

Strategy for energy storage in Spain for 2050

Lluís Miquel Ferrer Frau

Thesis to obtain the Master of Science Degree in

Energy Engineering and Management

Supervisor: Prof. Carlos Augusto Santos Silva

Examination Committee

Chairperson: Prof. Edgar Caetano Fernandes Supervisor: Prof. Carlos Augusto Santos Silva Member of the Committee: Prof. Miguel Centeno da Costa Ferreira Brito

October 2020

ACKNOWLEDGEMENTS

First of all, I would like to thank the tutor of this work, Carlos Augusto Santos Silva, for guiding me and dedicating all the time necessary to resolve my doubts.

Secondly, to thank the citizens of Lisbon for their kindness and hospitality, making me feel at home during all the time.

Finally, to thank my mother Carme, my father Vicenç and my brother Oriol, for their unconditional support and for helping me to make my desires possible.

ABSTRACT

Nowadays, climate change has become one of the main problems faced by our society. To solve this problem, the EU, with its 2050 long-term strategy, has fixed the goal of decarbonising the countries of the European Union before 2050. To achieve this goal, it is necessary to have a 100% renewable system and carry out a storage strategy that helps in the integration of renewables.

The objective of this study is to contribute to the development of a national strategy for storage systems in Spain up to 2050. To do that, it is necessary to study the different storage technologies and make a comparison between them, to analyse which storage systems are more useful for large-scale energy storage in Spain, and to develop various models of the energy system of Spain until 2050, in order to consider different scenarios and technological options. To do that, the Energyplan modeling tool is used.

The results of this thesis demonstrate that the storage strategy in Spain must be based on the technologies of pumped hydro, batteries and deposits of molten salts as they are technologies that have features that allow them to work with large volumes of energy at a low economic cost. In addition, in the peninsula, due to orographic and climatic conditions, there is a great potential to use these technologies.

Further, it is considered that the existence of a high capacity interconnection, the use of biomass power plants, hydrogen production, and a balanced energy mix, are elements that must also play a relevant role in the development of storage strategy, as they contribute to the stability and safety of the electrical system.

Key-words: Energy storage, Energy planning, 100% Renewable systems, Energplan

RESUMO

Atualmente, as mudanças climáticas tornaram-se um dos principais problemas enfrentados pela nossa sociedade. Para resolver este problema, a EU, com a sua estratégia de longo prazo para 2050, fixou o objetivo de descarbonizar os países da União Europeia até 2050. Para atingir este objetivo, é necessário ter um sistema 100% renovável e implmentar uma estratégia de armazenamento que auxilie na integração de energias renováveis.

O objetivo deste estudo é contribuir para o desenvolvimento de uma estratégia nacional para sistemas de armazenamento em Espanha até 2050. Para isso, é necessário estudar as diferentes tecnologias de armazenamento e fazer uma comparação entre elas, para ientificar quais são os sistemas mais adequados para o armazenamento de energia em grande escala na Espanha, através da análise de vários modelos do sistema energético da Espanha até 2050, considerando diferentes cenários e opções tecnológicas. Para fazer isso, a ferramenta de modelação Energyplan é usada.

Os resultados desta tese demonstram que a estratégia de armazenamento em Espanha deve basearse nas tecnologias de bombagem hídrica, baterias e depósitos de sais fundidos, pois são tecnologias que apresentam características que lhes permitem trabalhar com grandes volumes de energia a um baixo custo económico. Além disso, na península, devido às condições orográficas e climáticas, existe um grande potencial de utilização dessas tecnologias.

Considera-se que a existência de uma interconexão de alta capacidade, o uso de usinas de biomassa, a produção de hidrogênio e uma matriz energética equilibrada, são elementos adicionais que também devem desempenhar um papel relevante no desenvolvimento da estratégia de armazenamento, pois contribuem para a estabilidade e segurança do sistema elétrico.

Palavras-chave: Armazenamento de energia, Planejamento energético, Sistemas 100% renováveis, Energplan

ABSTRACTE

Actualment, el canvi climàtic s'ha convertit en un dels principals problemes al qual s'enfronta la nostra societat. Per solucionar aquest problema, la UE, amb l'estratègia a llarg termini per al 2050, ha fixat l'objectiu de descarbonitzar els països de la Unió Europea abans de meitat de segle. Per assolir aquesta meta, és necessari disposar d'un sistema 100% renovable i dur a terme una estratègia d'emmagatzematge que ajudi a la integració de les energies renovables.

L'objectiu d'aquest estudi és contribuir al desenvolupament d'una estratègia nacional per a sistemes d'emmagatzematge a Espanya fins al 2050. Per fer-ho, és necessari estudiar les diferents tecnologies d'emmagatzematge i fer una comparació entre elles; analitzar quins sistemes d'emmagatzematge són més útil per a l'emmagatzematge d'energia a gran escala a Espanya; i desenvolupar diversos models del sistema energètic Espanyol fins al 2050, per tal de tenir en compte diferents escenaris i opcions tecnològiques. Per la simulació dels possibles escenaris s'utilitza l'eina de modelització Energyplan.

Els resultats d'aquesta tesi demostren que l'estratègia d'emmagatzematge a Espanya s'ha de basar en les tecnologies d'energia hidràulica, bateries i dipòsits de sals foses, puix que són tecnologies que tenen característiques que els permeten treballar amb grans volums d'energia a un cost econòmic baix. D'altra banda, a la península, a causa de les condicions orogràfiques i climàtiques, hi ha un gran potencial per utilitzar aquestes tecnologies.

A més a més, es considera que l'existència d'una interconnexió d'alta capacitat, l'ús de centrals elèctriques de biomassa, la producció d'hidrogen i un mix energètic equilibrat, són elements que també han de tenir un paper rellevant en el desenvolupament de l'estratègia d'emmagatzematge, car contribueixen a l'estabilitat i seguretat del sistema elèctric.

Paraules-clau: Emmagatzematge d'energia, Planificació energètica, Sistemes 100% renovables, Energplan.

