
Design and implementation of

controllers for a platooning system

of vehicles following a path

Author: Isaac Ambit Brao

Advisor: Vı́ctor Repecho del Corral

Polytechnic University of Catalonia

This thesis was written as a part of

Master in Automatic Control and Robotics

i

Acknowledgements

I would like to thank Arnau Dòria and Vı́ctor Repecho for giving me the

opportunity and the material necessary to participate in this project.

ii

Abstract

The goal of this thesis is to implement three different controllers, based

on sliding mode control algorithms for a platooning system, to test each

one of the controllers and analyze its performance in order to decide if it is

feasible.

The work is based on a scientific paper that aims to find an Adaptive

Cruise Control algorithm for platooning systems and control the nonlinear

system using sliding mode control techniques.

The working model is a differential steering robot with two motorized

front wheels and a castor wheel behind, equipped with ultrasound sensors

in order to measure the distance to the car ahead and an infrared array

sensor used to track a line.

The control algorithm runs in real time on an embedded system along

with all the sensors, it has been programmed in C, since it is a low level

programming language and allow to have a more efficient code.

Contents iii

Contents

List of Figures v

List of Tables vi

1 Introduction 1
1.1 Background . 2
1.2 Objectives . 3
1.3 Materials . 4

1.3.1 Microcontroller . 4
1.3.2 Wi-Fi Module . 4
1.3.3 Line Sensor . 4
1.3.4 Ultrasonic Sensor . 5
1.3.5 Motor Driver . 5
1.3.6 DC Motors . 6
1.3.7 UPC PCB . 6

2 State of the Art 7
2.1 Platooning System . 7
2.2 Lyapunov Stability . 10
2.3 Sliding Mode Control . 14

3 Modelling and Control Design 17
3.1 Model of the Vehicle . 17
3.2 Sliding Mode Control . 25
3.3 Kinematic Model . 35

4 Implementation 37
4.1 Controller Implementation . 37

4.1.1 First Order Sliding Mode Control (on/off) 39
4.1.2 First Order Sliding Mode Control (sigmoid) 40
4.1.3 Second Order Sliding Mode Control (Super-twisting algo-

rithm) . 41
4.2 Timer Configuration . 42
4.3 DC Motor Control . 43
4.4 Distance Sensor . 46
4.5 Line Sensor . 49
4.6 Communication System . 51

5 Data Analysis 54
5.1 Data Collection . 54
5.2 Data Analysis . 55

6 Conclusions 61

7 Environmental Impact 62

8 Budget 63
8.1 Labour Costs . 63
8.2 Material Costs . 63

Contents iv

9 Apendix 65
9.1 Technical Conepts . 65

List of Figures v

List of Figures
1.1 STM32F407VG . 4
1.2 ESP8266 Wi-Fi module . 4
1.3 QTR-8A photosensor . 5
1.4 HC-SR04 Ultrasonic sensor . 5
1.5 L625PD full bridge driver . 6
1.6 DC motors . 6
1.7 UPC electronic board . 6
2.1 SAE level of automation chart [18] 7
2.2 Vehicle to vehicle communications in a platooning system [27] . . . 9
2.3 Representation of Lyapunov stability [4] 10
2.4 Representation of the three types of Lyapunov stability [4] 11
2.5 Lyapunov function representation [26] 13
2.6 Representation of chattering effect [5] 16
3.1 Differential steering mathematical model [3] 17
3.2 Representation of two vehicles [1] 25
3.3 Distance/velocity policy [1] . 26
3.4 Distance/velocity smooth policy [16] 28
4.1 Plot of right wheel angular velocity against voltage for motor mod-

elling . 38
4.2 Plot of left wheel angular velocity against voltage for motor modelling 38
4.3 Plot of a sigmoid with different ε 40
4.4 Example of timer configuration parameters [8] 42
4.5 Encoder pulses captured by an oscilloscope channel A (yellow),

channel B (blue) [21] . 43
4.6 Timming diagram [17] . 46
4.7 Infrared array sensor [22] . 49
4.8 Ip configuration . 52
4.9 UDP connection client-server [24] 52
4.10 UDP protocol structure [14] . 53
5.1 Distance to the obstacle ahead on/off control 55
5.2 Distance to the obstacle ahead sigmoid function control 55
5.3 Distance to the obstacle ahead super-twisting algorithm 55
5.4 σ1 ACC algorithm on/off . 56
5.5 σ1 ACC algorithm sigmoid function 56
5.6 σ1 ACC algorithm super-twisting algorithm 56
5.7 control action from ACC on/off control 57
5.8 control action from ACC sigmoid fucntion control 58
5.9 control action from ACC super-twisting algorithm control 58
5.10 σ2 line follower on/off controller . 58
5.11 σ2 line follower sigmoid function controller 59
5.12 σ2 line follower super-twisting algorithm controller 59
5.13 control action from line follower on/off control 60
5.14 control action from line follower sigmoid function control 60
5.15 control action from line follower super-twisting algorithm control . . 60

List of Tables vi

List of Tables
4.1 dual full bridge driver truth table [25] 44
4.2 Distance to the middle IR sensor 50
8.1 Labour Costs . 63
8.2 Material Costs . 64
8.3 Total Costs . 64
9.1 Model parameters value . 65

1 Introduction

During the last years the interest in Advanced Driver Assistance Systems (ADAS)

has been growing, this has result into an increasing interest for many research fields

related to control, data acquisition, data processing and communication systems.

This thesis explores each one of the research fields mention above, focusing on top-

ics such as Adaptive Cruise Control (ACC) [29] and vehicle to vehicle (V2V) [13]

communications. The main challenge is to implement a robust control technique

able to deal with the non linearities of the system and reject model uncertainty

due to parameters imprecision.

Platooning system is an application of an Advanced Driver Assistance System

categorized as Cooperative Adaptive Cruise Control (CACC) [30] or ACC. The

main idea behind a platooning system [12] is to couple, without any physical

structure, two or more vehicles in a convoy manner, where the vehicle ahead or

leader is manually driven and the vehicles behind follow it. This is achieved by

using the communications system and automated driving techniques, as a result

the vehicles maintain a close safety distance and the human interaction with the

vehicle is reduced.

The proposed control technique is sliding mode control (SMC) [10], a control

technique widely used in power electronics, known by its robustness and high per-

formance with non linear and time-varying systems. This control method modifies

the system dynamics by means of a set-valued control action in such a way that

forces the system to slide along a surface. The sliding surface is chosen to be a

function of the states of the system.

The strengths of this control technique are the robustness against bounded dis-

turbances, bounded parameters variation and unmodeled dynamics.

Three different sliding mode control algorithms are introduced, implemented,

tested and analyzed. The first algorithm is the relay control which is, by na-

ture, discontinuous, the second algorithm is a continuous approximation of the

first algorithm using a sigmoid function, and the last one is the super-twisting

algorithm (STA) [20], where the resulting control action is a combination of a

discontinuous and continuous term.

1

1.1 Background

1.1 Background

The idea of a self-driving cars is a concept that has been around since the beginning

of 1900’s, the first implemented approach of an autonomous vehicle was in 1925,

when Houdina Radio Control Company [33] radio-controlled a car equipped with

a transmitting antenna from another car.

However, the first platooning system approach arrived when Bel Geddes presented

in the 1939 World’s Fair, futurama [32], which was a model for automated road-

ways based on radio-controlled electric cars feed by an electromagnetic roadway.

The first tangible results of a platooning system were in 1972-73 with the ARAMIS

[2] project developed in France, ARAMIS achieved to platoon twenty-five small

transit vehicles running at 80 km/h, they would run in areas with high transit as

a train without any mechanical coupling between vehicles, using ultrasonic and

optical range sensor to estimate the distance to the vehicle in front, finally in 1987

the project was abandoned.

The Prometheus Project in Europe [31] (1980-1995) was another inflexion point

where different automotive manufacturers, technology companies, universities and

the government worked together to define the state of the art of autonomous

vehicles and to build the first driver-less intelligent vehicles that would run on an

advanced road system. The project concluded with notable results in areas such

as telecommunications, vehicle control and artificial intelligence.

The research on the field of platooning systems still continues with great achieve-

ments during the last years. The most important project is Safe Road Trains for

the Environment (SARTRE) [28].

SARTRE project (2009-2012), funded by the European Commission, was aimed

to develop a prototype system to be integrated in a platooning without modify-

ing the roadways, being able to interact with other vehicles not belonging to the

platoon. The project explored and worked with radar, cameras, laser sensors and

communication systems technologies.

The leading vehicle, driven by a professional driver, acts as a master control-

ling all the slave vehicles behind and setting a safety distance. Every vehicle is

equipped with collision mitigation, adaptive cruise control, lane departure warn-

2

1.2 Objectives

ing and brake control systems. It incorporated lateral position control for the first

time in a platooning system. In January 2012 SARTRE carried out a demonstra-

tion in a public road near Barcelona, where a lead truck, controlled by an operator,

followed by three cars driven entirely autonomously at speeds of up to 90 km/h

with a gap between the vehicles of no more than 6 m.

Design and implementation of controllers for a platooning system of vehicles fol-

lowing a path, is inspired by the above mentioned project. The work, is a contin-

uation of previous works, therefore some parts are based on other authors work.

Part of this thesis is based on the paper “Sliding mode controllers for adaptive

cruise control” [1] and a continuation of the thesis “Control of a Two-Wheeled

Line Tracking Robot Using a Com-plete Mechanical Mode” [3]

1.2 Objectives

The main objective of this thesis is to design three different controllers based

on SMC to control linear and angular velocity for a set of cars running inside a

platooning system following a black line with a white background. More precisely,

this can be divided in the following objectives.

• Designing of sliding mode surface for linear velocity and line following con-

trol.

• Implementing three different controllers based on sliding mode control.

• Analyzing the performance of each controller.

The objectives include the implementation for sensor readings, from the ultrasonic

device and the infrared array sensor, a communication system for data analysis,

and a motor modelling to understand its behaviour and limitations.

The tasks also require of working with different developing platforms such as

Eclipse, Spyder and Matlab and programming languages such as C and Python.

3

1.3 Materials

1.3 Materials

1.3.1 Microcontroller

The microcontroller used for this project is the STM32F4-Discovery (figure 1.1)

which its CPU is an ARM Cortex-M4.

Figure 1.1: STM32F407VG

Its main characteristics are, the maximum frequency 168MHz, which allows fast

computations very suitable to perform real time control, and its RAM memory,

that results in handy to store data for a latter analysis.

1.3.2 Wi-Fi Module

Programmable Wi-Fi module ESP8266 (figure 1.2) with UART serial connec-

tion(baudrate 115200). Implements UDP and TCP/IP protocols as main feautres.

Figure 1.2: ESP8266 Wi-Fi module

1.3.3 Line Sensor

QTR-8A (figure 1.3) is made by a series of photoresistors, depending on the light

detected by each sensor the voltatge will vary, thus if the sensor is placed on a

dark surface the resistance of photoresistors will be low. However, a bright area

would make the resistance increase and therefore the voltage fall. Depending on

4

1.3 Materials

the voltage of each photoresistor. It is possible to know where the sensor is placed.

