depicts the GPD algorithm, with the correspond-
ing sub-algorithms (GPD One, GPD Two and GPD Three) remarked; and the latter
shows the gait_analysis function, which constitutes a great part of the gait analysis
tools used. As before, both are in sequential structure and coloured arrows are just to
make it easier to follow them (a function inside another one indicates that it is called
within the larger one). Moreover, the output variables are enclosed in red rectan-
gles. Those will be the ones retrieved by the Python code too. For more information
regarding the functioning of any of the C/C++ code, refer to A.2.

4.1.4 The Matlab R© code

The Matlab R© is in charge of preparing 3D visualization of the gait. To do so, it takes
all the already processed gait data. It positions appropriately key foot points, cre-
ates the mesh and rotates it to a natural position. It also corrects errors that may
have appeared during processing, such as drift in walking, so the visualized process

32 Chapter 4. Improvements and extensions

FIGURE 4.2: C/C++ code flowchart.

FIGURE 4.3: Detail of gpdFull function, from C/C++ code flowchart.
Implementation of GPD algorithm.

4.1. gaitt Comprehensive Guide 33

FI
G

U
R

E
4.

4:
D

et
ai

lo
fg

ai
t_

an
al

ys
is

fu
nc

ti
on

,f
ro

m
C

/C
++

co
de

flo
w

ch
ar

t.
G

re
at

er
pa

rt
of

th
e

ga
it

an
al

ys
is

.

34 Chapter 4. Improvements and extensions

matches a regular gait pattern. Finally, it creates the .json code where this whole data
is stored (the foot, the gait itself, and the elements for visualization). Since there are
fewer functions in the this piece of code, and the relationships between them can
already be observed in 4.2, Figure 4.5 represents the inputs/output of the main key
Matlab R© functions used. In A.3 there is a more detailed description of the main
Matlab R© code used.

There is a change of notation in the transition from C/C++ to Matlab, and all
variables are now separated by foot (rather that retrieved directly from the corre-
sponding foot from the DataFile):

• step_indices→ step_ind_left (or right)

• gpd array→ gait_phase_left (or right)

• quat_foot2earth→ foot_middle_orientation_left (or right)

• pos_earth→sensor_position_left (or right)

Moreover, some functions need inputs from only one foot or from both of them.
Whenever only one foot is passed as input/output, it has been marked as L / R or
[...]_l_[...] (/ r); whereas if both feet are passed, it has been marked as [...]_left (&
right). The same is true for functions called within other functions: if they are called
twice, once for each foot (L / R) or only once and take both feet as arguments (L & R).

4.2 Implementation of new rest detection method

The rest gait detection method used was presented already in section 2.2.1. It used
the norms of the gyroscope and accelerometer readings to detect rest phases. Here,
a newer method is implemented that uses the velocity on earth frame, velearth. The
method itself was developed by the Control Systems group at TUB, and has been
taken from [16].

4.2.1 Velocity in the earth frame

The first step is transforming the accelerometer readings, that are in sensor frame, to
the global earth frame. It is done with the quaternion qsensor

earth , found from the orien-
tation estimation algorithm introduced in Section 2.3.6, and Equation 2.23, repeated
here for the sake of comprehension:

qacc_earth(t) = qsensor(t)
earth qacc_sens(t)qearth

sensor(t) (4.1)

Once in the earth frame, the effect of the acceleration due to gravity is subtracted.
Then, this new acceleration can be integrated to achieve the desired velocity.

4.2.2 High- and Low-pass filtering

The resulting velocity is not yet suitable to operate with. First, it is filtered to elimi-
nate the bias from the acceleration. This high-pass filter is tuned so that it keeps the
high frequency data while erasing the low frequency drift. Then, a low pass filter is
applied too to smooth the velocity peaks.

4.2. Implementation of new rest detection method 35

FIGURE 4.5: Main Matlab R© functions used for 3D visualization

36 Chapter 4. Improvements and extensions

4.2.3 Intelligent bias removal

The velocity is now adequately filtered and in the correct frame. To determine the
rest phases, there has to be a clear difference of the velocity values between move-
ment and rest phases across all three velocity coordinates. Thus, it is crucial to elimi-
nate this bias so the aforementioned difference can be observed. This is done in three
steps with an intelligent bias removal algorithm.

On the first step a moving average is created by the use of a highly smoothing
low pass filter, forwards and backwards. This double passing ensures that the time
offset due to the low-pass is neutralized. The resulting moving average does not lie
on the rest phase due to the speed fluctuations of the steps, but it is offset from it.

On the second step, a sliding time window is used to find whether that speed
offset is above of below the moving average. This sliding time window ensures that
the fluctuations are observable even when the subject changes directions, as they
will appear on a different axis or there will be a zero crossing.

On the third step, the resulting signal is composed by the velocity on the rest
and motion phases. This new signal is clean of noise, drift and also the velocity
fluctuations due to the steps. When the three steps are repeated once more on this
recently obtained signal, the final moving average closely resembles the actual rest
phase: in the obtained signal, rest phases will have values near 0 with very small
deviations.

4.2.4 Grouping and normalization

The velocity in x and y axes, that correspond to the horizontal plane, are combined
together into a single axis by means of the Euclidean distance (which is also, by
definition, positive semidefinite). To the remaining axis, z, is applied the Euclidean
norm, removing the negative values as well. Finally, both signals velocities are nor-
malized into to the [0, 1] range - this avoids amplitude issues and allows using a
single constant threshold -.

4.2.5 Rest phase detection

These last two signals are, once again, low-pass filtered forwards and backwards
to remove any kind of disturbances caused by trembles in walking. To these two
resulting, final signals, a threshold is applied. Whenever a the signal below the
threshold, a rest phase is detected, marked as 0; and greater values, corresponding
to motion phases, are marked as 1. This yields a binary signal with where every
sample is classified as either rest (0) or movement (1), just like the original GPDOne.

4.3 Parameter optimization on orientation estimation algo-
rithm

Previous sections have dealt with ways to compute and how to improve gait analy-
sis and evaluation data with the existing working framework. However, the quality
of the processing algorithms has not yet been discussed. In this section, the orienta-
tion estimation algorithm of the IMU will be tuned. Having a well oriented sensor
is crucial because many algorithms used later on depend on it, either directly using

4.3. Parameter optimization on orientation estimation algorithm 37

FIGURE 4.6: Setup of IMU and optical markers during the trials

this orientation or indirectly when translating coordinate frames using quaternions
derived from it.

Besides the orientation estimation algorithm explained in section 2.3.6, there is
another available option. This second orientation estimation algorithm is not the
default one, however, it still can be useful. Within the work of this thesis is the
optimization of the τacc and accRating parameters used by this algorithm.

4.3.1 Framework

To assess the goodness of results, a reference system must be used to compare the ori-
entation to a ground truth. In this case, there were two: an instrumented treadmill
and optimal markers for motion tracking. The latter consisted in optical markers
mounted at several places of the foot. Among them, there were three placed over
each IMU mounting, which allowed to capture the position and orientation of the
IMUs and, thus, set the basis for a comparison. The instrumented treadmill cannot
be used to compute orientations, but it will be useful later on to check the imple-
mentation of this algorithm; since it can provide velocity or stride length measure
to compare. An exemplary photo of the IMU and optical markers setup is shown in
Figure 4.6.

4.3.2 IMU inclination

The IMU readings used are the acceleration and gyroscope, the magnetometer is
purposely left aside so that the orientation estimation can still be used even under
the presence of non-homogeneous magnetic fields, such as in clinical environments.
The gyroscope readings’ bias is removed and the result is used to synchronize the
optical and IMU measurements.

