© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works. This is the authors' version of an article published in IEEE
Computer in 2020. The final authenticated version is on: https://doi.org/10.1109/MC.2020.3017574

Architectural Solutions for Self-Adaptive Systems

Lina Garcés*, Silverio Martinez-Fernandez', Valdemar Vicente Graciano Neto*, and Elisa Yumi Nakagawa*
*Department of Computer Systems, University of Sao Paulo - USP, Sao Carlos, Brazil.
tUniversitat Politecnica de Catalunya (UPC) — BarcelonaTech, Barcelona, Spain
{Federal University of Goids, Goiania, Brazil.
linamgr@icmc.usp.br, smartinez@essi.upc.edu, valdemarneto @inf.ufg.br, elisa@icmc.usp.br

Abstract—Increasingly adopted in critical application domains,
self-adaptive systems (SaS) present a particular ability to modify
their behavior or configuration at runtime autonomously. The
architectural activity of decision-making in an SaS requires the
selection of the best software structures configuration. At the
same time, requirements of quality attribute (e.g., interoperabil-
ity, maintainability, reliability), adaptive capabilities (e.g., self-
management, self-organization), control approaches (e.g., central-
ized, distributed), and human interventions must be balanced.
This work presents Four4SaS, a collection of the main rationale
and knowledge to architect SaS. Four4SaS’ solutions encompass
well-known architectural patterns and their possible benefits
and drawbacks of their use in SaS. Four4SaS’ architectural
knowledge was reused for designing a river monitoring SaS.
Domain-independent architectural solutions of Four4SaS can be
used as an initial backbone to design future SaS and development
frameworks for such systems.

Index Terms—self-adaptive system; software architecture; ref-
erence architecture; quality attribute; architectural pattern.

I. INTRODUCTION

Self-adaptive Systems (SaS) have increased their importance
in the past few years, mostly because of their impact in several
critical application domains, such as autonomous vehicles,
smart cities, security surveillance, avionics, and health-care.
SaS autonomously modify their behavior at run-time respond-
ing to operating environment changes [1].

An SaS is usually constituted by two types of systems [2]:

« Managed systems, which monitor and affect the external
world with which the SaS interacts, and comprise the ap-
plication logic that provides the system’s functionalities;
and

o Managing systems, which encompass the adaptation
logic that deals with one or more concerns, monitor both
the environment and the managed systems, and adapt the
latter when necessary to achieve SaS goals.

The managing system usually imposes control over the man-
aged systems through the use of autonomic managers [3]
or MAPE-K feedback loops that contain components ex-
ecuting activities of monitoring, analyzing, planning, and
executing, and sharing domain and control knowledge [4].
During the architectural process, software architects must

This work was supported by Brazilian funding agencies FAPESP (Grants:
2018/07437-9 and 2017/06195-9) and CNPq (Grant: 312634/2018-8) and
by the GENESIS Spanish project under contract TIN2016-79269-R and the
“Beatriz Galindo” programme. Authors thank all researchers and practitioners
that participated in the evaluation study.

Manuscript received ; revised .

consider how control activities are coordinated and de-
ployed, the most significant quality attribute requirements
(e.g., performance, reliability, safety, availability, scalabil-
ity), and the type of adaptive capabilities required by the
SaS [5], e.g., context-awareness, situation-awareness, self-
configuration, self-healing/protecting, self-optimizing, self-
managing, self-organizing, and reflection.

Adaptive capabilities allow decreasing human intervention
when systems’ modifications are required at run-time. Adap-
tive capabilities range from changes of specific data types
to the reconfiguration of the complete SaS architecture in
response to environmental changes, internal faults, unexpected
constituents’ behaviors, integration of new constituents, new
requirements, or changes in business goals. Architects must
select the adequate strategies (e.g., architectural configurations,
patterns, styles, and tactics, or even technologies) that enable
the desired modifications without stopping the system’s oper-
ations and with the minimum human intervention. Architects’
decisions making is a challenging activity during the SaS
engineering, since the success or failure of an SaS software
project mostly depends upon the correctness of its architecture
for considering control activities, adaptive characteristics, and
quality attribute requirements. However, the rationale behind
architectural decisions is frequently known only by the SaS’
software team (including architect, developers, testers), mak-
ing difficult the reuse of such knowledge in other SaS projects.
In this context, one question arises: how can we support
architects to design SaS architectures based on the reuse of
architectural knowledge?

The main contribution of this work is Four4SasS, a collection
of four domain-independent solutions that guide and facilitate
the architectural design of SaS. In Section II, we identify the
recurrent SaS architectural configurations (i.e., arrangements
of software structures) and investigate how they have been
used to address different control, quality attributes, and adap-
tivity requirements. Based on these findings, Four4SaS is
defined in Section III. To show its feasibility, Four4SaS was
applied to architect a river monitoring SaS (RMS), as detailed
in Section IV. Four4SaS’ solutions were assessed by fifteen
SaS architects and results of such evaluation are explained in
Section V. Section VI describes threats to the validity and
limitations of this work. Finally, Section VII presents the
related work highlighting the contribution of Four4SaS to
state of the art and details further works.

https://doi.org/10.1109/MC.2020.3017574

JOURNAL OF , VOL. , NO. , AUGUST 2019

II. MINING SAS ARCHITECTURES

This section presents the research methods conducted to
identify the main software building blocks of SaS architectures
and their variation depending upon adaptive capabilities and
control characteristics. This knowledge is the basis of the
Four4Sa$’ architectural solutions. Bearing this goal in mind,
we performed the following steps:

1) Recurrent architectural solutions were extracted from 13
existing reference architectures (RAs) for SaS. Shortly, a
RA presents the most relevant decisions (e.g., selection
and arrangement of patterns and tactics, and descrip-
tion of the rationale behind the proposed solutions)
for designing software systems architectures in specific
domains [6]. RAs for SaS were identified through the
conduction of a systematic mapping study following
the guidelines found in [7]. The systematic mapping
protocol and extracted data used in this work are detailed
in [8]. The interested reader is referred to [8] which
contains IDs (RA1 to RA13) and the complete reference
for each architecture.