Figure 1.3: QTR-8A photosensor

1.3.4 Ultrasonic Sensor

The HC-SR04 Ultrasonic sensor (figure 1.4), is a device that outputs a 40 kHz

ultrasound burst of ultrasound. Once the eighth ultrasonic cycle has been sent, the

HC-SR04 sensor will set to high “echo” pin. When the sound waves get reflected

by an object these will come back and will be detected by the same sensor, then

the “echo” pin will become low, therefore the time the “echo” pin remained high is

the time it takes the ultrasonic wave to get reflected by an object and come back,

knowing the speed of this ultrasonic wave, multiplying it by the time “echo” pin

has been high and dividing by two, since the sound travel two times the distance

between the sensor and the obstacle, we can know the distance from the sensor to

the object. This will be used to estimate the distance between the actual vehicle

and the one in front. It has to be taken into account that the measuring range is

2cm - 80cm/400cm (pracitcal/theorical) and it has an angular range of 15o, with

an accuracy of 3mm.

Figure 1.4: HC-SR04 Ultrasonic sensor

1.3.5 Motor Driver

The electronic device L625PD is a dual full-bridge or H-bridge driver (figure 1.5)

to control the direction and speed of each motor separately.

5

1.3 Materials

Figure 1.5: L625PD full bridge driver

1.3.6 DC Motors

The DC motors (figure 1.6) are used to generate a torque and an angular velocity

on the wheels, the motor comes with a two channels hall-effect encoder that is

going to be used to capture each wheel angular velocity.

Figure 1.6: DC motors

1.3.7 UPC PCB

The electronic board (figure 1.7) has been designed in the UPC, specifically to plug

in the STM32F4-Discovery board, from STMicroelectronics, it has also sockets for

the Wi-Fi module ESP8266, as well as wires to the line sensor, the board has

incorporated a L298N dual full-bridge driver in it, to control the two DC motors.

Connected to the board there are also three ultrasonic sensors, used to retrieve

the distance between the vehicle and the closest obstacle.

Figure 1.7: UPC electronic board

6

2 State of the Art

2.1 Platooning System

As mentioned in the previous chapter, platooning systems reproduce the behaviour

of a convoy, where there is a leading vehicle at the front of the platoon which sets

the limit velocity for all the other vehicles behind, but instead of a mechanical

coupling between vehicles, control techniques and V2V communication are used

to emulate the coupling behaviour.

According to the Society of Automotive Engineers (SAE) [18] depending on the

degree of automation, vehicles can be classified in six different levels, where level 0

is the lowest automation rank and level 5 means that the vehicle is fully automated.

Figure 2.1: SAE level of automation chart [18]

Following the SAE criteria, platooning systems fit in the level one or two of au-

tomation, since human interaction is required, at least to drive the leader vehicle.

A platooning system would be considered of level one if only steering or acceler-

ation is automated, however, if both features are automated at the same time it

would belong to level two of driving automation.

7

2.1 Platooning System

The technology used to control platooning systems might vary depending on the

given approach, some examples of platooning systems require the infrastructure to

be modified in order to share data with the vehicles, also called, vehicle to infras-

tructure communication (V2I), another option which has a lower cost is to equip

the vehicles with a set of sensors to have a good knowledge of the environment

around.

Most of platooning systems implement the Adaptive Cruise Control (ACC) tech-

nology, which is a velocity controller and the key point, is that it adapts vehicle

speed, given by a policy, to maintain a safety distance with the vehicle in front, the

most commonly used sensors for this method are radar, lidar or cameras, although

very often it may combine different kind of sensors at the same time, and extract a

more reliable source of data using sensor fusion techniques such as Kalman filters

or Bayesian networks.

The main issue with ACC is that it does not present string stability, which means

that platoon is prompt to oscillations, due to abrupt braking and accelerations,

when the leader vehicle accelerates/decelerates a delay is generated, and accumu-

lated with every vehicle in the platooning system, causing the platoon to stretch

and squeeze like an accordion.

An improvement of ACC is Cooperative Adaptive Cruise Control (CACC), which

ensures string stability, this is achieved by using communications between vehicles

(V2V), where the different vehicles of the platoon share information about the

actual acceleration, velocity and steering, giving the possibility to the vehicles in

the platoon to predict and anticipate actions, reducing the reaction time of the

entire platoon and avoiding the accordion effect.

Platooning systems present many benefits and some drawbacks, giving room to

research and future improvements.

The benefits of platooning systems are exposed in the following list:

• By decreasing the distance between vehicles at a minimum safety distance,

the road capacity is increased.

• Due to instant and automatic breaking, the human reaction time disappear

resulting in a gain on safety.

8

2.1 Platooning System

Figure 2.2: Vehicle to vehicle communications in a platooning system [27]

• When vehicles run at a constant speed there are less acceleration and decel-

eration, therefore the there is less amount of fuel consumed.

• As vehicles drive closer the aerodynamic drag is reduced, which improves

the aerodynamic effectiveness, and the resistance to air of the vehicles be-

hind decreases, reducing the CO2 emissions by 10% according to a study

conducted by the department of Vehicle Dynamics Laboratory in Auburn

University.

• The fact that driving is automated, allows drivers to do other tasks.

The platooning system drawbacks are exposed in the following list:

• The rely on the communication system might be a target for hackers, creating

hazardous situations.

• The fact that vehicles are controlled by a computer can give the feeling of

lack of control to the driver.

• Drivers would be less attentive if a quick reaction is needed due to a vehicle

failure.

• Platooning systems might not work well in towns due to the dense traffic.

9

2.2 Lyapunov Stability

2.2 Lyapunov Stability

Before explaining the sliding mode control method, the Lyapunov stability [7]

results have to be introduced, since they set the basis of sliding modes, among

other nonlinear control methods.

Lyapunov theory is used to extract conclusions from differential equations trajec-

tories without having to find the exact solution and it is widely used for nonlinear

systems analysis due to its toughness when they are up to be solved.

Based on the slides of control theory [4], the stability in the sense of Lyapunov is

defined as follows:

Considering the dynamical system

ẋ = f(x)

where x ∈Rn

• xe ∈Rn is said to be an equilibrium point of the system if f(xe) = 0

• The equilibrium point, xe is stable, if and only if, for every R > 0 there

exists r > 0 that implies

‖x(0)− xe‖ ≤ r =⇒ ‖x(t)− xe‖ ≤ R, ∀t > 0

If not, the equilibrium point is unstable.

Figure 2.3: Representation of Lyapunov stability [4]

The Lyapunov theorem of asymptotic stability, is a stronger condition of the sta-

bility theorem that ensures the attractiveness of the equilibrium point.

10

2.2 Lyapunov Stability

The equilibrium point, xe, is asymptotically stable if and only if is stable and there

exists r0 > 0 such that

‖x(0)− xe‖ ≤ r0 =⇒ lim
t→+∞

‖x(t)− xe‖ = xe

The equilibrium point, xe, is globally asymptotically stable, if and only if, it is

asymptotically stable and for all x(0)

lim
t→+∞

x(t) = xe

The Lyapunov theorem of exponentially stability, states that, the equilibrium

point, xe, is exponentially stable, if and only if, there exist α, λ, r0 > 0 such that,

‖x(0)− xe‖ ≤ r0 =⇒ ‖x(t)− xe‖ ≤ α‖x(0)− xe‖e−λt,∀t > 0

Exponential stability implies asymptotic stability, but not the other way around.

The equilibrium point, xe, is said to be marginally stable, if and only if, it is stable

but not asymptotically stable.

Figure 2.4: Representation of the three types of Lyapunov stability [4]

The figure 2.4 show the three possible types of stability in the sense of Lyapunov.

Where T1 presents asymptotically and exponentially stability, T2 marginal sta-

bility and T3 is unstable.

Lyapunov’s direct method, uses a Lyapunov function V (x), that depends on the

states of the system, to proof stability. If in a ball BR the function V (x) is positive

11

2.2 Lyapunov Stability

definite, has continuous partial derivatives, and its time derivative with respect to

time for any state trajectory of ẋ = f(x) is negative semi-definite

V̇ ≤ 0, x 6= 0

then, V (X) is said to be a Lyapunov function for ẋ = f(x). Furthermore, if its

time derivative with respect to time is negative definite, V̇ (X) ≤ 0, x 6= 0 V (x) is

a stirct Lyapunov function.

A scalar continuous function V (x) such that V (0) = 0 in a region defined by a

ball BR is said to be

• locally positive definite if x 6= 0 =⇒ V (x) > 0

• locally positive semi-definite if x 6= 0 =⇒ V (x) ≥ 0

If the above properties and V (0) = 0 holds for the entire state space, the V (x) is

said to be globally positive definite and globally positive semi-definite respectively.

If −V (x) is positive definite or semi-definite, then V (x) is said to be negative

definite or semi-definite.

Local stability theorem states that, if in a region defined by a ball BR, there exists

a scalar function V (x) with continuous first partial derivatives such that

• V (x) is positive definite in BR

• V̇ (x) is negative semi-definite in BR

then the origin is stable. Moreover, if V̇ (x) is negative definite in BR the origin is

asymptotically stable.

According to the global stability theorem, a system is said to be globally asymp-

totically stable if there exists a scalar function V (x) with continuous first partial

derivatives such that

• V (x) is positive definite

• V̇ (x) is negative definite

• V (x)→ inf as ‖x(t)‖ → inf

12

2.2 Lyapunov Stability

The theorem of exponential stability assume that there exists a scalar function

V (x) with continuous first partial derivatives such that

• V (x) is positive definite

• V̇ (x) is negative definite and it satisfies V̇ (x) ≤ −αV (x) for all x

• The sublevel sets {x|V (x) ≤ c} are bounded for all c ≥ 0

Then the origin is exponentially stable.

If a real function W (t) satisfies the inequality

Ẇ (t) ≤ −αW (t)

where α is a real number, integrating both parts of the inequality,

W (t) ≤ W (0)e−αt

Figure 2.5: Lyapunov function representation [26]

13

2.3 Sliding Mode Control

2.3 Sliding Mode Control

Sliding mode control (SMC) is a variable structure control method, which means

that the dynamics of the system are modified according to a stable hyperplane

or sliding surface with simpler dynamics defined beforehand [6]. This makes this

technique ideal for the control of nonlinear systems. With a discontinuous and

high frequency control action, the state trajectories are forced to move and stay

on the manifold σ = 0, once the system is in the manifold, it evolves following the

dynamics described by this one.

Lyapunov theory sets the basis for sliding mode control, since the control action

selected is one that makes the system stable in the sense of Lyapunov.