TABLE OF CONTENTS

TA	BLE OF CONTENTS	V
1	INTRODUCTION	1
	1.1 Motivation	1
	1.2 Objectives	1
	1.3 Contributions	1
	1.4 Structure of the thesis	2
2	Literature review	3
	2.1 Types of energy storage systems	3
	2.1.1 Non electrochemical	3
	2.1.2 Electrochemical	15
	2.2 Comparative of energy storage systems	23
3	Storage infrastructure installed in Spain	27
	3.1.1 PHES technology	27
	3.1.2 Molten Salt technology	29
	3.1.3 Supercapacitor energy storage technology	30
	3.1.4 Flywheel	31
4	Storage needs assessment of the national electric system	33
	4.1 Modeling future scenarios	33
	4.1.1 2018 Scenario	33
	4.1.2 2030 Scenario	34
	4.1.3 2040 Scenario	37
	4.1.4 H2040 Scenario	39
	4.1.5 2050 Scenario	41
	4.1.6 H2050 Scenario	44
	4.2 EnergyPlan Simulation	46
	4.2.1 Methodology	46
	4.2.2 Simulation parameters	46
	4.3 Results	54
	4.3.1 2018 scenario	55
	4.3.2 2030 Scenario	56
	4.3.3 2040 Scenario	58
	4.3.4 2050 Scenario	

	4.3.5 H2040 Scenario	. 63
	4.3.6 H2050 Scenario	. 66
4	4.4 Summary of results	67
	4.4.1 Evolution of the Spanish electrical system	. 68
	4.4.2 Hourly data	. 70
4	4.5 Comparative with Spanish 2050 long-term strategy	74
	4.5.1 Electricity demand	. 74
	4.5.2 Installed power	. 75
5	Conclusion	. 77
REF	ERENCES	. 79

LIST OF TABLES

Table 1. Technical characteristics of PHES	4
Table 2. Economic characteristics of PHES	4
Table 3. Technical characteristics of CAES.	6
Table 4. Economic characteristics of CAES	6
Table 5. Technical characteristics of flywheels.	7
Table 6. Economic characteristics of flywheels	7
Table 7. Technical characteristics of SMES	9
Table 8. Economic characteristics of SMES.	. 10
Table 9. Technical characteristics of molten salts deposits.	. 11
Table 10. Economic characteristics of molten salts deposits	. 12
Table 11. Technical and economic characteristics of hydrogen production	. 13
Table 12. Hydrogen production TRL levels	. 13
Table 13. Technical and economic characteristics of P2G.	. 14
Table 14. Technical characteristics of secondary batteries.	. 16
Table 15. Economic characteristics of secondary batteries.	. 16
Table 16. Secondary batteries TRL levels.	. 17
Table 17. Technical characteristics of redox flow cells.	. 19
Table 18. Economic characteristics of redox flow cells	. 19
Table 19. Redox flow batteries TRL levels.	. 19
Table 20. Technical characteristics of supercapacitors	. 20
Table 21. Economic characteristics of supercapacitors.	. 20
Table 22. Technical characteristics of Fuel cells	. 22
Table 23. Economic characteristics of Fuel cells.	. 22
Table 24. Possible applications by technology	. 24
Table 25. Technical characteristics comparation of non-electrochemical energy storage systems	. 25
Table 26. Technical characteristics comparation of electrochemical energy storage systems	. 25
Table 27. Economic characteristics comparation of non-electrochemical energy storage systems	. 26
Table 28. Economic characteristics comparation of electrochemical energy storage systems	. 26
Table 29. PHES infrastructure installed in Spain.	. 28
Table 30. TES infrastructure installed in Spain	. 29
Table 31. Supercapacitors infrastructure installed in Spain	. 31
Table 32. Flywheel infrastructure installed in Spain.	. 31
Table 33. Electro-chemical batteries infrastructure installed in Spain.	. 32
Table 34. Spanish installed power by technology in 2018	. 34
Table 35. Forecast of the installed power in the 2030 scenario.	. 35
Table 36. Interconnection capacity forecast in 2030 according to PNIEC.	. 36
Table 37. Forecasts of electric car incidence in Spain at 2030 scenario.	. 36
Table 38. Characteristics of car models	. 36
Table 39. Global characteristics of the electric cars network in 2030 scenario	. 36
Table 40. Forecasts of Spanish electricity demand for 2040.	. 37
Table 41. Electricity demand evolution until 2040.	. 37
Table 42. Compilation of installed power forecast for 2040 scenario.	. 38
Table 43. Forecasts of electric car incidence in Spain at 2040 scenario.	. 39

Table 44. Global characteristics of the electric cars network in 2040 scenario	39
Table 45. Forecast of hydrogen consumption in Portugal according to RNC2050	39
Table 46. First calculation of hydrogen consumption in Spain at H2040 scenario.	40
Table 47. Hydrogen Spanish consumption at H2040 scenario	
Table 48. Installed power mix in the H2040 scenario.	40
Table 49. Global characteristics of electric cars network in H2040 scenario	41
Table 50. Global characteristics of FCEV network in H2040 scenario	41
Table 51. Evolution of electricity demand in Spain until 2050 scenario	
Table 52. Total installed power at 2050 scenario.	
Table 53. Spanish installed power [GW] mix extrapolation from RNC2050	42
Table 54. Increase of the installed power of wind, solar PV and solar thermal technologies	
Table 55. Installed power mix of 2050 scenario	
Table 56. Forecasts of number of electric cars in Spain at 2050 scenario.	44
Table 57. Global characteristics of electric cars networks in 2050 scenario.	44
Table 58. Hydrogen Spanish consumption at H2050 scenario	
Table 59. Installed power mix of H2050 scenario.	45
Table 60. Global characteristics of electric cars network in H2050 scenario	45
Table 61. Global characteristics of FCEV network in H2050 scenario	45
Table 62. 2018 distribution of fuel consumption	47
Table 63. 2030 distribution of fuel consumption	47
Table 64. 2040 distribution of fuel consumption	
Table 65. 2050 distribution of fuel consumption	47
Table 66. CO ₂ price evolution	
Table 67. Technology Costs of 2018 and 2030	
Table 68. Technology Costs of 2040 and 2050	
Table 69. Fuel price evolution	
Table 70. Economic and technical results of Wet scenario 2018	55
Table 71. Simulated scenarios of the year 2030.	56
Table 72. Simulated scenarios of the year 2040.	
Table 73. Simulated scenarios of the year 2050.	
Table 74. Simulated scenarios of the year H2040	
Table 75. Simulated scenarios of the year H2050	
Table 76. Evolution of CO ₂ emissions until 2050	69