38 Chapter 4. Improvements and extensions

To judge the impact of the τacc and accRating parameters, the chosen measure has
been the error between the inclination measure by the IMU and the one measure
by the reference system. First, the quaternion IMUqsensor

earth_sensor is computed by the
orientation estimation algorithm , which translates sensor frame to the global earth
frame; and the quaternion optqopt

earth_opt, which translates the sensor frame obtained
from the three optical markers on the IMU to the global earth frame. The left su-
perscript indicates the capture system used to obtain this orientation, whereas the
earth_subscript indicates the global reference frame, which may not be equal for both
systems. Therefore, the the following operation is necessary in order to have a com-
mon ground across both systems:

optqsensor
earth_sensor = qearth_opt

earth_sensor
optqopt

earth_optq
sensor
opt (4.2)

Where qearth_opt
earth_sensor is the quaternion that relates both global reference systems and

qsensor
opt relates their inertial frames (in fact, the quaternion computed is qopt

sensor, but by

quaternion properties, qsensor
opt = (qopt

sensor)
∗). Hence, there is a quaternion for the IMU

inertial frame that translates it to the same global earth frame, captured by the two
different kind of sensors.

Since the IMU and the optical capture system may have different sampling rates,
the obtained quaternions qopt

earth_opt - one for each sample - are interpolated so that
their timestamps match the ones obtained from the IMU data.

Finally, these quaternions are multiplied to compute the rotation between both
frames (qdi f f), the one obtained from the IMU sensor and the one from the optical
markers system, as in the equation below:

qdi f f =
IMUqsensor

earth_sensor
optqsensor

earth_sensor (4.3)

The inclination component of this rotation constitutes the difference in the in-
clination computed by the IMU sensor and the optical markers system or, in other
words, the error committed by the IMU sensor when taking the optical markers
measure as the ground truth reference. Thus, there is a measure for the goodness of
orientation estimation algorithm and the impact of the τacc and accRating parameters.
The inclination is computed as:

inclination = 2 · arccos
(√

q2
di f f3

+ q2
di f f0

)
(4.4)

Where qdi f fi represents the ith component of qdi f f = [qdi f f0 , qdi f f1 , qdi f f2 , qdi f f3].

4.3.3 Parameter optimization

The optimization is performed for each trial (see Section 5.1 for more information on
this), but the parameters will not be changed for each of them. Since the goal of the
optimization is finding a good combination of both parameters that fits all trials, the
results from all the optimizations will be analyzed and discussed to find adequate
τacc and accRating without compromising the orientation obtained on each one.

The optimization is performed in two steps. First, an heuristic search is done,
with the aim of finding good initial values for the numerical optimization method
used after. In this search, lower and upper bounds and step increments are specified

4.3. Parameter optimization on orientation estimation algorithm 39

for each parameter; and a value grid is constructed from it. Then, for each possible
τacc and accRating combination within the grid, a cost function is computed. After-
wards, an optimization problem solver is run, having as method L-BFGS-B and as
initial value the solution from the heuristic search. The cost function is the same for
both methods: they try to find the minimum inclination RMSE.

41

Chapter 5

Experimental results

In this chapter, the results from the algorithms presented in Sections 4.2 and 4.3 will
be presented. The trials performed, the evaluation method and plots displaying the
results will be discussed.

5.1 Experimental framework

The data set used for results’ assessment has been the same in both experimental
cases. This data set was recorded and provided by FH Joanneum Graz. It consists
on 92 trials of patients (students) walking on a instrumented treadmill for a few
minutes. Having a treadmill that is able to record gait data too is useful because it
creates a reference system against which it is possible to compare gait analysis and
evaluation results. The trials are grouped in 23 groups of 4 categories, depending on
speed and movement capabilities:

1. Walking at 1,5 km/h.

2. Walking at 3 km/h.

3. Walking at 3 km/h with right knee flexion blocked.

4. Walking at 5 km/h.

All subjects had an IMU attached over each foot, which captured the data to be
tested. Besides the IMUs, there were also optical markers placed on the foot and,
concretely, 3 atop each IMU. This allows creating another reference system with
which compare the position and orientation of the IMU itself, rather that gait anal-
ysis results. This also allows assessing whether the results derived from IMU data
can be considered meaningful or, on the contrary, the captured data was not accurate
enough.

The technical details of the equipment used are the following:

1. Instrumented Treadmill: Zebris Rehawalk:

• Treadmill: h-p-c Mercury Med Treadmill, walking speed: 0–22 km/h in
0,1 km/h steps, walking surface: 150 cm x 50 cm.

• Pressure measuring platform: FDM-THM-M-3i / 120 Hz, sensor area:
108.4 cm x 47.4 cm, 7168 sensors.

2. IMU: PABLO R© by Tyromotion GmbH, Graz, Austria

• Rate: 110 Hz.

42 Chapter 5. Experimental results

• Dimensions: 56 mm x 34 mm x 21 mm.

• Bluetooth Wireless data transmission.

3. Optical sensors: Vicon.

• Rate: 120 Hz.

5.2 New rest detection method

To assess the impact of the new rest detection method, the average duration of the
four gait phases (in percentage), the average stride length and the average gait ve-
locity were chosen. They have been compared against the ones obtained with the
previous rest detection method, GPD-One. To compare them, they have been plot-
ted together in scatter plots; and, as an indicative measure, the bisection of the first
quadrant has been plotted too. The results can be observed in Figures 5.1 and 5.2.

Since this comparison might shed some light into the differences between these
methods, but not their actual accuracy, it is also presented the comparison against
a reference system, in this case, the Zebris data from the instrumented treadmill.
Results are presented in Figure 5.3 on a Bland Altman plot. This kind of plot dis-
plays the average gait phase duration (in percentage of the step duration) for each
trial in the horizontal axis, and the difference between them and the gait duration
measured with the reference system on the vertical axis. Also displays the over-
all average value (thick grey line), and the 95% confidence intervals (1.96 times the
standard deviation, thinner grey lines). Values over the overall average are overes-
timated whereas under it are underestimated.

5.2.1 Discussion

The new rest detection method presents differences with respect to the original one,
GPD-One. It can be observed in Figure 5.1 that the rest and swing phases duration
are shorter when computed with the new method (as it is below the bisection of the
first quadrant); whereas the pre-swing phase is longer. The only phase in which they
have similar length is the loading response phase.

The reduction in the rest phase duration and the increment in the pre-swing
phase share the same explanation. Recall Section 2.2.1: the GPD-One algorithm first
created the division between rest phases and motion phases, preemptively marked
as pre-swing before further classification. Therefore, the new method seems to de-
tect the motion before the GPD-One, which leaves a shorter rest phase and a longer
motion phase. It is noteworthy how, the longer the pre-swing phase (and shorter
rest phase), the most notable the differences between both systems are. Also the
new method provides a wider range of these gait phases duration than the origi-
nal one, seen by its higher dispersion across the vertical axis (values within [0.3, 1.5]
seconds in pre-swing phase) compared to the horizontal one (values within [0.2, 1.1]
seconds in pre-swing phase).

The explanation behind the decrement in time of the swing phase duration is
not so clear. It is surprising how the swing phase remains almost constant across all
trial when computed with the new method (almost all values around 0.2 seconds),

5.2. New rest detection method 43

FIGURE 5.1: Scatter plot of gait phases duration (in %), comparing
the new rest detection method against GPD-One. Bisection of the first

quadrant marked in red.

44 Chapter 5. Experimental results

FIGURE 5.2: Scatter plot of stride length and gait velocity, comparing
the new rest detection method against GPD-One. Bisection of the first

quadrant marked in red.

whereas there is much more variability when using GPD-One. This is remarkable
because the subjects were walking at different velocities across all trials.

Regarding the stride length and the gait velocity, there is no difference with re-
spect to the original method of rest phase detection. The three velocities at which
the subjects were forced to walk are clearly visible too.

Finally, looking at the last Figure 5.3, some conclusions can be drawn too. First,
that there are not really big differences across both gait rest detection methods, re-
sults are almost identical in stance and pre-swing duration; so differences spotted
before might actually be negligible. The loading response phase is slightly overes-
timated in some cases with the new method, the GPD-One presents overall better
results. On the contrary, the swing phase is sometimes underestimated when us-
ing the new method, whereas, as before, the original method has more compact
results. Overall, the average difference between the reference system Zebris and ei-
ther method is close to 0%, with the greatest confidence intervals being ±5% of the
average value.

5.3 Parameter optimization on orientation estimation algo-
rithm

As stated in Section 4.3, the other available orientation estimation algorithm needs
tuning of the τacc and accRating parameters. The goal was to achieve inclination RMSE
results of around 4o at most to consider them as good results.