2) The recurrent SaS’ architectural solutions were extracted
from the 13 RAs for SaS listed in [8]. Solutions
were classified and summarized according to the main
elements of an SaS architecture, namely, information
about SaS’ constituent systems, control characteristics,
adaptive capabilities, and architectural patterns, detailed,
respectively, in Sections II-A to II-D, and summarized in
Table I and mentioned in the remainder of this section.

A. Constituents Systems of SaS

An SaS is formed of two types of constituent systems: the
managed and the managing systems. Each constituent system
can present diverse adaptive capabilities; hence it can also be
considered as an SaS. This characteristic requires architectures
with multiple adaptation levels, i.e., SaS’ composition is based
on managing systems hierarchies [2], as those proposed by
RA2, RA6, RA8, RA10, and RA12.

B. Control Characteristics

Control in SaS is related to the distribution level of the
managed and managing systems and the decentralization level
of the control activities (i.e., monitoring, analysis, planning,
and execution) [2]. Hence, the following control strategies can
be adopted to address adaptive capabilities in SaS:

o Category 1: (The managed and managing systems,
and the control activities are centralized). This strategy
is common in SaS with capabilities as situation-awareness
(RA1 and RAS) and self-configuration (RA3, RA6, RAS,
and RA10);

o Category 2: (The managed systems are distributed,
while the managing systems are centralized and the
control activities are decentralized.) This category sup-
ports capabilities as self-configuration (RA12) and self-
management (RA9 and RA11) in SaS;

o Category 3: (Both managed, and managing systems
are distributed, and the control activities are decen-
tralized). This strategy has been used in SaS with capa-
bilities of self-management (RA2) and self-optimization
(RA7); and

o Category 4: (Both managed, and managing systems
are distributed, and the control activities are full-
decentralized). SaS with capabilities of self-organization
can be addressed using this control category (RA4,
RA13).

The implementation of these control strategies is mostly
based on the MAPE-K loop and its variations, as detailed
in Table I. To represent domain and control knowledge,
repositories, ontologies, and conceptual models are commonly
used by the RAs to represent such knowledge.

C. Requirements of Adaptive Capabilities

Architectural solutions proposed in RAs have a fo-
cus on adaptive capabilities as situation-awareness, self-
configuration, self-management, and self-organization. Reflec-
tion is considered in SaS’ architectures with self-management
and self-configuration characteristics. Most RAs (i.e., 8/13)
consider the occurrence of changes, simultaneously, in both
managed and managing systems. Different SaS’ structures
can change, ranging from managed systems’ entities (e.g.,
components, services, or interfaces) to managing systems’
plans, policies, and goals. No human involvement allows to
execute close adaptations (as in RA1 and RA10), i.e., the SaS
themselves manage a number of predefined adaptive actions,
and no new behaviors and alternatives can be introduced
at run-time [5]. Moreover, most architectures define open
adaptations, i.e., new goals, requirements, and policies can be
added, and even new adaptable entities can be introduced by
humans [5].

D. Architectural Patterns and Quality Attribute Requirements

The most employed architectural patterns to design SaS and
address diverse adaptivity and quality attribute requirements
are described as follows.

Layers have been widely used regardless of the desired
adaptive capabilities. Layers allow complex behaviors through
hierarchies (RA1, RA3, RA4, RAS, and RA11). Lower layers
implement fast adaptations (i.e., reconfigurations of the man-
aged system), and higher layers are responsible for time de-
manding adaptations (i.e., selection of the best policy or plan to
achieve missions based on current system status). Lower layers
in RAs achieve performance requirements (RA1), and higher
layers address reliability properties (RA10). Interoperability
can also be supported by establishing generic connections
between managed systems and managers (RA2 and RAS).
Layers’ separation of concerns enhances maintainability and
modifiability requirements [9].

Shared-data Repository is commonly presented in SaS
architectures with self-configuration, self-management, or self-
organization capabilities. It allows access to persistent data,
ensuring the availability of context, control, configuration, and
domain information. Also, it avoids undesired changes on data

JOURNAL OF , VOL. , NO. , AUGUST 2019 3
TABLE I: Information Extracted from Reference Architectures for Self-adaptive Systems
Constituents of SaS Control Characteristics of SaS Adaptivity Requirements
D Managing system Managed system Strategy Control approach Knowledge representa- | Capabilities | Reflection | Human In-
tion approach volvement
RA1 | IPM system IPM system Category 1 Triggering conditions Shared ontology between Situation-
and events layers aware

RA2 | Touch-points and au- Any self-adaptive Category 3 Hierarchical MAPE-K Distributed and shared | Management v

tonomic managers IT system repositories between layers
RA3 | The AComponent Any adaptive com- Category 1 Adaptive component | Components internal regis- Configuration v

ponent paradigm ters

RA4 | Management SOA- Any SOA-based Category 4 Observer/Controller Central knowledge reposi- Organization v

based system system architecture tory
RAS5 | Touch-points and au- Any component- Category 1 MAPE-K Central knowledge reposi- Situation- v

tonomic managers based system tory aware
RAG6 | Reflection-based SaS Any SaS Category 1 MAPE-K Meta model Configuration | v/ v
RA7 | Grid controller com- Micro-grid Category 3 Hierarchical MAPE-K Shared ontology Optimization v

ponent
RA8 | Meta controller sub- mobile robot’s con- Category 1 Epistemic Control Loop Shared ontology Configuration | v~ v

system trol application
RA9 | Runtime environment Runtime application Category 2 Hierarchical =~ Feedback | Distributed and shared | Management v