The idea of this method is to build an hyperplane, denoted by σ(x(t)), which is a

function of the states of the system, and by means of a specific control action, force

the system states trajectories to move towards the manifold σ(x(t)) = 0, ideally,

once the trajectory reaches the manifold, it remains on it thereafter sliding over,

then it is said that the system has entered in sliding mode. On the sliding surface

the system evolves according to the dynamics defined by the manifold, therefore

the manifold is, typically chosen to be a Linear Time Invariant (LTI) system, with

simple dynamics, although it is not mandatory, usually the state errors are chosen

to compound the sliding surface. A desired convergence rate to the equilibrium

point, can be selected by choosing the adequate parameters for the manifold.

The hyperplane has the same dimension as number of inputs has the system, and

the manifold dimension is the difference between the number of system states and

the number of inputs, resulting into a order reduction with respect to the original

system.

Due to the switching nature of the control action the system becomes insensi-

tive to uncertain parameters correlated with the control action, robust against

unmodelled dynamics and disturbances.

The design of sliding mode control is broken down into two separate parts:

The first part is the design of the sliding manifold σ(x(t)) = 0, in such a manner

that the dynamics of the reduced order system evolve as desired.

14

2.3 Sliding Mode Control

The second part is the design of the control action, the control action is chosen in

order to enforce the trajectories to move towards the sliding surfaces.

The control action is usually defined by the combination of two terms, one that is

continuous and another one that is discontinuous. The discontinuous part is the

one that forces the trajectory to move towards the surface, whereas the continuous

part ensures the trajectory remains in the sliding surface once on it.

For the existence of sliding mode, the vector tangent to a state trajectory near the

manifold has to be directed towards it. If all trajectories in the state space move

towards the manifold, it is said to be a globally reachable sliding mode.

In order to ensure sliding mode, the hyperplane has to be stable in the sense of

Lyapunov.

Choosing (2.1) as a Lyapunov function candidate it ensures it is positive definite

and zero at the origin.

V (x) =
1

2
σ(x(t))2 (2.1)

To assure asymptotic stability to the manifold, the differentiation with respect to

time of V (x) must be strictly negative.

V̇ (x) = σσ̇ ≤ 0 (2.2)

A stronger criteria is exponential stability which can be achieved by,

V̇ (x) = σσ̇ ≤ γ|σ| (2.3)

and (2.3) ensures convergence to the surface in finite time, integrating both sides

of the inequality, the time it takes an from an initial state to reach the hyperplane

is upper bounded, which is given by the following inequality

tr ≤
|σ(x(t))|

γ
(2.4)

In the ideal sliding mode control the switching control action has an infinite gain

and frequency. Nevertheless, in the practical sliding mode it is not feasible, the

actuator might have some mechanical delay, the microcontroller need some time

15

2.3 Sliding Mode Control

to compute the control action, and an oscillatory behaviour called “chattering”

around the manifold arises. due to this situation the system does not converge to

the equilibrium but to a close region of it.

The chattering effect can be reduced by applying some variations of the before

Figure 2.6: Representation of chattering effect [5]

mentioned discontinuous signal. The most used variations are the Sigmoid ap-

proximation, which consist in applying a sigmoid function to obtain the control

action, instead of the on/off action, this method reduces the chattering but, on

the other hand it relaxes the reachability condition,

Sigmoid =
σ

|σ + ε|
(2.5)

where ε > 0 modifies the shape of the Sigmoid.

Another approach is the super-twisting algorithm where, the resulting control ac-

tion is the sum of a discontinuous part and the integration of another discontinuous

signal which results into a continuous term.

16

3 Modelling and Control Design

3.1 Model of the Vehicle

The prototype vehicle used for this project has a differential steering morphology,

which means that there are two independent motorized wheels that allow the

vehicle to move forward, backward and spin around, in this specific case the model

is composed by two motorized wheels in front, and a castor wheel behind, to give

stability at the back of the vehicle.

Figure 3.1: Differential steering mathematical model [3]

From the free body diagram represented by the figure 3.1 the resulting dynamic

model, applying the momentum conservation is as follows:

FR + FL − frmg cosα−mg sinα− 1

2
ρCdAxv

2
x = max

TR + TL − frmg cos β −mg sin β − 1

2
ρCdAyv

2
y = may

(3.1)

where the forces acting on the x axis are, FL and FR, that are the resulting forces

produced by the left and the right wheel, frmg cosα is the friction force opposing

the motion, with fr being the friction coefficient between the ground and the wheel,

m the vehicle mass, g the gravity acceleration along the z axis and α is the slope of

the ground between the x and z axis, mg sinα is the force produced by the weight

of the vehicle and 1
2
ρCdAxv

2
x is the force caused by the air opposing the direction

of motion, with ρ being the air density, Cd the drag coefficient, Ax the frontal

vehicle section and vX , aX the linear velocity and accelerations respectively.

The forces on the y axis are analogous to the ones on the x axis.

In order to simplify calculations the following assumptions have been made:

17

3.1 Model of the Vehicle

• The vehicle is considered as a rigid body modelled as a lumped point where

all the mass is concentrated on the center of mass G.

• Along the x axis the friction coefficient is high enough to make the wheels

do not slip, which results into a pure rotation of the front wheels with no

friction force, it is also considered that the friction force acting on the castor

wheel is negligible.

• Along the y axis the friction coefficient is high enough to prevent the wheels

to move in this direction.

• The vehicle is considered to move on a flat terrain with no slope.

• The drag force caused by the air resistance it is considered to be negligible

at the speed the vehicle is moving.

Applying the law of the momentum conservation along with the assumptions men-

tioned above, the simplified dynamic model is described by the equation (3.2)

FR + FL = max

TR + TL = may

(3.2)

The vehicle lies in a rotating frame, therefore its acceleration is described by the

following equality:
ax

ay

0

 =

v̇x

v̇y

0

+

0

0

ω

×

vx

vy

0

 =

v̇x − ωvy
v̇y + ωvx

0

 (3.3)

where θ̇ = ω is the angular velocity of the vehicle around the z axis.

Substituting the acceleration given by the equation (3.3) in (3.2) we obtain:

FR + FL = m(v̇x − ωvy)

TR + TL = m(v̇y + ωvx)
(3.4)

18

3.1 Model of the Vehicle

Applying the, simplified, angular momentum conservation in the center of mass:

(TR + TL)b+ (FR − FL)a = Izω̇ (3.5)

where a and b are the distance between the center of the wheel and the center of

mass, along the x and y axis respectively.

The inertial momentum of the vehicle is denoted by Iz and the angular acceleration

by ω̇.

Following the assumptions and considering no slip between the wheels and the

ground the conservation of angular momentum of each one of the wheels is defined

as:

Iω̇R + FRr = τR −BfωR

Iω̇L + FLr = τL −BfωL

(3.6)

where I is the inertial momentum of the wheel, ωR, ω̇R and ωL, ω̇L are the right

and left wheel angular velocities and accelerations. The radius of the wheel is r,

τ is the torque applied to the motor, and Bf the viscous coefficient that opposes

the torque.

Further simplifications are made by considering the inertial momentum negligible

compared to the other terms of the equality, resulting in the following equation:

FR =
τR −BfωR

r

FL =
τL −BfωL

r

(3.7)

The relationship of the angular and linear velocity of the wheels is given by the

wheel radius:

ωR =
vR, x

r

ωL =
vL, x

r

(3.8)

Since the robot is considered as a rigid body the velocities of the wheels affect

directly the velocity of the center of mass with the following relationship:

19

3.1 Model of the Vehicle

vR =

vR, x

vR, y

0

 =

vx + ωa

vy + ωb

0

vL =

vL, x

vL, y

0

 =

vx − ωa

vy + ωb

0

(3.9)

Using the equations (3.9) and (3.8) the equation (3.7) becomes:

FR =
τR
r
− Bf

r2
(vx + ωa)

FL =
τL
r
− Bf

r2
(vx − ωa)

(3.10)

Where the torque generated on each wheel is proportional to the current applied,

τ = Ki (3.11)

However, our control action is applied in terms of voltage. Applying Ohm’s law

I = V
R

we can obtain the relation between the torque generated according the

voltage applied.

τ =
K

R
V (3.12)

Since we considered that the wheels do not slip, there is no velocity along y,

therefore:

vR, y = vL, y = vy + ωb = 0 (3.13)

and by differentiating equation (3.13) against time,

v̇y = −ω̇b (3.14)

substituting equations (3.10) and (3.13) to equations (3.4) and (3.5) we obtain the

20

3.1 Model of the Vehicle

following expressions:

v̇x =
1

mr
(τR + τL)− 2Bf

mr2
vx − bω2 (3.15)

ω̇ =
1

Iz +mb2

(
a

r
(τR − τL)− Bfa

2

r2
ω +mbωvx

)
(3.16)

As depicted in the free body diagram of the figure 3.1, in the world reference frame

X ′−Y ′ the point on the line being tracked by the vehicle (q) can be expressed as:

 x′Q

y′Q

 =

 σ′x(q)

σ′y(q)

 (3.17)

The point being tracked can be also expressed as the distance between the center

of gravity of the vehicle and the point tracked on the line from the vehicle reference

frame X − Y , applying the rotation matrix that relates the frame of the vehicle

and the frame of the world, plus the distance from the world reference frame to

the center of mass of the vehicle. x′Q

y′Q

 =

 x′G

y′G

+R(θ)

 p

d

 (3.18)

where R(θ) is the rotation matrix that relates the reference frame of the vehicle

with the world, and θ is the angle between the world frame and the robot frame,

p is the distance from the center of masses to the line tracker sensor along the X

axis of vehicle’s frame and d is the distance measured from the sensor to point of

the line being tracked, along the Y axis.

R(θ) =

 cos θ − sin θ

sin θ cos θ

 (3.19)

Differentiating the equation (3.18) with respect to time, the variation of the tracked

point results into the following equality: ẋ′G

ẏ′G

+ ωR′(θ)

 p

d

+R(θ)

 0

ḋ

 = q̇

 ∂
∂q
σ′x(q)

∂
∂q
σ′y(q)

 (3.20)

21

3.1 Model of the Vehicle

where the variation of the distance along Y is denoted by ḋ, the variation of the

point being tracked by q̇ and R′(θ) is the partial derivative of ∂
∂θ
R(θ),

R′(θ) =

 − sin θ − cos θ

cos θ − sin θ

 (3.21)

θq is the angle between the line and the world reference frame.

Considering the line to have a constant slope, the equation (3.20) can be rewritten

as, v′x

v′y

+ ωR′(θ)

 p

d

+R(θ)

 0

ḋ

 = q̇

 cos θq

sin θq

 (3.22)

Rearranging the equation (3.22) to isolate the variable ḋ we get,

 0

ḋ

 = −R−1(θ)

 v′x

v′y

−ωR−1(θ)R′(θ)
 p

d

+R−1(θ)q̇

 cos θq

sin θq

(3.23)

where R1−(θ) is the inverse rotation matrix of R(θ) and equals to:

R−1(θ) =

 cos θ sin θ

− sin θ cos θ

 (3.24)

which results into:

q̇ =
v′x cos θ + v′y sin θ − ωd
cos θ cos θq + sin θ sin θq

ḋ = v′x sin θ − v′y cos θ − ωp+ q̇ (− sin θ cos θq + cos θ sin θq)

(3.25)

This can be simplified using the trigonometric equality of the sine and cosine of

sum two angles sin(a± b) = sin a cos b ± cos a sin b and cos(a± b) = cos a cos b ∓

sin a sin b.