5.3. Parameter optimization on orientation estimation algorithm 45

FIGURE 5.3: Bland Altman plot of gait phases’ duration of both rest
detection method against ground truth reference system Zebris.

46 Chapter 5. Experimental results

FIGURE 5.4: 3D Bar plot of the optimal τacc and accRating parameters
and the inclination RMSE (in degrees). Their values are in the hori-

zontal grid, the inclination RMSE is the height of the bars.

5.3.1 Exploratory analysis

Firstly, as an indicative approach, the optimal parameters and the associated incli-
nation errors of each trial were plotted all together in Figure 5.4. It is a 3D bar plot
where the horizontal axes are the τacc and accRating parameters; and the height (and
colour) of the bars show the inclination error. It is possible then to see in which ar-
eas of the grid do the lower (the desirable ones) or higher inclination RMSE results
concentrate.

5.3.2 Parameter tuning

Seeing the high variability of the accRating parameter - that will be discussed later on
on Section 5.3.4 -, it was deemed more appropriate to focus on the other parame-
ter, τacc. Therefore, the accRating was fixed to 4 (an even number around the average
optimal value) and different values of τacc around 0.1 were used to compute the in-
clination RMSE. The τacc values were the range [0.09, 0.16] and the more extreme
values 0.01 and 0.5. Since there are many trials and the parameter range is wide, the
results were plotted on Figure 5.5.

The aforementioned figure is a box-plot. This kind of plot displays in a box the
values within the 25% - 75% interval, each whisker represents the lower (0% - 25%)
and upper (75% - 100%) quartile, and the average value is marked with an orange
line inside each box. Outliers are represented by dots outside. This, it is possible to
see the average value, the four quartiles (and thus, have an idea of the dispersion
and min/max values) and the number and value of outliers. In the horizontal axis

5.3. Parameter optimization on orientation estimation algorithm 47

FIGURE 5.5: Box-plot of the inclination RMSE for different τacc val-
ues. The Individual refers to the optimal case (each trial with optimal

parameters), and accRating was fixed to 4.

are marked the τacc values associates to each box (Individual refers to the optimal
case), and in the vertical axis is the inclination RMSE in degrees.

Besides the stated τacc and accRating values, the optimal case was represented too.
This encompasses the values obtained from the optimization solution and, thus, the
parameters’ values change for each trial. This was included only as a reference of
the best possible case and as a framework for comparison.

When τacc is set to negative values, the alternative orientation estimation algo-
rithm is selected. In that case, instead of τacc, the parameter is a Time Constant. As
a measure of comparison, the same plot has been created for several Time Constant
values, whose results are in Figure 5.6.

5.3.3 Implementation of the changes

The orientation estimation algorithm with the newly tuned parameters was tested
against the same algorithm with old parameters, and against the alternative orien-
tation estimation algorithm available.

48 Chapter 5. Experimental results

FIGURE 5.6: Box-plot of the inclination RMSE for different τacc values,
computed with an alternative orientation estimation algorithm. The

markings on the x-axis refer to the time constant used

5.3. Parameter optimization on orientation estimation algorithm 49

Figure 5.7 shows the Euler Angles of the qsensor
earth quaternion, computed with the

three different possibilities aforementioned. This is the result of the 18th trial at 5
km/h, which is considered a representative one. Since it is hard too see the details
in those plots, Figures 5.8, 5.9 and 5.10 provide close-ups of selected regions that
were considered interesting and meaningful.

Afterwards, and as as final evaluation, the three methods were also compared
one against the other taking as measures the average stride length and the average
gait velocity (the gait phase duration is not affected by the changes in this section,
thus, comparing them would be useless). The results are presented in a scatter plot
in Figure 5.11.

5.3.4 Discussion

Parameter tuning

The first conclusion the plot on Figure 5.4 is that the inclination RMSE values all are
below 4.34o, which are considered good results. Even though these are the best pos-
sible results, there is still some slack.

Also, it can be seen that the optimal results spread almost all over the accRating pa-
rameter studied range [0, 15], whereas they are much concentrated on the τacc range:
most of them are below the 0.5 mark, and almost all below 1. Therefore, it seems
that the accRating parameter has a lesser impact on achieving the minimal inclination
RMSE, whereas τacc is restricted to a narrow interval. Hence, efforts were centered
on tuning the this last parameter.

The plot on Figure 5.5 represents the values studied for the tuning. It is seen how
results within a small τacc interval ([0.09, 0.16]) are acceptable, but they diminish as
soon as the parameter is either too low or too high. Within the acceptable interval, re-
sults are very similar. It appears that, the greater the value, the more dispersion there
is: the average remains almost identical, the lowest value decreases very slightly, but
the ceiling (maximum inclination RMSE) increases and more outliers appear. More-
over, all these results are just slightly worse than the optimal ones, which indicates
that choosing any of those values for τacc still grants good results. Lower τacc are
considered better because the negative impact of a higher inclination RMSE ceiling
is deemed to outweight the positive impact of a lower inclination RMSE floor. Since
there is very little distinction in the results obtained with the two smallest τacc , and
to keep things easier, the chosen τacc value to implement has been 0.1. accRating has
been left at 4.

Regarding the results obtained with the alternative algorithm (Figure 5.6), it can
be seen that there is a great variation depending on the value of the Time Constant
used. For lower values (mainly T = 1, T = 2 and T = 3), when best results are
achieved, inclination RMSE results are better than the ones obtained with the studied
algorithm and tuned parameters: the average is below 3 degrees and the ceiling does
not reach the 6 degrees mark, even when taking into account the outliers.

50 Chapter 5. Experimental results

FIGURE 5.7: Euler Angles of the qsensor
earth quaternion computed with

different orientation estimation algorithms and τacc parameters

5.3. Parameter optimization on orientation estimation algorithm 51

FIGURE 5.8: z Euler Angle of the qsensor
earth quaternion computed with

different orientation estimation algorithms and τacc parameters

FIGURE 5.9: x Euler Angle of the qsensor
earth quaternion computed with

different orientation estimation algorithms and τacc parameters

52 Chapter 5. Experimental results

FIGURE 5.10: y Euler Angle of the qsensor
earth quaternion computed with

different orientation estimation algorithms and τacc parameters

FIGURE 5.11: Bland Altman plot of average gait velocity and average
stride length comparing the orientation estimation algorithms and

τacc parameters.

5.4. Comparing left and right foot data 53

Implementation of the changes

Since here all three algorithms will be discussed heavily, and to avoid mixing up
them and easing the understanding of these conclusions, the algorithms will be re-
named as follows:

• Algorithm 1: Original orientation estimation algorithm with original parame-
ters.

• Algorithm 2: Original orientation estimation algorithm with tuned parameters
(τacc = 0.1 and accRating = 4).

• Algorithm 3: Alternative orientation estimation algorithm.

The results from the implementation are far from expected. Plots on Figure 5.7
and its close-ups, Figures 5.8, 5.9 and 5.10, show that there is great disparity across
the three options studied. The x Euler Angle is very similar on all three algorithms;
however, the other two are vastly different. On z Euler Angle, Algorithm 1 and Al-
gorithm 3 have a similar behaviour in shape, being the only difference that the latter
acquires a wider range of angles. With Algorithm 2, it appears the there is some time
of calibration in which it resembles Algorithm 1 and then, suddenly, the original al-
gorithm tries to imitate Algorithm 3. Once it reaches that point, it steadily declines
back to Algorithm 1 behaviour. Finally, on the y component of the Euler Angle the
Algorithms present varying results. It seems that Algorithm 2 is the most regular
with evenly spaced peaks, and Algorithm 3 displays a similar behaviour (but not so
regular); whereas Algorithm’s 2 tends to fall short often. All in all, taking Algorithm
3 as a reference, it seems that Algorithm 2 tries to match its results, but not quite
achieving them.

When looking at the plots on Figure 5.11, it is clear that Algorithm 2 presents
the worst results. Both Algorithm 1 and Algorithm 3 have differences near 0 on each
measure (in their respective units), a much lower variation, and more similar values.
What is more, the velocity of the treadmill on all trials was fixed to 1.5, 3, or 5 km/h.
On the Velocity Bland Altman plot, both Algorithm 1 and Algorithm 3 have very
precise points very close to those values, whereas Algorithm 2’s results are more
spread.