Loop repositories between layers

RAI10[models@run.time models @run.time Category 1 MAPE-K Multiple models Configuration | v~

system system, CPS, or

safety SaS

RAT11| Enactors, managers | System components | Category 2 | Hierarchical MAPE-K Central knowledge reposi- | Management | v v

and solvers architecture tory shared between layers
RA12| Self-adaptive middle- WSN nodes Category 2 Hierarchical MAPE-K Repository by layer Configuration

ware
RA13| HIIC* component Any SaS Category 4 Hierarchical MAPE-K Shared Repository Management v

* Hierarchical inter-intra collaborative pattern

due to modifications in managed and managing systems, con-
tributing to modifiability [9] of SaS (RA2, RA4, RA9, RA1l,
and RA12). Finally, repositories reduce data exchange between
managed and managing systems, and between hierarchies of
these systems.

Blackboard and Pipes and Filters have been applied in
SaS’ architectures with situation-awareness capability (RAI,
RAS). Together, both patterns benefit performance since the
blackboard allows efficient delivering of data between system’s
layers [9], and the pipe and filters pattern grants concurrent
execution of adaptations by high-level layers [9].

Publish-Subscribe is used in SaS’ architectures for self-
optimization (RA7) with the following benefits: (i) perfor-
mance to communicate data among SaS entities; (ii) modifia-
bility due to low coupling between entities; and (iii) dynamic
scalability, since managed systems can enter or exit without
affecting other parts of the SaS.

Service-Oriented Architecture (SOA) has been applied
in SaS with capabilities of self-organization and self-
configuration (RA4, RA12). SOA benefits are: - interoper-
ability of managed systems; - evolution and dynamic scal-
ability of SaS according to new demands of resources; -
availability of managing systems through their replication for
processing monitored data of managed systems. The combi-
nation of SOA and Enterprise Service Bus (ESB) facilitates
the integration of multiple managed systems, mediating and
transferring monitored data to all the managing systems inter-
ested in such data.

Master-Slave has been adopted in SaS’ architectures with
self-management properties (RA11). It benefits performance
providing low response times to control changes in the man-
aged system.

Broker facilitates mediation, communication, interoper-
ability and integration of heterogeneous managed systems.
Brokers have been considered for SaS with self-configuration

requirements (RA12).

Decorator pattern allows behavior adaptations at fine gran-
ularity level, e.g., adaptations of components objects or pa-
rameters values. Decorator can improve the reliability of
adaptations in SaS with self-configuration properties (RA12).

HIIC (Hierarchical Inter-Intra Collaborative) proposes hi-
erarchies of MAPE-K loops and their coordination to make
possible a decentralized control in SaS [10]. HIIC has been
used in SaS with high-level adaptive capabilities as self-
configuring or self-management (RA13).

III. FOUR4SAS: ARCHITECTURAL SOLUTIONS FOR SAS

Adaptive capabilities and distributed levels of control and
constituent systems have a strong influence at determin-
ing SaS’ architectures. Four4SaS defines four generic and
reusable solutions based on the architectural knowledge mined
from RAs for SaS. Table II summarizes each Four4Sa$S’
solution, detailing information about:

o Control strategies adopted by the solutions (C1 to C4)
and mentioned in Sections III.A to IIL.D;

e Monitored elements in the SaS (i.e., managed systems
layer or manager systems layer);

o Reasons ([R]) why adaptations are required;

¢ SaS’ elements ([E]) that need to be adapted;

o Adaptive requirements that are possible to address with
the Four4Sa$S’ solutions;

o Adaptation type, depending on whether the architecture
allows open or close adaptations;

o Benefits ([B]) regarding quality attribute requirements
and capacities achieved with the solutions; and

o Possible drawbacks ([D]) that the solutions could bring
to an SaS.

In this table, in the cases where the reasons for adapta-
tions ([R]), elements to be adapted ([E]), benefits ([B]), and

JOURNAL OF , VOL. , NO. , AUGUST 2019

Sa$S Architecture with Control Strategy C1

SaS Architecture with Control Strategy C3

O— User Application Layer @ @
policylnput User Application Layer
o 2] - S] . 5]
Repositories: User

managerOutput A | A
manager Output policy Input data

Managers Layer I v v

< N
manager Output policy Input
1 \ 4
[—— @
e : =
1 5 data
trollnput (2] >
controlinpu 2 @
g
Managed System & % O ‘ % 0O ‘ % O ‘ 8
measureQutput =
A
A I measureQutput controlinput
1 ! Y
observation effect Mediation Layer

e

A conrompur

measureOutput l
1

measureOutput

"

