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Abstract 

 

In recent years, multicellular applications have been increased in the field of synthetic 

biology. However, this has led to the appearance of a new problem; ensure the stable co-existence 

of the populations in microbial consortia. As different cell types have different growth conditions, 

they tend to compete with each other for resources, leading to the disappearance of one of the 

populations.  

This issue has been studied in recent years by multiple research groups. However, in all these 

previous works the final model proposed either needed some external inputs or implied a mutual 

dependence between the two populations. In thesis we present a novel approach to the problem 

of stable coexistence of different cell populations in microbial consortia, proposing a design in 

which the cells are able of self-regulating their relative number in the consortium. This is achieved 

by embedding a bistable memory mechanism, a genetic toggle switch, inside each cell, so that the 

current internal state defines the population the cell belongs to. On one hand, taking as reference 

previous works, the mathematical model of the system, as well as a simplified version of it, will 

be developed. On the other hand, the numerical validation of the model will be performed 

including an analysis of the parameters role in the system, a study of the capability of tuning the 

final ratio and a robustness analysis to cell heterogeneity.  
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1. Introduction 

 
Biological systems are dynamical systems that have the capacity to reproduce, replicate, grow, 

adapt and evolve. Cells are the basic building blocks of these living systems. The complexity of this 

systems is explained for different reasons. First, cells are composed of a very large number and 

variety of elements interacting in space and time and its dynamic functioning is of a nonlinear 

nature. On the other hand, cell-biological systems are difficult to observe and are subject to 

continuous change [1]. 

Since this complexity of the cellular systems was discovered, researchers had tried to control 

and manipulate them to productive ends leading to the emergence of synthetic biology, a subfield 

of bioengineering in which researchers use genetic engineering to develop novel biomolecular 

pathways [2]. 

Over the past years, synthetic biology technologies and applications have experimented a 

considerable progress making this field become a widely recognized branch of biological research. 

The recent innovative technologies and engineering approaches have enabled a huge advance 

towards practical applications in biotechnology and medicine [3]. 

Some of the current applications of synthetic biology are the production of biofuels and other 

valuable chemicals, molecular computation and logic, medical diagnostics and artificial microbial 

communities. Nevertheless, there exists an extent list of possible applications that could be develop 

in the future such as the correction of nutritional deficiencies with engineered gut bacteria, the 

production of medicines from rare or endangered plants in distributed fermenters or the production 

of biofuels sustainably on demand in programmable fermentation tanks [2]. 

Until now, a substantial part of the synthetic biology researcher’s efforts was focused on the 

implementation of synthetic gene circuits in single cells. Nevertheless, single cells biological circuits 

present several throwbacks, such as non-compatible chemical reactions, an excessive metabolic 

burden or retroactivity. This limits the complexity of the genetic circuits that can be embedded into 

the cells, limiting hence the new functionality that can be designed. In order to overcome these issues 

and design more advanced functionalities researchers started working on multicellular synthetic 

gene circuits [4]. 

Engineering a synthetic microbial consortium allows the design of more complex genetic 

circuits providing more sophisticated functionalities. However, this approach requires the 

cohabitation of different species of bacteria with different growth rates that will compete for the 

same resources, so the stable co-existence of the different cell populations must be ensured [5], [6]. 

In pursuance of maintaining the stable co-existence of the cell populations in a microbial 

consortium, researchers are working to find strategies to control their relative population numbers 

(i.e. their ratio). This problem has been recently investigated by different researchers’ groups. In [4] 

Xinying Ren et al. designed a synthetic control circuit that regulates the total cell population and 

relative ratio between two different cell strains developing a dual feedback control strategy. The 
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Imperial College team, competitor in the iGEM competition, worked also on this topic and 

engineered a genetic circuit, composed by three modules (communication, comparator and growth 

regulation) that allows the ratiometric control of populations in a co-culture [6]. In [7], the authors 

constructed a synthetic ecosystem based on predator-prey systems where two E.coli populations 

communicate bi-directionally through quorum sensing and regulate each other’s gene expression. 

Another approach to this issue was proposed in [8], where the design of a synthetic feedback 

controller implemented across two different populations was investigated. In [9] the authors 

constructed a synthetic microbial consortium composed of two cell strains that when cultured 

together show the circuit topology of a synthetic dual-feedback oscillator operating within a single 

strain. Other important results were obtained using bistable genetic toggle switches embedded in 

cells that give the cells a reversible role that can be switched from one population to another, 

allowing them to balance the cell populations in their microbial consortiums [10], [5], [11]. 

The aim of this final master project is to study the problem of maintaining a stable coexistence 

of different cell populations in microbial consortia and develop new multicellular strategies for the 

regulation of the relative population numbers using control engineering tools, but with a novel 

approach; built cells capable to self-regulate their ratios. The approach that we propose here is to 

embed a bistable memory mechanism (genetic toggle-switch) inside each cell, whose current 

internal state defines which of the two possible populations the cell belongs to. 

Other systems designed to control the population ratio in microbial consortia, are based on a 

dynamic equilibrium encoded in the synthetic design. In those approaches, if one of the two 

population suddenly dies the other one can either die because there is a symbiotic dependence 

between the strains [4] or grow uncontrollably at full rate [6]. Unlike these solutions, with our 

approach if one of the populations dies out the cells on the cell population of the strain will remain 

stable. Another difference with previous works, [5], [11], is that, in our system, is not necessary to 

externally control the ratio with external inputs, because the consortia is capable of self -regulate its 

own cell population. 

This new scenario involves several challenges. First, we must ensure the communication 

between all the cells in the consortia, as each cell must detect the size of its own population as well 

as the size of the other one. At the same time, each cell must be capable of comparing this population 

numbers in order to realize if there is an unbalance in the consortia and act consequently 

encouraging the change of role by means of the toggle switch, if necessary. 

This thesis has been developed as a part of the COSY-BIO project (2017-2020) during an 

Erasmus Exchange in the Università degli Studi di Napoli Federico II. COSY-BIO is a 

multidisciplinary project fund by the European Union’s Horizon 2020 research and innovation 

program. The goal of this project is to develop a theoretical framework and innovative technological 

tools to engineer reliable biological systems that are robust despite their individual components 

being not by translating principles of control engineering to molecular and cell biology [12]. 
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2. Literature review 

2.1. Biology background 

 
The cell is the smallest unit of life, which constitutes the elemental unit of all living beings. Cells 

are made of several thousand types of proteins which are produced in response to every different 

signal the cell is capable to sense. The cell responds to a signal by making the right amount of each 

protein, which is achieved by mapping signals and genes, Figure 1. For this aim, the cell does an 

internal representation using special proteins called transcription factors, which are design to transit 

rapidly between active and inactive molecular states. Each active transcription factor can bind the 

DNA and regulate the rate at which genes are read, acting as Activators if they increase the rate or 

as Repressors if they decrease it. [13]. 

 
 

 
 

Figure 1:Internal representation of the signals and genes mapping inside a cell [13] 

 

The transcription network describes the interaction between transcription factors and genes and 

controls the expression levels of mRNA and their corresponding proteins, Figure 2. This gene 

regulation process is composed by two main actions: Transcription and Translation. During the 

Transcription the gene is copied into the mRNA (messenger RNA) by the RNAp (RNA 

polymerase) and in the Translation, the mRNA is then translated into the protein mainly by the 

ribosomes [13]. 

 

 
 

Figure 2:Transcription network representation [13] 
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2.2. Gene input functions 

 
Typically, the mathematical function used to describe gene input functions is the Hill function. 

This function can be modeled in two different ways depending on the role of the transcription factor 

(Activator or repressor) [13]. Considering the production rate of a protein Y controlled by a 

transcription factor X these functions can be written as follows: 

 

Hill function for an activator: 

 

𝑓(𝑥∗) = 𝛼 ∙
(𝑥∗)𝑛

𝐾𝑛+(𝑥∗)𝑛
       (1)  

 

Hill function for a repressor: 

 

𝑓(𝑥∗) = 𝛼 ∙
𝐾𝑛

𝐾𝑛+(𝑥∗)𝑛
       (2)  

 

Where 𝛼, K and n in (1) and (2) are the maximal promoter activity, the activation coefficient, 

and the Hill coefficient respectively. For an activator the Hill input function is an increasing curve 

while for a repressor is a decreasing curve, Figure 3. 

In these equations, X* represents the concentration of the active transcription factor X in the 

cell. For the activation case, that is when X is an activator for the expression of gene Y, (Equation 

1), with high activator concentrations, that is X*>>K, the fraction term tends to 1 obtaining the 

maximal promoter activity, 𝛼, as result. This makes sense because X* binds the promoter with 

higher probability. However, with low values of X*, that is X*≈0, the equation will tend to 0 (as 

the fraction term tends to 0). 

In the opposite way, (Equation  2), with high activator concentrations the equation will tend to 0 
(as the fraction term tends to 0) and with low values of X* it is obtained the maximal expression 

rate (as the fraction term tends to 1). 
 

 

 
 

Figure 3: From left to right representation of the Hill functions for an activator and for a repressor respectively 

depending on the Hill coefficient [13] 
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On the other hand, it will be also taken into account the fact that the expression rate of protein 

Y is also balanced by protein degradation (destruction by specialized proteins in the cell) and 

dilution (the reduction in concentration due to cell volume growth and division). Many proteins, 

called stable proteins, are not actively degraded in growing cells. The production of this proteins is 

balanced by dilution due to the increasing volume of the growing cell and for them the response 

time, 𝑇1/2 (the time to reach halfway between the initial and final levels in a dynamic process), is 

equal to one cell generation time, τ. This way, when a cell produces a protein if suddenly the 

production stops, the cell grows and when it doubles its volume splits into two cells [13]. Thus, after 

one cell generation time, the protein concentration decreases by half: 

 

𝑇1/2 =
log(2)

γ
= τ       (3) 

 

Furthermore, many genes have nonzero minimal expression level which is called the gene’s 

basal expression level [13]. For example, the transcription rate of a gene Y with basal expression level 

degradation and dilutions rates could be written as follows: 

 

For an activator: 

𝑓(𝑥∗) = 𝛼0 + 𝛼 ∙
(𝑥∗)𝑛

𝐾𝑛+(𝑥∗)𝑛
− 𝑥∗ ∙ ( 𝑑 + 𝛾)    (4)  

 

For a repressor: 

𝑓(𝑥∗) = 𝛼0 + 𝛼 ∙
𝐾𝑛

𝐾𝑛+(𝑥∗)𝑛
− 𝑥∗ ∙ ( 𝑑 + 𝛾)    (5)  

 

Being 𝛼0, 𝑑, 𝛾 in (3) y (4) the basal expression rate, the degradation rate and the dilution rate, 

respectively. 
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2.3. Genetic toggle switch 

 
The fundamental element in the self-regulatory system we propose in this thesis is a genetic 

toggle switch. A genetic toggle switch is a synthetic, bistable memory gene-regulatory network. By 

applying some inputs (the inducers) we can induce the toggle switch to flip between two different 

stable states exhibiting a nearly ideal switching threshold [14]. 

This first genetic toggle switch was proposed in [14] and is composed by two repressors and 

two promoters, Figure 4. Repressor 1 that is promoted by Promoter 2 is in charge of repressing 

Promoter 1, which promotes Repressor 2 that repress Promoter 2, closing the loop. 

Without taking into account the Inducers, the toggle switch present only two stable states; either 

Promoter 1 promotes Repressor 2, or Promoter 2 promotes Repressor 1. When the Inducers are 

introduced the switching becomes possible. The Inducer represses the repressing action of the 

corresponding repressor enabling the other Repressor to be maximally transcribed until the systems 

stabilizes in the opposite state. 

This behavior is described by the following equations: 
 

 

�̇� =
𝛼1

1+𝑣𝛽
− 𝑢       (6)  

 

�̇� =
𝛼2

1+𝑢𝛾
− 𝑣       (7)  

 

 

Where 𝑢, 𝑣, 𝛼1, 𝛼2, 𝛽 and 𝛾 in (3) and (4) are the concentration of repressor 1, the concentration 

of repressor 2, the effective rate of synthesis of repressor 1, the effective rate of synthesis of repressor 

2, the cooperativity of repression of promoter 2 and the cooperativity of repression of promoter 1, 

respectively. The first term of the equations represents the cooperative repression of constitutively 

transcribed promoters and the second term the degradation/dilution of the repressors [14]. 
 

 

 

 
 

Figure 4: Toggle switch design [14] 
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To behave as described above, the toggle-switch dynamics needs to satisfy some conditions. 

First of all, the structure of the toggle network should create two basins of attraction. Secondly, the 

nullclines must intersect three times (have 3 equilibrium points), two stable equilibrium points, and 

one saddle point, whose stable manifold is the separatrix between the regions of attraction of the 

other two equilibria. If the initial condition of the system is above the separatrix it will settle to state 

1 and in the opposite way it will settle to state 2 if the initial condition is below this separatrix. 

Finally, the rates of synthesis of both repressors should be balanced in order to ensure the 3 

intersection points [14]. If the toggle switch model designed satisfies all the above conditions the 

phase portrait of the toggle network should be similar to Figure 5. 

 

 
Figure 5: Bistable toggle switch network satisfying all the conditions [14] 

 

In this thesis, the toggle switch is embedded in the cells to provide them the capacity of changing 

to what population they belong to in order to regulate the ratio of the two populations. A similar idea 

was presented in [5], where it was studied the design of three different external feedback control 

strategies able to steer the inducer molecules inputs to control the populations’ ratio. The authors 

presented a different approach in means of how to induce the synthetic cell to switch between the 

two stable states. This work and others will be discussed later in the Stable co-existence in microbial 

consortia section. 

However, the use of toggle-switches embedded in cells, is not limited to the application of ratio 

regulation. In the following subsections, two control strategies, with alternative applications, 

involving the use of a toggle-switch will be reviewed. 
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2.3.1. Balancing cell populations endowed with a synthetic toggle 

switch via adaptative pulsatile feedback control 

One recent research where a synthetic toggle switch was embedded in the cells with the aim of 

controlling cell populations was presented in [15]. In this research they propose the use of adaptative 

pulsatile feedback control strategies to improve the robustness and balancing performance of the 

system by selecting in real-time the amplitude and the duty-cycle of the inducer molecules (aTc and 

IPTG), which affect the behavior of the toggle switch. This way, adapting these input signals in real-

time but maintaining their periodic nature, they take advantage of the beneficial effects of periodic 

forcing inputs while enhancing the stability, coherence and robustness of the system [15]. 

In Figure 6a the dynamics of the toggle switch are represented where the two genes LacI and 

TetR are bound with RFP and GFP, respectively, and repress each other’s expression while the 

external inducer molecules, IPTG and aTc, modulate the strength of those repressions. Following 

these dynamics and taking as reference other studies they define the model of the synthetic toggle 

switch as follows 

 
𝑑𝑚𝑅𝑁𝐴𝐿𝑎𝑐𝐼

𝑑𝑡
= 𝑘𝐿

𝑚0 +
𝑘𝐿
𝑚

1+(
𝑇𝑒𝑡𝑅

𝜃𝑇𝑒𝑡𝑅
∙

1

1+(
𝑎𝑇𝑐
𝜃𝑎𝑇𝑐

)
𝑛𝑎𝑇𝑐

)

𝑛𝑇𝑒𝑡𝑅 − 𝑔𝐿
𝑚 ∙ 𝑚𝑅𝑁𝐴𝐿𝑎𝑐𝐼 (8) 

 
𝑑𝑚𝑅𝑁𝐴𝑇𝑒𝑡𝑅

𝑑𝑡
= 𝑘𝑇

𝑚0 +
𝑘𝑇
𝑚

1+(
𝐿𝑎𝑐𝐼

𝜃𝐿𝑎𝑐𝐼
∙

1

1+(
𝐼𝑃𝑇𝐺
𝜃𝐼𝑃𝑇𝐺

)
𝑛𝐼𝑃𝑇𝐺

)

𝑛𝐿𝑎𝑐𝐼 − 𝑔𝑇
𝑚 ∙ 𝑚𝑅𝑁𝐴𝑇𝑒𝑡𝑅 (9) 

 

𝑑𝐿𝑎𝑐𝐼

𝑑𝑡
= 𝑘𝐿

𝑝 ∙ 𝑚𝑅𝑁𝐴𝐿𝑎𝑐𝐼 − 𝑔𝐿
𝑝 ∙ 𝐿𝑎𝑐𝐼     (10) 

𝑑𝑇𝑒𝑡𝑅

𝑑𝑡
= 𝑘𝑇

𝑝 ∙ 𝑚𝑅𝑁𝐴𝑇𝑒𝑡𝑅 − 𝑔𝑇
𝑝 ∙ 𝑇𝑒𝑡𝑅     (11) 

 

𝑑𝑎𝑇𝑐

𝑑𝑡
= {

𝑘𝑎𝑇𝑐
𝑖𝑛 (𝑢𝑎𝑇𝑐 − 𝑎𝑇𝑐),    𝑖𝑓 𝑢𝑎𝑇𝑐 > 𝑎𝑇𝑐

𝑘𝑎𝑇𝑐
𝑜𝑢𝑡(𝑢𝑎𝑇𝑐 − 𝑎𝑇𝑐),    𝑖𝑓 𝑢𝑎𝑇𝑐 ≤ 𝑎𝑇𝑐 

    (12) 

 

𝑑𝐼𝑃𝑇𝐺

𝑑𝑡
= {

𝑘𝐼𝑃𝑇𝐺
𝑖𝑛 (𝑢𝐼𝑃𝑇𝐺 − 𝐼𝑃𝑇𝐺),    𝑖𝑓 𝑢𝐼𝑃𝑇𝐺 > 𝐼𝑃𝑇𝐺

𝑘𝐼𝑃𝑇𝐺
𝑜𝑢𝑡 (𝑢𝐼𝑃𝑇𝐺 − 𝐼𝑃𝑇𝐺),    𝑖𝑓 𝑢𝐼𝑃𝑇𝐺 ≤ 𝐼𝑃𝑇𝐺 

   (13) 

 

From a control point of view, in Figure 6b, they illustrate how the control inputs, 𝑢𝑎𝑇𝑐 and 

𝑢𝐼𝑃𝑇𝐺, are first filtered by the cell membrane and then enter the toggle switch through nonlinear 

Hill-like functions. Then, in Figure 6c, they sketch one of the pulsatile inputs applied to control the 

toggle switch being the other input its mirror image as they are mutually exclusive [15].  
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Figure 6: a) Schematic of the Genetic Toggle Switch network structure. The two genes (LacI and TetR) –respectively 

bound with RFP and GFP-mutually repress each other; the external inducers, IPTG and aTc, modulate the strengths 

of the repression exerted by LacI and TetR on each other. b) The toggle switch as a multi-input, multi-output (MIMO) 

control system. The control inputs are first filtered because of diffusion through the cell membrane and then enter the 

toggle switch nonlinearly through Hill-like functions. c) Sketch of one of the pulsatile inputs applied to control the 

toggle switch. Being mutually exclusive, the other input is chosen as its mirror image. TPWM is the period of the inputs, 

dk represents the fraction of the k-th period during which the input is switched ON (the other being OFF) [15]. 