In conclusion: despite good results on inclination RMSE compared to an optical
system and a hint of improvement looking at the Euler Angles of the quaternion
qsensor

earth , the actual results of its implementation are diminishing and give no reason
whatsoever to used the tuned parameters on the orientation estimation algorithm.

5.4 Comparing left and right foot data

During the development of the previous Section, it was discovered that the data for
the left and right foot presented differences. Since the chosen measure, the inclina-
tion RMSE, was computed for both feet simultaneously, the difference in the data
could have affected these results. Therefore, the inclination RMSE was computed
once again, but this time for each foot separately. For this analysis, the chosen τacc
and accRating values were the optimal ones. These results are shown in Figure 5.12.
On the left, a box-plot shows the inclination RMSE results computed for each foot;
and on the right, the absolute difference in inclination RMSE for each trial, along

54 Chapter 5. Experimental results

FIGURE 5.12: Box-plot of inclination RMSE separated by foot and
scatter plot of difference in inclination RMSE between feet, with the

average marked in red.

with the average value of this difference as a red horizontal line.

To discover the root of this issue, the distances between the optical markers were
plotted, as well as the angle between the vectors used to compute the quaternion
that represents the orientation of the optical markers. Close-ups of the results of a
single, representative trial are shown in Figure 5.13.

In light of these results (that will be discussed more thoroughly next on Section
5.4.1), and to improve the results, the position of the optical markers was filtered.
Two kinds of filters were applied: a third order low pass filter forwards and back-
wards, varying the cutoff frequency; and a moving median filter with different win-
dow sizes. For each them, the top performers - in terms of correcting the inclination
RMSE disparity between both feet - were the low pass one with a cutoff frequency
of 6Hz and the moving median with a window size of 5 samples. A detail of the
filtered and unfiltered position of the y-coordinate of the front marker of the left foot
from a representative trial can be seen in Figure 5.14.

The results are shown in Figures 5.15 and 5.16. The former shows a box-plot that
displays the inclination RMSE separated by foot for the results with the two cho-
sen filters as well as unfiltered data, whereas the latter presents also in a box-plot
form the average results for each foot as well as the absolute difference in inclination
RMSE between left and right foot.

5.4. Comparing left and right foot data 55

FIGURE 5.13: Distances between optical markers by foot, and angle
between vectors used to compute the quaternion describing the opti-

cal system frame.

56 Chapter 5. Experimental results

FIGURE 5.14: Detail of the y-position of the front optical marker on
the left foot, with 2 filtered used and raw data.

5.4.1 Discussion

First and foremost, it is observed in Figure 5.12 that there is indeed a major differ-
ence between both feet. In this case, the left foot presents higher (and, thus, worse)
inclination RMSE values consistently. On average, the results for the left foot are
over 1o higher that those of the right one.

Figure 5.13 can give some insight into why is this happening. As it can be seen,
the distances between optical markers of the left foot (in blue) tend to be noisier than
those of the the right one. This is specially visible on the Front-Left distance (top-left
subfigure). However, it should be noted that those differences are between 1mm
and 2mm, which are rather low. The same kind of increased noise can be appreci-
ated on the angle between vectors used to compute the quaternion than represents
the optical markers’ frame. In this case, it is more preoccupying, since a noisier sig-
nal implies a more unstable frame as well. All in all, it seems that either the optical
markers where not as accurately fixed on the left foot as in the right one; or that the
left foot IMU strap is not as well positioned as the right one. These may cause slight,
but unwanted variations on the positions of the optical markers that must be solved,
as it is used as a reference system.

To try to avoid this noise, a proposed solution was filtering the positions of the
optical markers. This allows smoothing them and avoiding unwanted trembles, and
at the same time can achieve more similar results between both feet. As seen in Fig-
ures 5.15 and 5.16, the low pass filter with cutoff frequency of 6Hz is the best option.
It improves considerably the left foot’s results, reducing the average gap between
left and right inclination RMSE to below 0.5o. Moreover, it also improves right foot’s
results, albeit in a lesser manner. This shows that filtering is actually a good decision

5.4. Comparing left and right foot data 57

FIGURE 5.15: Inclination RMSE by foot for 2 filtered and unfiltered
optical markers positions.

58 Chapter 5. Experimental results

FIGURE 5.16: Overall inclination RMSE and absolute difference be-
tween left and right foot for 2 filtered and unfiltered optical markers

positions.

even when no such discrepancy between left and right foot is observed, as it can
correct outliers and even out the inherent noise.

59

Chapter 6

Conclusions

6.1 Overview

This thesis presents itself as an entry point for newcomers to the gaitt project. It de-
scribes the general gait terms, gait analysis methods, and provides an overview to
its actual implementation. Also, it tests the implementation of a novel motion de-
tection algorithm and tunes one of the parameters of an already existing orientation
estimation method. Both cases were evaluated using a data set composed of 92 trials
with different walking patterns and evaluated against a ground truth reference.

Chapter 1 serves as an introduction to the thesis: its motivation and the goals are
presented. This defines and articulates this thesis’ content.

Chapter 2 explains the core gait terms, some the gait phase detection algorithm
and the gait analysis methods. Its aim is to introduce crucial points to those unfamil-
iar with gait analysis and its methods; explain current algorithms, as well as become
a sort of documentation for the code that performs this analysis.

Chapter 3 introduces the gait visualization tool, also part of the gaitt project, and
presents its most important algorithms and its capabilities. Despite its little connec-
tion to other sections, it is still a relevant part of the gaitt project and is worthy of an
explanation. It is the ultimate gait analysis tool as it provides accurate visual repre-
sentation of pre-recorded gait data.

Chapter 4 presents the main contributions of this thesis to the gaitt project. It is
the attainment of its goals; where the extensions and improvements are explained,
as well as the methods and reasoning behind them. Here is an overview of the or-
ganization of the project’s code, the implementation of the new motion detection
method, and the tuning of the τacc parameter from one of the orientation estimation
algorithms.

Chapter 5 provides the results from the experimental set up to validate the new
methods. It summarizes the experimental framework, provides insight into its set
up and presents the actual results from the validation of each practical extension.
The new rest detection method provides very similar results to those of GPD-One;
whereas the implementation tuning of the orientation estimation, despite promising
first results, proved to be diminishing. Finally, a disparity between left and right
foot results is studied and corrected using a low-pass filter.

60 Chapter 6. Conclusions

6.2 Future work

The results from the improvements to the gaitt project this thesis has proposed have
been underwhelming and far from expected. Despite introducing a new rest detec-
tion method in Section 4.2, an improvement over the existing one has yet to be seen.
There can be several reasons behind this issue: the current method is a better option,
some of the parameters of the new method need more tuning, or better results can-
not be achieved when using inertial measurement units. This should be addressed,
because it conditions the future lines of work regarding gait analysis.

The other method tested, presented in Section 4.3, yielded even worse results.
Despite seemingly improvements on the orientation estimation of the sensor, the
actual results derived from its implementation have been worse that the existing al-
ternatives. The reasoning behind this is not clear and should be investigated further;
otherwise, the parameters used on this algorithm become useless.

As a final point, in Section 3.1.4, it is mentioned the creation of two linear spaces
as a part of the procedure. Each of these linear spaces is formed by 100.000 samples.
At a sampling rate of 110Hz, this can can cover up to 15 minutes of data recordings
without losing samples, whereas if the frequency doubles to 220Hz, the time is re-
duced to 8,33 min. Even though trials are not that long yet, it may become an issue in
the future. This can be solved by using a number of samples which depends on the
trial duration and sampling rate (which are both known values), instead of a fixed
value; thus being more flexible.