Changing the variables according the following equality,

θe = θ − θq (3.26)

22

3.1 Model of the Vehicle

We obtain the following expression:

q̇ =
v′x cos θ + v′y sin θ − ωd

cos θe
(3.27)

ḋ = v′x sin θ − v′y cos θ − ωp− q̇ sin θe (3.28)

Equations (3.27) and (3.28) are expressed in terms of world reference frame, chang-

ing the coordinate system from world frame into vehicle frame is done by using

the inverse of the rotation matrix used before to pass from vehicle frame to world

frame. vx

vy

 = R−1(θ)

 v′x

v′y

 (3.29)

substituting equation (3.27) into (3.28) and applying the relation (3.29) to both

the equations, the same equation expressed in vehicle’s reference frame is obtained:

ḋ = −vy − ωp− tan θe(vx − ωd)

q̇ =
vx − ωd
cos θe

(3.30)

it can be further simplified if we consider that vy = −ωb, therefore −vy − ωp =

ω(b− p) and since l = p− b it results that −vy − ωp = −ωl

ḋ = −ωl − tan θe(vx − ωd) (3.31)

The angle variation against time of the robot respect to the line is defined by

differentiating equation (3.26):

θ̇e = ω − ωq (3.32)

where θ̇q is defined as:

θ̇q = c(q)q̇ (3.33)

substituting equation (3.33) into equation (3.32) is described by the following

expression:

θ̇e = ω − c(q)vx − ωd
cos θe

(3.34)

23

3.1 Model of the Vehicle

Therefore the equations that define the dynamic model are:

v̇x =
1

mr
(τR + τL)− 2Bf

mr2
vx − bω2

ω̇ =
1

Iz +mb2

(
a

r
(τR − τL)− Bfa

2

r2
ω +mbωvx

)
ḋ = −ωl − tan θe(vx − ωd)

θ̇e = ω − c(q)vx − ωd
cos θe

(3.35)

24

3.2 Sliding Mode Control

3.2 Sliding Mode Control

The objective is to perform two different controls, a velocity control which reference

is given by the Adaptive Cruise Control algorithm and a line following control.

Both controls are done with sliding mode control method.

Considering two vehicles a leader and a follower, the distance between the bottom

of the leader and the front of the follower is given by the following equation:

h(t) = xL(t)− xF (t)− lL (3.36)

Figure 3.2: Representation of two vehicles [1]

Where xL and xF are the positions of the leader and follower vehicles respectively

and lL is the length of the leader vehicle.

Taking the derivative of (3.36) to obtain an equation that describes the distance

variation between two vehicles,

ḣ(t) = vL − v (3.37)

where vL = ẋL and v = ẋF .

The Adaptive Cruise Control algorithm regulates the vehicle reference velocity

guaranteeing a safety distance with the precedent vehicle, the safety distance de-

pends on the velocity the vehicle is moving, the faster it moves the larger the

safety distance has to be. The policy chosen that regulates the distance according

to the velocity is defined by the following equation:

hs(t) = h0 + Tv (3.38)

25

3.2 Sliding Mode Control

defining h0 as the minimum safety distance between vehicles, and T is the time

constant equivalent to the time it takes the vehicle to reach the position of its

predecessor.

Figure 3.3: Distance/velocity policy [1]

Given this policy two cases arises.

The first case is when there is no vehicle ahead or the velocity of the ahead vehicle

is greater than the actual vehicle maximum velocity, vmax < vL, in which case the

setpoint velocity is the maximum vmax shown in figure 3.3 a). In this case the

control objective becomes regulating the velocity to vmax, assuming v → vmax and

substituting it into equation (3.37) it becomes clear that, since the leader velocity

is higher than the follower, the distance between both vehicles increases, therefore

the safety distance is guaranteed.

The second case is when the vehicle in front drives at a lower velocity than the

actual vehicle maximum speed, vmax > vL, in which case the target is set to

regulate a safety distance determined by the policy equation (3.38), only when the

follower velocity becomes the vL the equation (3.37) is at equilibrium.

The target safety distance in equilibrium, given by equation (3.38) becomes,

h∗ = h0 + TvL (3.39)

26

3.2 Sliding Mode Control

The torque of each one of the motors τL and τR affect directly vx in the equation

(3.35), which implies that vx must be regulated in such a manner that (3.37) rest

in equilibrium.

The problem is reformulated as a velocity control depending on the distance to

the leader vehicle, given by the following piecewise function,

vd(h) =

h−h0
T

h < hc

vmax h ≥ hc

(3.40)

where hc = h0 + Tvmax is the target safety distance in case the vehicle is driving

at its maximum speed.

Notice (3.40) is not smooth and as a consequence it is not differentiable in the

entire domain this could lead to abrupt behaviour.

Differentiating equation (3.40) against time:

∂vd(h)

∂h
=

1
T

h < hc

0 h ≥ hc

(3.41)

If the limit as h approaches the region defined by the next equation in the piecewise

function (3.41) is the same, means that the function is first class C1 and therefore

differentiable. However we got that as the first region approaches the second

h→ hc the limits differ.

lim
h→−hc

1

T
=

1

T
6= lim

h→+hc
0 = 0

To solve this issue the following smooth piecewise function is considered,

vdε(h) =

vmax + h−hc

T
h− hc ≤ −ε

vmax − 1
4εT

(h− hc − ε)2 |h− hc| < ε

vmax h− hc ≥ ε

(3.42)

where ε is greater than 0.

27

3.2 Sliding Mode Control

Figure 3.4: Distance/velocity smooth policy [16]

Differentiating the first class equation (3.40) against distance h the following equa-

tion is obtained,

∂vdε(h)
∂h

=

1
T

h− hc ≤ −ε

− 1
2εT

(h− hc − ε) |h− hc| < ε

0 h− hc ≥ ε

(3.43)

When h approaches the boundary between first and second region, defined by

h− hc ≤ −ε both regions approach to the same value.

lim
h→−(hc−ε)

1

T
=

1

T
= lim

h→+(hc−ε)
− 1

2εT
(h− hc − ε)

When h approaches the boundary between second and third region, defined by

h− hc < ε both regions approach to the same value.

lim
h→−(hc+ε)

− 1

2εT
(h− hc − ε) = 0 = lim

h→+(hc+ε)
0

To control velocity according the Adaptive Cruise Control algorithm and track

the line using sliding mode control method, two hyperplanes are proposed.

The sliding surface that aims to control linear velocity following the reference given

28

3.2 Sliding Mode Control

by the ACC algorithm is defined as follows:

σ1 = K(vdε(h) − v) (3.44)

Which is the velocity error multiplied by a constant gain K.

When sliding mode occurs, the resulting manifold dictates the new dynamics of

the system. The manifold is chosen to be a stable Linear Time Invariant system

for simplicity, and the gain K denotes the rate of decay.

The sliding surface designed to control the distance of the vehicle to the line is:

σ2 = K1d+K2ḋ (3.45)

It has been chosen to be the sum of the distance to the line error d and its time

derivative ḋ, since it is with the second time derivative of the error distance where

the control action appears. The gains K1 and K2 are chosen to be the rate of

decay desired.

To ensure that the controller pushes the state trajectories towards the sliding

manifold, it has to be demonstrated that the system is stable in the sense of

Lyapunov.

To do so, the following Lyapunov function candidates are chosen.

V1(σ1) =
1

2
σ2
1 (3.46)

V2(σ2) =
1

2
σ2
2 (3.47)

These Lyapunov function, matches the criteria of being a function of σ1 and σ2,

positive definite, as σ1 and σ2 increases the Lyapunov function increase as well,

and it is zero only when both σ1 and σ2 are zero.

The last criteria it needs to accomplish is that its time derivative is negative

definite for any value different than V̇ (0, 0).

V̇1(σ1) = σ1σ̇1 < 0 (3.48)

V̇2(σ2) = σ2σ̇2 < 0 (3.49)

29

3.2 Sliding Mode Control

To accomplish what equations (3.48) and (3.49) state, a control action must be

chosen according.

The designing of the control action is composed as the sum of two terms, the

first term is the control action that needs to be applied once the state is on the

manifold, in which case σ̇(h, v) = 0, called equivalent control, and the second term

is a pushing action towards the manifold.

Using the model equations of the vehicle (3.35) In the term σ̇1 appears the torque

applied to the motors τR + τL, which means it can be controlled, by computing

the control action to make σ̇1 = 0 the equivalent control Ueq is obtained. Defining

τR + τL as U1.

σ̇1 =
∂vdε(h)
∂h

(vL − v)− v̇x =
∂vdε(h)
∂h

(vL − v)− U1

mr
+

2Bf

mr2
vx + ω2b = 0 (3.50)

The resulting U1eq control action is therefore,

U1eq =

(
∂vdε(h)
∂h

(vL − v) +
2Bf

mr2
vx + ω2b

)
mr (3.51)

Assigning
2Bf

mr2
vx + ω2b = f1, results into the following simplified equation.

U1eq =

(
∂vdε(h)
∂h

(vL − v) + f1

)
mr (3.52)

So, according to the Adaptive Cruise Control algorithm, the U1eq has to be equal

to,

U1eq = f1mr +

mr
T

(vL − v) h− hc ≤ −ε

mr
2εT

(ε− hc − h)(vL − v) |h− hc| ≤ ε

0 h− hc ≥ ε

(3.53)

The other part of the control action is the pushing term, this is chosen to be a

discontinuous control action that depends on the sign of the hyperplane. This

30

3.2 Sliding Mode Control

transforms the system into a variable structure system.

U1c =

K σ < 0

−K σ > 0

(3.54)

Where K is a positive constant greater than 0, the control action can be synthe-

sized as −Ksign(σ), where sign(σ) is the sign of the sliding surface for a given

state. Using a control action with the form U1 = U1c+U1eq we obtain the following

control structure:

U1 = Ksignσ1 +

(
∂vdε(h)
∂h

(vL − v) + f1

)
mr (3.55)

Substituting the control action given by equation (3.55) into (3.50) and according

to the time derivative Lyapunov candidate function (3.48), ideally, we have that:

V̇1(σ1) = σ1σ̇1 = − K

mr
sign(σ1)σ1 = −K|σ1| < 0 (3.56)

Guaranteeing at least the asymptotic stability. To be more rigorous and guarantee

the exponential stability and as a consequence a finite time convergence, the gain

has to be design in such a manner that the following inequality holds.