LIST OF FIGURES

Figure 1. PHES operating principle	3
Figure 2. La Muela pumped hydroelectric energy storage power plant	4
Figure 3. The McIntosh CAES Plant	5
Figure 4. Beacon Power's flywheel energy storage plant in Stephentown, New York.	7
Figure 5. SMES technology operating principle	9
Figure 6. Solar thermal power plant scheme	
Figure 7. Manchasol & Extresol Solar Thermal Complex	
Figure 8. FH2R 10 MW hydrogen production plant in Fukushima	. 14
Figure 9. The world's largest 100 MW/129 MWh lithium-ion battery in Hornsdale, South Australia.	16
Figure 10. Operation of a redox flow battery during the charging process	. 18
Figure 11. The world's largest VRF battery: 200MW/800MWh in Dalian, China	
Figure 12. Simplified operating principle of a PEM fuel cell	. 21
Figure 13. Comparative of ES technologies in a Discharge Time - Storage Capacity graphic	. 23
Figure 14. Comparative of ES technologies in a Discharge Time - Power Rating graphic	. 23
Figure 15. Installed Power mix of energy storage technologies in Spain	. 27
Figure 16. Global operational pumped hydro storage power capacity by country, mid-2017	. 28
Figure 17. Evolution of electricity generation [GWh] by hydraulic plants in Spain	
Figure 18. Monthly Capacity Factor.	. 50
Figure 19. Hourly Capacity Factor.	. 51
Figure 20. Evolution and comparison of electricity demand in 2018 (green) and 2020 (blue)	. 52
Figure 21. Evolution and comparison of electricity demand in the chosen period.	
Figure 22. Average week of the electricity demand	
Figure 23. Decrease of COVID19 demand with respect to 2018 year	. 53
Figure 24. Hourly load curve and monthly load curve distributions	
Figure 25. Hourly price distribution.	
Figure 26. RES % of 2030 scenario simulations.	
Figure 27. Annual Costs of electric system in 2030 scenario simulations	
Figure 28. Energy mix production of 2030 Scenario.	
Figure 29. RES % of 2040 scenario simulations.	
Figure 30. Maximum annual value of Imports/Exports in the 2040 scenario	. 59
Figure 31. Annual Costs of electric system in 2040 Wet scenario simulations.	. 60
Figure 32. Annual Costs of electric system in 2040 Dry scenario simulations.	. 60
Figure 33. Energy mix production of 2040 Scenario.	. 61
Figure 34. Maximum annual value of Imports/Exports in the 2050 scenario	
Figure 35. Annual Costs of electric system in 2050 scenario simulations	. 62
Figure 36. Energy mix production of 2050 Scenario.	
Figure 37. RES % of H2040 scenario simulations	
Figure 38. Maximum annual value of Imports/Exports in the H2040 scenario.	
Figure 39. Annual Costs of electric system in H2040 scenario simulations.	
Figure 40. Energy mix production of H2040 Scenario	
Figure 41. Maximum annual value of Imports/Exports in the H2050 scenario.	
Figure 42. Annual Costs of electric system in H2050 scenario simulations.	
Figure 43. Energy mix production of H2050 Scenario	. 67

Figure 44. Evolution of RES%	. 68
Figure 45. Evolution of CO ₂ emissions	. 68
Figure 46. Evolution of the generation mix in H ₂ scenario until 2050.	. 69
Figure 47. Evolution of electricity production by storage technologies.	. 70
Figure 48. Hourly curve of the electricity price	. 70
Figure 49. Hourly data curve of power generation by technologies and hourly demand curve	. 71
Figure 50. Hourly data curve of Imports and exports	. 72
Figure 51. Hourly data curve of storage technologies	. 72
Figure 52. Hourly data curve of V2G charge and H ₂ production	. 73
Figure 53. Electricity production curve	. 73
Figure 54. Electricity demand curve	. 74
Figure 55. Electricity demand comparation.	. 75
Figure 56. Electric power generation [GW] park in the Climate Neutrality Scenario	. 75
Figure 57. Electric power generation mix in the H ₂ scenario	. 75

LIST OF ABBREVIATIONS

AC Alternating Current A-CAES Adiabatic - Compressed Air Energy Storage **ARENA** Australian Renewable Energy Agency **CAES** Compressed Air Energy Storage **CHP** Combined Heat and Power **CNS** Climate Neutrality Scenario **CSP** Concentrated Solar Power **DC** Direct Current D-CAES Diabatic – Compressed Air Energy Storage **ELP** Estrategia Largo Plazo ENTSO European Network of Transmission System Operators for Electricity **ENTSO DG** ENTSO Distributed Generation Scenario ENTSO GCA ENTSO Global Climate Action Scenario **ENTSO ST** ENTSO Sustainable Transition Scenario ES Energy Storage EU European Union **EV** Electric Vehicle FACTS Flexible AC transmission **FCEV** Fuel Cell Electric Vehicle FH2R Fukushima Hydrogen Energy Research Field Fixed OM Fixed Operation and Maintenance Li-lon Lithium-lon MITECO Ministerio para la Transición Ecológica y el Reto Demográfico NaS Sodium-Sulfur **NASA** National Aeronautics and Space Administration NiCd Nickel-Cadmium

P2G Power-to-Gas P2L Power-to-Liquid PCM Phase Change Material **PEM** Polymer Electrolyte Membrane PHES Pumped Hydro Energy Storage PLCCTE Proyecto de Ley de Cambio Climático y Transición Energética PNIEC Plan Nacional Integrado de Energía y Clima **PP** Power Plant PSB Polysulfide Bromide redox flow Battery REE Red Eléctrica Española **RES** Renewable Energy sources **RFB** Redox Flow Battery RNC2050 Roteiro para a Neutralidade Carbónica SMES Superconducting Magnetic Energy Storage SMR Steam Methane Reforming SOEC Solid Oxide Electrolyser Cell **TES** Thermal Energy Storage TRL Technology Readiness Level TS ELP Trend Scenario, Estrategia a Largo Plazo **UPS** Uninterruptible Power Supply VRB Vanadium Redox Battery ZnBr Zinc-Bro

1 INTRODUCTION

1.1 Motivation

Nowadays, climate change has become one of the main problems our society faces. Climate change has a number of consequences, such as rising sea levels, rising temperatures, originating extreme climatic events like droughts and/or floods. In short, climate change can change the world as we know it, to unknown limits.

To solve this problem, in 2015 the Paris Agreements was established between almost all countries in the world (197) as the first universal and legally binding agreement on climate change. The Paris Agreement establishes a global framework to prevent the temperature rise from exceeding 2 ° C. As a consequence, the EU has established its long-term strategy for 2050, fixing the goal of decarbonising the countries of the European Union by 2050.

Achieving these goals requires a 100% renewable electrical system that works in conjunction with storage systems to achieve a safe, stable and CO₂ free electrical system.

One of the motivations of the author of the work is to gain a greater understanding of the operation of one of the tools that are part of the solution to climate change: storage systems. Other motivation points for the elaboration of the work are: to know situation of the systems of storage in Spain, to learn to use programs of simulation of national energetic systems (EnergyPlan) and to try to contribute in the elaboration of the strategy of storage of the Spanish state.

1.2 Objectives

The main objective of the work is to contribute to the development of a national strategy for storage systems in Spain up to 2050. To do that, it is necessary to develop the following specific tasks:

- To know which storage systems are more useful for large-scale energy storage in Spain;
- To estimate the electricity demand of Spain until 2050;
- To develop various models of the Spanish energy system until 2050, in order to consider different scenarios and technological options;

1.3 Contributions

Once the work has been completed, this document contributions are:

- Updated summary of the different storage technologies and comparison between them;
- Updated map of the infrastructure installed in Spain of storage systems;
- Analysis of the operating behaviours of storage systems;

1.4 Structure of the thesis

The development of this thesis is structured in three main parts.

First, a literature review is done, explaining the different types of storage systems available. For each type of system, the following characteristics are explained: advantages and disadvantages, areas of application, technical and economic characteristics, maturity of the technology and the operating principle. In addition, a general summary is made, where is explained which technologies are more suitable for each specific situation.