61

Appendix A

Detailed code explanations

A.1 Python code

main demo.py
Inputs Outputs Algorithm
- IMU data
- .txt / .mat file
- .gaitt.mat DataFile
- .json file

- .txt file
- .gaitt.mat DataFile
- .json file
- Webapp visualization
- PDF plots (optional)

Saves info into .txt file
(recordImuData)
Processes data: Performs
GPD, gait analysis and
computes several gait param-
eters.
Opens Matlab, performs ori-
entation, position and direc-
tion correction and saves into
a .json
Open visualizer and shows
gait.
Creates several plots, saves
them on PDF and displays
them on Okular

processData (demo.py)
Inputs Outputs Algorithm
- filename: DataFile
- matlab: Matlab path
- (Opt.) noLatdevPlots: Lat-
eral deviation plots (True/-
False, save on PDF)

- .gaitt.mat DataFile with all
info
- Creates .sync.png plot, not
returned
- Creates .json, not returned
- (optional) Creates PDF with
several plots and saves it, not
returned

Reads .txt, formats informa-
tion appropriately (can syn-
chronize it too) and saves it
into a DataFile, plots gait and
saves it as image.
Runs GPD, gait analysis and
computes gait parameters,
and saves it into a .gaitt.mat.
Opens Matlab, performs ori-
entation, position and direc-
tion correction and saves into
a .json

62 Appendix A. Detailed code explanations

loadSsnImuData (io.py)
Inputs Outputs Algorithm
- data: file to read (.txt or sim-
ilar, or .gz)
- (Opt.) rate: IMU rate
- (Opt.) sync: synchronize
data (T/F)
- (Opt.) syncPlotAx: plt.plot,
where to plot if synced.
- (Opt.) mapping: dict, IMUs
mapping (left/right)

- Formatted and filled
DataFile
- (Opt.) updated synced
plt.plot inputted.

Reads input file and writes
all its information into a
DataFile in standard format.
If sync, data from both IMUs
is synced. If syncPlotAx
is passed, updates it with
synced plot

syncSsnImuData (io.py)
Inputs Outputs Algorithm
- data: DataFile
- (Opt.) syncPlotAx: plt.plot,
where to plot
- (Opt.) imus: tuple, IMUs’
order.

- Modified DataFile, not re-
turned

Synchronizes two data
streams within a single
DataFile.

runGaitt (utils.py)
Inputs Outputs Algorithm
- data: DataFile with gait in-
formation
- (Opt.) perry: T/F, perform
perry’s gpd or unilateral
- (Opt.) params: dict, several
parameters (such as thresh-
olds) used in GPD, gait analy-
sis and gait parameter’s com-
putation. Any number of
them can be specified.

- Modified DataFile, not re-
turned

Modifies DataFile and com-
pletes it with GPD, gait anal-
ysis and several gait parame-
ters.
Includes default values for
input parameters not speci-
fied.
If perry is selected, computes
and stores contralateral foot’s
GPD, analysis and parame-
ters.

_runGaittSingleFoot (utils.py)
Inputs Outputs Algorithm
- inputs: user-defined pa-
rameters (such as thresholds)
used in GPD, gait analysis
and gait’s parameters com-
putation
- Data: DataFile with gait in-
formation

- New DataFile (returned)
with all the results

Performs, sequentially:
- GPD (perry’s GPD too if
data available)
- Gait Analysis
- Other values:
- Step Indices (if perry too)
- Step Times (if perry too)
- Global Frame Kinematics
- Step Durations (perry too)
- Foot angles (pitch & roll)
- Stride length
- Z position
- Lateral deviation
- Gait velocity

A.1. Python code 63

openVisualization (demo.py)
Inputs Outputs Algorithm
- jsonfilename: name .json file
containing all the necessary
data for the visualization.

- None Copies the file into another
directory and opens webapp
visualization.

createPlots (demo.py)
Inputs Outputs Algorithm
- filename: Existing DataFile
name
- data: .gaitt.mat DataFile
containing all the gait info to
plot

- .pdf File containing all the
plots

Reads the data and creates
several plots from it, saves
them into a .pdf file with the
same name and title as the
filename passed and saves it
in the same directory as file-
name

createSignalPlots (signal_plots.py)
Inputs Outputs Algorithm
- data: .gaitt.mat DataFile
containing the gait data to be
plotted
- title: title for gait evaluation
plots
- plotFilename: .pdf filename
- (Opt.) perry: Plot perry
phases on gait evaluation
(T/F/both)
- width: width of figures
- (Opt.) aggregatedDetail-
sWriter: adds title and plot
name

- None Creates several plots (each
one is a function call) from
the data and saves them into
a .pdf file

plot- (signal_plots.py)
Inputs Outputs Algorithm
- ax: Matplotlib figure
- data: gaitt.mat DataFile con-
taining all gait data
- time: sample times
- rate

- None. Plots on the inputted
figure

Creates the corresponding
plot on the input figure. All
but plotCombinedGaitphase
use time.

getCutRawData (signal_plots.py)
Inputs Outputs Algorithm
- data: gaitt.mat DataFile con-
taining all gait data
- identifier: signal identifier
in DataFile format

- Cut signal Reads the DataFile passed,
picks the signal specified and
cuts it according to the start
and end indices specified
within the DataFile.

64 Appendix A. Detailed code explanations

createFig (utils.py)
Inputs Outputs Algorithm
- (Opt.) width: % of width of
the page
- (Opt.) landscape: create the
figure in landscape or vertical
page width

- Matplotlib figure Creates a matplotlib figure
of width % relative to page
width, either vertical or land-
scape

gaitEvalationPlot (gait_evaluation.py)
Inputs Outputs Algorithm
- data: gaitt.mat DataFile con-
taining the gait data to be
plotted
- title: title: title for gait eval-
uation plots
- (Opt.) config: C++ file with
plot configurations
- (Opt.) perry: Plot perry
phases on gait evaluation
(T/F)

- Matplotlib figure Creates and returns a single
Matplotlib figure with sev-
eral plots on it (velocity x
stride length, percentage du-
ration of gait phases, pitch
and swing roll, and maximal
lateral deviation and z posi-
tion).

velLengthPlot (gait_evaluation.py)
Inputs Outputs Algorithm
- res : gait evaluation data
from one foot
- side: foot to plot
- config: C++ function con-
taining gait evaluation plots’
configuration

- Plots on the last Matplotlib
figure created

Plots a boxplot of stride
length against gait velocity.

stepTimePlot (gait_evaluation.py)
Inputs Outputs Algorithm
- resL & resR: gait evaluation
data from left & right foot
- phase: phase to plot
- config: C++ function con-
taining gait evaluation plots’
configuration
- ticks: (T/F) plot default
ticks on y-axis or differentiate
between left and right

- Plots on the last Matplotlib
figure created

Plots a boxplot of selected
phase’s duration of one foot
against the other

anglePlot (gait_evaluation.py)
Inputs Outputs Algorithm
- resL & resR: gait evaluation
data from left & right foot
- angle: angle (pitch or swing
roll) to plot
- config: C++ function con-
taining gait evaluation plots’
configuration

- Plots on the last Matplotlib
figure created

Plots a boxplot of selected an-
gle’s min and max (one box-
plot each) values of one foot
against the other

A.1. Python code 65

posPlot (gait_evaluation.py)
Inputs Outputs Algorithm
- resL & resR: gait evaluation
data from left & right foot
- name: plot will be maximal
lateral deviation or maximal
z-position
- config: C++ function con-
taining gait evaluation plots’
configuration

- Plots on the last Matplotlib
figure created

Plots a boxplot of selected
name’s max values of one
foot against the other

boxplot2D (gait_evaluation.py)
Inputs Outputs Algorithm
- xData: Values on the x-axis
- yData: Values on the y-axis
- col: colours to use
- label

- Plots on the last Matplotlib
figure created

Plots a boxplot of the
data. Needs access to
gait_evaluation.cpp to re-
trieve information about the
boxplot’s configuration.