V̇1(σ1) = σ1σ̇1 = − K

mr
sign(σ1)σ1 = − K

mr
|σ1| ≤ −γ|σ1| (3.57)

With the expression (3.57) we can find an upper bound, for the time it would take

the system to reach the manifold. by integrating V̇1(σ1) ≤ −γ|σ1|

tr ≤
|σ1(0)|
γ

(3.58)

The same procedure used to obtain U1 is applied to obtain U2, where U2 = τR−τL.

The first step is to calculate the equivalent control U2eq, using the model equations

of the vehicle (3.35) and σ̇2.

σ̇2 = ḋ− lω̇ − (1 + tan2 θe)θ̇e(vx − ωd)− tan θe(v̇x − ω̇d− ωḋ) (3.59)

31

3.2 Sliding Mode Control

Expression (3.59) can be further develop as:

σ̇2 = (1 + ω tan θe)ḋ+ α(d tan θe − l)(
aU2

r
− β2ω +mbωvx)− (1 + tan2 θe)θ̇e(vx − ωd)

− tan θe(
U1

mr
− β1vx − bω2)

(3.60)

Where the following renaming of variables has been done in order to simplify the

calculation α = 1
Iz+mb

, β1 =
2Bf

mr2
, β2 =

2Bfa
2

mr2
.

Following the same procedure as above and equaling σ2 to 0 we have the following

expression:

U2eq =
r

αa(l − d tan θe)

[
(1 + ω tan θe)ḋ− α(d tan θe − l)(β2ω −mbωvx)

−(1 + tan2 θe)θ̇e(vx − ωd)− tan θe(
U1

mr
− β1vx − bω2)

] (3.61)

The same procedure applied to obtain the control action term that pushes the

state trajectories to the hyperplane is done for control action U2

U2c =

K
r

αa(l−d tan θe) σ < 0

−K r
αa(l−d tan θe) σ > 0

(3.62)

Where K is a positive constant greater than 0. The resulting control action has

the form

U2 =
r

αa(l − d tan θe)

[
K + (1 + ω tan θe)ḋ− α(d tan θe − l)(β2ω −mbωvx)

−(1 + tan2 θe)θ̇e(vx − ωd)− tan θe(
U1

mr
− β1vx − bω2)

]
(3.63)

Substituting the control action given by equation (3.63) into (3.59) and according

to the time derivative Lyapunov candidate function (3.49), ideally, we have that:

V̇2(σ2) = σ2σ̇2 = −Ksign(σ2)σ2 = −K|σ2| < 0 (3.64)

Guaranteeing at least the asymptotic stability. To be more rigorous and guarantee

32

3.2 Sliding Mode Control

the exponential stability and as a consequence a finite time convergence, the gain

has to be design in such a manner that the following inequality holds.

V̇2(σ2) = σ2σ̇2 = −Ksign(σ2)σ2 = −K|σ2| ≤ −γ|σ2| (3.65)

With the expression (3.57) we can find an upper bound, for the time it would take

the system to reach the manifold. by integrating V̇1(σ1) ≤ −γ|σ1|

tr ≤
|σ2(0)|
γ

(3.66)

So far it has been assumed an ideal case where the model parameters are ex-

actly known, however this is far from reality, we might have a good estimation of

the parameters but not an exact knowledge in addition, some parameters might

change through time depending on the conditions they are exposed, therefore the

equivalent control becomes an estimation Ûeq, when substituting the the equiv-

alent control estimation into the derivative Lyapunov function candidate V̇ the

following system is obtained.

V̇ = −Ksign(σ) + |Ûeq − Ueq| < 0 (3.67)

To ensure stability K gain has to be large enough to repel the term |Ûeq − Ueq|

which can be bounded by its maximum uncertainty value.

|Ûeq − Ueq| ≤ φmax (3.68)

By making K ≥ φmax Lyapunov asymptotic stability is guaranteed.

Another consideration to take into account are the disturbdances, if they are large

enough to forbid the control action from pushing the states into the manifold,

sliding mode control will not occur, that is why by having an estimation of the

bounded disturbances it is possible to find a K able to reject them.

Finally, the control actions obtained U1 and U2 have to be related to the torque

that has to be given to each separate wheel. From the definition of U1 = τR + τL

33

3.2 Sliding Mode Control

and U2 = τR − τL, we can obtain the following relationship.

τR =
U1 + U2

2

τL =
U1 − U2

2

(3.69)

34

3.3 Kinematic Model

3.3 Kinematic Model

From the angular velocity of the wheels calculated from the encoders attached to

each wheel, the linear and angular velocities of any point of the vehicle can be

calculated, for simplicity the center of mass.

In the ideal case, it is assumed that the wheels do not slip, do not get deformed by

the weight of the vehicle, and there are no bumps therefore, the linear velocity on

the ’Y ’ axis is considered to be zero, and the linear velocity along X axis as well as

the angular velocity can be computed by. For a differential steering vehicle, such

as the one modelled, the velocity of the center of mass is given by the following

formula.
Vx

Vy

ω

 = 2R

1 1

0 0

2
Wd
− 2
Wd

ωr
ωl

 (3.70)

Where Vx is the lineal velocity on the X axis, Vy is the lineal velocity on the Y

axis and ω is the angular velocity around the Z axis. R is the wheel radius which

is considered to be the same on the two front wheels Wd is the distance between

the front wheels and ωr, ωl are the right and left wheels angular velocities.

To calculate the angular velocity needed for each wheel, given a reference linear ve-

locity Vx and angular velocity ω we can make use of equation (3.70), and calculate

its inverse to obtain the inverse kinematics.ωr
ωl

 =
1

4R

1 Wd

2

1 −Wd

2

Vx
ω

 (3.71)

From the odometry it is also possible to obtain an estimate of the trajectory the

robot, this is done by integrating the linear and angular velocity through time.

x(t) =

∫ t

0

Vx cos θ(t)dt

y(t) =

∫ t

0

Vx sin θ(t)dt

θ(t) =

∫ t

0

ωdt

(3.72)

35

3.3 Kinematic Model

Since the data is obtained at discrete amount of time, the equation (3.72) is

approximated by:

xk = xk−1 + Vxk−1
cos θk−1∆t

yk = yk−1 + Vxk−1
sin θk−1∆t

θk = θk−1 + ωk−1∆t

(3.73)

So far, we have always assumed that the vehicle wheels do not slip, there are no

bumps and there is no deformation of the wheels, however, in the real world this

does not apply, and the problems mentioned above occur quite often, this rise to

problems such us bad localization in autonomous vehicles, that is why these kind

of systems must have an extra localization strategy that does not accumulate error

such as a lidar or a landmark system.

36

4 Implementation

4.1 Controller Implementation

The main goal of this thesis is to implement a series of controllers based on sliding

mode control to ensure the follower vehicle follows the leader, keeping a safety

distance given by the Adaptive Cruise Control algorithm, described by equation

(3.38).

Three different control algorithms have been implemented, the first one, is a first

order sliding mode control (FOSMC) based on an on/off action, the second algo-

rithm is a variation of the first one, also belonging to the family of (FOSMC) with

the difference that the control action is defined by a Sigmoid, which results into

different properties and the last control algorithm is a second order sliding mode

controller (SOSMC), called super-twisting algorithm (STA).

These controllers have been chosen because they present different properties that

are interesting to compare and analyze.

The control action is computed at a fixed time rate, in order to have a stable

frequency when computing the sliding surfaces state values and the control actions.

This is done with the implementation of a callback function that happens every

time an interruption of the timer occurs. The frequency execution is, somehow,

determined by the hardware, mainly by the resolution of the encoders and the time

it takes to convert the line sensor output. The data obtained from the sensor, is

the one used to to compute the control actions.

Ideally the frequency of the control action in sliding mode control is infinite, how-

ever this is not realistic due to the delays caused by mechanical elements such as

the backlash of the reduction gear and software delays caused. In addition, a high

frequency signal can generate undesired effects in the control such as “chattering”

and it might damage the hardware elements.

Therefore, the control action frequency seeks for a compromise between robustness

and avoiding undesired effects. After some iterations and taking always into ac-

count the time limitations caused by the lecture of the encoders, the final control

action frequency is 100Hz.

37

4.1 Controller Implementation

To know how the DC motors will behave, they are modelled.

Figure 4.1: Plot of right wheel angular velocity against voltage for motor modelling

Figure 4.2: Plot of left wheel angular velocity against voltage for motor modelling

Using “polyfit” function, with degree three, in MATLAB to find a polynomial

function that parameterizes the resulting angular velocity given a voltage, we

obtain that:

ωL = 0.0090V 3 + 0.0079V 2 + 8.4396V − 2.1376

ωR = 0.0087V 3 + 0.0382V 2 + 8.4266V − 2.7130

The second and third order coefficients are small enough to be neglected, therefore

the motor behaviour is approximately linear and the constants for each motor are,

KL = 8.4396 − 2.1376 and KR = 8.4266V − 2.713 for the left and right motor

respectively.

38

4.1 Controller Implementation

4.1.1 First Order Sliding Mode Control (on/off)

The first implementation is a first order sliding mode controller (FOSMC) based

on an on/off or rely control. This method is applied to control the distance to the

line and velocity. Using equations (3.55) and (3.63) and taking into account the

parameter uncertainties. The gain K for each one of the control actions can be

computed.

Considering that the maximum parameters uncertainty is given by φmax,

|Ûeq − Ueq| < φmax

By choosing a gain K > φmax we can assure Lyapunov stability, however it should

be tested because in real world application there are disturbances perturbing the

system.

After testing different parameters and seeing that the dynamics of the motor

moving backward are quite different than the moving forward the control actions

chosen for velocity control and distance to the line control respectively are,

Uvelocity = U1eq + 1.8sign(σ) + 4

Udistance = U2eq + 3 ∗ sign(σ)

Where U1eq and U2eq are defined by equations (3.53) and (3.61) and the function

sign is described by,

U =

K σ < 0

−K σ > 0

(4.1)

The main drawback of this control method, is that it appears the “chattering”

effect due to the high frequency switching.

39

4.1 Controller Implementation

4.1.2 First Order Sliding Mode Control (sigmoid)

A softer approximation to the on/off control is the implementation of a control

signal based on a sigmoid, which is continuous and differentiable. The resulting

control action is the following,

u = −K σ

σ + ε
(4.2)

where K is a positive constant, σ
σ+ε

defines the sigmoid function and ε is the

parameter that allows tho modify the slope of the sigmoid.

Figure 4.3 shows a plot for a constant K = 1 and for different values of ε equal to

Figure 4.3: Plot of a sigmoid with different ε

0.01, 0.03 and 0.05. Notice that the larger ε the softer the slope is, and it becomes

further to an ideal on/off signal, the chosen ε value must be a compromise between

a control action with high enough frequency to force the state to move towards the

manifold but at the same time not too high that it could damage the actuators, on

the other hand if ε is too large we risk the system no to be enough reactive. This

approach attenuates the chattering effect but as a trade-off of losing robustness.