measureOutput
1

observation observation

©
25 E @ E @ E @
o)
g2
2} A I A I A I
| effect effect l effect
observation

Repositories

§%

SaS Architecture with Control Strategy C2

SaS Architecture with Control Strategy C4

@

§%

O——(User Application Layer
O User Application Layer @ User E E ‘
User T E E Repositories Mediation L. | ! I dat
P (el Ete [T manager Output policy Input data ta
| S 3 A
managerOutput policylnput o o
| v policylnput T policylnput
Managers Layers managerOutput | managerOutput | Repositories
Q)| data)| data
= —o —o
=]
=0/ =08
“dat i “dat: i
measureOutput | ‘measureOutput |
% O ‘$ O ‘ % O ‘ controllnput controllnput
- o) & data
[}
>
A | S (3 s s
measureOutput » policylnput policylnput policylnput
| P contravllnput ?g managerOutptllt l manageerufput I manalgeromput l
- © data
Mediation Layer g " @ data @ data @ gt
E lata —
20| @ =08 200
A A | data | “dat: ; |
P P P
‘measureOutput
measureOutput ¢ measureOutput ¢ measureOutput i measureOutput S - IEE QOLI”’ contrg/lnput z:ontrglnput
2 @ @ @ o
k)
g A\
9) A A A | iy g
I I I controllnput { /2
effect l effect effect
observation observation observation measulreOulput measulreOurpul measu‘reOUtput
o
2 - E @ E @ E @
g2
2] A i A I A i
l effect l effect l effect
observation observation observation
Legend: Autonomic
Layer Manager :E System/ EI Data % Physical Ij Environment Q
Component Repository Node
Component
Interfaces —0: Information _____,

Flow

Fig. 1: Architectural solution for SaS with control strategies C1, C2, C3, and C4

JOURNAL OF , VOL. , NO. , AUGUST 2019

TABLE II: Description of Four4SaS’ Architectural Solutions

Four4SaS’ | Monitored Reason for Adap- Elements to be Adaptivity Adaptation Benefits Drawbacks
Solution Elements tation Adapted Requirements Type
Control Managed [R1] New [E1] Adaptation Situation- Close adap- [B1] Fast SaS’ adaptations; [D1] Monolith architecture;
Strategy systems adaptation plans plans or policies; aware; self- tations [B2] Fast communication of [D2] No scalable architecture;
C1 layer or policies; [E2] Behavior, configuration SaS’ situations or events. [B3] [D3] Managers can be a single
[R2] undesired states, or | of managed Easy maintainability or modi- point of failure; [D4] Oriented
situations detected; | configuration systems. fiability of components. to address individual adaptive
[R3] installation, of the managed capabilities or self-* proper-
update, integration systems; ties.
of systems or
components.
Control Managed [R1, R3]; [R4] [E1, E2]; [E3] Self- Close [B3]; [B4] Systems at the [D3, D4]; [D5] The mediation
Strategy and Faults discovery or | Behavior, states, configuration and open managed systems layer can layer can be a single point of
C2 managers diagnosis. or configuration and self- adaptations scale; [B5] Redundancy of | failure; [D6] High-level man-
systems of systems in the management monitored or managed sys- agers are no scalable;
layers managers layer. of the SaS tems; [B6] Hierarchies of
manager systems allow com-
plex SaS’ reconfigurations or
adaptations.
Control Managed [R1, R4]; [R5] | [E1, E2, E3]; [E4] | Self- Close [B3, B4, B5, B6; [B7] It | (D4, D5, D6]; [D7] Possi-
Strategy and Management of | Mediation layer. optimization and open enables the identification, pre- ble bottleneck in the media-
C3 managers performance and and self- adaptations vention, and recovery from tion layer due the increment
systems resource allocation. management faults, at all layers, due to of data to be transferred.
layers of the SaS problems in physical nodes.
Control Managed [R1]; [R6] Instanti- [E1, E2, E3, E4]. Self- Close [B3, B5, B6, B7]; [B8] Var- [D5, D7]; [D8] Possible con-
Strategy and ate, activate, deac- organization and open | ious high-level managers can | flict between adaptive prop-
C4 managers tivate, remove, up- and scalability adaptations address multiple adaptive ca- erties; [D9] Additional strate-
systems date elements lo- of the SaS pabilities at the same time; gies for coordinating highly
layers cated in the man- [B9] Monitored data can be distributed autonomic man-
agers systems layer; distributed to multiple man- agers located in the manager
[R7] Scale elements agers for different purposes; systems layer.
in the manager sys- [B10] Systems at the managed
tems layer. and manager layers can scale;

drawbacks ([D]) are presented in more than one solution, they
are described in their first occurrence, and only their codes
are used in the text. Architects can use this table as a guide
to select the adequate solution for architecting an SaS. Each
solution is depicted in Figure 1 and explained as follows.

A. Architectural Solution for SaS with control strategy of
Category 1 (Cl1)

To design SaS with adaptive requirements of situation-
aware and self-configuration, architects can structure their
systems, as shown at the upper-left of Figure 1. This archi-
tecture is adequate for SaS that, based on measures obtained
from the managed system, require to make changes in the
adaptation plans or policies, or even in the behavior, state,
or configuration of such systems. SaS modifications occur
when the final user (SaS administrator) updates the adaptation
plans and policies, faults are detected, or managed systems
change their state and configuration. This architecture allows
close adaptations, i.e., the manager system (e.g., autonomic
manager) decides which type of reconfiguration should be
executed based on policies or plans previously stored in a
shared repository.

One benefit, shared by all Four4SaS’ solutions, is to enhance
modifications and maintenance of SaS’ elements thanks to
the low-coupling that Layers provide. This first solution also
makes it possible to execute fast reconfiguration of the man-
aged system when the control activities (i.e., monitor, analyze,
plan, and execute) are organized as a centralized MAPE-K
feedback loop that follows the Pipes and Filters pattern. Fast
communications are as well possible when the Blackboard
pattern (allocated in the Repositories layer) is used to store

and communicate all measures obtained from the managed
systems.

A drawback of this solution is that the SaS will have a
monolithic and no scalable architecture. Besides, the existence
of a unique autonomic manager can result in a single point
of failure that could completely stop the SaS’ operations.
Additionally, the centralized control made by the autonomic
manager only allows addressing an individual adaptive prop-
erty at the time, limiting the type of adaptations that an SaS
can perform.