Then, an "X-ray" of the storage infrastructure installed in Spain is performed. The strengths of the Iberian Peninsula and the potential of the main technologies are explained.

Finally, the Spanish energy models for the years of 2030, 2040, and 2050 are developed. To do this, the evolution of Spanish electricity demand is estimated (taking into account the directives and strategies planned by the Spanish state) and conclusions are made regarding the best storage strategies that should be implemented in Spain over the next decades.

2 Literature review

This section aims to show basic knowledge of different storage technologies. For each technology it is explained: its operation, the fields of application, the economic and technical characteristics, the level of maturity and the advantages and disadvantages that they have.

Storage technologies can be classified in several ways (storage capacity, discharge time, mechanical and electrical...), in the present study the technologies will be divided into two groups: Non electrochemical systems and electrochemical systems.

2.1 Types of energy storage systems

2.1.1 Non electrochemical

Pump Hydro (PHES)

Storage type

PHES (pumped hydro energy storage) technology is considered a large-scale energy storage system. This type of plants tends to have hight rated power and are usually located in mountainous areas to harness water resources and store potential energy.

Operating principle

PHES technology store potential energy by pumping water to a high-level using electricity. To store energy, the water is pumped from the lower to the upper reservoir, which increases the water potential energy level. To generate energy, the water is turbined from the upper to the lower reservoir.

Figure 1 shows how a PHES plant works:

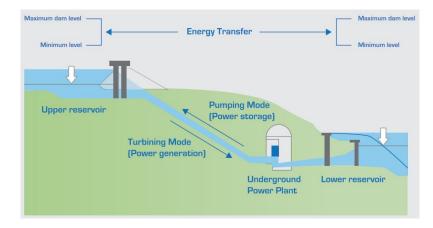


Figure 1. PHES operating principle. (Source: EASE)

Application areas

The PHES is used when the electricity is high as an energy generator and it stores energy when the electricity price is low. Due to the intermittency of renewables, the combination of PHES and renewables generation plants are becoming frequent.

Today it is the most widely used storage system in the world and in Spain. In Figure 2, can be seen La Muela PHES plant, which is the largest PHES in Spain.

Figure 2. La Muela pumped hydroelectric energy storage power plant. (Source: www.nsenergybusiness.com)

Technical characteristics

Table 1. Technical characteristics of PHES.[1][2][3][4][5][6]

Power	Energy	Energy	Energy	Total	Discharge	Response
Range	Range	Density	Density	Efficiency	Duration	time
[MW]	[MWh]	[Wh/kg]	[Wh/L]	[%]	[t]	[t]
100 - 5000	100-100000	0.5 – 3	0.5 - 1.5	70 - 87	1h - days	s - min

Economic characteristics

Table 2. Economic characteristics of PHES. [1] [3][7]

Power Investment Cost [€/kW]	Energy Investment Cost [€/kWh]	Maintenance Cost [€/kW/year]	Lifetime [years]
500-4600	70-350	13	50 - 100

Technology Readiness Level

The technology used PHES dates to the 1890's[8]. Due to the uninterrupted use of PHES for many years, the TRL of this technology is considered to be level 9 [1][9].

Technology analysis

The advantages and disadvantages of this technology are summarized below:

<u>Advantages</u>

- High efficiency and big capacity.
- Mature Technology.
- High Lifetime of the structure.
- Growth perspectives.

- <u>Disadvantages</u>
- High installation costs.
- Dependence on local geography.
- High environmental impact.
- Dependence on climatology.

- Conversion of existing hydroelectric power stations.

Compressed Air (CAES)

Storage type

Large scale, mechanical potential energy.

Operating principle

An electrical compressor converts electric energy into potential energy pressurizing air into compresses air systems (CAS) like occurring aquifers, solution-mined salt caverns, and mechanically formed reservoirs in rock formations [10]. Then, the air is expanded through an air turbine to generate electrical energy when is needed.

This technology is mainly classified between adiabatic CAES and diabatic CAES. The main difference is that A-CAES (Adiabatic Compressed Air Energy Storage) store the heat generated in the air compression, whereas D-CAES (Diabatic Compressed Air Energy Storage) does not. It is considered that the A-CAES efficiency can be greater than 70%, while the efficiency of D-CAES technology is around 55% [2].

Application areas

The CAES technology can help with the integration of renewables, like wind [11]. Also, it can be used as a power reserve to deal with voltage drops or power demand peaks.

Presently, there are only 2 commercial CAES plants in operation in the world (McIntosh and Huntorf), but there are some planned projects and others under construction for the future [11].

Below you can see the McIntosh CAES plant:

Figure 3. The McIntosh CAES Plant (Source: DOE Global Energy Storage Database)

Technical characteristics

Power Range	Energy Range	Energy Density	Energy Density	Total Efficiency	Discharge Duration	Response time
[MW]	[MWh]	[Wh/kg]	[Wh/L]	[%]	[t]	[t]
10 - 2700	10 - 10000	30 - 60	2-15	55-70	h - days	min

Table 3. Technical characteristics of CAES. [1][2][4][5][6][11][12]

Economic characteristics

Table 4. Economic characteristics of CAES. [1][2][3][4][5][6]

Power Investment Cost [€/kW]	Energy Investment Cost [€/kWh]	Maintenance Cost [€/kW/year]	Lifetime [years]
400 - 1200	95 - 230	17	20 - 40

Technology Readiness Level

CAES technology has been in use for decades [12]. Nowadays, there are 2 CAES plants that have been working for more than 25 years and some more under construction and planification [11]. The TRL of this technology depends on the type. D_CAES technology is considered to be level 9 [9] because it has been used for a long time, although, it only has 2 plants presently in operation. A-CAES technology, at the moment it has no operating plants and it is considered TRL level 5-6 [9].

Technology analysis

The advantages and disadvantages of this technology are summarized below:

Advantages

- Large energy and power capacity.
- Durable and highly sustainable.
- No degradation of capacity over time.
- Competitive and more cost effective.

Disadvantages

- High Investment costs.
- Emissions of CO₂, when use natural gas.
- Security issues related to pressurized storage.
- Lower cycle efficiency than PHES and batteries.

Flywheels

Storage type Small scale, kinetic energy.

Operating principle

This technology is based on a rotating massive cylinder which levitates inside a vacuum chamber to reduce friction. The energy charge and discharge is done through an electric generator/motor. To store energy, the electric machine works as a motor (consuming electricity) and increasing the speed of the flywheel. On the other hand, the electric machine (working as a generator) uses the speed of the

flywheel to generate electricity. The main limitation of this technology is that the energy cannot be discharged for periods longer than minutes.

Application areas

As flywheels can provide almost instantaneous power, they are very useful for frequency and voltage regulation and also for working as an uninterruptible power supply (UPS) system operation for short periods of time [13]. It is also a useful technology for the integration of renewables and as a fast charge storage system.