After some iterations the final equations that define the control action are,

Uvelocity = U1eq + 1.8σ/|(σ + 0.025)|+ 4

Udistance = U2eq + 3 ∗ σ/|(σ + 0.001)|

Where the parameters defining the shape of the sigmoid are ε1 = 0.025 and ε1 =

0.001

40

4.1 Controller Implementation

4.1.3 Second Order Sliding Mode Control (Super-twisting algorithm)

The last approach implemented is the super-twisting algorithm (STA) which is a

second order sliding mode control method (SOSMC), this algorithm is composed

by two control actions, one which is discontinuous and depends on the sign of

sigma, and another one which is the integration of a discontinuous signal. This

method allows to avoid the undesired chattering effect. The control action is

formulated as follows.

U = Ûeq +K(U1 + U2)

Where,

U1 = −k1|σ|
1
2 sign(σ)

U̇2 = −k2sign(σ)

In order to calculate u̇2 the integration has to be done,

U2 = −K2

∫ tf

t0

sign(σ)dt

The integration operation is done in discrete chunks of time since the last integra-

tion,

U2 = U2 +−k2sign(σ)∆t

An anti-windup has also been implemented in order to prevent limit the integral

value. The resulting control action is given by,

Ûeq + 1.175(8
√
|σ|sign(σ) + U2c)

Where U2c = U2c−2sign(σ)∆t, and ∆t is a constant sample time of 10 milliseconds.

41

4.2 Timer Configuration

4.2 Timer Configuration

During this project the timers have been widely used to perform many tasks, such

as executing functions at a constant rate of time, generate PWM signals, retrieve

counter value once an interrupt occurs to read, for instance, the distance with

the vehicle ahead. The procedure to configure timers with an STM32 device is as

follows.

Timers in STM32 are configured using the following parameters: (Fclock, ClockDivision,

Prescale, Period, AutoReload). Where Ftimer is the resulting frequency obtained

at which the timer is going to be working, Fclock is the internal clock frequency of

the timer, ClockDivision is, as the name indicates, the division it is performed

on the Fclock, which can be 1, 2 or 4 and the Prescale is another division that

can be applied to the Fclock but it gives more flexibility since it can go from 0 to

2PrescaleBits−1, PrescaleBits is the prescale resolution, it may vary depending on

the timer. Finally, a Period must be defined, the value of the period indicates the

number until the timer will count (up/down), once this value is reached the timer

will overflow, the Period resolution is given by PeriodBits, resetting the counter

number and applying the AutoReload value to the counter.

The equation that gives the resulting timer frequency is shown below.

Ftimer =
Fclock

ClockDivision× (Prescale+ 1)
(4.3)

The timer cycle, when configured in counter up mode is determined by the follow-

ing equation

Ttimer =
1 + Period− AutoReload

Ftimer
(4.4)

Figure 4.4: Example of timer configuration parameters [8]

42

4.3 DC Motor Control

4.3 DC Motor Control

The motor is fed with a with pulse wide modulation (PWM) signal.

To obtain the actual speed we use the encoder (2channel Hall-effect) attached

to an interruption that counts every time there is a change, another timer is

programmed to have an interruption every few milliseconds, then the amount of

pulses of the encoder are counted and divided by the total amount of time between

timer interruption, and the angular speed of each wheel is obtained.

Given that the encoder has two channels it is possible to know the direction at

which it is spinning.

Figure 4.5: Encoder pulses captured by an oscilloscope channel A (yellow), channel
B (blue) [21]

When the wheel is moving counterclockwise, the yellow signal has to be seen from

left to right, therefore, when there is a falling edge in channel A the channel B

will be high. On the other hand, if the wheel is moving clockwise, when there is

a falling edge in channel A the channel B will be low, and the direction is always

determined.

The two motor supply wires are connected to a dual full bridge driver (L6205PD)

outputs (output 1, output 2). The truth table of the driver is shown in the figure

4.1

If both outputs are either high or low the motor will not move, however, if output

1 is high and output 2 is low the motor will turn clockwise and if output 1 is low

and output 2 is high the motor will turn counterclockwise.

43

4.3 DC Motor Control

Table 4.1: dual full bridge driver truth table [25]

The inputs of the driver come from the PWM signals generated by the timer 1.

Timer 1 is configured to generate two PWM signals, one for each motor, with its

negated signal, each one of the PWM signal together with its negated are wired

to input 1 and input 2 of the full bridge, respectively.

The configuration of timer 1 is as follows: Fclock = 168MHz, since timer 1 uses the

APB1 bus, ClockDivision = 1, Prescale = 0, Period = 8399, AutoReload = 0,

knowing that PrescaleBits = 16 and PeriodBits = 16 which give a Prescale and

AutoReload resolution of = 65536. The resulting timer frequency and its period

is given by:

Ft1 =
168× 106

1× (0 + 1)
= 168× 106Hz

Tt1 =
8400

Ft1
= 50µs

The Pulse value that determines the PWM analog value once it matches the

counter is modified during the execution of the code according to the control law

and it affects the angular velocity of the wheels.

Attached to the motor there is a two-channel hall effect sensor, providing a 48

counts per revolution of the motor shaft when counting both edges of both en-

coder channels, coupled to the motor shaft there is a reduction gear of 9.68:1 gear

ratio, when the motor shaft makes 9.68 revolutions the wheel has turn one rev-

olution. The following formula relates the count of pulses to the wheel revolutions.

PulsesToRevolution =
1

PulsesPerRevolution×ReductionGear

44

4.3 DC Motor Control

Substituting the expression parameters by motor values we get:

PulsesToRevolution =
1

48× 9.68
= 2.152× 10−3

Rev

Pulses

When an event occurs timer 3 and 4 both with two channels connected to each

channel of the hall sensor, enter to the interrupt routine where a counter is incre-

mented. Using the timer 7, configured to have a period of 10ms.

Ft7 =
84× 106

1× (999 + 1)
= 84× 103Hz

Tt7 =
1 + 839

Ft7
= 10ms

Once it overflows it enters to the interrupt routine where the angular velocity of

the wheel is calculated.

ωwheel =
2π × EncoderPulses× PulsesToRevolution

LapsedT ime

where, LapsedT ime = 10ms.

The control action obtained from the sliding mode control is used to establish the

new PWM value.

Two different approaches have been implemented in order to control the speed of

the wheel, the first one is a controller compound by a proportional gain a feed-

forward and an integrator, taking as a reference the desired angular velocity of

each wheel separately and the angular velocity read by the encoder.

The other approach has been to model each motor, by saving a tuple of the input

given to the motor and the angular speed of the wheel, by increasing the input

slowly until the maximum speed of the motor, and doing the analogous for the

wheel going backwards, we get the data of the angular speed given a control

action, by inverting the data we get the control action given an angular speed,

the data can be approximated with a linear regression and the values found are

the following, in this fashion we obtain a function that returns the control action

needed to get a specific angular speed.

45

4.4 Distance Sensor

4.4 Distance Sensor

The sensor used to get the distance between the vehicle and the vehicle in front is

the ultrasound sensor HC-SR04, the sensor has four pins which are Vcc, Trigger,

Echo and Ground. The Vcc pin is the supply voltage the device needs in order to

work, five volts according to the datasheet. The Trigger, when activated, generates

an eight cycle burst of ultrasound at 40kHz and right after sets the Echo pin to

five volts, the ultrasound waves move through the air until they collide with some

object and they bounce back, until the HC-SR04 ultrasound receiver detects the

high frequency sound and the Echo pin is set to zero volts.

Figure 4.6: Timming diagram [17]

The time the Echo pin remained high indicates the time for the ultrasonic wave

to go from the HC-SR04 device to collide with an object and come back (Thigh).

Since the speed of the ultrasound waves at 25 degrees Celsius is 340m/s (Vsound),

taking into account that the ultrasound waved travelled twice the distance from

the sensor to the object, this distance can be computed as Distance =
VsoundThigh

2
.

According to the data sheet of the product some considerations must be taken, the

operational range of the device indicates that it can detect an object within 0.02m

to 4m and an angle of 15 degrees from the receiver with an accuracy of 3mm. It

is suggested that the measuring cycle be higher than 60ms in order to prevent

overlap of measurements, the time the Trigger pin must be high to generate the

ultrasound pulses must be of 10µS.

Timer 10 of STM32 gives the option to generate a PWM signal, using the PB8 pin

of the microcontroller, once the counter matches a predefined, called Pulse value

46

4.4 Distance Sensor

set by the user, this is used to generate the Trigger signal for the HC-SR04, that

creates an eight cycle burst of ultrasounds. To obtain the 60ms cycle mentioned

on the device data sheet we set the timer parameters as follows: Fclock = 168MHz,

since timer 10 uses the APB1 bus, ClockDivision = 1, Prescale = 165, Period =

65535, AutoReload = 0, knowing that PrescaleBits = 16 and PeriodBits = 16

which give a Prescale and AutoReload resolution of = 65536, using equations

(4.3) and (4.4) we obtain the following:

Ft10 =
168× 106

1× (165 + 1)
≈ 1.012× 106Hz

Tt10 =
65536

Ft10
≈ 64.76ms

The PB8 pin will remain low until the counter value matches Pulse = 65525 then

it will become high until the counter reaches its maximum Period value, set at

65535 at which an overflow will occur and the PB8 pin will become low again,

therefore the time PB8 will remain high is going to be determined by:

Thigh =
65536− 65525

Ft10
≈ 10.87µS

As a result, an ultrasound signal is sent every 64.76ms with a Trigger pulse of

10µS as specified in the data sheet.

Timer 2 is used to capture the counter value every time there is a rising or falling

edge on the Echo pin, since there are three HC-SR04 devices, three channels

of timer 2 are attached to the Echo pin of each of the devices (channel 1 PA15,

channel 2 PB3, channel 3 PB10). The HC-SR04 resolution of 3mm has been taken

into account in order to calculate the timer frequency, T3mm = 0.003
340
≈ 8.82µS

being 8.82µS the time needed for the ultrasound wave to travel 3mm, the timer

parameters configured as follows, Fclock = 84MHz, since timer 2 uses the APB2

bus, ClockDivision = 1, Prescale = 99, Period = 65535, AutoReload = 0,

knowing that PrescaleBits = 16 and PeriodBits = 32 which give a Prescale

resolution of 65536 and AutoReload resolution of 232, the resulting time per count

is given by:

Ft2 =
84× 106

1× (99 + 1)
≈ 840× 103Hz

47

4.4 Distance Sensor

Tt2 =
1

Ft2
≈ 1.191µS

Since the sampling time Tt2 < T3mm variations of the order of the HC-SR04 reso-

lution will be detected.

Whenever a rising edge is detected, an interrupt will occur and a callback function

will be called where the value of the timer counter will be saved in the variable

ICRisingV alue, once the return ultrasound wave is detected by the receiver the

falling edge in the Echo pin will trigger a callback function, which will save the

timer counter value in the variable ICFallingV alue, if ICFallingV alue is greater

than ICRisingV alue the difference is calculated and the result is multiplied by

the factor that relates counts to meters, on the other hand if ICFallingV alue is

smaller than ICRisingV alue, means that an overflow of the counter has occurred

and the total amount of counts is (Period− ICRisingV alue+ ICFallingV alue)

then the result is multiplied by the factor that relates counts to meters.