B. Architectural Solution for SaS with control strategy of
Category 2 (C2)

The second solution of Four4SaS (presented at the bottom-
left side of Figure 1) allows adaptive capabilities of self-
configuration and self-management. Comparing with the previ-
ous alternative, this solution requires monitoring both managed
and managers systems. The information obtained from moni-
tored systems is used by high-level managers to define which
elements to change, i.e., behavior, state, and configuration
of managed systems and low-level managers, due to faults
presented by the monitored systems. It is possible to execute
close adaptations in an SaS. Open adaptations are also possible
since final users (SaS administrators) can send new policies
directly to high-level managers. The distributed property of
managed systems requires a Mediation layer to support data
transfer between managed systems and managers.

One benefit of this architecture is the possibility to scale
and replicate managed systems and low-level managers, in-
creasing the reliability of monitored data. This is possible
by the allocation of managed systems in distributed physical
nodes. Additionally, the distribution of managers, following

JOURNAL OF , VOL. , NO. , AUGUST 2019

a hierarchy of MAPE-K components, allows to plan and
execute more complex adaptations by high-level autonomic
managers. This characteristic also favors the SaS’ reliability.
In this architecture, fast changes are possible when the Master-
Slave or Decorator patterns are used as a basis to organize
MAPE-K hierarchies. The combination of Broker and Publish-
Subscribe patterns can be used to structure the Mediation
layer, improving interoperability between managed systems
and managers and the performance when data is transferred.

One drawback is that Mediation layer can be a single point
of failure, disconnecting the managed systems and stopping
the SaS operation. Moreover, managers at the high level are
not scalable, hindering the achievement of multiple adaptive
properties.

C. Architectural Solution for SaS with control strategy of
Category 3 (C3)

This solution aims both self-optimization and self-
management capabilities. As shown in the upper-right side of
Figure 1, the managed and managing systems are distributed.
They can be modified at run-time and, together with the Me-
diation layer, are the elements being monitored. Hierarchies of
MAPE-K components are allocated in different nodes; hence,
control activities are decentralized. This characteristic benefits
the execution of complex reconfiguration and the management
of SaS performance and resource allocation capabilities. This
architecture presents similar benefits to the previous solutions.
An additional benefit is the identification, prevention of faults
and recovering from the failures caused by the physical
decoupling of MAPE-K hierarchies. This property increases
the SaS’ reliability. An important drawback is the possible
bottleneck in the Mediation layer due to the increase of the
transferred data [9].

D. Architectural Solution for SaS with control strategy of
Category 4 (C4)

The last strategy distributes and monitors both managed
systems and managers. Hence, SaS with requirements of
high scalability, flexibility to add/activate/deactivate/update
elements, and self-organization can use this solution as a
blueprint for their architecture.

This solution benefits diverse types of adaptations with
distinct complexity performed by fully-decentralized man-
agers deployed in multiples nodes, following the Hierarchical
MAPE-K or HIIC [15] patterns. As a complement, the use
of SOA, Broker, or ESB favors the scalability [9] of managed
systems and managers in an SaS. These characteristics differ-
entiate this solution from the previous three, as depicted at the
bottom-right side of Figure 1.

This solution is the most complete among the Four4Sa$S’
solutions, enhancing quality attributes of maintainability, re-
liability, and interoperability, as listed in Table II. Possible
drawbacks are related to the simultaneous execution of multi-
ple adaptive requirements that can generate conflicts [5], [11].
This drawback can be overcome through the coordination of
highly distributed and hierarchical managers [11]. Addition-
ally, the use of a Mediation layer to communicate data, events,

and control can generate problems in the performance and
reliability of the SaS.

IV. APPLYING Four4SaS: THE RMS CASE

A River Monitoring System (RMS) is responsible for
monitoring river levels in a given region. It consists of
systems/devices, such as motes, gateways, river monitors,
sensor observation services, web map services, and emergency
services. Motes and gateways are distributed over the river
banks. Each mote measures and communicates its observations
(e.g., water level, temperature, pressure, or pollutants) or
its configuration information (e.g., description, identification,
classification of the mote) to the closest gateway. Gateways
establish, at run-time, specific river areas situation, detecting
unexpected events (e.g., floods in a region), defining plans to
overcome problematic situations (e.g., to restart unavailable
motes), and executing such plans. Gateways share a central
repository containing control information, such as adaptation
plans, emergency situations, motes network configuration,
and policies. Gateways communicate information of the river
areas and systems situations to River Monitor components,
which aggregate the information received from all gateways
to establish an overall panorama of the river and send this
information to the user applications. The River Monitor re-
ceives reconfiguration requests from user applications (e.g.,
requesting water and temperature levels of the entire or parts
of the river) and communicates new behavior or configuration
policies to gateways and motes. More information about RMS
can be found in [12].

Selecting a Four4SaS’ Architectural Solution

Before selecting a Four4Sa$S’ solution, the RMS must be
characterized according to SaS properties defined in Section
III and Table II:

o Monitored elements: motes and gateways, both dis-

tributed over the environment (i.e., river);

o Managers: gateways (physically distributed) and river

monitors (both possibilities: centralized or distributed);

o Reasons for adaptations in the RMS:

— Interoperability and Flexibility: 1t is required to add,
remove, instantiate, deactivate, and activate motes
and gateways without requiring manual adaptations;

— Scalability: Tt is required to continuously add more
motes and gateways to cover new river(s) areas
independently of the city;

— Reliability: Tt is important to identify when motes
and gateways are unavailable (e.g., hardware prob-
lems). Additionally, it is required to detect, prevent
faults and recover from faults occurred in motes and
gateways; and

— Maintainability: Modifications in policies, require-
ments, adaptation plans, or even in individual motes
and gateways must not affect the RMS operation.