Figure 4. Beacon Power's flywheel energy storage plant in Stephentown, New York. (Source: Beacon Power)

Technical characteristics

 Table 5. Technical characteristics of flywheels. [1][3][4][5][6][7][14]

Power Range	Energy Range	Energy Density	Energy Density	Total Efficiency	Discharge Duration	Response time
[MW]	[MWh]	[Wh/kg]	[Wh/kg]	[%]	[t]	[t]
0.002 – 20	0.005-5	5 – 130	20-80	90 - 95	s - min	ms - s

Economic characteristics

Table 6. Economic characteristics of flywheels. [1][3][15]

Power Investment Cost [€/kW]	Energy Investment Cost [€/kWh]	Maintenance Cost [€/kW/year]	Lifetime [years]
100 - 300	1000 - 3500	1	15 - 20

Technology Readiness Level

The TRL of this technology is considered level 9 in some commercial products. However, there are prototypes experimenting with new materials that are at a TRL level of 7 or lower [9].

Technology analysis

The advantages and disadvantages of this technology are summarized below:

Advantages

- Low maintenance.
- Long cycle life without degradation.
- Fast response.
- High power density.
- High efficiency for short periods.
- Can work at high temperatures.

<u>Disadvantages</u>

- High Investment cost.
- Difficult/expensive replacement of bearings as cost of materials production is high.
- Safety issues related to the high speed of operation

Thermochemical

Storage type Small scale, chemical energy.

Operating principle

The thermochemical storage system is, generally, based on the following reversible chemical reaction[16]:

$$C + heat \leftrightarrows A + B$$

The charging process is an endothermic process where the heat energy from an external energy source is absorbed and results in components A and B. Once the charging process has been completed, components A and B can be stored separately without energy losses[17][18].

The discharging process is an exothermic process where the components A and B are combined, and they release the previously stored energy. At this stage component C is regenerated.

Application areas

This technology is still under development. Could be useful for building applications [19] such as water heating and space heating [16]. Also, it could be applied for thermal storage in solar thermal power plants [17].

Technical & economic characteristics

Thermochemical energy storage is a very immature technology and there are still no reliable technical and economic values of its characteristics.

Technology Readiness Level

This technology is in a primary research and development phase. For the moment, there haven't been commercial applications so far [18]. The TRL of this technology is considered level 3-4.

Technology analysis

Based on references [17] the advantages and disadvantages of this technology are summarized below:

Advantages

- High storage density.
- Long storage period.
- Low heat losses.
- Wide range and characteristics.
- Long distance transport possibility.

Magnetic superconductors (SMES)

Storage type

Small scale, magnetic energy

Operating principle

This technology stores energy in a magnetic field generated by the flow of direct current (DC) electricity into a super-conducting coil. In order to avoid energy dissipation, the super-conducting coil is cryogenically cooled to a temperature below its superconducting critical temperature.

The following Figure 5 shows SMES technology scheme:

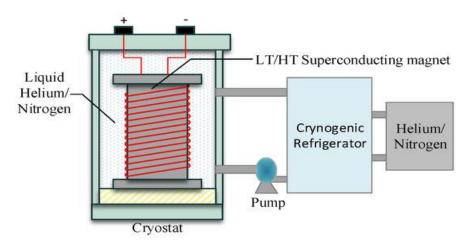


Figure 5. SMES technology operating principle. (Source:[20])

Application areas

SMES technology, due to its fast response time, is currently used as FACTS (Flexible Alternating Current Transmission System) and UPS (Uninterruptible Power Supplies) [21]. It is also used to smooth wind power plants output power and to reduce fluctuation [22].

Technical characteristics

Power	Energy	Energy	Energy	Total	Discharge	Response
Range	Range	Density	Density	Efficiency	Duration	time
[MW]	[MWh]	[Wh/kg]	[Wh/L]	[%]	[t]	[t]
0.01 - 10	0.001-0.01	10 - 75	6	95 - 98	ms - min	ms

 Table 7. Technical characteristics of SMES. [7][1][4][5][6]

Disadvantages

- High capital costs.
- Technically complex.
- Low maturity.

Economic characteristics

Power Investment Cost [€/kW]	Energy Investment Cost [€/kWh]	Maintenance Cost [€/kW/year]	Lifetime [years]
100 - 400	700 - 10000	18.5	20 - 30

 Table 8. Economic characteristics of SMES. [1][2][4]

Technology Readiness Level

The superconducting magnetic energy storage technology can be divided into those that operate with high critical temperature superconductors and those that operate with low critical temperature superconductors. Low critical temperature SMES technology has some projects already made and tested on the network, and it is considered TRL level 9 [9]. On the other hand, high critical temperature SMES is in an earlier stage development, its TRL level is 5 [9].

Technology analysis

Based on references [6][17][21], the advantages and disadvantages of this technology are summarized below:

<u>Advantages</u>

- High power density.
- High lifetime system.
- High efficiency.
- Quick response and charging time
- **Disadvantages**
- High capital costs.
- Technically complex.
- Needs a Cooling System.
- Primary research phase.

Thermal storage (TES)

Storage type Small and long scale, thermal energy.

Operating principle

TES technology consist in storing thermal energy at high or low temperature by heating or cooling the storage medium which is in an isolated containment. This thermal energy is stored during a period of time until it is used for generating electrical energy or for a thermal use. TES technology has specific technologies that work very different. It can be classified in several ways, one of them is into low-temperature (<10°C), medium-temperature (10°C to 250°C) and high-temperature (>250°C)[23][7].

In this work, special emphasis will be placed on molten salts technology, as it is a technology widely used as a large-scale system. Its operation consists of storing the thermal energy produced during the day, by the solar concentrators, and using it to generate energy in the hours of less sun. It is a very efficient system but over time it has thermal losses due to heat dissipation. Hereunder, the scheme of a solar thermal power plant using TES at high temperature is shown:

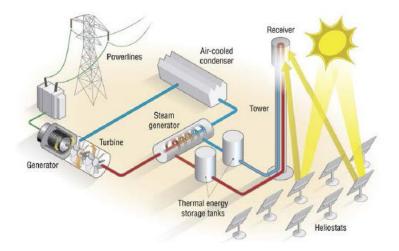


Figure 6. Solar thermal power plant scheme. (Source: https://cleanleap.com/)

Application areas

TES technology has a wide variety of applications like buildings, combined heat-and-power (CHP), district heating and industrial sector.

In Spain, hybrid energy systems of CSP (Concentrated Solar Power) plants and thermal storage with molten salts are common. Below you can see the deposits that contain the molten salts of one of these plants.

Figure 7. Manchasol & Extresol Solar Thermal Complex (Source: CSP focus)

Technical characteristics

Table 9. Technical characteristics of molten salts deposits. [5][24][25]

Power Range	Energy Range	Energy Density	Total Efficiency	Discharge Duration	Response time
[MW]	[MWh]	[Wh/kg]	[%]	[t]	[t]
1 - 300	MWh – 5GWh	-	90-99 ¹	min - h	min

¹ In this case, the efficiency value of the molten salt deposits decreases over time, so the value shown refers to very short storage times.