 

In order to prove the need of a close-loop control strategy, they first analyze the effect of 

applying the inputs in an open-loop fashion by using precomputed amplitudes, �̅�𝑎𝑇𝑐 and �̅�𝐼𝑃𝑇𝐺 , and 

duty-cycle, 𝑑𝑘. As expected, this test showed that the strategy fails to achieve the balancing goal in 

the presence of diffusion, cell-to-cell variability and noise, as the evolution of the average values 

over the population of LacI and TetR expressed by the cells does not converge to the desired values 

( Figure 7) [15]. 

In view of the results, they design a feedback control approach based on using two mutually 

exclusive periodic inputs and also able to adapt and change their duty-cycle and amplitude to achieve 

the desired behavior. The control strategy, illustrated in Figure 8, is based on two control actions; A 

feedforward action which pre-computes the ideal value of the amplitude and duty-cycle required to 

achieve the control goal without perturbations and diffusion effects and a feedback action that is in 

charge of adapting the duty-cycle of the periodic inputs as a function of the current cell behavior 

[15]. 
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Figure 7: Open-loop periodic forcing. Evolution of TetR and LacI when cells are subject to mutually exclusive pulsing 

inputs whose amplitude and duty-cycle were precomputed off-line. Top: Dashed red and green lines: Desired setpoint. 

Solid dark red and green lines: Evolution of the average values over the population of LacI and TetR as expressed by 

the cells. Shaded areas: Value of the standard deviation from each mean value, computed at each time instant. Solid 

light red and green lines: Evolution of the mean value of the oscillations evaluated with a moving window of period 

equal to 𝑇𝑃𝑊𝑀. The lack of convergence to the desired set-point shows the limits of open-loop, pre-computed inputs in 

achieving the control objective when diffusion and other effects are appropriately modeled. Middle:Evolution of the 

pulsing inputs applied to the system. Bottom: Duty-cycle that is kept constant over time [15]. 

 
 

Figure 8: a) External Control Architecture. A population of E. coli endowed with the Genetic Toggle Switch is hosted 

in a microfluidic device. A fluorescence microscope takes pictures of the cells, whose average RFP and GFP values 

are evaluated through segmentation algorithms. This information and the setpoint, is sent to the controller that 

computes online the inputs to be applied to the cells. The actuators, receive the control signal and produce the action 

needed to feed the population of cells with the required inputs. b) Block diagram of the proposed closed-loop hybrid 

control strategy. The population of cells, together with the PWM inputs, evolve in continuous-time. The controller is 

designed in discrete-time, computing the control input at each time period 𝑇𝑃𝑊𝑀. A feedforward Model Based Inversion 

block evaluates the amplitudes �̅�𝑎𝑇𝑐 and �̅�𝐼𝑃𝑇𝐺 ,  of the pulse wave inputs, on the basis of the setpoint [𝐿𝑎𝑐𝐼𝑅𝑒𝑓   

𝑇𝑒𝑡𝑅𝑅𝑒𝑓]. The feedback controller evaluates and adapts in real time the duty-cycle of the inputs as a function of the 

desired setpoints and the outputs of the system. The (ZOH) keeps the duty-cycle, computed by the compensator at the 

beginning of each period, constant during the rest of the period 𝑇𝑃𝑊𝑀 [15].  
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Then, they compare the effectiveness of two feedback control strategies: A Proportional-

Integral controller that drives a pulse width modulation block (PI-PWM) and a Model Predective 

Controller (MPC) that optimizes a desired cost function to select the input duty-cycle dynamically. 

To this end, they carry out deterministic (Figure 9) and stochastic (Figure 10)  in-silico experiments 

whose results show that both strategies accomplish the final goal of controlling the toggle switch to 

the desired output value despite the presence of perturbations and uncertainties. In the deterministic 

case (Figure 9) the MPC shows better performance in terms of dynamic regulation (lower overshoot 

and transient duration) and also better steady-state regulation of the set-point. In the stochastic case 

(Figure 10) the results lead to the same conclusions [15]. 

Additionally, they carried out robustness test by introducing parametric variations in the cell 

population. The results depicted from these tests confirm that PI-PWM is more robust to small 

perturbations while larger perturbations worsen its performance making MPC preferable for in-vivo 

implementation [15]. 

 

 

 
Figure 9: In-silico deterministic experiment: comparison of the performance of the PI-PWM (a) and MPC (b) control 

strategies via deterministic simulations. For the PI-PWM, the duty-cycle starts from 𝑑𝑟𝑒𝑓  = 0.4 and is then adapted by 

the controller after the first period, while the MPC computes the duty-cycle from the start (solving the optimization 

problem). Top panels: Dashed red and green lines: Setpoint of the experiment, respectively 𝐿𝑎𝑐𝐼𝑅𝑒𝑓  and 𝑇𝑒𝑡𝑅𝑅𝑒𝑓. Solid 

lines: Evolution of promoter proteins for LacI (red) and TetR (green). Dark solid lines, starting from t = 𝑇𝑃𝑊𝑀: Mean 

values of the state in the time period, evaluated with a moving window of period 𝑇𝑃𝑊𝑀. Middle panels: Evolution of 

the pulsing inputs applied to the system. Bottom panels: Evolution of the duty-cycle over time [15]. 

  



Self-regulation of cell population in microbial consortia 

Marta González Larequi 

18 

 

 

 

 

Figure 10: In-silico stochastic experiment: comparison of the performance of the PI-PWM (top panel) and MPC 

(central panel) control strategies. Dashed lines: Setpoint of the experiment, for 𝐿𝑎𝑐𝐼𝑅𝑒𝑓 (red) and 𝑇𝑒𝑡𝑅𝑅𝑒𝑓 (green). 

Solid red and green lines: Average evolution of LacI and TetR over the population. Darker solid lines: Evolution of the 

mean trajectory in the period, evaluated with a moving window as in the deterministic case. Shaded areas: Values of 

the standard deviation from the means, at each time instant. Bottom panel: Duty-cycle evolution over time when the 

MPC (blue) or the PI-PWM (yellow) strategies are used [15]. 

 

 
 

Figure 11: Agent-based simulation in BSim 2.0 of the PI-PWM (a) and MPC (b) control strategies. E.colli cells are 

considered growing in a single chamber of a “mother machine”-like microfluidic device: the simulations start with a 

single cell located at the bottom of the chamber; as the cell grows and duplicates, it pushes outside of the chamber new 

cells that exceed the maximum capacity of the chamber. The top panel shows the evolution over time of LacI; the dashed 

line representing the setpoint 𝐿𝑎𝑐𝐼𝑅𝑒𝑓, while lighter lines the evolution of the state for each cell in the simulation, and 

the darker solid line the mean trajectory computed over the population, evaluated through a moving window of period 

𝑇𝑃𝑊𝑀. The middle panel shows the evolution over time of TetR; the dashed line representing the setpoint 𝑇𝑒𝑡𝑅𝑅𝑒𝑓, 

lighter lines are the evolution of the state for each cell in the simulation, while the dark solid line represents the 

evolution of the mean trajectory across the population in the period, evaluated using a moving window of period 𝑇𝑃𝑊𝑀. 

The bottom panel shows the evolution of the duty-cycle over time [15].  
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Finally, they perform agent-based simulations using BSim (Figure 11) confirming the viability 

and effectiveness of the strategies for in-vivo experiments. After that, they introduce a 10% variation 

of all the parameters of each cell in the agent-based model to reproduce cell-to-cell variability, whose 

results ratify again that the MPC control strategy shows a better performance in the presence of such 

uncertainties [15]. 

All these results evidence the viability of their approach of using pulsatile inputs computed 

online by means of a feedback control strategy to achieve a robust stabilization of the toggle switch 

showing also a better performance of the Model Predictive Control in all the in-silico experiments 

[15]. 
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2.3.2. Multicellular feedback control of a genetic toggle-switch in 

microbial consortia 

 

An interesting application of the toggle-switch in microbial consortia was proposed in [11]. 

This time, the authors engineered a synthetic microbial consortium consisting of three different cell 

populations; two populations, the Controllers, able to respond to some reference input and induce 

the switch of the toggle switch embedded in a third population, the Targets, so as to activate or 

deactivate some additional functionalities in the cells. As usual, the communication between the 

three populations takes place by means of orthogonal quorum sensing molecules. 

As represented in Figure 12, the controller cells, Activator and Deactivator, sense the 

concentration in the environment of the reference signal Ref and the Targets output 𝑦, which is high 

(𝑦 =1) when the Targets are active. Then, the controllers generate the control signals 𝑢1 and 

𝑢2 based on the following logic functions: 

 

𝑢1   =  𝑅𝑒𝑓 𝐴𝑁𝐷 (𝑁𝑂𝑇 𝑦)      (14) 

 

𝑢2   =  (𝑁𝑂𝑇 𝑅𝑒𝑓) 𝐴𝑁𝐷 𝑦      (15) 

 

This way, the Activators activate the Targets when at the same time they sense a reference signal 

in the environment and the Targets are inactive, on the contrary, the Deactivators inhibit the activity 

of the Targets when those are active and there is no reference signal in the environment [11]. 

 

 
 

 
Figure 12: Representation of the relationship between the cell populations in the consortium and their molecular 

signals. The Target receives ON (u1 = 1) only if Ref = 1 AND y = 0 and OFF (u2 = 1) only when Ref = 0 AND y = 1. 

This way, the input signals u1 and u2 are equal to 1 only when there is disagreement between Ref and y [11]. 
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Figure 13: Abstract biological implementation of the multicellular control system. The Controllers compare the 

concentrations of the signaling molecules R and 𝑄𝑦 using an antithetic motif and produce 𝑄𝑢𝑖. This, diffuses inside the 

Target and promotes the activation of 𝑋𝑖, which makes the Target changes its state. Circles represent internal 

molecular species and polygons signaling molecules and the reference signal [11]. 

 

They illustrated the biological implementation of the model in Figure 13, where the subscripts 

e, t, a, d denote quantities in the environment, Target cells, Activator cells and Deactivator cells, 

respectively. As said before, the Target cells have an inducible toggle switch embedded inside, 

which consists in two proteins 𝑋1 and 𝑋2, each repressing each other’s expression. The full 

expression of 𝑋1 represents the active state of the Target and the full expression of 𝑋2 the inactive 

state. The behavior of this toggle switch is given as: 

 

�̇�1 = 𝛼𝑥1
0 +

𝛼𝑥1
 

1+(
𝑥2
𝜃𝑥2

)
𝑛𝑥2 − 𝛾

𝑡 ∙ 𝑥1 + 𝑢1    (16) 

 
 

�̇�2 = 𝛼𝑥2
0 +

𝛼𝑥2
 

1+(
𝑥1
𝜃𝑥1

)
𝑛𝑥1 − 𝛾

𝑡 ∙ 𝑥2 + 𝑢2    (17) 

 

Where 𝛼𝑥𝑖
0 , 𝛼𝑥𝑖

 , 𝜃𝑥𝑖, 𝑛𝑥𝑖  and 𝛾𝑡 are the basal and maximal expression rates of species 𝑋𝑖, the 

disassociation coefficient, the hill coefficient and the degradation rate of the species 𝑋𝑖 in the Target. 

Also, 𝑥1 and 𝑥2 are the concentrations of molecules 𝑋1 and 𝑋2 inside the cell and 𝑢1 and 𝑢2 the 

inputs which describe the promoting action of the signaling molecule 𝑄𝑢𝑖 on the expression of 𝑋𝑖, 
for i=1 ,2, by: 

𝑢𝑖 ∶=  𝛽𝑖 ∙
(𝑞𝑢𝑖
𝑡 )

𝑛𝑢𝑖

𝜃
𝑢𝑖

𝑛𝑢𝑖+(𝑞𝑢𝑖
𝑡 )

𝑛𝑢𝑖
     (18) 

 

Where 𝛽𝑖, 𝑞𝑢𝑖
𝑡 , 𝑛𝑢𝑖  and 𝜃𝑢𝑖

𝑛𝑢𝑖  are the maximal promoter activity, the concentration of 

molecule 𝑄𝑢𝑖 inside the Target and the Hill and activation coefficients. 
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As illustrated in Figure 13, in the Deactivators, 𝑄𝑢2 is generated by 𝑍2 that is promoted by 𝑍1: 

𝑄𝑦, being 𝑄𝑦 the orthogonal quorum sensing molecule produced proportional to 𝑋1. For the 

formation of this complex, the expression of 𝑍1 is required, that is also inhibited by the reference 

signal 𝑅. For this reason, the control signaling molecule 𝑄𝑢2, produced at a rate proportional to the 

concentration of 𝑍2, will be produced at high rate and released only when R inside the Deactivator is 

low and the 𝑄𝑦 is high [11]. 

Then, being 𝑧1and 𝑧2 the concentrations of the species 𝑍1: 𝑄𝑦 and 𝑍2 in the Deactivators, their 

dynamics are described as: 

 

�̇�1 = (𝛼𝑧1,𝑟
0 + 𝛼𝑧1,𝑟

 ∙
𝜃𝑟,𝑧1
𝑛𝑟,𝑧

𝜃𝑟,𝑧1
𝑛𝑟,𝑧 + (𝛾𝑑)𝑛𝑟,𝑧

) 

∙ (𝛼𝑧1,𝑞
0 + 𝛼𝑧1,𝑞

 ∙
(𝑞𝑦
𝑑)
𝑛𝑞,𝑧

𝜃𝑞,𝑧1
𝑛𝑞,𝑧

+(𝑞𝑦
𝑑)
𝑛𝑞,𝑧) − 𝛾

𝑑 ∙ 𝑧1   (19) 

 

�̇�1 = 𝛼𝑧2
0 + 𝛼𝑧2

 ∙
𝑧1
𝑛𝑧

𝜃𝑧1
𝑛𝑧+𝑧1

𝑛𝑧 − 𝛾
𝑑 ∙ 𝑧2             (20) 

 

With a similar reasoning, being 𝑤1and 𝑤2 the concentrations of the species 𝑊1: 𝑅 and 𝑊2 they 

defined the Activator dynamics as: 

 

�̇�1 = (𝛼𝑤1,𝑟
0 + 𝛼𝑤1,𝑟

 ∙
𝜃𝑞,𝑤1
𝑛𝑞,𝑤

𝜃𝑞,𝑤1
𝑛𝑞,𝑤 + (𝑞𝑦

𝑎)
𝑛𝑞,𝑤

) 

∙ (𝛼𝑤1,𝑟
0 + 𝛼𝑤1,𝑟

 ∙
(𝑟 
𝑑)
𝑛𝑟,𝑤

𝜃𝑟,𝑤1
𝑛𝑟,𝑤+(𝑟 𝑑)

𝑛𝑟,𝑤) − 𝛾
𝑎 ∙ 𝑤1          (21) 

 

�̇�2 = 𝛼𝑤2
0 + 𝛼𝑤2

 ∙
𝑤1
𝑛𝑤

𝜃𝑤1
𝑛𝑤+𝑤1

𝑛𝑤 − 𝛾
𝑤 ∙ 𝑤2            (22) 

 

Then, they defined the intracellular communication describing the evolution of the 

concentrations in the signaling molecules inside a type j cell for i=1,2 as: 

 

�̇� 
𝑗 =  𝜂 ∙ (𝑟𝑒 − 𝑟𝑗) − 𝛾𝑗 ∙ 𝑟 

𝑗      (23) 

�̇�𝑢𝑖
𝑗
= 𝑓𝑢𝑖

𝑗
+  𝜂 ∙ (𝑞𝑢𝑖

𝑒 − 𝑞𝑢𝑖
𝑗
) − 𝛾𝑗 ∙ 𝑞𝑢𝑖

𝑗
     (24) 

�̇�𝑦
𝑗
= 𝑓𝑦

𝑗
+  𝜂 ∙ (𝑞𝑦

𝑒 − 𝑞𝑦
𝑗
) − 𝛾𝑗 ∙ 𝑞𝑦

𝑗
     (25)  
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Where the production rates 𝑓𝑢𝑖
𝑗
 and 𝑓𝑦

𝑗
  are defined as:  

 

𝑓𝑦
𝑡 ∶=  𝑘𝑦

 ∙ 𝑥1
 ,          𝑘𝑦

 > 0     (26) 

𝑓𝑢2
𝑑 ∶=  𝑘𝑢2

 ∙ 𝑧2
 ,      𝑘𝑢2

 > 0     (27) 

𝑓𝑢1
𝑎 ∶=  𝑘𝑢1

 ∙ 𝑤2
 ,     𝑘𝑢1

 > 0     (28) 

𝑓𝑢𝑖
𝑡 , 𝑓𝑢1

𝑑 , 𝑓𝑦
𝑑 , 𝑓𝑢2

𝑎 , 𝑓𝑦
𝑎 = 0      (29) 

 

Finally, the concentrations of the reference signal molecule and of the quorum sensing 

molecules secreted by the three populations in the environment are described as: 

 

�̇� 
𝑒 = 𝑟𝑖𝑛(𝑡) + 𝜂 ∙ (𝑟

𝑎 − 𝑟𝑒) + 𝜂 ∙ (𝑟𝑑 − 𝑟𝑒) + 𝜂 ∙ (𝑟𝑡 − 𝑟𝑒) − 𝛾𝑒 ∙ 𝑟 
𝑒 (30) 

�̇�𝑢𝑖
𝑒 = 𝜂 ∙ (𝑞𝑢𝑖

𝑎 − 𝑞𝑢𝑖
𝑒 ) + 𝜂 ∙ (𝑞𝑢𝑖

𝑑 − 𝑞𝑢𝑖
𝑒 ) + 𝜂 ∙ (𝑞𝑢𝑖

𝑡 − 𝑞𝑢𝑖
𝑒 ) − 𝛾𝑒 ∙ 𝑞𝑢𝑖

𝑒   (31) 

�̇�𝑦
𝑒 = 𝜂 ∙ (𝑞𝑦

𝑎 − 𝑞𝑦
𝑒) + 𝜂 ∙ (𝑞𝑦

𝑑 − 𝑞𝑦
𝑒) + 𝜂 ∙ (𝑞𝑦

𝑡 − 𝑞𝑦
𝑒) − 𝛾𝑒 ∙ 𝑞𝑦

𝑒  (32) 

 

Where 𝑟𝑖𝑛(𝑡) and 𝛾𝑒 represent the concentration of the reference signal provided externally and 

the degradation rate in the environment, respectively [11]. 