« Elements to be adapted:

— Adaptation plans, policies, and requirements;

— Motes’ behaviors, states, and configuration (e.g.,
measurement rates of water level);

JOURNAL OF , VOL. , NO. , AUGUST 2019

General View of the RMS Architecture

o

User Application Layer

Sensor
Observation
System

io_

User

Emergency
Service

Web Map
Service

Internal View of a Gateway as an Autonomic Manager

managerOutput policylnput

©

- | Gatewa
Mediation Layer manager Output policy Input “data data y
A é
C
? policyinput v} 7 @ o
mana'gelOutput 2 policylnput L= =
managerOutput R itori
River Monitor () et — : ' & eposiionies
= o River Monitor data
—o 3
r— S S o o— & adaptationPlan
data o e situation _—
measureOutput | data i Knowledge
controllnput measureOutput - Base
& controlinput data L
g ¢ Monitor / "= Execute
«©
= s s w —
» policylnput policylnput policylnput. ~ gata
53 manalgerOutput I manalgerOutput I manargerOquut
©
S Gateway Q) daa Gateway Q) cata Gateway) data measuresOutput controlinput
= == —® == =2 = —°
50|68 =08 B
data 7 | data i | ‘data 7 L d: A .
measureOutput measureOutput measureOutput egend: utonomic 5 o
contrg/nput cvnffg/npuf controlinput Layer Manager 2
o) Component
System/ Data
< e v Component Repository
controllnput 2 controllnput
measureOutput measureOutput measureQutput Physical Environ- @
Mote Mote Mote Node ment
k]
50 @ @ @
Fs Information
5% Interfaces —°
£z —C Flow

T | A | T |
| effect l effect l effect

observation observation observation

Fig. 2: RMS Architecture as an Instance of the Four4Sa$S” Architectural Solution with Control Strategy C4

— Gateways’ behaviors, states, and configuration; and
— Capacity of supporting multiple connections and
large amount of data transferred among systems.

o Type of adaptation: The RMS requires to adopt close
adaptations in motes and gateways, and open adaptations
(involving final users) to make possible new policies of
reconfiguration (e.g., increase in the water levels mea-
surement rates of motes in a region).

Therefore, the RMS’ architecture needs to address adap-
tive capabilities of self-configuration and self-organization.
Considering that multiple adaptive properties are necessary,
managed systems and managers are distributed, and scalability
is an important requirement of this SaS, it is required full-
decentralization of autonomic managers’ control activities.
Analyzing Four4SaS$’ solutions in Table II, the best option for
the RMS’ architecture is to follow the solution with control
strategy C4. Figure 2 presents the final RMS architecture as
an instance of this solution.

V. FOUR4SAS ASSESSMENT

To assess Four4SaS’ quality characteristics (e.g., usefulness)
to design software architectures of SaS, we ran an evaluation
with architects that could use Four4SaS in their projects.
They were trained in Four4SaS and they answered an online

questionnaire (available at [8]) designed based on the TAM
evaluation questionnaire [13]. The questionnaire included vali-
dated constructs from TAM to evaluate five criteria: usefulness,
ease of use, demonstrability, feasibility, and the quality of
architectures created with Four4SaS. An example of using
an SaS architecture with Four4SaS was discussed during the
training, specifically the RMS presented in Section IV.

Fifteen (15) architects participated in this study. They had
2 to 8 years (N=15, Min=2, Max=8, Mean = 4) of experience
working with SaS for different application domains, including
IoT, embedded, healthcare, crisis and emergency, robotics,
banking, and spacial systems.

Answers to each question were scored from 1 (strongly
disagree) to 7 (strongly agree). Table III summarizes the results
of Four4Sa$S’ assessment. For each question, the amount of
answers scored in a specific value (from 1 to 7) are given.
Score tendencies are highlighted in gray-color scale'. For
each criterion, aggregated results are presented, detailing the
mean, standard deviation, median, mode, and minimum and
maximum scores given by respondents.

The majority of responses positively scored all evaluation
criteria. We only obtained a negative result for the feasibility
criterion, regarding “All information that is necessary to

'A cell in white color represents that no architect scored a question with
such a value

JOURNAL OF , VOL. , NO. , AUGUST 2019

TABLE III: Criteria, Questions and Answers to Evaluate Four4SasS.
Amount of participants: 15. Answers were rated in the scale 1 to 7 with the following meaning: 1 - strongly disagree; 2 - moderately disagree, 3 - somewhat disagree, 4 - neutral
(neither disagree nor agree), 5 - somewhat agree, 6 - moderately agree, and 7 - strongly agree. Questions marked with () were asked to architects in it negative form. Herein, they

are presented in its positive form to facilitate results analysis.