48

4.5 Line Sensor

4.5 Line Sensor

The line sensor is an array of eight infrared emitters and infrared sensors, de-

pending on the infrared amount of light the sensor increases or decreases its volt-

age, the higher the amount of infrared light the higher the voltage and the vice

versa. According the data sheet of the sensor the separation of between sensor is

0.375” = 0.9525cm.

Figure 4.7: Infrared array sensor [22]

Each sensor output is wired to an analog to digital converter channel of the mi-

crocontroller (ADC1). The internal clock used by the ADC1 runs at a frequency

of 84MHz, the clock is prescaled by 4 and since a resolution of 12bits is required

the ADC will need to perform 15 cycles, therefore, the time it takes to convert the

analog output signal from the sensor into a digital one is given by the following

expression:

Tconversion =
15× 4

84× 106
≈ 0.714µs

The conversion is done every time there is an interruption on timer one, that is

every 50µs, the converted value of each one of the eight channels is saved in an

array. Since the resolution is 12bits the value of the conversion range is 0 to 4095,

considering the middle of the sensor as the zero distance point, the values of the

sensor outputs from one to four are considered as positive distance, and the values

of the outputs from five to eight as negative. The vehicle is following a black

tape in a white background. When a sensor is close to a less reflecting surface its

conversion from analog value will increase otherwise, on the other hand, when is

facing a reflecting surface the value will decrease, knowing that the distance be-

tween receivers is 0.009525m the distance of each sensor to the middle is computed

49

4.5 Line Sensor

and multiplied by the analog value obtained, this will give a value indicating how

far from the middle point is the sensor.

Sensor number Distance to middle [m]
1 0.03334
2 0.02381
3 0.01429
4 0.00477
5 -0.00477
6 -0.01429
7 -0.02381
8 -0.03334

Table 4.2: Distance to the middle IR sensor

The operation to obtain the distance of the center of the infrared sensor to the

line is the following:

D =
1

4096
[0.03334(V1 − V8) + 0.02381(V2 − V7) + 0.01429(V3 − V6) + 0.00477(V4 − V5)]

where Vx is the analog to digital conversion value of the channel x and 1
4096

is the

scaling factor from timer counts to reflecting intensity normalized to one.

50

4.6 Communication System

4.6 Communication System

The communication vehicle to server is done via wifi using the module Wifi

ESP8266, the module can be configured via serial port, by default the Wifi ESP8266

is configured according to the paremeters of the following list

Serial communication configurations

• Baudrate 115200Bits/s

• Eight bits length word

• No parity

• One stop bit

The USART3 of the microcontroller, used to establish a serial communication with

the WiFi, has to be configured to have the same configuration as the WiFi device.

The operation mode of the wifi can also be configured, in our case it is configured as

a station device, since the goal is to connect to an access point. The configuration

of the device is done via serial communication the order of commands are as

follows:

First all all, the echo from the Wifi device is deactivated with the command

“ATE0”, this avoids the Wifi module to reply with the same message sent by the

microcontroller.

Then with the command “AT+CWMODE=1” is set in station mode, since it is

going to act as a device connecting to an access point (i.e. router).

The command AT+CIPSTA=ip,gateway,mask” defines the “ip” address, Gateway

address, and a mask for the Wifi ESP8266. Where “ip = 192.168.173.X” must be

in the same range as the “gateway = 192.168.173.X” and the server address (PC)

“ip = 192.168.173.X”, finally the mask restricts the range of ip that we are going

to be working on “mask = 255.255.255.X” only if the ip of the server that has an

address of the form of “192.168.173.X” will be reached.

The “AT+CWJAP=SSID,PASSWORD” connects to an access point if the net-

work name and the password are correct, otherwise the Wifi module responds with

an error code. In order to enable multiple vehicles connecting to the same access

51

4.6 Communication System

Figure 4.8: Ip configuration

point “AT+CIPMUX=1” command must be sent to the Wifi ESP8266, this is the

case since several vehicle can be communicating to the server.

Finally a connection must be started, by sending the command “AT+CIPSTART=link

ID,type,remote IP,remote port[,UDP localport,UDP mode]”, where link ID is the

connection ID given since multiple connection is allowed, the type field specifies

the protocol used either TCP or UDP, the remote IP and remote port are the

server address and the port where the messages will be directed and finally if

UDP protocol is selected a local port has to be defined, the UDP mode specifies

if the destination peer might or might not change.

Figure 4.9: UDP connection client-server [24]

For the purposes of the project the UDP protocol has been chosen, the main

differences between UDP and TCP protocol are:

• TCP is a connection-oriented protocol meaning that it requires to establish a

52

4.6 Communication System

connection between the sender and the receiver before sending data, on the

other hand, UDP does not establish a connection.

• TCP is also a reliable protocol, it verifies that the data sent is well delivered,

checking also possible message corruption and re-sending the message if neces-

sary. UDP does not check if the message is well delivered which can lead to

data loss, therefore, it is not reliable.

• TCP provides flow control, ensuring that the sender does not send too many

messages that might saturate the receiver, this is achieved by the implementa-

tion of two buffers, one for messages to send and another one to receive, the

receiver tells the sender the room left in the receive buffer not to drop messages

away if full, UDP does not implement a flow control, if a receiver buffer is full

messages would be drop apart.

• TCP does ordering, guarantying the order of packets sent, UDP, however, send

the packets without ordering. them

Although TCP has more features than UDP, due to its paradigm is slower and not

a good option if the data requires to be delivered fast and efficiently. For messages

such as odometry, velocity reference or starting/stopping the vehicle, the sender

does not need to verify if the data has been well received, as long as the received

data has the least delay possible.

Figure 4.10: UDP protocol structure [14]

The server is running in a PC and must have the same IP address as the one

specified on the client packet, the port at which the packets will be sent is also

specified by the UDP protocol and it is the port at which the server will be

listening, the server respond to client messages or petitions and can also send

commands to the microcontroller.

53

5 Data Analysis

5.1 Data Collection

In order to analyze the controller performance, specific data is required. The data

selected to study the behaviour of the system under the three different algorithms

is the sliding hyperplanes σ1 and σ2, the distance between vehicles and the two

control actions computed for the Adaptive Cruise Control algorithm and the line

follower. All this variables might vary a lot from one iteration of the control loop

to another, therefore it is crucial to retrieve all the data used.

The first approach, was to send the data via WiFi to the computer server, however

this method was not feasible, because the data had to be sent at a frequency of

100Hz at least taking into account that each variables has a size of four bytes and

has to be sent every 10ms, transmission speed should be at least,

(number of bytes to send)× (size of a byte)

sending rate
= 19200bits/s

A priori seems possible, but actually many packets were lost.

The solution chosen, has been to store all the data in the ram memory, more

precisely in the stack region, and once the recording has completed the data is

sent via serial communication to the PC, where with a program developed using

python, the data is read and store in a text file.

Finally, the data is loaded in MATLAB, analyzed and plotted.

The tests executed emulate the behaviour of a vehicle joining to a plattoning

system, where the vehicle is moving at its maximum velocity until a vehicle ahead

is found, then it adapts its velocity to maintain a safety distance given by the

policy in (3.38). A similar test has been done with each one of the controllers.

54

5.2 Data Analysis

5.2 Data Analysis

Figure 5.1: Distance to the obstacle ahead on/off control

Figure 5.2: Distance to the obstacle ahead sigmoid function control

Figure 5.3: Distance to the obstacle ahead super-twisting algorithm

As we can appreciate in figures 5.1, 5.2 and 5.3 in the three cases the vehicle

starts without any close obstacle in front and as the time passes the distance to

the obstacle ahead decreases, meaning that it is approaching to a vehicle.

55

5.2 Data Analysis

Figure 5.4: σ1 ACC algorithm on/off

Figure 5.5: σ1 ACC algorithm sigmoid function

Figure 5.6: σ1 ACC algorithm super-twisting algorithm

These three plots show the evolution of the sliding variable, in an ideal sliding mode

σ would be pushed towards the x axis and remain on it thereafter, nevertheless

this does not occur in real world because the signal does not have an infinite

56

5.2 Data Analysis

switching frequency that forces the system to remain on the manifold, there are

also computational and mechanical delays that generate those oscillations around

the manifold.

To compare the performance of each one of the controllers the mean value and

the standard deviation is calculated, with this values we can have an idea of how

much differs from the manifold and how disperse is the data.

The mean values obtained for each one of the plots are, µ1 = 0.0027, µ2 = 0.0099

and µ3 = −0.0023, the standard deviations by controller are, std1 = 0.0257, std2 =

0.0233 and std3 = 0.0884 we can appreciate that all mean values are quite close

to each other, on the other hand, the standard deviation of the on/off controller

and the sigmoid function are slightly lower than the super-twisting algorithm, this

makes sense if we see the control action of each controller, shown below in figures

5.7, 5.8 and 5.9.

It is interesting to see how in figure 5.6 how σ reaches the manifold starting from

an initial condition far from it.

Figure 5.7: control action from ACC on/off control

Control action of on/off controller and sigmoid function are more aggressive than

the super-twisting algorithm, this causes the system to react faster and as a con-

sequence the σ values are closer giving a lower standard deviation, the problem of

aggressive control actions is that they can damage the hardware, overheating of

the driver, and they affect unmodelled dynamics which are presumably fast.

To analyze the line follower controllers, the same procedure as above is followed,

57

5.2 Data Analysis

Figure 5.8: control action from ACC sigmoid fucntion control

Figure 5.9: control action from ACC super-twisting algorithm control

Figure 5.10: σ2 line follower on/off controller

58

5.2 Data Analysis

Figure 5.11: σ2 line follower sigmoid function controller

Figure 5.12: σ2 line follower super-twisting algorithm controller

the mean value and the standard deviation are computed.

The results obtained by the data extracted are, µ1 = −1.9454e−4, µ2 = 4.8298e−4

and µ3 = 0.0014 and the standard deviations by controller are, std1 = 0.0021,

std2 = 0.0026 and std3 = 0.0073.

Same as before, since the on/off control is more aggressive as it can be appreciated

in the figure 5.13, the mean value and standard deviation are smaller.

59

5.2 Data Analysis

Figure 5.13: control action from line follower on/off control

Figure 5.14: control action from line follower sigmoid function control

Figure 5.15: control action from line follower super-twisting algorithm control

60

6 Conclusions

The main goal of this thesis was to design a series of controllers based on the

method sliding mode control, for a platooning system and test its performance.

The objectives have been achieved, two sliding surfaces, one to control the linear

velocity and another one to control the distance to the line have been implemented

and all three controllers have a correct performance. Notice, that when using the

on/off control method the driver tends to overheat if the frequency and gain are

too high, although this controller seems to be the most robust among the three,

super-twisting algorithm is preferable, even if it is not as robust as on/off its control

action is smoother, which generates less peaks of current that might damage the

materials, it is an acceptable trade-off. It has been practically proved that sliding

mode control could be a good solution to implement in a platooning system for

adaptive cruise control.