Once they had all the model defined, they identified several required conditions needed to ensure 

the correct behavior of the system and then describe the in-silico experiments implemented to 

validate the effectiveness of the design using BSim, a realistic agent-based simulator of bacterial 

populations. The results of this experiments can be seen in Figure 14 and Figure 15, where the 

controller cells are depicted in red and green and the Target cells in blue. These results prove the 

efficacy of the system as, it can be clearly seen that, the Controller cells successfully toggle the 

Target cells from their active state to their inactive state and vice versa [11].  

 
 

 
 

Figure 14: Evolution of the average (thick lines) and single cell (thin lines) values of the concentrations of 𝑥1 (green) 

and 𝑥2 (red) in the Target population (top panel) when the reference signal 𝑟𝑖𝑛(𝑡) (bottom panel) is switched from high 

to low and vice versa. The middle panel shows the average and individual values of the concentrations of quorum 

sensing molecules 𝑞𝑢,1
𝑡  (light blue) and 𝑞𝑢,2

𝑡  (dark blue) inside the Target cells [11].  
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Figure 15: Snapshots of an agent-based simulation at different time instants (highlighted in Figure 8 with dashed vertical 

lines). Specifically, panel (a) corresponds to t = 60, panel (b) to t = 180 and panel (c) to t = 300. Activator cells are 

shown in green, Deactivator cells in red and Target cells are depicted in blue when they are active and black when they 

are inactive [11]. 

 
 

 
 

Figure 16: (a): Steady-state values of x1 as a function of the ratios of Targets 𝜌t and Deactivators 𝜌d, with Targets 

starting from ON state and setting rin = 𝑟𝑂𝐹𝐹. (b): Steady-state values of x1 as a function of the ratios of Targets 𝜌t and 

Activators 𝜌a, with Targets starting from OFF state and setting rin = 𝑟𝑂𝑁 [11]. 

Finally, they performed robustness analysis in Matlab. First, they evaluated the effects the 

variation of the ratio between Targets and Controllers in the consortium, representing in Figure 16 

the steady-state values of 𝑥1
 

 when switching Targets OFF (Figure 16a) and ON, (Figure 16b) by 

the action of the reference signal 𝑟𝑖𝑛  while the ratios of the cell populations in the consortium were 

being varied. These results demonstrated that, for a wide range of population densities (red region 

for Deactivators in Figure 16a, white region in Figure 16b for Activators), the Controllers are able 

to switch the state of Target cells.  
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Then, they evaluated the effects of the increase in the heterogeneity among cells in each 

population, perturbating the nominal values of all the parameters. As they showed in Figure 17, even 

with considerable parameter mismatch, the Controllers are able to induce the switch of state of a 

large fraction of the Target cells, showing the Activators an even better performance [11]. 
 

 

 
 

 
 

Figure 17: Percentage of successfully switched Targets (S%) in a balanced population as a function of heterogeneity 

𝛼%
2 . The bar plot in red (green) represents the percentage at steady state of Targets that, starting from ON (OFF) state, 

are turned OFF (ON) following the reference input rin being switched to 𝑟𝑖𝑛
𝑂𝐹𝐹

 (𝑟𝑖𝑛
𝑂𝑁) [11]. 
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2.4. Stable co-existence in microbial consortia 

Being able to engineer synthetic ecosystems, multicellular synthetic gene circuits, implies a 

huge advance in synthetic biology. The creation of synthetic microbial consortia, where synthetic 

populations grow and work together, enables the design of novel, complex and advanced 

functionalities. However, it also implies the emergence of new challenges. 

The main problem that appears working with synthetic microbial consortia is the difficulty to 

determine the conditions under which different cell populations will survive. Each type of cell has 

certain conditions under which they grow best. When different cell populations, with diverse 

suitable conditions, come together in the same microbial consortium, if the chosen conditions for 

the whole consortium are not carefully balanced, the populations will tend to compete against each 

other until finally one of them dies. For this reason, the stabilization of the population ratios is a key 

factor when dealing with engineered microbial consortia. 

The issue of creating a stable co-existence in microbial consortia, has been addressed by 

different research groups with diverse approaches in the last years.  In the following subsections 

three different approaches of this issue will be reviewed. 

 

2.4.1. Population regulation in microbial consortia using dual 

feedback control  

The researchers of the Department of Control and Dynamical Systems from the California 

Institute of Technology in Pasadena, presented an interesting control strategy that combines the 

control of the cell strain ratio as well as the total population size in a two-strain system [4]. 

To achieve that goal, their population regulation circuit design is composed by two separated 

feedback control loops; the global regulation loop and the co-regulation loop. First of all, the global 

regulation loop, illustrated in Figure 18a, is in charge of the control of the total population size 

and consists of three modules. The cell dynamics module, which relies on the cell growth and 

division processes activated by species G, the communication module, based on the global quorum 

sensing system and the feedback controller module that compares the output and the reference and 

acts consequently on the cell growth process to decrease the error. The reference signal is set by 

internal tuning of the induction rate of species G, which can be sequestered by species D in the 

controller module to decrease cell growth rate. On the other hand, in the communication module, 

cells both produce and sense Sg which concentration is proportional to the total cell population. 

These global quorum sensing signaling molecules diffuse into the cells and activate reactions that 

produce species D, which binds with species G slowing down the cell growth [4]. 

Moreover, the co-regulation loop, illustrated in Figure 18 b, controls the relative population ratio 

between the two cell strains (Cell 1 and Cell 2) and is also composed by three different modules. 

This time the dynamics module regulates the cell rate with the production of toxin T, the 

communication module is composed by two orthogonal quorum sensing systems S1 and S2, and 

the feedback controller module compares the two populations and actuates the antitoxin A 

production. Cell 1 and Cell 2 produce S1 and S2 respectively. In Cell 1 the activation of S1 produces 
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T which kills Cell1, while A is produced by S2. Antitoxin A sequesters T repressing the death 

process. This way if one cell strain has a larger population the T production rate inside this cell strain 

is bigger than the A production rate stopping its cell growth until they are equal [4]. 

Finally, in the dual loop, illustrated in Figure 18 c, both regulation loops are coupled and the 

total and relative population sizes are independently set by two reference signals [4]. 

 

 
 

Figure 18: Biological design of the global regulation loop, of the co-regulation loop, and of the dual loop. a. Global 

regulation that controls the total population. The reference signal is set by internal tuning of the induction rate of 

species G. Cells release and sense Sg proportional to the total population. Sg activates the production of D, which 

binds to G to inhibit cell growth. b. Co-regulation that controls the relative population ratio between two cell strains. 

Cell strain Cell1 releases and senses S1 that activates the production of toxin T in Cell1. Cell1 also senses S2 released 

by cell strain Cell2 to activate the production of antitoxin A, which binds with T to inhibit the killing process in Cell1. 

The negative feedback controller in Cell1 regulates the death dynamics to track the population of Cell2. Same for 

Cell2.c. It describes the dual loop regulation that couples both global and co-regulation [4]. 

 

Being C, G, D, Sg the cell population, the species that affect cell growth, the species that 

sequesters it and the global signaling molecules, the model of the control loop that regulates the total 

size of the populations is defined by the following equations: 
 

 

�̇� = 𝑘𝑐 ∙ 𝐺 ∙ (1 −
𝐶

𝐶𝑚𝑎𝑥
) ∙ 𝐶 − 𝛾𝐶 ∙ 𝐶     (33) 

 

�̇� = 𝑔𝐺 − 𝑘
+ ∙ 𝐺 ∙ 𝐷 − 𝑑𝐺 ∙ 𝐺      (34) 

 

�̇� = 𝑔𝐷 + 𝑘𝐷 ∙
𝑆𝑔
𝛽

𝐾𝑠+𝑆𝑔
𝛽 − 𝑘

+ ∙ 𝐺 ∙ 𝐷 − 𝑑𝐷 ∙ 𝐷    (35) 

 

�̇�𝑔
 = 𝑐𝑠 ∙ 𝐶 − (𝑑𝑠 + 𝛾𝑆) ∙ 𝑆𝑔

       (36) 

 

Where 𝑘𝑐, 𝐶𝑚𝑎𝑥, 𝛾𝐶 , 𝑔𝑥, 𝑘+, 𝑑𝑥, 𝑘𝐷, 𝛽, 𝐾𝑠, 𝑐𝑠, 𝑑𝑠 and 𝛾𝑆 represent the cell growth rate 

constant, the carrying capacity for cell growth, the cell dilution rate constant, the basal production 

rate of species X (X= G, D), the binding rate of effective annihilation, the dilution rate of species X 

(X= G, D), the maximal production rate of D, the Hill function coefficient, the dissociation constant 

for Sg, the synthesis rate of Sg, the degradation rate of Sg and the dilution rate of Sg, respectively 

[4].  
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Considering the cell strains Cell 1 and Cell 2 in mixed culture, for {i, j} = {1,2}, being Ci, T
(i) 

and A(i) the cell population, the toxin concentration and anti-toxin concentration of cell strain i and 

Si and Sj the signaling molecules released by cell strain i and j, the mathematical model of the co- 

regulation loop is defined by the following equations: 
 

�̇�𝑖 = 𝑘𝑐𝑖 ∙ (1 −
𝐶1+𝐶2

𝐶𝑚𝑎𝑥
) ∙ 𝐶𝑖 − 𝑑𝐶 ∙ 𝑇

(𝑖) ∙ 𝐶𝑖 − 𝛾𝐶 ∙ 𝐶𝑖   (37) 
 

�̇�(𝑖) = 𝑔𝑇 − 𝑘𝑇
 ∙

𝑆𝑖
𝛽

𝐾𝑠+𝑆𝑖
𝛽 − 𝑘

+ ∙ 𝑇(𝑖) ∙ 𝐴(𝑖) − 𝑑𝑇 ∙ 𝑇
(𝑖)  (38) 

 

�̇�(𝑖) = 𝑔𝐴 − 𝑘𝐴
 ∙

𝑆𝑗
𝛽

𝐾𝑠+𝑆𝑗
𝛽 − 𝑘

+ ∙ 𝑇(𝑖) ∙ 𝐴(𝑖) − 𝑑𝐴 ∙ 𝐴
(𝑖)  (39) 

 

�̇�𝑖 = 𝑐𝑠 ∙ 𝐶𝑖 − (𝑑𝑠 + 𝛾𝑆) ∙ 𝑆𝑖
 
      (40) 

 

Where 𝑘𝑐𝑖, 𝐶𝑚𝑎𝑥, 𝑑𝐶, 𝛾𝐶 , 𝑔𝑥, 𝑘𝑥 , 𝛽, 𝐾𝑠, 𝑘+, 𝑑𝑥, 𝑐𝑠, 𝑑𝑠 and 𝛾𝑆 represent the cell growth rate 

constant of each strain, the carrying capacity for cell growth, the cell death rate constant, the cell 

dilution rate constant, the basal production rate of species X (X= T, A), the maximal production rate 

of species X (X= T, A), the Hill function coefficient, the dissociation constant for Si, the binding 

rate of effective annihilation, the dilution rate of species X (X= T, A), the synthesis rate of Si, the 

degradation rate of Si and the dilution rate of Si, respectively [4]. 

The simulation results for the dual control loop obtained by Xinying Ren et al were very 

satisfying. They first proved the controller performance and robustness assessing the behavior of 

the system in response to set-point references of the total population and the population ratio by 

defining several performance metrics. Assuming some initial conditions, they simulated their model 

introducing a perturbation in the cell growth rate at some point of the simulation and demonstrated 

that the lag compensator of the global regulation maintained correctly the relative cell strain ratio in 

steady state. They also varied the amplitude of the introduced perturbation and measured the 

population steady states of the cell strains and of the total populations proving that the steady state 

of the total population always recovers the initial value and that the relative ratio also stabilizes for 

perturbations of less than 80%, demonstrating the robustness of the dual loop and it capacity of 

adaptation to perturbations in the cell growth rate, Figure 19 [4]. 

 

 
 

Figure 19: Perturbations on the growth rate of one cell strain. The dual loop controller shows adaptation to 

perturbations on the cell growth rate for growth rate perturbations lower than 80% [4]  
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Finally, they demonstrated that is possible to independently tuning the total population and the 

relative strain ratio, showing with Figure 20, that both regulation functions are performed with small 

steady state errors. 

 
 

 
Figure 20: The dual loop controller dynamics with independently tuned values of the total population and of the relative 

ratio of the cell strains [4]. 

Even if the simulation results demonstrated that the mathematical model proposed in [4] meets 

the set objectives it also presents certain limitations. The most relevant limitation that shows the 

model is that there is a symbiotic dependence between the strains, as one produces the antitoxin for 

the other one, this way if one of the two cell populations suddenly dies out, the other one will 

irremediably die. 
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2.4.2. Ecolibrium project  

Another approach of the ratiometric problem was presented by the students from the Imperial 

College of London for the 2016 iGEM competition. In their project, called Ecolibrium, they 

developed a genetic circuit system, a G.E.A.R (Genetically Engineered Artificial Ratio) system, 

composed by three modules, see Figure 21. First, a communication module which uses two 

orthogonal quorum sensing systems to allow the bacteria to detect both their own population density 

and the density of the other population. Secondly, the comparator module, which is in charge of 

linking the quorum sensing signals to RNA logic enabling the cells to compare the two populations. 

Third, a growth regulation module that allows the cells to respond the signals from the comparator 

module. This way, if its own population is bigger than the one of the other cells, a growth inhibiting 

protein is expressed, promoting the stabilization of the population’s ratio [6]. 

 

 

 
 

Figure 21: Representation of the full circuit with the three modules [6] 

 

In order to fulfil all the characteristics explained above, they first design a single cell level model 

which described the intracellular interactions, their system reactions can be seen in the section 

Single Cell Model of [6]. Then a population level model was created, based on the single level 

model, which not only predicts the ratio between two populations, but also allows the prediction of 

the ratio between two populations when modifying some key controllable parameters. The model 

consists of two compartments, the two populations, housed within a bigger compartment that 

represents the extracellular environment. The communication between the circuits within each 

population is encapsulated via the quorum sensing molecules diffusion between the populations and 

the environment. Each population has also the single cell model inside scaled and their growth rate 

is determined by their internal dynamics defined by the growth regulation protein. Finally, the 

growth of the populations is modelled by the Competitive Lotka-Volterra equations. Their whole 

system reactions and equations can be seen in the Population Model section in [6]. 
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In their simulations, they compared the behavior of a co-culture of two populations with 

different growth rates inoculated at a 1:1 ratio with and without the GEAR system. In Figure 22, we 

can see the system dynamics without the GEAR system. It is observable that one of the populations, 

the one with a higher growth rate, rapidly grows clearly outcompeting the other which disappears 

having 0 cells, losing the 1:1 ratio. When the default GEAR system is implemented, without tuning 

the ratio with the key parameter, an important improvement of the ability of maintaining the original 

1:1 ratio is observed (Figure 23). Finally, when a key tunable parameter is optimized, the 

effectiveness of the GEAR system is even more notorious as the system recovers its initial 1:1 ratio 

faster (Figure 24)  [6]. 

Despite the good results of their simulations, this model presents limitations similar of those of 

[4]. This synthetic design also encodes a dynamic equilibrium between the two populations. This 

time, if one of the two populations dies out the other one will experiment an uncontrolled growth. 

 

 
 

Figure 22:Population dynamics without a GEAR system implemented [6] 

 

 
 

Figure 23:Population dynamics with a default GEAR system [6] 
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Figure 24: Population dynamics with an optimized GEAR system [6]  
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2.4.3. Ratiometric control for differentiation of cell populations 

endowed with synthetic toggle switches 

Another important research, which addresses the problem of regulating the ratio of two cell 

populations, was published on 2019 by the researcher’s team of the University of Naples Federico 

II. In this case, the two cell populations belong to the same strain and each cell has a bistable memory 

mechanism, such as a genetic toggle switch, embedded inside that allows them to switch role from 

one population to another in response to some external control inputs. In order to regulate the 

populations ratio, they present three different feedback control strategies; Bang-Bang controller, PI 

controller and model predictive controller (MPC) [5]. 