I . Amount of Answers by Scale
Criteria Question i > 3 I 5 5 =
Using Four4SaS could improve my performance in my job/research 0 0 0 0 3 9 3
Perceived Using Four4SaS in my job/research could increase my productivity. 0 0 0 1 4 5 5
usefulness Using Four4SaS could enhance my effectiveness in my job/research. 0 0 0 3 7 4 1
1 find Four4SaS could be useful in my job/research. 0 0 0 1 5 6 3
Aggregated Results by Criterion: Mean = 6 | St. Dev = 0.87 | Median = 6 | Mode = 6 [Min =4 [Max =7
I could use Four4SaS in a clear and understandable way. 0 1 1 0 3 6 4
Perceived Ease of Us:ing Four4SaS would not rlequire a lot of my mental effort. 0 1 0 2 7 5 0
Use I find Four4SaS to be potentially easy to use. 0 0 1 3 4 4 3
I find it is easy to get from Four4SaS the knowledge to construct new SaS architectures. 0 0 0 3 6 5 1
Aggregated Results by Criterion: Mean = 5 | St. Dev = 1,16 | Median =5 | Mode =5 [Min =2 | Max =7
I have no difficulty explaining to others the benefits of using Four4Sas. 0 0 1 2 3 4 5
Result I believe I could communicate to others the consequences (drawbacks) of using Four4SasS. 0 0 0 1 2 6 6
Demonstrability The results of using Four4SaS are clear to me. 0 0 1 0 3 8 3
I would have no difficulty explaining why using Four4SaS may or may not be beneficial *). 1 2 0 3 2 6 1
Aggregated Results by Criterion: Mean = 6 | St. Dev = 1.3 | Median = 6 | Mode = 6 | Min =1 | Max =7
All information that is necessary to understand Four4SaS are available ™). 2 3 3 2 0 4 1
Feasibility Making available more information, even if possible, would not be too coslly(*). 0 1 0 5 5 2 1
The quality of the information provided to understand Four4SaS is good(*>. 0 0 3 1 3 2 6
All necessary information to fully understand Four4SaS can be used ™). 0 0 0 5 2 4 4
Aggregated Results by Criterion: Mean =5 | St. Dev = 1.6 | Median =5 [Mode = 4 | Min =1 | Max =7
Quality of The quality of the RMS architecture obtained from Four4SaS can be considered as high. 0 0 0 1 3 10 1
architectures I have no problem with the quality of the RMS architecture. 0 0 0 3 5 5 2
created with I rate as excellent the results from using Four4SaS to create RMS architecture. 0 0 0 3 1 9
Four4SaS Aggregated Results by Criterion: Mean = 6 | St. Dev = 0.87 | Median = 6 | Mode = 6 | Min =4 | Max =7

understand Four4SaS are available”. The 53% (i.e., 8/15)
of architects‘ answered this question with score less or equal
to 3 and median of 3 (somewhat disagree).

We also provided the possibility to respondents include free
text. The main architects’ feedbacks were: (i) systematization
of the selection of Four4SaS’ solutions and support to the
architectural decision-making using automated tools; (ii) offer-
ing of metrics on possible trade-offs of using Four4Sa$S’ solu-
tions in specific projects; (iii) improvement of the Four4Sa$S’
description using different architectural views, implementation
details, and a web site to link additional information; (iv)
automatic code generation based on Four4Sa$S’ architectures
to support productivity; and (v) use of Four4SaS as a basis to
product-line architectures in specific SaS domains, e.g., IoT.

VI. LIMITATIONS

Threats to search, data, and research validity of our work
were mitigated by following the guidelines to conduct system-
atic mapping study [7] and to execute an on-line questionnaire
with SaS architects following the TAM approach [13]. In [8]
are presented the protocol, execution, and extracted data of
our systematic mapping study, as well as the form and results
of conducting the TAM questionnaire.

The main limitation of Four4SaS is that its architectural
solutions are described in a higher abstraction level. Hence,
architects need to refine the Four4Sa$” structures for achieving
more detailed architectures of their concrete SaS projects. To
overcome this limitation, Four4SaS must be also disseminated
to the SaS practitioners and researchers to be used in different
projects, making possible the identification of Four4SaS vari-
ations and possibly complementary solutions.

VII. FINAL REMARKS

Several strategies for designing SaS architectures have been
proposed during the last decade. Most of them are focused on

investigating feedback loops (as MAPE-K) as core elements of
SaS architectures [14], [15], [16], [17]. Researchers also have
proposed some patterns for self-adaptation [18], [19] and run-
time software evolution [20], some of them oriented to SOA-
based SaS [19].

Four4SaS solutions advance the state of the art by bringing
to the light reusable architectural knowledge about how to de-
sign SaS considering variations of adaptive capabilities, quality
attribute requirements, necessity of human involvement to
perform open or closed adaptations, and the distribution level
of SaS constituents (i.e., managed and managing systems) and
control operations. Four4SaS solutions are based on evidence
obtained from 13 published SaS reference architectures, listed
in [8].

As future work, Four4SaS’ solutions could be formalized in
an SaS architectural framework to guide decision-making and
allow automatic code generation of SaS. More efforts must
be also invested to better understand the trade-offs arising
from addressing simultaneously multiple adaptive character-
istics in SaS architectures (e.g., following the C4 strategy of
Four4SasS).

ABOUT THE AUTHORS

Lina Garcés: is a post-doctorate researcher at the Institute
of Mathematics and Computer Sciences (ICMC) of the Uni-
versity of Sao Paulo (USP). Her research interests include soft-
ware engineering, (dynamic) software architectures, reference
architectures, architectural decision making, software quality,
self-adaptive systems, Systems-of-Systems, e-Health, and Am-
bient Assisted Living. Garcés received a Ph.D. in Computer
Science from USP and the University of Southern Brittany
(UBS), France, in 2018. She is a member of the IEEE, IEEE
SA, SBC, and SBIS. Contact her at linamgr@icmc.usp.br.

JOURNAL OF , VOL. , NO. , AUGUST 2019

Silverio Martinez-Fernandez: is assistant professor at
UPC-BarcelonaTech . His research interests include empirical
software engineering, big data, technical debt, maintainabil-
ity metrics, and software architectures. Martinez-Ferndndez
received a Ph.D in Computer Sciences from the Universitat
Politecnica de Catalunya (UPC) in 2016. From 2020, he is
a distinguished researcher as part of the “Beatriz Galindo”
programme. Contact him at smartinez@essi.upc.edu.