Economic characteristics

Power Investment Cost [€/kW]	Energy Investment Cost [€/kWh]	Maintenance Cost [€/kW/year]	Lifetime [years]
100-300	27-70 ²	-	30

Table 10. Economic characteristics of molten salts deposits. [5][24]

Technology Readiness Level

Depending on the specific TES technology used, the level of maturity varies. For example, molten salt deposits for thermal solar plants is TRL level 9, PCM (phase change material) for solar thermal plant or buildings is TRL level 7 [26].

Technology analysis

The advantages and disadvantages of molten salts technology are summarized below:

Advantages

- Good heat transfer capability.
- High efficiency.
- Integration with CSP.
- Low cost system.

<u>Disadvantages</u>

- Molten salts can be corrosive.
- Limited to CSP technology for power applications.
- If melted salts are frozen, can cause serious damage to the installation.

Hydrogen production

Storage type Large scale, chemical energy.

Operating principle

This technology consists of transforming electrical energy into chemical energy in the form of hydrogen. The hydrogen can be extracted from water, fossil fuels, biomass or from a mix of both. Depending on the primary source, different types of technologies can be used.

One of the technologies used is electrolysis, which produces pure hydrogen from splitting water molecules into hydrogen (H_2) and oxygen(O_2) by applying an electric current. Another commonly used technology used is called SMR (steam methane reforming), which extracts hydrogen from natural gas.

Once the hydrogen has been produced, it is stored in different forms (pressurized gas, liquid) and containers. Finally, it is used as a fuel (for example, injecting it into the gas network) or converted back into electrical energy by a fuel cell. Fuel cell technology is explained in the *Fuel Cells section*.

² Eur/kWh thermic

Application areas

Hydrogen is considered an energy vector and its area of application is very wide. Its areas of application include the integration of renewables, transport, buildings (methane gas replacement) and industrial heat generation.[27]

Technical & economic characteristics

Table 11 shows just the efficiency of the H_2 generation.

Technology Type	Power Range [MW]	Total Efficiency [%]	Power Investment Cost [€/kW]
Alkaline electrolyser	0.1 - 100	62 - 82	500 - 1000
PEM electrolyser	0.1 - 100	67 - 84	1100 - 1800
SOEC electrolyser	-	75 - 90	2800 - 5600
SRM	-	60 - 85	-

 $\label{eq:table_$

Technology Readiness Level

The degree of maturity depends heavily on the technology used to produce hydrogen. Below is a table with the TRL level depending on the type of technology used:

Table 12. Hydrogen production TRL levels. [28]

Technology Type	TRL
Alkaline electrolyser	9
PEM electrolyser	7 - 9
SOEC electrolyser	3 - 5
SRM	9

Technology analysis

Based on references [30][7] some advantages and disadvantages of this technology are summarized below:

<u>Advantages</u>

- High energy conversion efficiencies.
- Production from water with no emissions.
- Abundance.
- Different forms of storage (liquid, gas).
- Higher HHV and LHV than other fuels.

Disadvantages

- High investment costs.
- Low overall efficiencies.
- Safety issues.
- Low energy density at ambient conditions.
- Lack of existing infrastructure.

Figure 8. FH2R 10 MW hydrogen production plant in Fukushima. (Source https://fuelcellsworks.com/)

Power to Gas (P2G)

Storage type

Large scale, chemical energy.

Operating principle

This technology consists of producing gas fuel from electricity and storing it in the gas grid or in existing natural gas infrastructures (salt caverns, existing natural gas storage sites...)[31]. Then, the gas is converted into electricity (using generators or gas turbines) or burned to produce heat.

The most used gases by P2G technology are hydrogen and methane. In the case of hydrogen, as mentioned above, the main ways to produce hydrogen are electrolysis and SRM. In the case of methane, the production takes several stages. Hydrogen is first produced from electrical energy by electrolysis or SRM. Once the hydrogen has been obtained, it goes through a process called methanization which uses a CO_2 supply to finally obtain the methane.

Gas fuels can have a similar function to storage systems as they can be stored and used when needed. It is considered a viable technology and can offer a wide storage capacity [32] of the order of TWh [27].

Application areas

P2G technology has a wide range of applications like in the industry, mobility, heating sectors and also for electricity generation.

Technical & economic characteristics

Technology Type	Energy Range [MWh]	Total Efficiency [%]	Response time [t]	Power Investment Cost [€/kW]
P2G (H₂)	GWh-TWh	34-44	-	-
P2G (CH₄)	GWh-TWh	30-38	10min	1000-2000

 Table 13. Technical and economic characteristics of P2G. [1][5][33][34]

Technology Readiness Level

It is a technology that is in the advanced demonstration phase with several prototypes in operation. The TRL of this technology is considered level 6-8 [9].

Technology analysis

The advantages and disadvantages of this technology are summarized below:

Advantages

Disadvantages

- Can use an existing structure.
- High energy and power capacity.
- High time of energy storage (ex: Summer to winter).
- Low overall efficiency.
- Low level of maturity.
- High capital costs.

2.1.2 Electrochemical

Primary batteries

A primary cell is any type of electrochemical cell in which the electrochemical reaction occurs in a single direction, so it can only be discharged. It is mainly used for small applications such as sensors, toys or medical applications. So, it is discarded as a suitable energy storage system for the purpose of this work.

Secondary batteries

Secondary batteries refer to those batteries that are rechargeable. The main types are: Lead-Acid, Liion, NaS, NiCd.

Storage type

Small and long scale, electrochemical energy.

Operating principle

Rechargeable batteries are an energy storage system that stores electrochemical energy from an electric current through a reversible reaction. The batteries are composed of a cathode and an anode that are separated by a porous material which allows electron and ion flow between the two parts.

When the battery is charging, the cathode material is oxidized, and the electrons are conducted to the negative electrode. When discharging the chemical reaction occurs in with the opposite way.

In this project we are going to analyse the characteristics of 4 types of batteries: Lead-Acid, Li-ion, NaS, NiCd, as they are the most used for energy storage [7].

Application areas

Rechargeable batteries are used in different environments. Due to its high-density energy it is a useful technology in the automobile sector, in electric vehicles. Moreover, since secondary batteries have a high scalability and flexibility, they are very used for the integration of renewables, for residential and commercial buildings, and for the regulation of voltage and frequency of the electrical network. Also, they are used for electronic devices and as UPS systems.