First of all, being LacI and TetR the two repressor proteins of the genetic regulatory network of 

the toggle switch and aTc and IPTG the two inducer molecules whose concentration induces the 

flip of the toggle switch, they defined the dynamic model of the i-th cell in the consortium as 

follows: 

𝑑𝑚𝑅𝑁𝐴𝐿𝑎𝑐𝐼
𝑖

𝑑𝑡
= 𝑘𝐿

𝑚0 + 𝑘𝐿
𝑚 ∙ Φ𝑇(𝑡) − 𝛾𝐿

𝑚 ∙ 𝑚𝑅𝑁𝐴𝐿𝑎𝑐𝐼  (41) 

𝑑𝑚𝑅𝑁𝐴𝑇𝑒𝑡𝑅
𝑖

𝑑𝑡
= 𝑘𝑇

𝑚0 + 𝑘𝑇
𝑚 ∙ Φ𝐿(𝑡) − 𝛾𝑇

𝑚 ∙ 𝑚𝑅𝑁𝐴𝑇𝑒𝑡𝑅  (42) 

𝑑𝐿𝑎𝑐𝐼 
𝑖

𝑑𝑡
= 𝑘𝐿

𝑝
∙ 𝑚𝑅𝑁𝐴𝐿𝑎𝑐𝐼

𝑖
 
− 𝛾𝐿

𝑝
∙ 𝐿𝑎𝑐𝐼𝑖    (43) 

𝑑𝑇𝑒𝑡𝑅 
𝑖

𝑑𝑡
= 𝑘𝑇

𝑝
∙ 𝑚𝑅𝑁𝐴𝑇𝑒𝑡𝑅

𝑖
 
− 𝛾𝑇

𝑝
∙ 𝑇𝑒𝑡𝑅𝑖    (44) 

𝑑𝑎𝑇𝑐 
𝑖

𝑑𝑡
= 𝑘𝑎𝑇𝑐

 ∙ (𝑢𝑎 − 𝑎𝑇𝑐
𝑖)      (45) 

𝑑𝐼𝑃𝑇𝐺 
𝑖

𝑑𝑡
= 𝑘𝐼𝑃𝑇𝐺

 ∙ (𝑢𝑝 − 𝐼𝑃𝑇𝐺
𝑖)     (46) 

 

Where the state variables denote concentrations of molecules inside the cell and the parameters 

𝑘𝐿/𝑇
𝑚0 , 𝑘𝐿/𝑇

𝑚 , 𝑘𝐿/𝑇
𝑝
, 𝛾𝐿/𝑇
𝑚 , 𝛾𝐿/𝑇

𝑝
, 𝑘𝑎𝑇𝑐/𝐼𝑃𝑇𝐺
  are the leakage transcription, transcription, 

translation, mRNA degradation and protein degradation rates and diffusion rates of the inducers 

across the cell membrane, respectively. Variables  𝑢𝑎 and 𝑢𝑝 denote concentrations of the inducer 

molecules in the growth medium and also represent the control inputs common to every cell in the 

populations [5]. Φ𝑇 and Φ𝐿 represent the input effects and are modelled as follows: 

 

Φ𝑇(𝑡) ≔
1

1+

(

 𝑇𝑒𝑡𝑅𝑖

𝜃𝑇𝑒𝑡𝑅 
∙

1

1+(
𝑎𝑇𝑐𝑖

𝜃𝑎𝑇𝑐 
)

𝜂𝑇𝑒𝑡𝑅

)

 

     (47) 
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Φ𝑇(𝑡) ≔
1

1+

(

 𝑇𝑒𝑡𝑅𝑖

𝜃𝑇𝑒𝑡𝑅 
∙

1

1+(
𝑎𝑇𝑐𝑖

𝜃𝑎𝑇𝑐 
)

𝜂𝑇𝑒𝑡𝑅

)

 

     (48) 

 

Once the model is defined, considering 𝑁𝑡 the finite set of all cells in the consortium at time t 

and A and B the two possible stable equilibria of the genetic toggle switch (the two populations in 

the strain), each associated with the full expression of TetR and LacI, respectively, they identified 

the three sets the cells can belong to: 

 
𝐴𝑡  ≔  {𝑖   ∈  𝑁𝑡  ∶ 𝑇𝑒𝑡𝑅𝑖(𝑡) > 2𝐿𝑎𝑐𝐼𝑖(𝑡)}    (49) 

𝐵𝑡  ≔  {𝑖  ∈  𝑁𝑡  ∶ 𝐿𝑎𝑐𝐼𝑖(𝑡)  > 2𝑇𝑒𝑡𝑅𝑖(𝑡)}    (50) 

𝐶𝑡  ≔  {𝑖   ∉  𝐴𝑡 ∉ 𝐵𝑡}    (51) 
 

This way, at time t, a cell will belong to population A if 𝑖  ∈  𝐴𝑡 or to population B if 𝑖  ∈  𝐵t [5]. 

Finally, being 𝑟𝐴(𝑡) =  
𝑛𝐴(𝑡)

𝑁(𝑡)
 and 𝑟𝐵(𝑡) =  

𝑛𝐵(𝑡)

𝑁(𝑡)
  the ratio off cells that belong to population A and B, 

respectively, they state that given a consortium whose dynamics are described by the model above and 

a desired ratio 𝑟 ∈ [0,1] the control law 𝑢 (𝑡) = [𝑢𝑎(𝑡), 𝑢𝑝(𝑡)]
𝑇

 solves the ratiometric control 

problem if, for some small positive constant 𝜖: 
 
 

lim
𝑡→∞

|𝑒𝐴(𝑡)|  <  𝜖      𝑎𝑛𝑑      lim
𝑡→∞

|𝑒𝐵(𝑡)| <  𝜖    (52) 

𝑤ℎ𝑒𝑟𝑒 𝑒𝐵(𝑡) = 𝑟 − 𝑟𝐵(𝑡)  𝑎𝑛𝑑  𝑒𝐴(𝑡) = (1 −  𝑟) − 𝑟𝐴(𝑡) 

 
In order to solve the ratiometric problem, they analyze the realistic and technological constrains 

that occur in experimental microfluidic platforms, and conclude that there are two possible 

implementations for the input signals 𝑢 (𝑡) = [𝑢𝑎(𝑡), 𝑢𝑝(𝑡)]
𝑇
 that can be generated by the 

actuators: The T-Junction implementation and the Dial-A-Wave (DAW) system. Using these 

implementations, they finally define the three controllers. First, in the Bang-Bang controller 

implemented via a T-junction, secondly, the PI controller implemented via DAW and lastly the 

Model Predictive Controller also implemented via DAW [5]. 

With all the controllers already defined, they begin with the in-silico testing. After fixing some 

control inputs, they started with a batch of numerical simulations in Matlab, obtaining the evolution 

of the errors, 𝑒𝐴(𝑡) and 𝑒𝐵(𝑡), and of the inputs 𝑢𝑎(𝑡), 𝑢𝑝(𝑡) (Figure 25). The Bang-Bang 

controller shows good performance, Figure 25 (a) and (b). However, the PI controller shows half 

the settling time and lower error values at the steady state, compared with the Bang-Bang 

controller, Figure 25 (c) and (d). Finally the MPC controller seems to be the best strategy with a 

settling time almost 40% shorter than the one of PI, Figure 25 (e) and (f) [5]  
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Figure 25: Evolution in time of the error signals and the control inputs [5]. 

 

 
 

 
 

 
Figure 26: Snapshots of a BSim simulation performed using the MPC algorithm. Red cells belong to 𝐴𝑡, green cells to 𝐵𝑡 and 

intermediate colored cells to 𝐶𝑡. The bottom panel shows the corresponding control input [5]. 
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Figure 27: BSim simulations: evolution in time of the error signals [5]. 

 

To obtain more accurate simulations they used BSim extended with an Euler-Maruyama solver. 

In Figure 26 (a), (b) and (c) we can see the snapshots of the simulation where the red cells represent 

the bacteria belonging to 𝐴𝑡, the green cells the bacteria belonging to 𝐵𝑡 and the ones with 

intermediate coloration the bacteria belonging to 𝐶𝑡 .Then, in Figure 27 it is represented the 

evolution of the error signals 𝑒𝐴(𝑡) and 𝑒𝐵(𝑡). Comparing with the error signals evolution of the 

Matlab simulations, the BSim simulations show bigger fluctuations, but the average error evolution 

is qualitative the same, what proves the good performance of the controllers [5].  

The model proposed sorts out the problem of dynamic equilibrium as is intrinsically robust to 

extinction events. Furthermore, this research provides a very interesting approach if you are 

interested in controlling the populations ratio externally or in having the possibility of changing the 

ratios online in real time. Unfortunately, this approach is not suitable in situation in which the final 

goal is to have a self-regulated system in which the cells in the populations have the capacity to 

autoregulate their ratios, as you must provide the system with this external control inputs. 
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3. Self-regulation of cell population model 

3.1. Mathematical model 

In this project we propose a novel approach to the problem of stable co-existence in microbial 

consortia by means of self-regulation of the cell population. The aim is to develop an alternative 

strategy to those presented in section Stable co-existence in microbial consortia, for the stabilization 

of the relative population numbers (i.e. ratio) in microbial consortium. With this objective in mind, 

we consider the case in which there exists a bistable memory mechanism inside each cell, such as 

the genetic toggle switch, whose current internal state defines which of the two possible populations 

the cell belongs to. Then, by communicating via quorum sensing molecules the cells are capable of 

self-regulating their ratios. This way, if one of the two populations increases its number of cells with 

respect to the other, the system can stabilize the situation, equalizing both populations. This desired 

behavior is illustrated in Figure 28, where it can be seen how an initially unbalanced consortium, 

that is with different number of cells belonging to each population, can reach the stabilization of the 

ratio after some time t.  

The genetic toggle switch consists, as usual, of two repressor proteins, let’s say P1 and P2, that 

repress each other’s expression, so that only one of them is fully expressed at any time. This way, if 

a cell is expressing P1 due to the current state of the toggle switch, the cell belongs to Population 1 

and vice versa. However, in order to accomplish the objectives explained above, the system must 

include not only the genetic toggle switch but also some communication mechanism to ensure the 

communication between all the cells in the consortium and a biological comparator in charge of 

sensing the unbalance in the consortium and then acting accordingly on the toggle switch.  

 

 
 

Figure 28: Abstract representation of the control scenario. The red and green rectangles represent the cells belonging 

to population i and j respectively. Number of cells N=20. On the left it is represented the initial state of the unbalanced 

consortium whose population ratio is different from 0.5 (16 red cells and 4 green cells). On the right it is represented 

the state of the consortium after some time t. The system has self-regulated the cell populations reaching the desired 

ratio of 0.5 (10 red and green cells).  
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As explained above, we need to extra ingredients: 

• Communication mechanism: The communication between the cells is realized by 

means of a quorum sensing mechanism [16]. Each cell secretes a small signaling 

molecule which diffuses in and out the cell, this way these molecules have different 

concentrations inside each cell and outside of them. Thus, the concentration of signaling 

molecules in the environment is proportional to the densities of each population.  

• Comparator and actuator: To compare the sensed populations densities, we need two 

molecules, where one molecule sequesters the other inhibiting its function. Finally, the 

remainder of subtracting the expression of the two molecules is expressed. 

The representation of the biological implementation is illustrated in Figure 29:.This scheme 

represents the auto-regulation system inside each cell and the communication between all the cells 

through the environment in a two populations consortium. In the consortium, each cell will express 

either P1 (i.e. P1 >> P2) or P2 (i.e. P2 >> P1), which defines the current population they belong to, 

Population 1 or Population 2, respectively. We denote with N1 and N2 the number of cells belonging 

to Population 1 and Population 2, respectively (being the total population of the consortium N= N1 

+ N2). The quorum sensing molecules 𝑆1
  and 𝑆2

  are produced proportionally to P1 and P2. The 

concentration of molecules 𝑆1
  and 𝑆2

  inside a cell are 𝑆1
𝑖𝑛 and 𝑆2

𝑖𝑛 and the global concentration of 

𝑆1
  and 𝑆2

  in the environment are 𝑆1
𝑒 and 𝑆2

𝑒. At steady state, the concentrations 𝑆1
𝑒 and 𝑆2

𝑒, will 

reach values that are proportional to the densities (and hence the number) of cells in each population. 

Such quantities are used by the control system as "measures" of the current populations ratio. These 

molecules activate the production of molecules AP1 (Anti- P1) and AP2 (Anti- P2). These two species 

combine together in an inert molecule annihilating each other. If the two populations are not 

balanced, one of these two molecules, either AP1 or AP2, is produced in excess and it will influence 

the expression of the toggle switch. Specifically, if AP1 is produced in excess, it will promote P2 and 

thus making the cell pass from Population 1 to Population 2. Vice versa for AP2. 
 

 
 

Figure 29:Abstract biological implementation of the self-regulation of cell population model. Each cell expresses 

protein 𝑃1 or 𝑃2 (circles) depending on the current internal state of the toggle switch. Proportional to these proteins 

they produce the quorum sensing molecules (ovals) 𝑆1
  and 𝑆2

  whose internal and external concentrations are 𝑆𝑖
𝑖𝑛 and 

𝑆𝑖
𝑒 ,rrespectively. These molecules activate the production of the comparator molecules AP1 and AP2 (Yellow and violet) 

and the remainder of the subtraction of both quantities promotes the expression of the protein Pi related with the 

population with a smaller number of cells.  



Self-regulation of cell population in microbial consortia 

Marta González Larequi 

39 

 

 

 

For example, if a cell belongs to Population 1 then P1 > P2 inside the cell and as the quorum 

sensing signaling molecules, 𝑆1
𝑖𝑛 and 𝑆2

𝑖𝑛, are produced proportional to P1 and P2, then 𝑆1
𝑖𝑛 > 𝑆2

𝑖𝑛 

inside the cell increasing the proportion of 𝑆1
𝑒 in the environment. If in the consortium N1 >N2, then 

𝑆1
𝑒 > 𝑆2

𝑒 in the environment. In this situation, inside the cells AP1 > AP2, meaning that AP2 is 

practically absent and the remaining portion of AP1 (that is AP1 - AP2) will promote the expression 

of P2. When this happens inside a cell belonging to Population 1 and if this action is strong enough, 

P2 will increase and the state of the toggle switch will change, turning the cell into a cell belonging 

to Population 2. This way, more cells will change their internal state from P1 to P2 balancing the cell 

population in the consortium. 

By P1 and P2 the concentrations of molecules P1 and P2 in each cell, the dynamical model of the 

toggle switch is given by: 

 

�̇�1 = 𝛼𝑝
𝑜 +

𝛼𝑝
 

1+(
𝑃2
𝜃𝑝
)
𝑛𝑝 − 𝑑𝑝 ∙ 𝑃1 + 𝑈1     (53) 

 

 

�̇�2 = 𝛼𝑝
𝑜 +

𝛼𝑝
 

1+(
𝑃1
𝜃𝑝
)
𝑛𝑝 − 𝑑𝑝 ∙ 𝑃2 + 𝑈2     (54) 

 

All the parameters are described in Table 1. This model was created taking as reference the 

toggle switch model described in [11], which is based on the Hill function for a repressor. This 

model also includes the degradation of the proteins inside the cell, −𝑑𝑝 ∙ 𝑃𝑖, and 𝑈1 and 𝑈2 which 

represent the effect of two inputs that can be used to toggle the switch between one state and the 

other. These inputs are defined as follows: 

𝑈1 = 𝛽𝑢
 ∙

𝐴𝑝2
𝑛𝑢

𝜃𝑢
𝑛𝑢+𝐴𝑝2

𝑛𝑢       (55) 

 

𝑈2 = 𝛽𝑢
 ∙

𝐴𝑝1
𝑛𝑢

𝜃𝑢
𝑛𝑢+𝐴𝑝1

𝑛𝑢       (56) 

 

This equations describe how the inputs of the toggle-switch 𝑈1 and 𝑈2 are associated with the 

concentrations of the molecules AP2 and AP1, that is 𝐴𝑝2
  and 𝐴𝑝1

 
, respectively, as shown in Figure 

29.  

Then, in order to define the dynamical equations for the comparator molecules AP1 and AP2 we 

took as reference the model of the co-regulation loop of [4]: 

 

�̇�𝑝1 = 𝛼𝐴𝑝
𝑜 + 𝛼𝐴𝑝

 ∙
𝑆1
𝑛𝐴𝑝

𝜃𝑠+𝑆1
𝑛𝐴𝑝 − 𝐾 ∙ 𝐴𝑝1 ∙ 𝐴𝑝2 − 𝑑𝐴𝑝 ∙ 𝐴𝑝1  (57) 

 

�̇�𝑝2 = 𝛼𝐴𝑝
𝑜 + 𝛼𝐴𝑝

 ∙
𝑆2
𝑛𝐴𝑝

𝜃𝑠
𝑛𝐴𝑝+𝑆2

𝑛𝐴𝑝 − 𝐾 ∙ 𝐴𝑝1 ∙ 𝐴𝑝2 − 𝑑𝐴𝑝 ∙ 𝐴𝑝2  (58)  



Self-regulation of cell population in microbial consortia 

Marta González Larequi 

40 

 

 

These equations describe how the production of the molecule APi is promoted by the quorum 

sensing molecule Si. At the same time, the concentration of APi decreases as the compound AP2:AP1 

is produced and because of the degradation inside the cell. 

Next, we defined the equations to describe the evolution of the concentrations of the quorum 

sensing molecules inside the cells, 𝑆1
𝑖𝑛 and 𝑆2

𝑖𝑛, using as reference both [11] and [4]: 

 

�̇�1
𝑖𝑛 = 𝑐𝑠 ∙ 𝑃1 − 𝑑𝑠 ∙ 𝑆1

𝑖𝑛 +  𝜂 ∙ (𝑆1
𝑒 − 𝑆1

𝑖𝑛)     (59) 

 

 

�̇�2
𝑖𝑛 = 𝑐𝑠 ∙ 𝑃2 − 𝑑𝑠 ∙ 𝑆2

𝑖𝑛 +  𝜂 ∙ (𝑆2
𝑒 − 𝑆2

𝑖𝑛)     (60) 

 

As described in Figure 29, the production of 𝑆1
𝑖𝑛 and 𝑆2

𝑖𝑛 is proportional to the expression of P1 

and P2, respectively. Simultaneously, they are degraded due to cell division. The last term in the 

equations represents the diffusion of the quorum sensing molecules across the cell membrane. 