Valdemar Vicente Graciano Neto: ia a ternured professor
at the Informatics Institute (INF) of the Federal Univer-
sity of Goids (UFG), Brazil. His research interests include
software engineering, information systems, software archi-
tecture, model-driven software engineering, and simulation.
Neto received a Ph.D in Computer Science from USP and
the University of Southern Brittany (UBS), France, in 2018.
He is a member of the SBC and SCS. Contact him at
valdemarneto @inf.ufg.br.

Elisa Yumi Nakagawa: is associate professor in the De-
partment of Computer Systems at USP. Her research interests
include software architecture, reference architectures, systems-
of-systems, software testing, and evidence-based software en-
gineering. Nakagawa received a in Ph.D. in Computer Science
from USP in 2006. She is a member of the IEEE and SBC.
Contact her at elisa@icmc.usp.br.

REFERENCES

[1] Peyman Oreizy, Michael Gorlick, Richard Taylor, Dennis Heimbigner,
Gregory Johnson, Nenad Medvidovic, Alex Quilici, David Rosenblum,
and Alexander Wolf. An Architecture-Based Approach to Self-Adaptive
Software. IEEE Intelligent Systems. vol.14, 3, pp. 54-62. (1999).

[2] Danny Weyns, Bradley Schmerl, Vincenzo Grassi, Sam Malek, Raffaela
Mirandola, Christian Prehofer, Jochen Wuttke, Jesper Andersson, Holger
Giese, and Karl Goschka. On Patterns for Decentralized Control in Self-
Adaptive Systems. In: Rogerio de Lemos, Holger Giese, Hausi A. Miiller
and Mary Shaw (eds.). Software Engineering for Self-Adaptive Systems
1I. vol. 7475, LNCS. pp. 76-107. Springer Berlin Heidelberg. (2013).

[3] IBM Corporation. An architectural blueprint for autonomic computing.
Technical report, IBM Corporation, p. 1-34, 2005.

[4] Hausi A. Miiller, Holger M. Kienle, and Ulrike Stege. Autonomic
Computing Now You See It, Now You Don't. In Software Engineering,
Andrea Lucia and Filomena Ferrucci (Eds.) vol. 5413, LNCS. pp. 32-54.
Springer Berlin Heidelberg (2009).

[5] Mazeiar Salehie and Ladan Tahvildari. Self-adaptive software: Land-
scape and research challenges. ACM Trans. Auton. Adapt. Syst. vol. 4,
2, pp. 1-42 (2009).

[6] Eduardo Guerra and Elisa Yumi Nakagawa. Relating Patterns and
Reference Architectures. In: PLoP. pp. 1-9. (2015)

[7]1 Kai Petersen, Sairam Vakkalanka, Ludwik Kuzniarz. Guidelines for
conducting systematic mapping studies in software engineering: An
update. Information and Software Technology, Vol. 64, pp. 1-18 (2015).

[8] Lina Garcés. Research on Reference Architectures for Self-Adaptive
Systems: A Systematic Mapping Protocol and Extracted Data.. pp.
1-54. (2020). Mendeley Data, v1. https://data.mendeley.com/datasets/
w55h5cwyzc/draft?a=c9f71899-d8aa-494d-964a-9a717709dd5f

[9] Paris Avgeriou and Uwe Zdun. Architectural patterns revisited — a
pattern language. In 10th EuroPlop, Irsee. (2005), pp. 1-39.

[10] Edith Zavala, Xavier Franch, Jordi Marco, Alessia Knauss, Daniela
Damian. SACRE: Supporting contextual requirements’ adaptation in
modern self-adaptive systems in the presence of uncertainty at runtime,
Expert Systems with Applications, Vol. 98, 2018, pp. 166-188.

[11] Danny Weyns. Software engineering of self-adaptive systems: An or-
ganised tour and future challenges. Handbook of software engineering.
Springer. (2018)

[12] Livia C. Degrossi, Guilherme G. do Amaral, Eduardo S. M. de Vas-
concelos, Jodo P. de Albuquerque, J6 Ueyama. Using Wireless Sensor
Networks in the Sensor Web for Flood Monitoring in Brazil. In ISCRAM,
pp. 458-462 (2013).

[13] Davis, FEFE.: Perceived Usefulness, Perceived Ease of Use, and User
Acceptance of Information Technology. MIS Quarterly, 13(3), 1989.

[14] Danny Weyns and Tanvir Ahmad; Claims and Evidence for Architecture-
Based Self-adaptation: A Systematic Literature Review. ECSA, pp.
249-265 (2013).

[15] Edith Zavala, Xavier Franch, Jordi Marco, Christian Berger. HAFLoop:
An architecture for supporting Highly Adaptive Feedback Loops in self-
adaptive systems, Future Generation Computer Systems, Vol. 105, 2020,
pp. 607-630.

[16] Henry Muccini, Mohammad Sharaf, and Danny Weyns. Self-adaptation
for cyber-physical systems: a systematic literature review. SEAMS, p.
75-81 (2016).

[17] P. Arcaini, R. Mirandola, E. Riccobene and P. Scandurra, A Pattern-
Oriented Design Framework for Self-Adaptive Software Systems, ICSA-
C, 2019, pp. 166-169.

[18] Muccini, H., Spalazzese, R., Moghaddam, M. T., and Sharaf, M. (2018).
Self-adaptive IoT architectures: An emergency handling case study.
ACM International Conference Proceeding Series.

[19] Hassan Gomaa, Koji Hashimoto, Minseong Kim, Sam Malek, Daniel A.
Menascé. Software Adaptation Patterns for Service-Oriented Architec-
tures. In SAC. pp.462-469 (2010).

[20] Richard N. Taylor, Nenad Medvidovic, Peyman Oreizy. Architectural
Styles for Runtime Software Adaptation. In: WICSA/ECSA. pp. 171 -
180.(2009)