66 Appendix A. Detailed code explanations

A.2 C/C++ code

gpdFull (gpd_o f f line.cpp)
Inputs Outputs Algorithm
- acc_sens
- gyr_sens
- N
- Rate
- maxFind
- jerkWindow
- jerkThreshold
- w_acc
- w_gyr
- hist_acc_p
- hist_gyr_p
- th_rest_min
- th_high_min

- gyr_rest
- acc_rest
- gpd_rest
- gpd_two
- gpd
- gyr_nobias
- gyrbiastest_rest
- gyrnorm_sens
- accnorm_sens
- tiltrate
- jerkNorm
- th_accrest_used
- th_gyrrest_used

Performs whole GPD of 1
foot from raw IMU data.
If Autotune is selected, it self-
computes some of the neces-
sary thresholds and hystere-
sis values needed.

removeGyrBias (gpd_o f f line_utils.cpp)
Inputs Outputs Algorithm
- gyr
- rate
- gyrnorm
- min_rest_duration

- gyr_nobias
- gyrbiastest_rest

Estimates and removes the
gyro’s readings bias using
rest phases
In between rest phases, lin-
early interpolates said bias.

vecNorm(gpd_o f f line_utils.cpp)
Inputs Outputs Algorithm
- vec
- N

- ret Returns the Euclidean norm
of a Nx3 vector

A.2. C/C++ code 67

movingAverageFiltFilt (gpd_o f f line_utils.cpp)
Inputs Outputs Algorithm
- signal
- N
- rate
- t

- signal Performs a zero-phase mov-
ing average calculation twice,
once forward and once back-
wards, using movingAvg.

movingAvg (gpd_o f f line_utils.cpp)
Inputs Outputs Algorithm
- input
- N
- filterLen
- reversedOutput

- output Moving average calculator.
Can return the output re-
versed if requested.

gpdOne (gpd_o f f line.cpp)
Inputs Outputs Algorithm
- arr
- N
- mode
- rate
- th
- h
- th_rest_min_miliseconds
- th_high_min_miliseconds

- ret First phase of the GPD. Re-
turns an array that distin-
guishes between movement
(1) and rest phases (0).
To do so, performs acausal
(with hysteresis) threshold-
ing of both acc and gyro
signals (separately). After-
wards, removes short rest
phases and motion phases, in
that order.

Intersection (gpd_o f f line.cpp)
Inputs Outputs Algorithm
- arr1
- arr2
- N
- rate
- th_rest_min_miliseconds
- th_high_min_miliseconds
- th_combined_rest_min_p
- th_combined_rest_high_p

- ret Returns the intersection of
two binary signals. Con-
cretely, it is used to return the
intersection between the re-
sults of the GPD-One for the
acc and the gyro, being the
values of the returned array 1
only if both are, and 0 other-
wise.
Also, as before, removes
short phases within the re-
turned array.

68 Appendix A. Detailed code explanations

Intersection (gpd_o f f line.cpp)
Inputs Outputs Algorithm
- arr1
- arr2
- N
- rate
- th_rest_min_miliseconds
- th_high_min_miliseconds
- th_combined_rest_min_p
- th_combined_rest_high_p

- ret Returns the intersection of
two binary signals. Con-
cretely, it is used to return the
intersection between the re-
sults of the GPD-One for the
acc and the gyro, being the
values of the returned array 1
only if both are, and 0 other-
wise.
Also, as before, removes
short phases within the re-
turned array.

tiltRate (gpd_o f f line_utils.cpp)
Inputs Outputs Algorithm
- gyrsens
- start
- N

- tiltrate Computes the tiltrate (inte-
gral times cross product) of a
given gyro signal

findMax (gpd_o f f line_utils.cpp)
Inputs Outputs Algorithm
- array
- N

- ret Returns the index of the max
element of the array.

findZero (gpd_o f f line_utils.cpp)
Inputs Outputs Algorithm
- gyrsens
- start
- N

- tiltrate Computes the tilt rate (inte-
gral times cross product) of a
given gyro signal

findMax (gpd_o f f line_utils.cpp)
Inputs Outputs Algorithm
- array
- N
- th

- ret Returns the index of zero-
crossing element of the array,
starting from those elements
superior to a given threshold.

A.2. C/C++ code 69

gpdThree (gpd_o f f line.cpp)
Inputs Outputs Algorithm
- gpd_two
- acc_sens
- N
- Rate
- percentageWindow
- percentageThreshold

- gpd_three
- jerknorm

Third phase of the GPD.
Computes the jerk (finite dif-
ference derivative of the ac-
celeration). Within a win-
dow defined between the toe-
off and the beginning of the
next foot-flat, looks for the
first time that the norm of the
jerk rises above a threshold
of its maximum, and marks it
as the start of the loading re-
sponse (3)

finDiff (gpd_o f f line_utils.cpp)
Inputs Outputs Algorithm
- vec
- N
- rate

- ret Returns the forward-finite
difference derivative of a 3D
array

perryGaitPhase (gpd_o f f line.cpp)
Inputs Outputs Algorithm
- gp
- gp_contra
- N

- gp_perry Returns the Perry gait phases
from the gpd of a foot and it’s
contralateral one.

combinedGPD (gpd_o f f line.cpp)
Inputs Outputs Algorithm
- arr1
- arr2
- N

- ret Combines two gpd signals
into one, returned in ret, so
the resulting phases are:

1. double full-contact

2. double support

3. single support

4. zero support

5. otherwise

70 Appendix A. Detailed code explanations

gaitAnalysis (gait_analysis.cpp)
Inputs Outputs Algorithm
- foot
- gpd
- acc_sens
- gyr_sens
- N
- rate
- fwdAxis
- startP
- stopP
- tauAcc
- zeta
- timeout

- gyr_ f oot f rame
- vel_ f oot f rame
- xprime
- x
- y
- z
- quat_sensor2eart
- quat_sensor2 f oot
- quat_sensor_p f f 2earth
- quat_sensor2sensor_p f f
-
eulerAngles_sensor2sensor_p f f
- quat_ f oot2earth,
- eulerAngles_ f oot2earth
- pos_ f oot f rame_p f f
- posnorm_ f oot f rame_p f f
- pos_ f oot f rame_ f f f
- posnorm_ f oot f rame_ f f f
- quat_ f oot2 f oot_p f f
- eulerAngles_ f oot2 f oot_p f f

Computes gyr and velocity
in foot frame, the foot axes
at foot-flats, several differ-
ent orientations, Euler angles
and positions.
There are also more values
computed not returned here.

stepCounter (gait_analysis.cpp)
Inputs Outputs Algorithm
- gpd
- N

- ret Returns the number of steps
in a GPD array. To do so, it
counts as a step a full 0-1-2-
3 sequence of less than 5 sec-
onds.

stepIndices (gait_analysis.cpp)
Inputs Outputs Algorithm
- gpd
- rate
- N
- timeout
- numSteps

- step_indices Returns an array of 6 ele-
ments with the indices of the
start of the step, each one of
the 4 phases and the end of
the step (in that order).

findStep (gait_analysis.cpp)
Inputs Outputs Algorithm
- gaitphase
- N
- startInd
- timeoutSamples

- ret (bool)
- stepStart
- start1
- start2
- start3
- start0
- stepStop

Returns true if the indices
have been found for the next
step. If so, it returns also the
indices of the start of the step,
each one of the 4 phases and
the end of the step.

A.2. C/C++ code 71

globalQuaternion (gait_analysis_utils.cpp)
Inputs Outputs Algorithm
- acc
- gyr
- tauAcc
- zeta
- N
- rate

- outputQuaternion Computes quaternion to
translate sensor to global
frame, using orientation
estimation algorithm (either
globalQuaternionFiltFilt
for negative tauAcc values
or CupdateOffline from
CCsgOriEstIMU for the rest)

globalQuaternionFiltFilt (gait_analysis_utils.cpp)
Inputs Outputs Algorithm
- acc
- gyr
- N
- T
- rate

- outputQuaternion Computes quaternion to
translate sensor to global
frame, using orientation
estimation algorithm (non-
causal filtering of accelera-
tions)

QuaternionFrom_p f f (gait_analysis_utils.cpp)
Inputs Outputs Algorithm
- oriestQuat
- step_indices
- numSteps

- quats_p f f Computes quaternion from
the sensor at the previous
foot flat to earth frame, using
step indices and the quater-
nion from sensor to earth
computed before.

accelerationToGlobal (gait_analysis_utils.cpp)
Inputs Outputs Algorithm
- acc_sens
- quat_sensor2earth
- N

- acc_earth
- accnorm_earth

Transforms the acceleration
to earth frame and removes
the effect of gravity. Com-
putes also the norm of said
acceleration.

integrateAcceleration (gait_analysis_utils.cpp)
Inputs Outputs Algorithm
- acc_earth
- step_indices
- N
- numSteps
- rate

- vel_earth
- velnorm_earth

Computes velocity in earth
frame and its norm by inte-
grating the acceleration. It
also performs a linear drift
correction by imposing that
the velocity is 0 in the middle
of the foot flat.