On the other hand, taking again the research [11] as reference, the concentrations of the quorum 

sensing molecules secreted by the cells in the environment, 𝑆1
𝑒 and 𝑆2

𝑒, evolve according to: 

 

 �̇�1
𝑒 = 𝜂 ∙ ∑ (𝑆1

𝑖𝑛,𝑘 −  𝑆1
𝑒) −𝑁

𝑘=1 𝛾𝑒 ∙  𝑆1
𝑒    (61) 

 
 

�̇�2
𝑒 = 𝜂 ∙ ∑ (𝑆2

𝑖𝑛,𝑘 −  𝑆2
𝑒) −𝑁

𝑘=1 𝛾𝑒 ∙  𝑆2
𝑒     (62) 

 

Where instead of having degradation due to cell division, 𝑆1
𝑒 and 𝑆2

𝑒 are diluted due to wash out 

from the chemostat. 
 

Table 1: Parameters of the self-regulation control system 

𝛼𝑝
𝑜 Basal expression rate of species P 

𝛼𝑝
  Maximal expression rate of species P 

𝜃𝑝 Activation coefficient of species P 

𝑛𝑝, 𝑛𝑢, 𝑛𝐴𝑝 Hill coefficients 

𝑑𝑝, 𝑑𝐴𝑝, 𝑑𝑠 Degradation rates inside the cell 

𝛽𝑢
  Maximal promoter activity coefficient 

𝜃𝑢
  Activation coefficient of species U 

𝛼𝐴𝑝
𝑜  Basal expression rate of species Ap 

𝛼𝐴𝑝
  Maximal expression rate of species Ap 

𝜃𝑠 Dissociation constant of species S  

𝐾 Binding rate of effective annihilation 

𝑐𝑠 Synthesis rate of Sin 

 𝜂 Diffusion rate across cell membrane 

𝛾𝑒 Dilution rate in the environment 
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3.2. Non dimensional model 

 

The complexity of the model, described in the previous equations, makes difficult to select the 

good values for the parameters. For this reason, we decided to simplify the model assuming several 

hypotheses. First of all, we assumed that the species P and Ap don’t have a basal expression level 

(Equation 63). Then, we considered that all the species had the same Hill coefficients (Equation 64) 

and degradation rates (Equation 65).  

 

𝛼𝑝
𝑜 = 𝛼𝐴𝑝

𝑜 = 0        (63) 
𝑛𝑝 = 𝑛𝑢 = 𝑛𝐴𝑝 = 𝑛       (64) 
𝑑 = 𝑑𝑝 = 𝑑𝐴𝑝 = 𝑑𝑠       (65) 

 

Introducing all these considerations in equations 53 - 62 we obtain the following system of 

equations, being (i, j) = (1, 2): 

 

𝑑𝑃𝑖

𝑑𝑡
=

𝛼𝑝
 

1+(
𝑃𝑗

𝜃𝑝
)
𝑛 − 𝑑 ∙ 𝑃𝑖 + 𝛽𝑢

 ∙
𝐴𝑝𝑗
𝑛 

𝜃𝑢
𝑛 +𝐴

𝑝𝑗
𝑛      (66) 

 
𝑑𝐴𝑝𝑖

𝑑𝑡
= 𝛼𝐴𝑝

 ∙
𝑆𝑖
𝑛 

𝜃𝑠+𝑆𝑖
𝑛 − 𝐾 ∙ 𝐴𝑝𝑖 ∙ 𝐴𝑝𝑗 − 𝑑 ∙ 𝐴𝑝𝑖    (67) 

 
𝑑𝑆𝑖
𝑖𝑛

𝑑𝑡
= 𝑐𝑠 ∙ 𝑃𝑖 − 𝑑 ∙ 𝑆𝑖

𝑖𝑛 +  𝜂 ∙ (𝑆𝑖
𝑒 − 𝑆𝑖

𝑖𝑛)     (68) 

 
𝑑𝑆𝑖
𝑒

𝑑𝑡
= 𝜂 ∙ ∑ (𝑆𝑖

𝑖𝑛,𝑘 −  𝑆𝑖
𝑒) −𝑁

𝑘=1 𝛾𝑒 ∙  𝑆𝑖
𝑒     (69) 

Where the equations 66 – 68 hold for every k-th cell while the Equation 69 represents the 

concentrations of the quorum sensing molecules secreted by the cells in the environment. 

Then using the dimensionless state variables �̃�𝑖 =
𝑃𝑖

𝜃𝑝
,  �̃�𝑝𝑖 =

𝐴𝑝𝑖

𝜃𝑢
, �̃�𝑖
𝑖𝑛
 
=
𝑆𝑖
𝑖𝑛
 

𝜃𝑠
, �̃�𝑖
𝑒
 
=
𝑆𝑖
𝑒
 

𝜃𝑠
 and 

time 𝑡′ = 𝑑 ∙ 𝑡,  we obtain the final simplified model as follows: 

1)  

𝑑�̃�𝑖

𝑑𝑡′
=
𝑑𝑃𝑖

𝑑𝑡
∙
1

𝜃𝑝∙𝑑
=

1

𝜃𝑝∙𝑑
∙

𝛼𝑝
 

1+(�̃�𝑗)
𝑛 − �̃�𝑖 +

1

𝜃𝑢∙𝑑
∙ 𝛽𝑢

 ∙
(�̃�𝑝𝑗)

𝑛

1+(�̃�𝑝𝑗)
𝑛  (70) 

 

Considering α̃p
 =

𝛼𝑝
 

θp∙d
 and β̃u

 =
𝛽𝑢
 

θu∙d
 the final simplification of the Equation 67 is: 

 

𝑑�̃�𝑖

𝑑𝑡′
=

�̃�𝑝
 

1+(�̃�𝑗)
𝑛 − �̃�𝑖 + 𝛽𝑢

 ∙
(�̃�𝑝𝑗)

𝑛

1+(�̃�𝑝𝑗)
𝑛     (71) 
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2) 

𝑑�̃�𝑝𝑖

𝑑𝑡′
=
𝑑𝐴𝑝𝑖

𝑑𝑡
∙
1

𝜃𝑢∙𝑑
=

1

𝜃𝑢∙𝑑
∙ 𝛼𝐴𝑝

 ∙
(�̃�𝑖
𝑖𝑛)

𝑛

1+(�̃�𝑖
𝑖𝑛)

𝑛 −
1

𝜃𝑢∙𝑑
∙ 𝐾 ∙ 𝜃𝑢

2 ∙ �̃�𝑝𝑖 ∙ �̃�𝑝𝑗 − �̃�𝑝𝑖 (72) 

 

Considering α̃Ap
 =

𝛼𝐴𝑝
 

θu∙d
 and K̃ =

K∙θu

d
 the final simplification of the Equation 68 is: 

 

𝑑�̃�𝑝𝑖

𝑑𝑡′
= �̃�𝐴𝑝

 ∙
(�̃�𝑖
𝑖𝑛)

𝑛

1+(�̃�𝑖
𝑖𝑛)

𝑛 − �̃� ∙ �̃�𝑝𝑖 ∙ �̃�𝑝𝑗 − �̃�𝑝𝑖    (73) 

 

3) 

𝑑�̃�𝑖
𝑖𝑛

𝑑𝑡′
=
𝑑𝑆𝑖
𝑖𝑛

𝑑𝑡
∙
1

𝜃𝑠∙𝑑
=

1

𝜃𝑠∙𝑑
∙ 𝑐𝑠 ∙ 𝜃𝑝 ∙ �̃�𝑖 − �̃�𝑖

𝑖𝑛 + 
1

𝑑
∙ 𝜂 ∙ (�̃�𝑖

𝑒
 
− �̃�𝑖

𝑖𝑛)   (74) 

 

Considering �̃�𝑠 =
𝑐𝑠∙𝜃𝑝

𝜃𝑠∙𝑑  
 and �̃� =

𝜂

𝑑
 the final simplification of the Equation 69 is: 

 

𝑑�̃�𝑖
𝑖𝑛

𝑑𝑡′
= �̃�𝑠 ∙ �̃�𝑖 − �̃�𝑖

𝑖𝑛 + �̃� ∙ (�̃�𝑖
𝑒
 
− �̃�𝑖

𝑖𝑛)     (75) 

4) 
𝑑�̃�𝑖

𝑒

𝑑𝑡′
=
𝑑𝑆𝑖
𝑒

𝑑𝑡
∙
1

𝜃𝑠∙𝑑
=
1

𝑑
∙ 𝜂 ∙ ∑ (�̃�𝑖

𝑖𝑛,𝑘 − �̃�𝑖
𝑒
 
) −𝑁

𝑘=1
1

𝑑
∙ 𝛾𝑒 ∙ �̃�𝑖

𝑒   (76) 

 

Considering �̃�𝑒 =
𝛾𝑒

𝑑
 and �̃� =

𝜂

𝑑
 the final simplification of the Equation 70 is: 

 

𝑑�̃�𝑖
𝑒

𝑑𝑡′
= �̃� ∙ ∑ (�̃�𝑖

𝑖𝑛,𝑘 − �̃�𝑖
𝑒
 
) −𝑁

𝑘=1 �̃�𝑒 ∙ �̃�𝑖
𝑒      (77) 

 

The final simplified dynamical model for every k-th cell, being (i, j) = (1, 2), is then: 

 

𝑑�̃�𝑖
𝑑𝑡′

=
�̃�𝑝
 

1 + (�̃�𝑗)
𝑛 
− �̃�𝑖 + �̃�𝑢

 ∙
(�̃�𝑝𝑗)

𝑛

1 + (�̃�𝑝𝑗)
𝑛 

 
𝑑�̃�𝑝𝑖
𝑑𝑡′

= �̃�𝐴𝑝
 ∙

(�̃�𝑖
𝑖𝑛)

𝑛

1 + (�̃�𝑖
𝑖𝑛)

𝑛 − �̃� ∙ �̃�𝑝𝑖 ∙ �̃�𝑝𝑗 − �̃�𝑝𝑖 

 
𝑑�̃�𝑖

𝑖𝑛

𝑑𝑡′
= �̃�𝑠 ∙ �̃�𝑖 − �̃�𝑖

𝑖𝑛 + �̃� ∙ (�̃�𝑖
𝑒
 
− �̃�𝑖

𝑖𝑛) 

 

 

 

 (78) 

And the simplified equation for the concentrations of the quorum sensing molecules secreted 

by the cells in the environment, being (i, j) = (1, 2), is: 

 

𝑑�̃�𝑖
𝑒

𝑑𝑡′
= �̃� ∙ ∑ (�̃�𝑖

𝑖𝑛,𝑘 − �̃�𝑖
𝑒
 
) −𝑁

𝑘=1 �̃�𝑒 ∙ �̃�𝑖
𝑒      (79)  
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3.3. Parameters definition 

 

The first step we made in the selection of the parameter’s value, was to find the relation between 

the parameters �̃�𝑝
  and 𝛽𝑢

  of the toggle switch equations (Equation 78.1), which ensures the desired 

behavior of the toggle switch. For this aim, we analyze the nullclines with the MATLAB function 

Pplane selecting high values of �̃�𝑝𝑗 (so that, 
(�̃�𝑝𝑗)

𝑛

1+(�̃�𝑝𝑗)
𝑛 ≈ 1) and look for the critical value (i.e., the 

bifurcation point) that led to only one equilibrium point. After this analysis we came up with the 

following condition: 

𝛽𝑢
 >

1

�̃�𝑝
        (80) 

Next, we took into account that the communication between the cells needs to be faster than the 

comparator mechanism and the toggle switch, because  in this way we make sure that the cell will 

not change its internal state (that is the population it belongs to) unless it is necessary due to a 

detected unbalance of the quorum sensing molecules in the environment. Otherwise, if the 

communication were slower, the comparison process would start inside the cell prematurely and it 

could promote the change in its state erroneously because the information received from the quorum 

sensing molecules would not be updated. For this reason, we needed to ensure a very high diffusion 

rate: 

 

𝜂 ≫ 𝑑𝑠 = 𝑑 → 𝐻𝑖𝑔ℎ �̃�       (81) 

 

Finally, following the same reasoning than above we considered that not only the 

communication block should be the fastest one but also that the comparison block must be faster 

than the toggle switch to ensure a correct performance of the model. With this rate relation in mind 

(Communication > Comparison > Toggle Switch) we defined the rest of the parameters (Table 2). 

 
Table 2: Nominal parameters of the simplified system 

𝑛 2 

�̃�𝑝
  4 

𝛽𝑢
  3 

�̃�𝐴𝑝
  1 

�̃�  3.5 

�̃�𝑠 1 

 �̃� 10 

�̃�𝑒 1.5 
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3.4. Numerical validation 

 

First of all, taking as reference the problem statement defined in [5], we denoted ℕ as the finite 

set of cells in the consortium with 𝑁(𝑡) = |ℕ| its cardinality and we defined the three different sets 

the i-th cell can belong to at time t: 

 

𝐴𝑡: = {𝑖 ∈ ℕ ∶  𝑃1
𝑖(𝑡) > 2 ∙ 𝑃2

𝑖(𝑡)}     (82) 

𝐵𝑡: = {𝑖 ∈ ℕ ∶  𝑃2
𝑖(𝑡) > 2 ∙ 𝑃1

𝑖(𝑡)}     (83) 

𝐶𝑡: = {𝑖 ∈ ℕ ∶  𝑖 ∉ 𝐴𝑡 ∉ 𝐵𝑡}      (84) 

 

This way, if a cell meets the conditions of set 𝐴𝑡 (𝑖 ∈ 𝐴𝑡), 𝐵𝑡 (𝑖 ∈ 𝐵𝑡),  or 𝐶𝑡 (𝑖 ∈ 𝐶𝑡) , we 

consider that this cell belongs to Population 1, to Population 2 or to no population at time t, 

respectively. Moreover, we denoted 𝑛𝐴(𝑡), 𝑛𝐵(𝑡) and 𝑛𝐶(𝑡) the cardinalities of 𝐴𝑡, 𝐵𝑡and 𝐶𝑡, 
respectively. And finally, in order to check the efficacy of the model we defined the ratio of cells 

belonging to Population 1 (Equation 85), Population 2 (Equation 86) and no Population (Equation 

87), at time t as: 

𝑟1(𝑡) =  
𝑛𝐴(𝑡)

𝑁
       (85) 

𝑟2(𝑡) =  
𝑛𝐵(𝑡)

𝑁
       (86) 

𝑟12(𝑡) =  
𝑛𝐶(𝑡)

𝑁
       (87) 

 

Then with the simplified model defined and the nominal parameters selected (Table 2) we used 

MATLAB to test the system performance. For this aim, we considered a consortium composed by 

100 identical cells. We performed 50 simulations where the initial state of the P1 and P2 variables in 

each cell are randomly defined with a uniform distribution in the interval [0 – 5], . The rest of the 

variables (𝐴𝑝1, 𝐴𝑝2, 𝑆1
𝑖𝑛, 𝑆2

𝑖𝑛, 𝑆1
𝑒 , 𝑆2

𝑒) are initially equal to zero. From these simulations we 

computed the mean relative error and the mean settling time (see Appendix 1). 

The results obtained from these simulations are a mean relative error of 2.44% and a mean 

settling time of 50.2906. This demonstrates that, even if we obtain a small error, the system is always 

capable to self-regulate the population ratio almost perfectly. The results of one of these simulations 

is represented in Figure 30. In this figure we can see the evolution in time of the ratios 𝑟1, 𝑟2 and 𝑟12 

of the cells belonging to sets 𝐴𝑡, 𝐵𝑡 and 𝐶𝑡, respectively. This illustration shows how the consortium 

is capable of stabilize its own population numbers after some time. 
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Figure 30: Ratios evolution in time of a simulation of the simplified model. N=100 cells and 50 simulations. The 

evolution of the ratios 𝑟1, 𝑟2 and 𝑟12 are represented in blue, red and green respectively. It can be seen how the system 

starts with an unbalance in the ratios (𝑟1 = 0.23, 𝑟2 = 0.29 𝑎𝑛𝑑 𝑟12 = 0.48)  and progresively is capable of self-

regulate them with a settling time of 49 t.u. and a relative error of 2% (𝑟1 = 0.49, 𝑟2 = 0.51 𝑎𝑛𝑑 𝑟12 = 0).   

Once the effectiveness of the model was demonstrated, we wanted to analyze its robustness 

against different perturbations of the nominal case. For this aim, we performed several tests that are 

explained in the following subsections. The simulation plan is composed by three different tests: 

1. Robustness to parameters perturbation with identical cells: This test aims analyzing the 

role of each parameter in the model and its robustness to changes in the parameter’s 

value. We simulated the whole system changing each time the value of a single 

parameter (between 20 different values) in the nominal simplified model. With each 

different value of the parameters we performed 50 simulations with different initial 

conditions and obtain the mean and standard deviation of the relative error and settling 

time of the evolution of the ratios. 

2. Ratio tuning: The objective of this test was to find how the ratio of the two populations 

can be tuned to a desired value different to 0.5. Introducing an unbalance in the 

comparator block we created an unbalance in the final ratio. This unbalance was created 

by introducing an offset in the nominal value of the parameter α̃Ap
 . We varied this 

offset between 20 different values and performed 50 simulations with different initial 

conditions and obtained the average value of the ratios of the two populations with the 

different offset values. 

3. Robustness to cells heterogeneity: The aim of this test was to analyze the robustness of 

the design to cell-to-cell variability. We changed the parameters of each cell in the 

consortium by drawing them from a normal distribution centered on the nominal values 

and varying the value of the coefficient of variation. We simulated the model 50 times with 

each value of coefficient of variation (20 different values) and obtained the mean and 

standard deviation of the relative error and settling time of the ratios at steady state.  
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3.4.1. Robustness to parameters perturbation with identical cells 

 

First of all, we wanted to analyze the role of each parameter in the model and its robustness to 

changes in the parameter’s value. For this aim, we simulated the whole system changing each time 

the value of a single parameter in the nominal simplified model. We considered a consortium of 100 

identical cells. Being Pnom the nominal value of each parameter (Table 2), we varied each 

parameter in the interval described in the Equation 88 and sampled uniformly 20 values in such 

interval. 

𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 =   (𝑃𝑛𝑜𝑚 − 60% ∙ 𝑃𝑛𝑜𝑚,   𝑃𝑛𝑜𝑚 + 60% ∙ 𝑃𝑛𝑜𝑚) (88) 

Then for each parameter variation we computed 50 simulations with random initial conditions 

and obtained the mean and standard deviation of the relative error and settling time of the time 

evolution of the ratios r1 and r2. In the following figures (31 – 42) the evolution of the mean relative 

error and mean settling time with the variation of the parameters are illustrated. The sub index “s” 

in the figures indicates that the varied parameters are the ones of the simplified model (see Appendix 

2). 

In Figure 31 and Figure 32 is represented the evolution of the mean relative error and mean 

settling time of the time evolution of the ratios, r1 and r2, with the evolution the parameter �̃�𝐴𝑝
 . We 

can see how the relative error remains practically constant, around 4%-6%, until it reaches the 

limiting value of 1.158 after which the error increases rapidly until it reaches the 100% error with 

�̃�𝐴𝑝
  ≥ 1.221. Meanwhile, the settling time increases (from 18.65 t.u.) as �̃�𝐴𝑝

 
 increases until it hits 

the limiting value 1.158, where it achieves its maximum with 92.42 t.u. We can conclude then that, 

by decreasing the value of �̃�𝐴𝑝
 

, we could decrease the settling time (up to 73 t.u.) of the system 

without a significant increase in the relative error. 

Figure 33 and Figure 34 show the evolution of the mean relative error and mean settling time 

with the evolution of �̃� . This time, the limiting value (2.505) is reached by decreasing the parameter. 

Again, until �̃�  reaches this value, the mean relative error seems to be constant around 4%, and then 

increases to 100% with �̃� ≤ 2.284. The settling time increases, from 30.73 t.u., as the parameter 

decreases until it achieves the limiting value 2.505 where it hits the maximum settling time of 88.33 

t.u. From this analysis we can depict that we could decrease the final settling time (up to 57 t.u.) by 

increasing the value of �̃�  without an increase in the relative error. 

In the case of the parameter �̃�𝑠, whose results are illustrated in Figure 35 and Figure 36, we can 

see that it does not reach a limiting value after which the system stops working. The mean relative 

error does not experiment important variations and fluctuates between 4.8% and 2.5%. However, 

the mean settling time increases as the value of �̃�𝑠 increases, going from a minimum of 17.96 t.u. to 

a maximum of 79.38 t.u. Then we can assume that by decreasing the value of �̃�𝑠 we can decrease 

the final settling time up to 61 t.u. 

In Figure 37 and Figure 38 is illustrated the evolution of the mean relative error and settling time 

for different values of  �̃�. We can see a similar behavior to that of �̃� . The mean relative error remains 

quite constant (2% - 3%) until the parameter decrease enough to reach its limiting value (4.632). 

The settling time increases also as  �̃� decreases until it hits the limiting value. Nevertheless, this time 
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the variation of the settling time is lower than with �̃� . It goes from a maximum of 85.56 t.u. to a 

minimum of 44.73 t.u. For this reason, we could also increase the value of  �̃� in order to decrease 

the final settling time, but this action would not have an impact as significant as the other strategies 

mentioned before.  

In the same way, the behavior of the mean relative error and mean settling time versus the 

evolution of 𝛽𝑢
 , represented in Figure 39 and Figure 40, is similar to the one obtained with �̃�𝐴𝑝

 
. This 

time the limiting value is 3.474. Until 𝛽𝑢
  reaches it, the mean relative error is practically constant (2.5% 

- 5%) and as happened with �̃�𝐴𝑝
 

, the settling time increases (from 19.79 t.u. to 86.94 t.u.) as the 

value of 𝛽𝑢
  increases until it hits the limiting value, after which the system fails. Again, we can 

conclude that we can decrease the settling time significantly (up to 67 t.u.) by decreasing the value 

of 𝛽𝑢
 . 

Finally, Figure 41 and Figure 42 represent the evolution of the mean relative error and mean 

settling time with the evolution of �̃�𝑝
 

. As with �̃�  and  �̃� the limiting value (3.621) is obtained 

decreasing the value of the parameter. The mean relative error is also practically constant (around 

3%) until it reaches the limiting value. As before the settling time increases as the value of 

�̃�𝑝
 decreases (from 18.3 t.u. to 82.57). With the same criteria, we can confirm that decreasing the 

value of �̃�𝑝
 

 we can decrease the final settling time (up to 64 t.u.) without increasing the relative error. 
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Figure 31:Evolution of the mean relative error of the time evolution of the ratios, r1 and r2, with the evolution the 

parameter �̃�𝐴𝑝
 . With values of  �̃�𝐴𝑝

  higher than 1.158 the system starts to fail, reaching the 100% relative error with 

�̃�𝐴𝑝
  ≥ 1.221. 

 
Figure 32: Evolution of the mean settling time of the time evolution of the ratios, r1 and r2, with the evolution the 

parameter �̃�𝐴𝑝
 . The increase of �̃�𝐴𝑝

  produces an increase in the settling time. The maximum settling time (92.42 t.u.) 

is obtained with �̃�𝐴𝑝
 = 1.158. With higher values the system fails.  



Self-regulation of cell population in microbial consortia 

Marta González Larequi 

49 

 

 

 
Figure 33: Evolution of the mean relative error of the time evolution of the ratios, r1 and r2, with the evolution the 

parameter 𝐾. With values of 𝐾 lower than 2.505 the system starts to fail, reaching the 100% relative error with 𝐾 ≤
2.284. 

 
Figure 34: Evolution of the mean settling time of the time evolution of the ratios, r1 and r2, with the evolution the 

parameter 𝐾. The decrease of 𝐾 produces an increase in the settling time. The maximum settling time (88.33 t.u.) is 

obtained with 𝐾 = 2.505. With lower values the system fails.  
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Figure 35: Evolution of the mean relative error of the time evolution of the ratios, r1 and r2, with the evolution the 

parameter �̃�𝑠. The changes in �̃�𝑠 doesn’t lead to big changes in the error. We can see an almost insignificant increase 

of the mean relative error with the decrease of �̃�𝑠. 

 
Figure 36: Evolution of the mean settling time of the time evolution of the ratios, r1 and r2, with the evolution the 

parameter �̃�𝑠. The increase of �̃�𝑠 produces an increase in the settling time. The system doesn’t reach a limiting value 

of �̃�𝑠 which leads to failure.  
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Figure 37: Evolution of the mean relative error of the time evolution of the ratios, r1 and r2, with the evolution the 

parameter  𝜂. With values  𝜂 of lower than 4.632 the system starts to fail. 

 
Figure 38 Evolution of the mean settling time of the time evolution of the ratios, r1 and r2, with the evolution the 

parameter  𝜂. The decrease of  𝜂 produces an increase in the settling time. The maximum settling time (85.56 t.u.) is 

obtained with 𝜂 = 4.632. With lower values the system fails.  
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Figure 39: Evolution of the mean relative error of the time evolution of the ratios, r1 and r2, with the evolution the 

parameter �̃�𝑢
 . With values of �̃�𝑢

  higher than 3.474 the system starts to fail, reaching the 100% relative error with �̃�𝑢
 ≥

3.853. 

 
Figure 40: Evolution of the mean settling time of the time evolution of the ratios, r1 and r2, with the evolution the 

parameter �̃�𝑢
 . The increase of �̃�𝑢

  produces an increase in the settling time. The maximum settling time (86.94 t.u.) is 

obtained with �̃�𝑢
 = 3.474. With higher values the system fails.  
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Figure 41: Evolution of the mean relative error of the time evolution of the ratios, r1 and r2, with the evolution the 

parameter �̃�𝑝
 . With values of �̃�𝑝

  lower than 3.621 the system starts to fail, reaching the 100% relative error with �̃�𝑝
  ≥

3.368. 

 
Figure 42: Evolution of the mean settling time of the time evolution of the ratios, r1 and r2, with the evolution the 

parameter �̃�𝑝
 . The decrease of �̃�𝑝

  produces an increase in the settling time. The maximum settling time (82.57 t.u.) is 

obtained with �̃�𝑝
 = 3.621. With higher values the system fails  
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3.4.2. Ratio tuning 

 

The purpose of this analysis was to find how the ratio of the two populations can be tuned to a 

desired value different to 0.5. For this aim, we wanted to demonstrate that introducing an unbalance 

in the comparator block, that is in the Api equations, we could obtain an unbalance in the final ratio.  

This unbalance in the Api equations was created by giving a different value of the parameter 

α̃Ap
  for the Ap1 and Ap2 equations. For this purpose, we introduced an offset in the nominal value 

of the parameter α̃Ap
 , creating this way two new parameters: 

 

�̃�𝐴𝑝1
 = �̃�𝐴𝑝

 +
𝑂𝑓𝑓𝑠𝑒𝑡

2
       (89) 

 

�̃�𝐴𝑝2
 = �̃�𝐴𝑝

 −
𝑂𝑓𝑓𝑠𝑒𝑡

2 
       (90) 

These two parameters were then introduced in the model having the following Api equations: 

 

𝑑�̃�𝑝1

𝑑𝑡′
= �̃�𝐴𝑝1

 ∙
(�̃�1
𝑖𝑛)

𝑛

1+(�̃�1
𝑖𝑛)

𝑛 − �̃� ∙ �̃�𝑝1 ∙ �̃�𝑝2 − �̃�𝑝2   (91) 

 
𝑑�̃�𝑝2

𝑑𝑡′
= �̃�𝐴𝑝2

 ∙
(�̃�2
𝑖𝑛)

𝑛

1+(�̃�2
𝑖𝑛)

𝑛 − �̃� ∙ �̃�𝑝1 ∙ �̃�𝑝2 − �̃�𝑝2   (92) 

 

To analyze the impact of this offset in the final ratio, the value of the offset changed between 20 

different values from -0.8 to 0.8. This way the parameters α̃Ap1
  and α̃Ap2

  varied from 0.6 to 1.4.  

As before, we performed 50 simulations with different initial conditions for each value of the 

offset and computed the mean and standard deviation of the final ratio obtained from these 

simulations. This time, we decided to illustrate the evolution of the final ratios and the standard 

deviation as result of the different offset values. The results are illustrated in Figure 43. We can 

clearly see that there exists a correlation between the value of the offset and the final population 

ratios. With a 0 offset the system equalize both populations (0.5 ratios), and as the offset increases 

(or decreases) the difference between the two ratios also increases (decreases) linearly. Finally, with 

an offset of 0.8 (-0.8) the ratio relation ends up being 0:1 (1:0) (see Appendix 3).  

The results obtained in this graph are especially interesting because they can definitely be used 

as a useful and easy tool to modulate the ratios of the populations. You just need to decide the desired 

final ratio of the populations and look at the graph to find the corresponding offset. 

On the other hand, the standard deviation is around ±0.02. We can consider it a low standard 

deviation, that, for our particular case, is good as it indicates that the ratios tend to be very close to 

the final mean. This implies that using this graph as reference is a reliable method to define future 

consortia with specific population ratios.  
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Figure 43: Analysis of the influence of the offset in the final ratios. The red and blue lines represent the value of the 

ratios of Population 1 and Population 2 at steady state, respectively. The vertical lines represent the standard deviation 

of the final ratios. The initial ratio with 0 offset is 0.5:0.5. As the offset increases (decreases) the final value of the 

ratios also increases (decreases) reaching the 0:1 (1:0) ratio with an offset of +0.8 (-0.8). 

 
 

  



Self-regulation of cell population in microbial consortia 

Marta González Larequi 

56 

 

 

3.4.3. Robustness to cells heterogeneity  

 

Finally, we wanted to analyze the robustness of the design to cell-to-cell variability, that is, to 

perturbations in the parameters of each cell. This is very important test because, in a real cell 

consortium all the cells are going to have different parameters, so this analysis shows the actual 

viability of the model to be implemented in the future.  

For this aim, we changed the parameters of each cell in the consortium (100 cells) by drawing 

them from a normal distribution centered on the nominal values (Table 2), and with a standard 

deviation, 𝑆𝑇𝐷 = 𝐶𝑉 ∗ 𝑃𝑛𝑜𝑚 , being 𝑃𝑛𝑜𝑚 and 𝐶𝑉 the nominal values of the parameters and 

the coefficient of variation, respectively. To analyze effect of these perturbations, we simulated the 

model for 20 different values of CV in the interval [0 – 50%]. As before, we performed 50 

simulations for each coefficient of variation and obtained the mean and standard deviation of the 

relative error and settling time of the ratios at steady state (see Appendix 4).  

The results obtained from these simulations are illustrated in Figure 44 and Figure 45. First, we 

can see how the mean relative error clearly increases as the coefficient of variation increases. With 

a 0% coefficient of variation, that is with all the cells having the same parameters, we obtain a 3.3% 

relative error, this means that the final ratios accomplish almost the 0.5:0.5 ratio. However, with a 

coefficient of variation of 50% the final mean relative error obtained is 54%.  

In the case of the settling time, we observe the opposite behavior, as the coefficient of variation 

increases the settling time decreases. With a 0% coefficient of variation the system shows a settling 

time of 52.2 t.u., while with 50% coefficient of variation it takes only 1.809 t.u. We can deduce that, 

even if the final relative error is increased because of the cell heterogeneity, this effect is countered 

by the increase in the system speed to reach the final ratios. These results make sense because the 

increase in the heterogeneity of the cells accelerates the toggle switch convergence. This way, 

allowing an extra error in the regulation we can have a faster convergence.  

These results demonstrate the robustness of the model to cells heterogeneity. We performed our 

simulations up to 50% coefficient of variation because we wanted to see how the system would 

behave with high levels of heterogeneity. However, we can consider that a realistic system would 

have around 20% coefficient of variation. In this condition, the relative error increase of +30% while 

the settling time is about -50%, which is good. 
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Figure 44: Relative error of the steady state values of the ratios, r1 and r2, with respect to change of coefficient of 

variation of the parameters. As the coefficient of variation increases the relative error also increases, reaching a 

maximum of 54% with a 50% of coefficient of variation. 

 
Figure 45: Settling time of the steady-state values of the ratios, r1 and r2, with respect to change of coefficient of 

variation of the parameters. As the coefficient of variation increases the settling time decreases, reaching a minimum 

of 1.809 t.u. with a 50% of coefficient of variation.  
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4. Conclusions 
 

This master thesis was focused on developing new multicellular strategies for the 

problem of stable co-existence in microbial consortia. More precisely, we aimed to create 

a mathematical model for the regulation of the ratio in a two populations consortium. The 

main novelty of the idea was to use a bistable memory mechanism inside each cell, the 

toggle switch, to introduce a self-regulation capability in the cells. This makes them able 

to auto regulate the consortium ratios without the need of external inputs or auxiliar cells, 

as presented in previous works. 

These goals had been successfully achieved, with the design of a mathematical model 

composed by three different modules; the toggle switch whose internal state defines which  

population each cell belongs to, the communication module consisting of two quorum 

sensing molecules that act as a proxy of the current population ratios of the cells in the 

consortium, and the comparator module in charge of identifying if there exists an 

unbalance in the consortium populations. 

We have demonstrated the effectiveness of our model, showing how an initially 

unbalanced consortium, is capable of self-regulating its own relative numbers after some 

time. Then, we have also performed a parameter analysis, looking for the actual role of 

each parameter in the model. We have been able to characterize each parameter, and 

according to the obtained results, we have determined possible future strategies to 

improve the performance of the system. We have also studied the possibility of tuning the 

final ratio of the consortium to a desired value different to 0.5. With this analysis we found 

that, introducing an offset in the parameters α̃Api
  of the comparator module we could 

modify the final ratio. Finally, we have analyzed the robustness of our system to cell 

variability by introducing some heterogeneity in the cells of the consortium. This final 

test has proved the effectiveness of our system in a more realistic environment, making it 

viable for a future implementation. 