Figure 9. The world's largest 100 MW/129 MWh lithium-ion battery in Hornsdale, South Australia. [35](Source: Tesla)

Technical characteristics

Technology Type	Power Range [MW]	Energy Range [MWh]	Energy Density [Wh/kg]	Energy Density [Wh/L]	Total Efficiency [%]	Discharge Duration [t]	Response time [t]
Lead-Acid	0.001-50	0 - 40	30 - 50	50 - 90	75 - 95	min - h	ms
Li–ion	0.001-100	<200	75 - 250	200-500	90 - 98	min - h	ms
NaS	0.5-50	>350	150 - 240	150-300	75-90	min - h	ms
NiCd	0 - 40	-	45 - 80	15 - 150	60 - 91	min - h	ms

 Table 14. Technical characteristics of secondary batteries. [1][2][3][4]

Economic characteristics

 Table 15. Economic characteristics of secondary batteries.
 [1][2][3][4][5][36]

Technology Type	Power Investment Cost [€/kW]	Energy Investment Cost [€/kWh]	Maintenance Cost [€/kW/year]	Lifetime [years]
Lead-Acid	100-500	200-400	7-15	15-20
Li–ion	150-1300	180-1000	6-20	10-20
NaS	300-3000	275-350	7-15	10-20
NiCd	500-1500	400-700	20	15-20

Technology Readiness Level

The TRL level varies depending on the specific type of batteries. Table 16 shows the TRL level depending on the type of technology used:

Table 16. Secondary batteries TRL levels. [2][4][9]

Technology Type	TRL
Lead-Acid	9
Li–ion	8
NaS	9
NiCd	8

Technology analysis

The advantages and disadvantages of this technology are summarized below:

Advantages

- High efficiency.
- High energy density.
- Mobile storage system.
- Very useful for automobile sector.

Disadvantages

- Suffers from aging effect.
- Safety issues (overheating).
- Limited material resources.
- Composed by materials that are difficult to recycle.

Redox flow cells (RFB)

There are different types of RFB, the main ones are VRB, ZnBr and PSB.

Storage type

Large scale, electrochemical energy.

Operating principle

The RFB transforms electrical energy into electrochemical energy from a reversible chemical reaction. This technology consists of 2 tanks that store electrolytic liquids, one with a positive charge and the other with a negative charge. The solutions of the tanks are pumped to a cell stack that is composed of 2 electrodes and two compartments which are separated by a selective ion membrane.

When the battery is charging, the discharged positive electrolyte detaches an electron that travels from the positive electrode to the negative electrode and jump into the negative electrolyte by varying its charge. Meanwhile the membrane allows the passage of ions to complete the reaction. When the battery is discharged the electrochemical energy contained in the electrolyte it is released in the reverse reaction and the electrical energy is extracted [36][38].

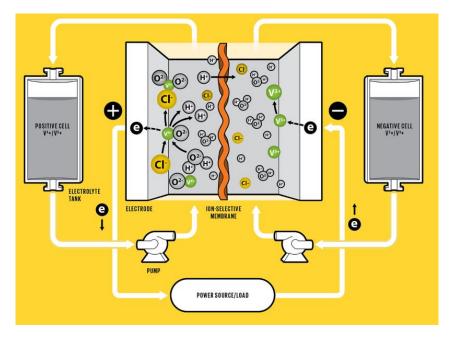


Figure 10. Operation of a redox flow battery during the charging process. Illustration: James Provost

Application areas

Due to their great flexibility and scalability, their main fields of application are related to large-scale non-mobile energy storage systems. For example, the integration of renewables or frequency and voltage control.

In 2016, the largest redox flow batteries plant was implemented. Its main uses are to work during peak network demand and as auxiliary power supply for black start³.[39]

Figure 11. The world's largest VRF battery: 200MW/800MWh in Dalian, China. (Source: Rongkepower)

³ It is the process in which the power supply of the electrical network is reactivated after a partial or general shutdown

Technical characteristics

Technology Type	Power Range [MW]	Energy Range [MWh]	Energy Density [Wh/kg]	Total Efficiency [%]	Discharge Duration [t]	Response time [t]
VRB	0,5-100	<100	10-30	75-85	s - h	ms
ZnBR	1-10	<100	80	66-80	s - h	ms
PSB	1-15	-	15-30	75	s - h	ms

Table 17. Technical characteristics of redox flow cells. [1][2][4][5][10][36]

Economic characteristics

 Table 18. Economic characteristics of redox flow cells.
 [1][2][4][36]

Technology Type	Power Investment Cost [€/kW]	Energy Investment Cost [€/kWh]	Maintenance Cost [€/kW/year]	Lifetime [years]
VRB	5-20	150-1500	100-1000	17-47
ZnBR	5-15	550-1800	100-700	11-34
PSB	10-15	150-1000	700-2500	-

Technology Readiness Level

The first flow batteries were made by NASA in the 1970 [40], however, RFB are not widely commercialized [38]. Next there is a table with the TRL level depending on the type of technology used:

Table 19. Redox flow batteries TRL levels. [9]

Technology Type	TRL	
VRB	7	
ZnBR	5-6	

Technology analysis

Based on references [6][37][38][40], the advantages and disadvantages of this technology are summarized below:

Advantages

- Modular design.
- Good scalability.
- Flexible operation.
- Low degradation.
- Fast charge.
- Decoupled energy storage and power generation.

Supercapacitors

Storage type

Small scale, static electricity.

Operating principle

This technology stores static electricity into 2 electrodes separated by an ion-permeable membrane and an electrolyte which connect the 2 electrodes ionically. When a current is applied to the electrodes, a positive charge builds up on one electrode and a negative charge builds up on the other one.

Application areas

The main applications are the ones that require energy to be delivered at high power or velocity. The field of electronics or electric vehicles are some examples.

Technical characteristics

 Table 20. Technical characteristics of supercapacitors. [1][3][4][5][41]

Power Range	Energy Range	Energy Density	Energy Density	Total Efficiency	Discharge Duration	Response time
[MW]	[MWh]	[Wh/kg]	[Wh/L]	[%]	[t]	[t]
0.01-5	0.001-0.005	10 - 104	10 - 30	94 - 98	s - min	ms

Economic characteristics

Table 21. Economic characteristics of supercapacitors. [1][3]

Power Investment Cost [€/kW]	Energy Investment Cost [€/kWh]	Maintenance Cost [€/kW/year]	Lifetime [years]
10 - 400	300 - 20 000	-	16 - 40

Disadvantages

- Low energy density [Wh/L]
- High investment costs.
- Low maturity.
- More complex than conventional batteries.
- Toxicity of some electrolytes used.

Technology Readiness Level

This technology has been used in a wide range of projects, so it is in the commercialisation stage with a TRL of 8. [3]

Technology analysis

Based on references [6][41][42][43][44] the advantages and disadvantages of this technology are summarized below:

Advantages

- High cycle life and efficiency.
- High safety rating.
- High charge/discharge velocity.
- High power density [W/kg].

<u>Disadvantages</u>

- Low energy density [Wh/kg].
- Low energy density [Wh/L].
- High investment costs.
- Require power conditioning to deliver steady output power.

Fuel Cells

Storage type Electrochemical energy.