72 Appendix A. Detailed code explanations

velocityTo_sensor f rame (gait_analysis_utils.cpp)
Inputs Outputs Algorithm
- vel_earth
- quat_sensor2earth
- N

- vel_sens Translates velocity back to
sensor frame from the pre-
viously obtained velocity in
earth frame

integrateToPosition(gait_analysis_utils.cpp)
Inputs Outputs Algorithm
- vel
- N
- rate

- pos
- posnorm

Integrates the velocity to get
the position and its norm

de f CoordXprime_ f oot f rame_ f rom_p f f (gait_analysis.cpp)
Inputs Outputs Algorithm
- vel_earth
- quat_sensor2earth_p f f
- step_indices
- N
- numSteps
- startP
- stopP

- xprime X’ coordinate, found by cal-
culating the normalized av-
erage sensor speed in earth
frame during the middle 50%
window of the swing phase.

de f CoordZ_ f oot f rame (gait_analysis.cpp)
Inputs Outputs Algorithm
- acc_sens
- N
- step_indices
- numSteps

- coordZ Z coordinate, found by com-
puting the average of the
acceleration measurements
during the whole duration of
the rest phase.

de f CoordXandY_ f oot f rame (gait_analysis.cpp)
Inputs Outputs Algorithm
- xprime
- z

- y
- x

Computes the remaining Y
and X coordinates via vector
multiplication. Y is orthogo-
nal to Z and X’ , and X is or-
thogonal to Y and Z

de f Quat_sensor2 f oot (gait_analysis.cpp)
Inputs Outputs Algorithm
- x
- y
- z

- quat_sensor2 f oot Computes quaternion that
transforms from sensor to
foot frame

f ootGyr_ f oot f rame (gait_analysis.cpp)
Inputs Outputs Algorithm
- gyr_sens
- quat_sensor2 f oot
- N

- gyr_ f oot f rame Transforms gyro readings
(angular rate) from sensor to
foot frame

A.2. C/C++ code 73

f ootVelocity_ f oot f rame (gait_analysis.cpp)
Inputs Outputs Algorithm
- vel_sens
- quat_sensor2 f oot
- N

- vel_ f oot_ f oot f rame Transforms the velocity of the
foot from sensor frame to foot
frame

sensorRelativeTo_p f f (gait_analysis.cpp)
Inputs Outputs Algorithm
- quat_sensor2earth
- quat_sensor_p f f 2earth
- step_indices
- numSteps

- quat_sensor2sensor_p f f
-
eulerAngles_sensor2sensor_p f f

Computes the orientation
quaternion and Euler Angles
from any given sensor posi-
tion to the sensor position at
the previous foot flat.

f ootRelativeTo_p f f (gait_analysis.cpp)
Inputs Outputs Algorithm
- foot
- quat_sensor2sensor_p f f
- quat_sensor2 f oot
- N

- quat_ f oot2 f oot_p f f
- eulerAngles_ f oot2 f oot_p f f

Computes the orientation
quaternion and Euler Angles
from any given foot position
to the foot position at the
previous foot flat.

f ootRelativeTo_earth f rame (gait_analysis.cpp)
Inputs Outputs Algorithm
- foot
- quat_sensor2earth
- N
- quat_sensor2 f oot

- quat_ f oot2earth
- eulerAngles_ f oot2earth

Computes the orientation
quaternion and Euler Angles
from foot frame to earth
frame

f ootPosition_ f oot f rame_p f f (gait_analysis.cpp)
Inputs Outputs Algorithm
- vel_earth
- step_indices
- quat_sensor_p f f 2earth
- quat_sensor2 f oot
- N
- numSteps
- rate

- pos_ f oot f rame_p f f
- posnorm_ f oot f rame_p f f

Computes the position of the
foot a the middle of the previ-
ous foot flat in foot frame.

f ootPosition_ f oot f rame_ f f f (gait_analysis.cpp)
Inputs Outputs Algorithm
- vel_earth
- quat_sensor2earth_ f f f
- quat_sensor2 f oot
- N
- numSteps
- rate

- pos_ f oot f rame_ f f f
- posnorm_ f oot f rame_ f f f

Computes the position of the
foot a the middle of the first
foot flat in foot frame

74 Appendix A. Detailed code explanations

stepIndicesPerry (gait_analysis.cpp)
Inputs Outputs Algorithm
- gpPerry
- N

- step_indices_perry Returns an array of 6 ele-
ments with the indices of the
start of the step, each one of
the 4 Perry phases and the
end of the step (in that order).

stepTimesPerry (gait_analysis.cpp)
Inputs Outputs Algorithm
- step_indices_perry
- rate
- numSteps

- step_times_perry Returns an array of 6 ele-
ments with time of the first
initial contact, the percent-
age duration of the 4 Perry
phases and the time of the
next initial contact (in that or-
der).

globalFrameKinematics (gait_analysis.cpp)
Inputs Outputs Algorithm
- acc_sens
- quat_sensor2earth
- N
- rate
- numSteps
- step_indices

- vel_earth
- velnorm_earth
- vel_earth_nodri f tCorr
- velnorm_earth_nodri f tCorr
- pos_earth
- posnorm_earth
- pos_earth_nodri f tCorr
- posnorm_earth_nodri f tCorr

Computes velocity and posi-
tion (3 components, each) in
global coordinates, both with
and without drift correction.

integrateAcceleration_nodri f t (gait_analysis_utils.cpp)
Inputs Outputs Algorithm
- acc_earth
- step_indices
- N
- numSteps
- rate

- vel_earth
- velnorm_earth

Integrates acceleration to ob-
tain velocity in global frame,
and applies drift correction to
it.

stepDurations (gait_evaluation.cpp)
Inputs Outputs Algorithm
- step_times
- numSteps

- step_duration
- percentage_lr
- percentage_ f f
- percentage_ps
- percentage_sw

Computes the total step dura-
tion of each step and the rel-
ative duration of each of its
phases.

A.2. C/C++ code 75

footAngles (gait_evaluation.cpp)
Inputs Outputs Algorithm
- eulerAngles_ f oot2 f oot_p f f
- N
- step_indices
- numSteps
- rate

- min_pitch
- max_pitch
- min_swing_roll
- max_swing_roll

Computes the min/max
pitch angles during the
whole step and the min/max
roll angles during the swing
phase. All angles returned
are filtered using a moving
average filter

footTrajectory (gait_evaluation.cpp)
Inputs Outputs Algorithm
- pos_earth
- N
- step_indices
- numSteps
- (rate)

- stride_length
- max_lat_deviation
- max_z_pos
- lat_deviation
- z_pos

Computes the stride length
of each step as well as the
(max) lateral deviation from
the centre line and the (max)
vertical position achieved.

gaitVelocity (gait_evaluation.cpp)
Inputs Outputs Algorithm
- step_duration
- stride_length
- numSteps

- gait_velocity Computes the gait velocity
for each step

76 Appendix A. Detailed code explanations

A.3 Matlab code

create_json (/3d/matlab_preprocessing/)
Inputs Outputs Algorithm
- filename: name of a DataFile
containing gait information.
- options:

• Parameters

• Flags for corrections

- gait_velocity The filename must contain
gait data. This program loads
it, applies several position,
direction and orientation cor-
rection to the gait in it, cre-
ates a foot mesh, positions the
foot and toes and makes the
appropriate change of coordi-
nates to suit a babylonjs file.
Saves everything into it so it
can be later displayed.

stepwise_ori_delta (/3d/matlab_preprocessing/)
Inputs Outputs Algorithm
- delta LEFT AND RIGHT

-
f oot_middle_orientation_le f t
- stepind_le f t

Computes the delta angle
(deviation from straight path)
necessary for he stepwise ori-
entation correction

end_correction (/3d/matlab_preprocessing/)
Inputs Outputs Algorithm
LEFT OR RIGHT
- sensor_position_le f t
-
f oot_middle_orientation_le f t
- per f ect_start_le f t
- per f ect_end_le f t
- num_samples

LEFT OR RIGHT
- sensor_position_le f t
-
f oot_middle_orientation_le f t

Computes the vectors that
transform each sample of the
path followed (assuming per-
fect start) into another path
where with perfect start and
end positions.