Future research lines of this project might be, first of all, more advanced in-silico 

experiments to confirm the effectiveness of the design by using for example BSim, a realistic agent-

based simulator of bacterial populations. Once these experiments have been performed, the 

implementation of the model could be considered. 
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Appendix 1 

 
%MAIN FILE OF THE MODEL 

  
%Tin this code we compute the nominal case of the model. 
%The objective of this code is to verify the efficacy of the model. 
%We define 3 different sets each cell can belong to at a time t, being N 
%the finite set of cells in the consortium: 

 
    %A_t:={ieN: P_1^i(t)>2*P_2^i(t)}     Cell belongs to Population 1 
    %B_t:={ieN: P_2^i(t)>2*P_1^i(t)}     Cell belongs to Population 2 
    %C_t:={ieN: ie/A_te/B_t}             Cell belons to No Population  

 
%Then the ratio of cells belonging to Population 1, Population 2 and No 
%Population are defined, being n_A (t), n_B (t) and n_C (t) the  
cardinalities of A_t, B_t and C_t: 

 
    %r_1 (t)=  (n_A (t))/N 
    %r_2 (t)=  (n_B (t))/N  
    %r_3 (t)=  (n_C (t))/N 

 
%Then we illustrate the ratios evolution and verify if they tend to 0.5:0.5 
%We also compute the mean relative error and mean settling time of 50 

simulations with different initial conditions 

 

clc 
close all 
clear 

 
% Order of the variables inside the cell: 
% x(1)=P1, % x(2)=P2, x(3)=Ap1, x(4)=Ap2, x(5)=s_in1, x(6)=s_in2, 

  
%Definition of the number of cells 
N = 100;  

  
%Definition of the simulation time 
tf = 100;  

     
%Definition of the Initial conditions inside the cell 
x0 = [10,0,0,0,0,0]';   %p10=10, p20=0, Ap10=0, Ap20=0, s1_in0=0, s2_in0=0  
n = length(x0);         %Number of variables inside the cell (6)  
qn = 50; %Number of simulations with different initial conditions 

 
for q = 1 : qn 
disp("Evaluating cycle q = " + num2str(q)) 

 
%Creation of a vector of length N*n with all the initial conditions for the 

internal variables for the N number of cells 
    X0 = []; 
    for k = 1 : N 
        X0( (k-1)*n+1 : k*n ) = [ rand(2,1) * 5 ; x0(3:n)]; % [p1,p2] are 

randomly drawn with uniform distribution in [0;5]x[0;5] 
    end 
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%Definition of the initial conditions of the external variables (quorum 

sensing molecules) 
    y0 = [0, 0];   %s1_e0=0, s2_e0=0 

  
%Creation of a vector of length N*n+2 with all the initial conditions for the 

internal variables for the N number of cells and the two external variables  
    Z0 = [X0, y0];  

  
%Resolution of the whole system equations: 
    [t,Z] = ode15s(@whole_sys_Main,[0,tf],Z0,[],[n,N]); % output: stack 

matrix of all the systems 

  
% X is a matrix having n*N columns and length(t)rows 
% Y is a matrix having 2 columns and length(t)rows 
% Z is a matrix having (n*N + 4) columns and length(t)rows 

  
%Ratios computation 
    P1 = Z(:, 1:n:N*n);  %Creating matrix with all the P1 of each cell (txN) 
    P2 = Z(:, 2:n:N*n);  %Creating matrix with all the P2 of each cell (txN) 

  
%Creation of two sets A (Population 1) and B (Population 2) 
    A = P1 > (2*P2); 
    B = P2 > (2*P1); 
    C = (P1 < 2*P2) & (P2 < 2*P1);  
    r1 = sum(A,2)/N; %Vector of ratios of population 1 through time 
    r2 = sum(B,2)/N; %Vector of ratios of population 2 through time 
    r12 = sum(C,2)/N; %Vector of ratios of not_pop1 or not_pop2, so that 

r1+r2+r12=1 

  
% r is a matrix having 3 columns and length(t)rows 
    r=[r1, r2, r12]; 

 
%Relative error 
    error = norm( r1(end) - 0.5 )/0.5; 
    Error(q) =  error;% Vector with the relative errors 

             
%Settling time 
    Y = r1(end); 
    e = Y * 0.01; %Error 
    st = 0;   %Initializing settling time 
    for T = 1 : length(t) 
          if (r1(T) < (Y + e)) && (r1(T) > (Y - e)) 
               st = t(T); 
               break; 
          end 
    end 
    SettleT(q) =  st; 

    
figure(q) 
plot(t,r1,'b-',t,r2,'r--',t,r12,'g-.') 
grid on 
axis([0 inf 0 1.5]) 
xlabel('t') 
ylabel('r_1,r_2,r_1_2'); 
title('Ratios vs t') 
legend('r_1','r_2','r_1_2') 
end 
MeanError = mean(Error); 
MeanSettleT= mean(SettleT);   
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%FUNCTION OF THE MAIN CODE 

 
%This code is computed for each simulation and contains the simplified 

equations of the model for the nominal case 

  
function [dZdt] = whole_sys_Main(t,Z,p)    
 

%Definition of the number of variables inside the cells  
n = p(1); 

 

%Definition of the number of cells 
N = p(2); 

  
%Creation of a vector with s1_e, s2_e from Z  
y = Z(end-1:end);     %y=[s1_e;s2_e] 

  
%Creation of a vector N*n with all the internal variables of all cells at 
%time t 
FZ = []; 

  
for k = 1:N 
    x = Z( (k - 1)*n+1 : k*n );  % x: sub vector of X with length n 

(variables of each cell)  
    FZ = [FZ; single_cell(x,y)];   
end 

  
v = Z(5:n:end); %Creating vector with all the s_in1 of each cell (length=N) 
u = Z(6:n:end); %Creating vector with all the s_in2 of each cell (length=N) 

  
% FY: Dynamics of global (external) concentration on quorum sensing molecules 

that link together all the cell.  
FY =  environ(v,u,y); 

  
%%Creation of a vector of length N*n+2+2 with all the conditions of the 

internal variables for the N number of cells and the two external variables 

at t  

  
dZdt = [FZ; FY]; 

  
end 

 
function [dydt] = environ(v,u,y) 

  
%%% s1_e and s2_e parameters 
re_s = 10;                 % re/d 
Gamma_e_s = 1.5;           %Gamma_e/d 

  
%Variables definition 
Se1_s = y(1);   % Se1_s = s1_e/Theta_s 
Se2_s = y(2);   % Se2_s = s2_e/Theta_s 

  
dydt =  [re_s * sum(v - Se1_s) - Gamma_e_s * Se1_s;  
        re_s * sum(u - Se2_s) - Gamma_e_s * Se2_s];  

  
end 
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%Creation of a vector with the computed internal variables at t for each 
%cell 
function [dxdt] = single_cell(x,y) 

  
%SIMPLIFICATION PARAMETERS 
n = 2;              %Hill coef 
Alfa_Ap_s = 1;      %Alfa_Ap/(Theta_u*d) 
K_s = 3.5;          %(k*Theta_u)/d 
cs_s = 1;           %(cs*Theta_p)/(Theta_s*d) 
re_s = 10;          %re/d 
Beta_u_s = 3;       %Beta_u/(Theta_p*d)  
Alfa_p_s = 4;       %Alfa_p/(Theta_p*d) 

  

%Variables definition 
P1_s = x(1);    % P1_s = p1/Theta_p 
P2_s = x(2);    % P2_s = p2/Theta_p 
Ap1_s = x(3);   % Ap1_s = Ap1/Theta_u 
Ap2_s = x(4);   % Ap2_s = Ap2/Theta_u 
Sin1_s = x(5);  % Sin1_s = s_in1/Theta_s 
Sin2_s = x(6);  % Sin2_s = s_in2/Theta_s 
Se1_s = y(1);   % Se1_s = s1_e/Theta_s 
Se2_s = y(2);   % Se2_s = s2_e/Theta_s 

  
%Dynamics of internal variables inside each cell.  
%SIMPLIFIED MODEL: 
dxdt = [ 
    ( Alfa_p_s/(1 + P2_s^n) ) - P1_s + Beta_u_s * Ap2_s^n/( 1 + (Ap2_s^n) );  
    ( Alfa_p_s/(1 + P1_s^n) ) - P2_s + Beta_u_s * Ap1_s^n/( 1 + (Ap1_s^n) );  
    Alfa_Ap_s * Sin1_s^n/(1 + Sin1_s^n) - K_s * Ap1_s * Ap2_s - Ap1_s;  
    Alfa_Ap_s * Sin2_s^n/(1 + Sin2_s^n) - K_s * Ap1_s * Ap2_s - Ap2_s;  
    cs_s * P1_s - Sin1_s + re_s * (Se1_s - Sin1_s);   
    cs_s * P2_s - Sin2_s + re_s * (Se2_s - Sin2_s) 
    ];  

  
end 
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Appendix 2 
 

%FIRST TEST: ROBUSTNESS TO PARAMETERS HETEROGENEITY WITH IDENTICAL CELLS 

 
%The objective is to analyze the roll of each parameter in the system and 
%the robustness of the system to parameters variations in the nominal 
%parameters. 

 
%For each parameter we varied their values between 20 different amounts in 
%the interval described as: 
    %Parameter= (Pnom-0.6*Pnom,   Pnom+0.6*Pnom) 

  
%Then we illustrate the mean relative error and settling time vs the 
%evolution of each parameter. 

  
clc 
close all 
clear 

  
% Order of the variables inside the cell: 
% x(1)=P1, % x(2)=P2, x(3)=Ap1, x(4)=Ap2, x(5)=s_in1, x(6)=s_in2, 

  
%Definition of the number of cells 
N = 100;  

  
%Definition of the Initial conditions inside the cell 
x0 = [10,0,0,0,0,0]';   %p10=10, p20=0, Ap10=0, Ap20=0, s1_in0=0, s2_in0=0  
n = length(x0);       %Number of variables inside the cell (6)        

  
%Definition of the initial conditions of the external variables (quorum 

sensing molecules) 
y0 = [0, 0];   %s1_e0=0, s2_e0=0 

  
%Definition of the simulation time 
tf = 100;  

  
kn = 20; %Number of different values for each parameter 

 
qn = 50; %Number of trials with different values for a parameter 

  
%Initialization of vectors 
Error = zeros(1, qn); 
SettleT = zeros(1, qn); 

  
MeanError = zeros(1, kn);  
MeanSettleT = zeros(1, kn); 

  
StdError = zeros(1, kn); 
StdSettleT = zeros(1, kn); 

  
%Vector with the nominal parameters 
P_nom = [1, 3.5, 1, 10, 3, 4] ; %[Alfa_Ap_s, K_s, cs_s, re_s, Beta_u_s, 

Alfa_p_s] 
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%Matrix with the parameters of each cell wit variations form the nominal 
%case 

  
percent_var = 60/100;     
Param = [];    

  
P_names = ["Alfa_A_p_s", "K_s", "Cs_s", "re_s", "Beta_u_s", "Alfa_p_s"];   

  
for k = 1 : n 
    Param = [Param; linspace( (1 - percent_var) * P_nom(k), (1 + percent_var) 

* P_nom(k), kn)]; 
end 

  
for i = 1 : n 
    disp("Evaluating cycle i = " + num2str(i)) 
    p_i = Param(i, :); 

     
    for j = 1 : kn 

        var = P_nom; 
        var(i) = p_i(j); 

         
        tic 
        for q = 1 : qn 

 
%Creation of a vector of length N*n with all the initial 

conditions for the internal 
            %variables for the N number of cells 
            X0 = []; 

 
            for m = 1 : N 

                X0( (m-1)*n+1 : m*n ) = [ rand(2,1) * 5 ; x0(3:n)];  

% [p1,p2] are randomly drawn with uniform distribution in 

[0;5]x[0;5] 
            end 

 
%Creation of a vector of length N*n+2 with all the initial 

conditions for the internal variables for the N number of cells 
and the two external variables 

            Z0 = [X0, y0]; 

 
            %Resolution of the whole system equations: 
            [t,Z] = ode15s(@whole_sys_NumVal1,[0,tf],Z0,[],[n,N,var]);  

 

% output: stack matrix of all the systems 

 
            %For the different parameters instead of Alfa_Ap_s: K_s,cs_s... 

 
            % X is a matrix having n*N columns and length(t)rows 
            % Y is a matrix having 2 columns and length(t)rows 
            % Z is a matrix having (n*N + 4) columns and length(t)rows 

             
            %Ratios computation 

P1 = Z(:, 1:n:N*n);  %Creating matrix with all the P1 of each 

cell (txN) 
P2 = Z(:, 2:n:N*n);  %Creating matrix with all the P2 of each 

cell (txN) 
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            %Creation of two sets A (Population 1) and B (Population 2) 
            A = P1 > (2*P2); 
            B = P2 > (2*P1); 
            C = (P1 < 2*P2) & (P2 < 2*P1); 

             
            r1 = sum(A,2)/N; %Vector of ratios of population 1 through time 
            r2 = sum(B,2)/N; %Vector of ratios of population 2 through time 

r12 = sum(C,2)/N; %Vector of ratios of not_pop1 or not_pop2, so 

that r1+r2+r12=1 

             
            % r is a matrix having 3 columns and length(t)rows 
            r=[r1, r2, r12]; 

             
            %Relative error 
            error = norm( r1(end) - 0.5 )/0.5; 
            Error(q) =  error;% Vector with the relative errors 

             
            %Settling time 
            Y = r1(end); 
            e = Y * 0.01; %Error 
            st = 0;   %Initializing settling time 

 
            for T = 1 : length(t) 
                if (r1(T) < (Y + e)) && (r1(T) > (Y - e)) 
                    st = t(T); 
                    break; 
                end 
            end 
            SettleT(q) =  st; 
        end 
        toc 

 
        MeanError(i,j) = mean(Error); 
        MeanSettleT(i,j) = mean(SettleT); 

         
        StdError(i,j) = std(Error); 
        StdSettleT(i,j) = std(SettleT);     

    end 

 
    figure(i) 
    plot(Param(i,:),MeanError(i,:)) 
    grid on 
    axis([0 inf 0 1.1]) 
    errorbar(Param(i,:),MeanError(i,:),StdError(i,:)) 
    xlabel(P_names(i)) 
    ylabel('Mean Relative Error'); 
    legend('Error') 

     

     
    figure(i+6) 
    plot(Param(i,:),MeanSettleT(i,:)) 
    grid on 
    axis([0 inf 0 inf]) 
    errorbar(Param(i,:),MeanSettleT(i,:),StdSettleT(i,:)) 
    xlabel(P_names(i)) 
    ylabel('Mean Settling time (s) '); 
    legend('Settling time') 
end  
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%FUNCTION FOR THE FIRST TEST 

 
%The value of the parameters is introduced in each simulation 

  
function [dZdt] = whole_sys_NumVal1(t,Z,p)   %Z=Z0'  
 

%Definition of the number of variables inside the cells   
n = p(1); 

 

%Definition of the number of cells  
N = p(2); 

 
%Order of variables = [Alfa_Ap_s, K_s, cs_s, re_s, Beta_u_s, Alfa_p_s] 

  
%Creation of a vector with s1_e, s2_e from Z  
y = Z(end-1:end);     %y=[s1_e;s2_e] 

  
%Creation of a vector N*n with all the internal variables of all cells at 
%time t 
FZ = []; 

  
for k = 1:N 

x = Z( (k - 1)*n+1 : k*n );  % x: sub vector of X with length n 

(variables of each cell)  
    FZ = [FZ; single_cell(x,y,p)];   
end 

  
v = Z(5:n:end); %Creating vector with all the s_in1 of each cell (length=N) 
u = Z(6:n:end); %Creating vector with all the s_in2 of each cell (length=N) 

  
% FY: Dynamics of global (external) concentration on quorum sensing molecules 

that link together all the cell.  
FY =  environ(v,u,y); 

  
%%Creation of a vector of length N*n+2+2 with all the conditions of the 

internal variables for the N number of cells and the two external variables 

at t  

  
dZdt = [FZ; FY]; 

  
end 

 

function [dydt] = environ(v,u,y) 

  
%%% s1_e and s2_e parameters 
re_s = 10;                 % re/d 
Gamma_e_s = 1.5;           %Gamma_e/d 

  
%Variables definition 
Se1_s = y(1);   % Se1_s = s1_e/Theta_s 
Se2_s = y(2);   % Se2_s = s2_e/Theta_s 

  
dydt =  [re_s * sum(v - Se1_s) - Gamma_e_s * Se1_s;  
        re_s * sum(u - Se2_s) - Gamma_e_s * Se2_s];  

  
end 
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%Creation of a vector with the computed internal variables at t for each 
%cell 
function [dxdt] = single_cell(x,y,p)  

  
%SIMPLIFICATION PARAMETERS 
n = 2;                  %Hill coef 
Alfa_Ap_s = p(3);       %Alfa_Ap/(Theta_u*d) 
K_s = p(4);             %(k*Theta_u)/d 
cs_s = p(5);            %(cs*Theta_p)/(Theta_s*d) 
re_s = p(6);            %re/d 
Beta_u_s = p(7);        %Beta_u/(Theta_p*d)  
Alfa_p_s = p(8);        %Alfa_p/(Theta_p*d) 

  
%Variables definition 
P1_s = x(1);    % P1_s = p1/Theta_p 
P2_s = x(2);    % P2_s = p2/Theta_p 
Ap1_s = x(3);   % Ap1_s = Ap1/Theta_u 
Ap2_s = x(4);   % Ap2_s = Ap2/Theta_u 
Sin1_s = x(5);  % Sin1_s = s_in1/Theta_s 
Sin2_s = x(6);  % Sin2_s = s_in2/Theta_s 
Se1_s = y(1);   % Se1_s = s1_e/Theta_s 
Se2_s = y(2);   % Se2_s = s2_e/Theta_s 

  
%Dynamics of internal variables inside each cell.  
%SIMPLIFIED MODEL: 
dxdt = [ 
    ( Alfa_p_s/(1 + P2_s^n) ) - P1_s + Beta_u_s * Ap2_s^n/( 1 + (Ap2_s^n) );  
    ( Alfa_p_s/(1 + P1_s^n) ) - P2_s + Beta_u_s * Ap1_s^n/( 1 + (Ap1_s^n) );  
    Alfa_Ap_s * Sin1_s^n/(1 + Sin1_s^n) - K_s * Ap1_s * Ap2_s - Ap1_s;  
    Alfa_Ap_s * Sin2_s^n/(1 + Sin2_s^n) - K_s * Ap1_s * Ap2_s - Ap2_s;  
    cs_s * P1_s - Sin1_s + re_s * (Se1_s - Sin1_s);   
    cs_s * P2_s - Sin2_s + re_s * (Se2_s - Sin2_s) 
    ];  

  
end 
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Appendix 3 

 
%SECOND TEST: RATIO TUNING 

 
%The objective is to find the way to tune the ratio of the two population  
%to a desired value different to 0.5 
%Introducing an unbalance in the comparator block, that is in the Api  
%equations, we obtain an unbalance in the final ratio 
%This unbalance is created by giving a different value of the parameter 

alfa_ap_s for equations Ap1 and Ap2 
%We introduce an offset in the nominal value of the parameter alfa_ap_s 
%Then we illustrate the evolution of the ratios with the different values of 

offset 

  
clc 
close all 
clear 

  
% Order of the variables inside the cell: 
% x(1)=P1, % x(2)=P2, x(3)=Ap1, x(4)=Ap2, x(5)=s_in1, x(6)=s_in2, 

  
%Definition of the number of cells 
N = 100;  

  
%Definition of the Initial conditions inside the cell 
x0 = [10,0,0,0,0,0]';   %p10=10, p20=0, Ap10=0, Ap20=0, s1_in0=0, s2_in0=0  
n = length(x0);        %Number of variables inside the cell (6)        

  
%Definition of the initial conditions of the external variables (quorum 

sensing molecules) 
y0 = [0, 0];   %s1_e0=0, s2_e0=0 

  
%Definition of the simulation time 
tf = 100;  

  
kn = 20; %Number of different Offset values 

 
qn = 50; %Number of trials computed (with different initial conditions) for 

each value of the offset 

  
%Initialization of vectors 
FinalR1 = zeros(1, qn); 
FinalR2 = zeros(1, qn); 
FinalR12 = zeros(1, qn); 