When modelling the motor it appears to be an important deadlock, and the lower

angular velocity is 23 rad
s

translated into linear velocity of a wheel of radius 0.035m

is Vlin = ωr = 0.805m
s

when moving forward, the vehicle however is limited to 0.5m
s

because higher velocities cause problems on the line following control, therefore,

since the desired speed is lower than the minimum speed the motor can provide,

to achieve the reference velocity the control action is constantly switching, and

sometimes generates peaks of velocity that push the states away to the manifold.

Although the routine where sliding surface and the control actions are calculated

and applied is running at 100Hz, it could have a higher frequency, but it is limited

by the wheel velocity calculation, it would make no sense to set the routine at a

higher frequency than the state variables used to compute the sliding surface.

Decreasing the encoder calculation time is not either an acceptable solution be-

cause the error in the lecture increases dramatically resulting in sudden changes

of velocity that generate oscillations in the control.

A solution would be to change the actual reduction gear by another one with a

higher value, increasing the resolution and at the same time decreasing the motor

deadlock.

61

7 Environmental Impact

The hardware components used for development of the project have been inherited

from previous works. The project is based on software development, therefore,

the environmental impact during its development consists on the use of electricity

consumed.

62

8 Budget

The cost of the entire project can be divided in labour and materials costs

8.1 Labour Costs

The student did not earned money for the development of this master thesis as it

is considered to be under the academic environment. In case the working hours

were paid, the labour costs budget would be:

Concept PVP[e/h] Units[h] Total[e]
Research and documentation 20 50 1,000
Design and implementation 20 200 4,000
Data collection and analysis 20 30 600

Report writing 20 150 3000

Table 8.1: Labour Costs

8.2 Material Costs

The material used for this project is constituted by the electronic and mechanic

components of the robot, development tools requiring of license and a personal

computer. As mobile phone has been used as an access point to connect the robot

and the server.

63

8.2 Material Costs

Concept PVP[e] Units[h] Total[e]

Components of the Robot
DC/DC Converter 12V/5V 5.49 1 5.49

DC/DC Converter 12V/3.5V 2.35 1 2.35
Motor Driver 6.49 1 6.49

Development Board 17.58 1 17.58
DC Motor 29.45 2 58.90

Gear Motor Bracket Pair 6.36 1 6.36
Scooter/Skate Wheel 12V/5V 2.16 2 4.32

Wheel Adapter 12V/3.5V 5.55 2 11.10
Support Wheel 6.45 1 6.45

Ultrasonic Sensor 16.74 3 50.22
Line Sensor 8.06 1 8.06

Wi-Fi Module 6.40 1 6.40
Battery 32.50 1 32.50

Connector 1.10 1 1.10
PCB1 21.66 1 21.66

Development Tools
MATLAB license 0 1 0

Personal Computer 1200 1 1,200
Personal Computer 150 1 150

Table 8.2: Material Costs

Concept Total Costs[e]

Labour Costs 8,600
Material Costs 1588.98

Subtotal 10,188.98
VAT(21%) 2,139.69

Total 12,328.67

Table 8.3: Total Costs

64

9 Apendix

Parameter Value [SI]
a 0.085 m
b 0.03 m
l 0.068 m
r 0.035 m
L 0.25 m
W 0.18 m
m 1.175 Kg
Iz 9.292× 10−3 Kgm2

Bf 1.543× 10−4 Kgm2

s

Table 9.1: Model parameters value

9.1 Technical Conepts

ADAS : Advanced Driver Assistance Systems, electronic systems that help the

driver at some point.

ACC: Adaptive Cruise Control, a technique that adapts vehicle velocity according

to a safety distance.

CACC: Cooperative Adaptive Cruise Control, it is an extension of ACC but the

vehicles communicate between them.

V2V: Vehicle to vehicle, communications between vehicles.

V2I: Vehicle to infrastructure, communications between and an infrastructure

such as a highway.

SMC: Sliding mode control, a control technique used on nonlinear systems.

STA: Super-twisting algorithm, is a control algorithm based on sliding mode

control.

UART: Universal asynchronous receiver- transmitter it is a configurable electronic

device to receive and transmit data.

LTI: In control theory a linear time invariant system does not depend on time.

Chattering: An oscillatory effect that occurs in sliding mode control due to

delays

65

References

References

[1] Arnau Dòria-Cerezo et al. “Sliding mode controllers for adaptive cruise con-

trol”. Report UPC. July 2018.

[2] Olivier Salvi. “Aramis (personal rapid transit)”. Report INERIS. April 2014.

[3] Judit Ruiz Cabo. “Control of a Two-Wheeled Line Tracking Robot Using a

Complete Mechanical Model”. Bachelor’s Thesis. UPC, April 2018.

[4] Domingo Biel, Arnau Dòria-Cerezo, and Josep M. Olm. “Dynamic behaviour”.

Slides of a presentation. February 2020.

[5] Riccardo Furlan, Francesco A. Cuzzola, and Thomas Parisini. “Friction com-

pensation in the interstand looper of hot strip mills: A sliding-mode control

approach”. Report Elsevier. February 2007.

[6] Utkin Vadim I. and Hao-Chi Chang. “Sliding mode control on electro-mechanical

systems”. Report The Ohio State University. September 2002.

[7] Jean-Jacques E. Slotine and Weiping Li. Applied Nonlinear Control. Prentice-

Hall International Editions, 1991.

[8] STM32F405/415, STM32F407/417, STM32F427/437 and STM32F429/439

advanced ARM R©-based 32-bit MCUs. 15th ed. STMicroelectronics. July

2017.

[9] Antonella Ferrara. “Sliding Mode Control Handout Advanced Automation

and Control Course”. Slides of a presentation. Accessed: 15 of February 2020.

[10] Ben Gallup. “Sliding Mode Control: A Comparison of SlidingSurface Ap-

proach Dynamics”. Slides of a presentation. Accessed: 15 of February 2020.

[11] Wu-Chung Su. “Sliding Mode Control with Industrial Applications”. Slides

of a presentation. Accessed: 15 of February 2020.

[12] ACEA. what is a truck platooning? url: https://www.acea.be/uploads/

publications/Platooning_roadmap.pdf. Accessed: 12 of April 2020.

[13] National highway traffic safety administration. Vehicle-to-Vehicle Communi-

cation. url: https://www.nhtsa.gov/technology-innovation/vehicle-

vehicle-communication. Accessed: 19 of April 2020.

66

References

[14] Stephen Cooper. A guide to UDP (User Datagram Protocol). url: https:

/ / www . comparitech . com / net - admin / guide - udp - user - datagram -

protocol/. Accessed: 9 of July 2020.

[15] Mohammed Dahleh, Munther A. Dahleh, and George Verghese. Lectures on

Dynamic Systems and Control. Accessed: 25 of March 2020.

[16] Arnau Dòria-Cerezo et al. “A first order sliding mode-based adaptive cruise

controller”. Report UPC.

[17] ElecFreaks. Ultrasonic Ranging Module HC - SR04. url: https://cdn.

sparkfun.com/datasheets/Sensors/Proximity/HCSR04.pdf. Accessed: 9

of July 2020.

[18] SAE International. SAE International Releases Updated Visual Chart for

Its “Levels of Driving Automation” Standard for Self-Driving Vehicles. url:

https://www.sae.org/news/press-room/2018/12/sae-international-

releases - updated - visual - chart - for - its - %5C % E2 % 5C % 80 % 5C %

9Clevels-of-driving-automation%5C%E2%5C%80%5C%9D-standard-

for-self-driving-vehicles. Accessed: 7 of May 2020.

[19] Stanford lectures. “Basic Lyapunov theory”. Slides of a presentation. Ac-

cessed: 25 of March 2020.

[20] Wen-Bin Lin and Huann-Keng Chiang. “Super-Twisting Algorithm Second-

Order Sliding Mode Controlfor a Synchronous Reluctance Motor Speed Drive”.

Report Hindawi.

[21] Pololu. 34:1 Metal Gearmotor 25Dx64L mm MP 12V with 48 CPR Encoder

(No End Cap). url: https://www.pololu.com/product/3240. Accessed:

8 of July 2020.

[22] Pololu. QTR-8A and QTR-8RC ReflectanceSensor Array User’s Guide. url:

https://www.pololu.com/docs/pdf/0J12/QTR-8x.pdf. Accessed: 9 of

July 2020.

[23] Lisa Pradhan. Truck Platooning: History, Benefits, Future. url: https:

//trucks.cardekho.com/en/news/detail/truck-platooning-history-

benefits-future-945.html. Accessed: 27 of April 2020.

67

References

[24] Pythonic. UDP - Client And Server Example Programs In Python. url:

https://pythontic.com/modules/socket/udp-client-server-example.

[25] STMicroelectronics. DMOS DUAL FULL BRIDGE DRIVER. url: https:

//pdf1.alldatasheet.com/datasheet-pdf/view/22534/STMICROELECTRONICS/

L6205PD.html. Accessed: 7 of February 2020.

[26] Peloton Tech. Method of Lyapunov Functions. url: https://www.math24.

net/method-lyapunov-functions/. Accessed: 8 of July 2020.

[27] Peloton Tech. V2V Communication in Platooning). url: https://peloton-

tech.com/v2v-communication-platooning/. Accessed: 8 of July 2020.

[28] Road traffic technology. Project SARTRE (Safe Road Trains for the Environ-

ment). url: https://www.roadtraffic-technology.com/projects/the-

sartre-project/. Accessed: 27 of April 2020.

[29] Wikipedia. Adaptive cruise control. url: https://en.wikipedia.org/

wiki/Adaptive_cruise_control. Accessed: 29 of March 2020.

[30] Wikipedia. Cooperative Adaptive Cruise Control. url: https://en.wikipedia.

org / wiki / Cooperative _ Adaptive _ Cruise _ Control. Accessed: 29 of

March 2020.

[31] Wikipedia. Eureka Prometheus Project. url: https://en.wikipedia.org/

wiki/Eureka_Prometheus_Project. Accessed: 27 of April 2020.

[32] Wikipedia. Futurama (New York World’s Fair). url: https://en.wikipedia.

org/wiki/Futurama_(New_York_Worlds_Fair). Accessed: 27 of April 2020.

[33] Wikipedia. Houdina Radio Control. url: https://en.wikipedia.org/

wiki/Houdina_Radio_Control.

[34] Wikipedia. Lyapunov stability. url: https://en.wikipedia.org/wiki/

Lyapunov_stability. Accessed: 20 of March 2020.

[35] Wikipedia. Rotating reference frame. url: https://en.wikipedia.org/

wiki/Rotating_reference_frame. Accessed: 19 of January 2020.

[36] Wikipedia. Sliding mode control. url: https://en.wikipedia.org/wiki/

Sliding_mode_control. Accessed: 16 of February 2020.

68