A.3. Matlab code 77

z2ground (/3d/matlab_preprocessing/)
Inputs Outputs Algorithm
LEFT OR RIGHT
- sensor_position_le f t
- gait_phase_le f t

LEFT OR RIGHT
- cost_l
- stairs_num_le f t
- stair_height_le f t
- gp_0_start_l
- gp_0_end_l

Corrects the vertical devia-
tion drift (z-axis) and classi-
fies steps via k-means clus-
tering into 3 different heights:
level ground, 1 stair height
and 2 stair height.

stair_num_correction (/3d/matlab_preprocessing/)
Inputs Outputs Algorithm
LEFT AND RIGHT
- sensor_position_le f t
- stairs_num_le f t
- cost_l
- gp_0_le f t
- method

LEFT AND RIGHT
- stairs_num_le f t

Corrects the number of steps
computed with z2ground us-
ing 2 different methods, and
choosing the best outcome

lowpass_heading_correction (/3d/matlab_preprocessing/)
Inputs Outputs Algorithm
LEFT OR RIGHT
- sensor_position_le f t
-
f oot_middle_orientation_le f t
- stepind_le f t
- rate

LEFT OR RIGHT
- sensor_position_le f t
-
f oot_middle_orientation_le f t

Computes the delta angle
(deviation from straight path)
necessary for he stepwise ori-
entation correction and ap-
plies a low-pass filter to it.
Returns the corrected posi-
tions.

lowpass_k_heading_correction (/3d/matlab_preprocessing/)
Inputs Outputs Algorithm
LEFT OR RIGHT
- sensor_position_le f t
-
f oot_middle_orientation_le f t
- stepind_le f t
- rate
- k_ratio

LEFT OR RIGHT
- sensor_position_le f t
-
f oot_middle_orientation_le f t

Computes the delta angle
(deviation from straight path)
necessary for he stepwise ori-
entation correction and cor-
rects it using a fixed gain
k_ratio. Returns the corrected
positions.

f oot_V2 (/3d/matlab_preprocessing/)
Inputs Outputs Algorithm
LEFT OR RIGHT
-
f oot_middle_orientation_le f t
- sensor_position_le f t
-
per f ect_sensor_position_l_mesh
- heel_pos_mesh
- mid f oot_pos_mesh
- toe_pos_mesh

LEFT OR RIGHT
- toe_orientation_le f t
- f oot_earth_vec_le f t
- correction_vec_le f t
- middle_orientation_le f t

Creates the foot mesh and po-
sitions it accordingly (appro-
priate orientation too).
Moves midfoot and heel
above the ground and rotates
toes so they lie flat on the
floor.

79

Bibliography

[1] Eva Kastenbauer. Data-based development and validation of inertial foot motion
tracking and 3D visualisation for clinical gait analysis. 2019.

[2] TUB Control Systems group. “Gait Assessment by Foot-Worn IMUs – Exten-
sive Validation of a Calibration-free and Magnetometer-free Method”. 2020.

[3] Myeounggon Lee et al. “Validity of shoe-type inertial measurement units for
Parkinson’s disease patients during treadmill walking”. In: Journal of neuro-
engineering and rehabilitation 15.1 (2018), p. 38.

[4] Tao Liu, Yoshio Inoue, and Kyoko Shibata. “Development of a wearable sensor
system for quantitative gait analysis”. In: Measurement 42.7 (2009), pp. 978–988.

[5] Edward P Washabaugh et al. “Validity and repeatability of inertial measure-
ment units for measuring gait parameters”. In: Gait & posture 55 (2017), pp. 87–
93.

[6] Benoit Mariani et al. “Heel and toe clearance estimation for gait analysis using
wireless inertial sensors”. In: IEEE Transactions on Biomedical Engineering 59.11
(2012), pp. 3162–3168.

[7] Tri Nhut Do and Young Soo Suh. “Gait analysis using floor markers and iner-
tial sensors”. In: Sensors 12.2 (2012), pp. 1594–1611.

[8] H Martin Schepers. “Ambulatory assessment of human body kinematics and
kinetics”. In: (2009).

[9] Thomas Seel, David Graurock, and Thomas Schauer. “Realtime assessment of
foot orientation by accelerometers and gyroscopes”. In: Current Directions in
Biomedical Engineering 1.1 (2015), pp. 446–469.

[10] Stacy J Morris Bamberg et al. “Gait analysis using a shoe-integrated wireless
sensor system”. In: IEEE transactions on information technology in biomedicine
12.4 (2008), pp. 413–423.

[11] Benoit Mariani et al. “On-shoe wearable sensors for gait and turning assess-
ment of patients with Parkinson’s disease”. In: IEEE transactions on biomedical
engineering 60.1 (2012), pp. 155–158.

[12] Angelo M Sabatini et al. “Assessment of walking features from foot inertial
sensing”. In: IEEE Transactions on biomedical engineering 52.3 (2005), pp. 486–
494.

[13] Jacquelin Perry. Ganganalyse: Norm und Pathologie des Gehens. Elsevier, Urban&FischerVerlag,
2003.

[14] TW Ridler, S Calvard, et al. “Picture thresholding using an iterative selection
method”. In: IEEE trans syst Man Cybern 8.8 (1978), pp. 630–632.

[15] Thomas Seel and Stefan Ruppin. “Eliminating the effect of magnetic distur-
bances on the inclination estimates of inertial sensors”. In: IFAC-PapersOnLine
50.1 (2017). 20th IFAC World Congress, pp. 8798–8803. ISSN: 2405-8963. URL:
http://www.sciencedirect.com/science/article/pii/S2405896317321201.

http://www.sciencedirect.com/science/article/pii/S2405896317321201

80 Bibliography

[16] Patrick D. Wrede. Ruhephasenerkennung bei “Inertial Sensor-Based Gait Analysis“.
2019.

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Motivation
	Objectives
	Structure
	State of the art

	Theory and algorithms
	Previous Concepts
	General gait terms
	Gait phases
	Perry gait phases

	Gait Phase Detection
	Unilateral Gait Phase Detection
	GPD-One
	GPD-Two
	GPD-Three

	Gait Phase Mapping

	Gait Analysis
	Number of steps
	Step Indices
	Step Times
	Stride duration
	Using unilateral gait phases
	Using the gait phases of J. Perry

	Cadence
	Stride length
	Sensor frame to earth frame
	Sensor frame at previous foot-flat to earth frame
	Velocity in the earth frame
	Sensor frame to foot frame
	Position in the foot frame of the previous foot-flat
	Stride length

	Velocity
	Foot position in the frame of the foot at the first foot-flat
	Euler Angles
	Maximum pitch angle
	Maximum swing roll
	Z-position
	Lateral deviation

	3D Visualization
	Post-processing: Correction of the direction of movement
	Stepwise heading correction
	Starting point correction
	Overall direction correction
	End position correction
	Stepwise z-correction

	Creation of a foot mesh
	Position and orientation of all foot points
	Avoid the foot going into the ground
	Toe orientation

	Change of coordinate system to babylonjs standard
	Camera movement

	Improvements and extensions
	gaitt Comprehensive Guide
	General Overview
	The Python code
	The C/C++ code
	The Matlab® code

	Implementation of new rest detection method
	Velocity in the earth frame
	High- and Low-pass filtering
	Intelligent bias removal
	Grouping and normalization
	Rest phase detection

	Parameter optimization on orientation estimation algorithm
	Framework
	IMU inclination
	Parameter optimization

	Experimental results
	Experimental framework
	New rest detection method
	Discussion

	Parameter optimization on orientation estimation algorithm
	Exploratory analysis
	Parameter tuning
	Implementation of the changes
	Discussion
	Parameter tuning
	Implementation of the changes

	Comparing left and right foot data
	Discussion

	Conclusions
	Overview
	Future work

	Detailed code explanations
	Python code
	C/C++ code
	Matlab code

	Bibliography