  
MeanFinalR1 = zeros(1, kn); 
MeanFinalR2 = zeros(1, kn); 
MeanFinalR12 = zeros(1, kn); 
Offset_Val = linspace(-0.8,0.8,kn); 

  
for k = 1 : kn 
    disp("Evaluating cycle k = " + num2str(k)) 

     
    offset = Offset_Val(k); 

     
    for q = 1 : qn 
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  %Creation of a vector of length N*n with all the initial conditions                                       

for the internal variables for the N number of cells 
        X0 = []; 

 
        for m = 1 : N 

 
            X0( (m-1)*n+1 : m*n ) = [ rand(2,1) * 5 ; x0(3:n)];  

% [p1,p2] are randomly drawn with uniform distribution in 

[0;5]x[0;5] 

        end 

 
  %Creation of a vector of length N*n+2 with all the initial conditions 

for the internal variables for the N number of cells and the two 

external variables 
        Z0 = [X0, y0]; 

         
        %Resolution of the whole system equations: 
        [t,Z] = ode15s(@whole_sys_NumVal2,[0,tf],Z0,[],[n,N,offset]);  

   

  % output: stack matrix of all the systems 
        %For the different parameters instead of Alfa_Ap_s: K_s,cs_s... 
        % X is a matrix having n*N columns and length(t)rows 
        % Y is a matrix having 2 columns and length(t)rows 
        % Z is a matrix having (n*N + 4) columns and length(t)rows 

         
        %Ratios computation 
        P1 = Z(:, 1:n:N*n);   

  %Creating matrix with all the P1 of each cell (txN) 
        P2 = Z(:, 2:n:N*n);   

  %Creating matrix with all the P2 of each cell (txN) 

         
        %Creation of two sets A (Population 1) and B (Population 2) 
        A = P1 > (2*P2); 
        B = P2 > (2*P1); 
        C = (P1 < 2*P2) & (P2 < 2*P1); 

         
        r1 = sum(A,2)/N; %Vector of ratios of population 1 through time 
        r2 = sum(B,2)/N; %Vector of ratios of population 2 through time 

  r12 = sum(C,2)/N; %Vector of ratios of not_pop1 or not_pop2, so that     

r1+r2+r12=1 

         
        % r is a matrix having 3 columns and length(t)rows 
        r=[r1, r2, r12]; 

         
        %Final ratios 
        FinalR1(q) = r1(end); 
        FinalR2(q) = r2(end); 
        FinalR12(q) = r12(end); 

         
    end 

     
    MeanFinalR1(k) = mean(FinalR1); 
    MeanFinalR2(k) = mean(FinalR2); 

  
    StdFinalR1(k) = std(FinalR1); 
    StdFinalR2(k) = std(FinalR2); 

      

end 
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figure(1) 
plot(Offset_Val, MeanFinalR1) 
hold on 
plot(Offset_Val, MeanFinalR2,'r') 
grid on 
axis([-inf inf 0 1]) 
xlabel('Offset') 
ylabel('r_1, r_2'); 
title('Offset vs Ratios') 
errorbar(Offset_Val, MeanFinalR1,StdFinalR1,'b') 
errorbar(Offset_Val, MeanFinalR2,StdFinalR2,'r') 
legend('P1 Ratio','P2 Ratio') 
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%FUNCTION FOR THE SECOND TEST 

 
%All the values of the parameters are the nominal ones except for alfa_ap_s 

 
%Two new parameters are created alfa_ap_s_1 and alfa_ap_s_2: 

    %Alfa_Ap_s_1 = Alfa_Ap_s + offset/2;   
    %Alfa_Ap_s_2 = Alfa_Ap_s - offset/2;  

 
%In each simulation a new value of the offset is introduced 

  
function [dZdt] = whole_sys_NumVal2(t,Z,p)   %Z=Z0'  

  
n = p(1); 
N = p(2); 

  
%Creation of a vector with s1_e, s2_e from Z  
y = Z(end-1:end);     %y=[s1_e;s2_e] 

  
%Creation of a vector N*n with all the internal variables of all cells at 
%time t 
FZ = []; 

  
for k = 1:N 

 
x = Z( (k - 1)*n+1 : k*n );  % x: sub vector of X with length n 

(variables of each cell)  
    FZ = [FZ; single_cell(x,y,p)];   

end 

  
v = Z(5:n:end); %Creating vector with all the s_in1 of each cell (length=N) 
u = Z(6:n:end); %Creating vector with all the s_in2 of each cell (length=N) 

  
% FY: Dynamics of global (external) concentration on quorum sensing molecules 

that link together all the cell.  
FY =  environ(v,u,y); 

  
%%Creation of a vector of length N*n+2+2 with all the conditions of the 

internal variables for the N number of cells and the two external variables 

at t  

  
dZdt = [FZ; FY]; 

 

end 

 
function [dydt] = environ(v,u,y) 

  
%%% s1_e and s2_e parameters 
re_s = 10;                 % re/d 
Gamma_e_s = 1.5;           %Gamma_e/d 

  
%Variables definition 
Se1_s = y(1);   % Se1_s = s1_e/Theta_s 
Se2_s = y(2);   % Se2_s = s2_e/Theta_s 

  
dydt =  [re_s * sum(v - Se1_s) - Gamma_e_s * Se1_s;  
        re_s * sum(u - Se2_s) - Gamma_e_s * Se2_s];  
end 
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%Creation of a vector with the computed internal variables at t for each 
%cell 
function [dxdt] = single_cell(x,y,p) %p añadida 

  
%SIMPLIFICATION PARAMETERS 
n = 2;              %Hill coef 
 

%Creation of the new parameters with the offset  
Alfa_Ap_s = 1; 
offset = p(3); 
Alfa_Ap_s_1 = Alfa_Ap_s + offset/2;   
Alfa_Ap_s_2 = Alfa_Ap_s - offset/2;  

  

K_s = 3.5;          %(k*Theta_u)/d 
cs_s = 1;           %(cs*Theta_p)/(Theta_s*d) 
re_s = 10;          %re/d 
Beta_u_s = 3;       %Beta_u/(Theta_p*d)  
Alfa_p_s = 4;       %Alfa_p/(Theta_p*d) 

  

  
%Variables definition 
P1_s = x(1);    % P1_s = p1/Theta_p 
P2_s = x(2);    % P2_s = p2/Theta_p 
Ap1_s = x(3);   % Ap1_s = Ap1/Theta_u 
Ap2_s = x(4);   % Ap2_s = Ap2/Theta_u 
Sin1_s = x(5);  % Sin1_s = s_in1/Theta_s 
Sin2_s = x(6);  % Sin2_s = s_in2/Theta_s 
Se1_s = y(1);   % Se1_s = s1_e/Theta_s 
Se2_s = y(2);   % Se2_s = s2_e/Theta_s 

  
%Dynamics of internal variables inside each cell.  
%SIMPLIFIED MODEL: 
dxdt = [ 
    ( Alfa_p_s/(1 + P2_s^n) ) - P1_s + Beta_u_s * Ap2_s^n/( 1 + (Ap2_s^n) );  
    ( Alfa_p_s/(1 + P1_s^n) ) - P2_s + Beta_u_s * Ap1_s^n/( 1 + (Ap1_s^n) );  
    Alfa_Ap_s_1 * Sin1_s^n/(1 + Sin1_s^n) - K_s * Ap1_s * Ap2_s - Ap1_s;  
    Alfa_Ap_s_2 * Sin2_s^n/(1 + Sin2_s^n) - K_s * Ap1_s * Ap2_s - Ap2_s;  
    cs_s * P1_s - Sin1_s + re_s * (Se1_s - Sin1_s);   
    cs_s * P2_s - Sin2_s + re_s * (Se2_s - Sin2_s) 
    ];  

  
end 
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Appendix 4 

 
%THIRD TEST: ROBUSTNESS TO CELLS HETEROGENEITY  

 
%The objective is to analyze the robustness of the design to cell-to-cell 

variability 

 
%The parameters of each cell in the consortium are changed by drawing them 
from a normal distribution centered in the nominal values. 
%The covariance of this normal distribution is varied from 0-50% 

 
%Then we illustrate the evolution of the mean relative error and mean 
%settling time with the different values of covariance 

  
clc 
close all 
clear 

  
% Order of the variables inside the cell: 
% x(1)=P1, % x(2)=P2, x(3)=Ap1, x(4)=Ap2, x(5)=s_in1, x(6)=s_in2, 

  
%Definition of the number of cells 
N = 100;  

  
%Definition of the Initial conditions inside the cell 
x0 = [10,0,0,0,0,0]';   %p10=10, p20=0, Ap10=0, Ap20=0, s1_in0=0, s2_in0=0  
n = length(x0);       %Number of variables inside the cell (6)        

  
%Definition of the initial conditions of the external variables (quorum 

sensing molecules) 
y0 = [0, 0];   %s1_e0=0, s2_e0=0 

  
%Definition of the simulation time 
tf = 100;  

  
kn = 20; %Number of different values of covariance 

 
qn = 50; %Number of trials with each covariance 

  
%Initialization of vectors 
Error = zeros(1, qn); 
SettleT = zeros(1, qn); 

  
MeanError = zeros(1, kn);  
MeanSettleT = zeros(1, kn); 

  
%Vector with the nominal parameters 
P_nom = [1, 3.5, 1, 10, 3, 4] ; %[Alfa_Ap_s, K_s, cs_s, re_s, Beta_u_s, 

Alfa_p_s] 

  
%Creation of kn covariances 
CV = linspace(0,0.5,kn);  
Param = [];    
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for k = 1 : kn 

 
        disp("Evaluating cycle k = " + num2str(k)) 

  %Creation of vectors with N random numbers for each variable with    

each value of CV 

  
        Alfa_Ap_s = (P_nom(1) + (CV(k) * P_nom(1)) * randn(N,1)); 
        K_s = (P_nom(2) + (CV(k) * P_nom(2)) * randn(N,1)); 
        Cs_s = (P_nom(3) + (CV(k) * P_nom(3)) * randn(N,1));   
        re_s = (P_nom(4) + (CV(k) * P_nom(4)) * randn(N,1));               
        Beta_u_s = (P_nom(5) + (CV(k) * P_nom(5)) * randn(N,1));  
        Alfa_p_s = (P_nom(6) + (CV(k) * P_nom(6)) * randn(N,1));  

         
        for q = 1 : qn 

 
  %Computation of qn simulation for each set of variables 
  %Creation of a vector of length N*n with all the initial conditions 

for the internal variables for the N number of cells 
            X0 = []; 

 
            for m = 1 : N 

 
                X0( (m-1)*n+1 : m*n ) = [ rand(2,1) * 5 ; x0(3:n)];  

    % [p1,p2] are randomly drawn with uniform distribution in 

[0;5]x[0;5] 
            end 

 
%Creation of a vector of length N*n+2 with all the initial 

conditions for the internal variables for the N number of cells 

and the two external variables 
            Z0 = [X0, y0]; 

 
%Resolution of the whole system equations: 
[t,Z] =ode15s(@whole_sys_NumVal3,[0,tf],Z0,[],[n,N,Alfa_Ap_s', 

K_s',Cs_s',re_s',Beta_u_s',Alfa_p_s']);  

 

% output: stack matrix of all the systems 

 
%For the different parameters instead of Alfa_Ap_s: K_s,cs_s... 
% X is a matrix having n*N columns and length(t)rows 
% Y is a matrix having 2 columns and length(t)rows 
% Z is a matrix having (n*N + 4) columns and length(t)rows 

             
%Ratios computation 

            P1 = Z(:, 1:n:N*n);   

%Creating matrix with all the P1 of each cell (txN) 
            P2 = Z(:, 2:n:N*n);   

%Creating matrix with all the P2 of each cell (txN) 

             
%Creation of two sets A (Population 1) and B (Population 2) 

            A = P1 > (2*P2); 
            B = P2 > (2*P1); 
            C = (P1 < 2*P2) & (P2 < 2*P1); 

             
            r1 = sum(A,2)/N; %Vector of ratios of population 1 through time 
            r2 = sum(B,2)/N; %Vector of ratios of population 2 through time 

r12 = sum(C,2)/N; %Vector of ratios of not_pop1 or not_pop2, so 

that r1+r2+r12=1 
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% r is a matrix having 3 columns and length(t)rows 

            r=[r1, r2, r12]; 

             
%Relative error 

            error = norm( r1(end) - 0.5 )/0.5; 
            Error(q) =  error; % Vector with the relative errors 

             
%Settling time 

            Y = r1(end); 
            e = Y * 0.01; %Error 
            st = 0;   %Initializing settling time 

 
            for T = 1 : length(t) 

 
                if (r1(T) < (Y + e)) && (r1(T) > (Y - e)) 
                    st = t(T); 
                    break; 
                end 
            end 

 
            SettleT(q) =  st; 

    
        End 

 
        MeanError(k) = mean(Error); 
        MeanSettleT(k) = mean(SettleT); 
        StdError(k) = std(Error); 
        StdSettleT(k) = std(SettleT);  
end   

   
    figure(1) 
    plot(CV,MeanError) 
    grid on 
    errorbar(CV,MeanError,StdError)     
    xlabel('CV') 
    ylabel('Mean Relative Error') 
    legend('Relative Error') 

      
    figure(2) 
    plot(CV,MeanSettleT) 
    grid on 
    errorbar(CV,MeanSettleT,StdSettleT) 
    xlabel('CV') 
    ylabel('Mean Settling time (s)') 
    legend('Settling time') 
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%FUNCTION FOR THE THIRD TEST 

 
%In each simulation different values of the parameters for each cell are 

introduced 

 
function [dZdt] = whole_sys_NumVal3(t,Z,p)   %Z=Z0' 

  
n = p(1); 
N = p(2); 

  
Alfa_Ap_s_vec = p(3 : 2 + N);     
K_s_vec = p(3 + N : 2 + N*2);     
cs_s_vec = p( 3 + N*2 : 2 + N*3);          
re_s_vec = p(3 + N*3 : 2 + N*4);          
Beta_u_s_vec = p(3 + N*4 :  2 + N*5);      
Alfa_p_s_vec = p(3 + N*5 : 2 + N*6);  

  
%Creation of a vector with s1_e, s2_e from Z  
y = Z(end-1:end);     %y=[s1_e;s2_e] 

  
%Creation of a vector N*n with all the internal variables of all cells at 
%time t and creation of a vector with the parameters of each cell. 
FZ = []; 

  
for k = 1:N 

 
x = Z( (k - 1)*n+1 : k*n );  % x: sub vector of X with length n 

(variables of each cell) 

Param = [Alfa_Ap_s_vec(k), K_s_vec(k), cs_s_vec(k), re_s_vec(k), 

Beta_u_s_vec(k), Alfa_p_s_vec(k)]; 
    FZ = [FZ; single_cell(x,y,Param)];   
end 

  
v = Z(5:n:end); %Creating vector with all the s_in1 of each cell (length=N) 
u = Z(6:n:end); %Creating vector with all the s_in2 of each cell (length=N) 

  
% FY: Dynamics of global (external) concentration on quorum sensing molecules 

that link together all the cell.  
FY =  environ(v,u,y); 

  
%%Creation of a vector of length N*n+2+2 with all the conditions of the 

internal variables for the N number of cells and the two external variables 

at t   
dZdt = [FZ; FY]; 

  
end 

 
function [dydt] = environ(v,u,y) 

  
%%% s1_e and s2_e parameters 
re_s = 10;                 % re/d 
Gamma_e_s = 1.5;           %Gamma_e/d 

  
%Variables definition 
Se1_s = y(1);   % Se1_s = s1_e/Theta_s 
Se2_s = y(2);   % Se2_s = s2_e/Theta_s 
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dydt =  [re_s * sum(v - Se1_s) - Gamma_e_s * Se1_s;  
        re_s * sum(u - Se2_s) - Gamma_e_s * Se2_s];  

  
end 

  
%Creation of a vector with the computed internal variables at t for each 
%cell 
function [dxdt] = single_cell(x,y,Param)  

  
%SIMPLIFICATION PARAMETERS 
n = 2;                      %Hill coef 
Alfa_Ap_s = Param(1);       %Alfa_Ap/(Theta_u*d) 
K_s = Param(2);             %(k*Theta_u)/d 
cs_s = Param(3);            %(cs*Theta_p)/(Theta_s*d) 
re_s = Param(4);            %re/d 
Beta_u_s = Param(5);        %Beta_u/(Theta_p*d)  
Alfa_p_s = Param(6);        %Alfa_p/(Theta_p*d) 

  

  
%Variables definition 
P1_s = x(1);    % P1_s = p1/Theta_p 
P2_s = x(2);    % P2_s = p2/Theta_p 
Ap1_s = x(3);   % Ap1_s = Ap1/Theta_u 
Ap2_s = x(4);   % Ap2_s = Ap2/Theta_u 
Sin1_s = x(5);  % Sin1_s = s_in1/Theta_s 
Sin2_s = x(6);  % Sin2_s = s_in2/Theta_s 
Se1_s = y(1);   % Se1_s = s1_e/Theta_s 
Se2_s = y(2);   % Se2_s = s2_e/Theta_s 

  
%Dynamics of internal variables inside each cell.  
%SIMPLIFIED MODEL: 
dxdt = [ 
    ( Alfa_p_s/(1 + P2_s^n) ) - P1_s + Beta_u_s * Ap2_s^n/( 1 + (Ap2_s^n) );  
    ( Alfa_p_s/(1 + P1_s^n) ) - P2_s + Beta_u_s * Ap1_s^n/( 1 + (Ap1_s^n) );  
    Alfa_Ap_s * Sin1_s^n/(1 + Sin1_s^n) - K_s * Ap1_s * Ap2_s - Ap1_s;  
    Alfa_Ap_s * Sin2_s^n/(1 + Sin2_s^n) - K_s * Ap1_s * Ap2_s - Ap2_s;  
    cs_s * P1_s - Sin1_s + re_s * (Se1_s - Sin1_s);   
    cs_s * P2_s - Sin2_s + re_s * (Se2_s - Sin2_s) 
    ];  

  
end 

  

 

 