Operating principle

The fuel cell consists of transforming chemical energy into electrical energy. It is generally composed by a hydrogen inlet, an oxygen inlet, an H_2O outlet and an electrolyte that separates 2 electrodes (cathode and anode).

For the generation of electricity, oxygen passes through the cathode side at the same time that hydrogen passes through the anode site and it is dissociated into electrons and protons. Then, the protons pass through the electrolyte membrane and the electrons are forced to travel on an external circuit, generating an electric current and excess heat. Finally, protons, electrons, and oxygen combine on the cathode side to produce water molecules.

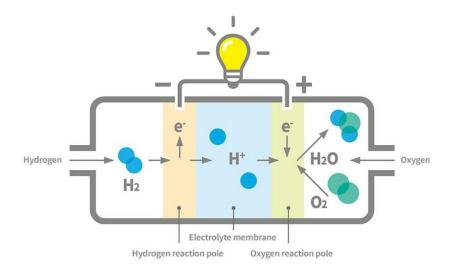


Figure 12. Simplified operating principle of a PEM fuel cell. (Source: Doosan mobility)

Application areas

The fuel cell is a relatively new technology. At present, its main uses are for the generation of electricity and the automobile sector.

Technical characteristics

Power Range	Energy Range	Energy Density	Energy Density	Total Efficiency	Discharge Duration	Response time
[MW]	[MWh]	[Wh/kg]	[Wh/L]	[%]	[t]	[t]
0.01-58.8	-	800 - 10000	-	>60	s-h	S

Table 22. Technical characteristics of Fuel cells. [1][4][45][46]

Economic characteristics

Table 23. Economic characteristics of Fuel cells. [1][2][46]

Power Investment Cost [€/kW]	Energy Investment Cost [€/kWh]	Maintenance Cost [€/kW/year]	Lifetime [years]
550 – 2000	1 – 15	-	5-25

Technology Readiness Level

The TRL level varies depending on the specific type of technology. Generally, their TRL level is in the range of 4 to 9 [9].

Technology analysis

The advantages and disadvantages of molten salts technology are summarized below:

<u>Advantages</u>

- High efficiency in cogeneration.
- Silent during operation.
- Low size.
- Efficiency remains constant with its use.
- **Disadvantages**
- Expensive technology.
- Low overall efficiency.
- Low level of maturity of some technologies.
- Lack of infrastructure.

2.2 Comparative of energy storage systems

Once the different energy storage technologies have been explained, a comparative analysis is carried out to determine which storage systems are most suitable for each of the possible situations.

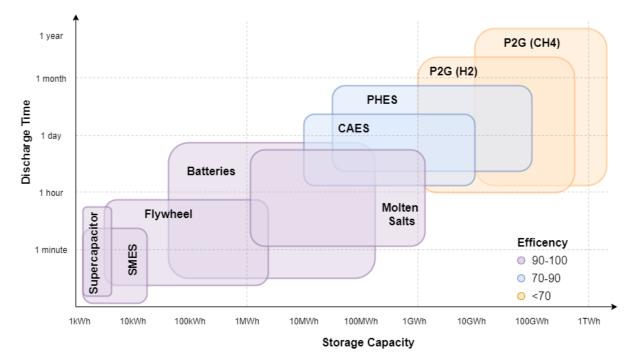


Figure 13. Comparative of ES technologies in a Discharge Time - Storage Capacity graphic.

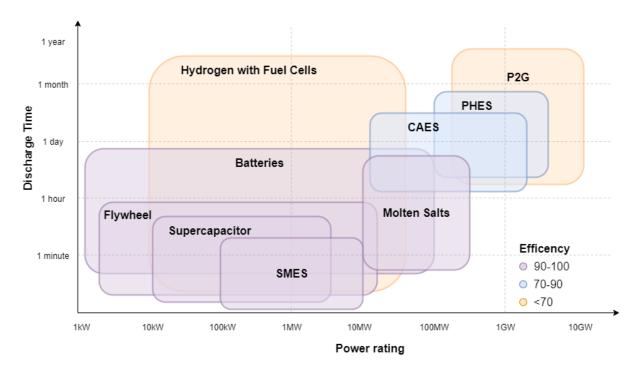


Figure 14. Comparative of ES technologies in a Discharge Time - Power Rating graphic.

Figure 13 and Figure 14 presents a comparison between different storage technologies taking into account the discharging time, the storage capacity and the power rating. Regarding this, CAES, P2G, PHES, molten salts and battery technologies are the most suitable systems to be used on a large scale. For example, these systems are very useful for storing surplus energy from renewable energies or for generating energy and decreasing the peak of energy demand.

On the other hand, flywheels, supercapacitors and SMES are a very suitable system to act quickly and for short periods of time. For example, they can be applied in frequency regulation and voltage control of an electrical network.

Following there is a table from the World Energy Council that indicates which storage systems are up to date for different situations.

	Electri	cal		Mechar	nical	Electroch	emical	Chemical	Thermal
	Super- capacitors	SMES	PHES	CAES	Flywheels	Second. batteries	Redox flow	H ₂	Molten salts
Power quality	\checkmark	\checkmark			\checkmark	\checkmark	Z		
Energy arbitrage			\checkmark	\checkmark		\checkmark	\checkmark	X	\checkmark
RES integration		\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	
Emergency back-up					\checkmark	\checkmark	\checkmark	X	X
Peak shaving			\checkmark	\checkmark		\checkmark	Z	X	X
Time shifting			\checkmark	\checkmark		\checkmark	Z	X	
Load levelling			\checkmark	\checkmark		\checkmark	X	X	
Black start						\checkmark	\checkmark	X	X
Seasonal storage				$\overrightarrow{\mathbf{A}}$				X	X
Spinning reserve		Z			Z	\checkmark	Z	X	
Network expansion			\checkmark			\checkmark	Z	X	X
Network stabilisation	X	\checkmark			X	\checkmark	Z		
Voltage regulation	X	X			X	\checkmark	\checkmark		
End-user services	X	Z				\checkmark	X		
					✓	for proven	arge for	promising	🛠 possible

 Table 24. Possible applications by technology.
 [6]

Finally, the following tables summarize the characteristics of the storage systems explained in the previous point.

Technology Type	Power Range [MW]	Energy Range [MWh]	Energy Density [Wh/kg]	Energy Density [Wh/L]	Total Efficiency [%]	Discharge Duration [t]	Response time [t]
PHES	100-5000	100- 100000	0.5 – 3	0.5-1.5	70 - 87	h - days	s - min
CAES	10 - 2700	10 - 10000	30 - 60	2-15	55 - 70	h - days	min
Flywheel	0.002-20	0.005-5	5 – 130	20-80	90 - 95	s - min	ms-s
SMES	0.01 - 10	0.001- 0.01	10 - 75	6	95 - 98	ms - min	ms
Molten Salts	1 - 300	MWh – 5GWh	-	-	90 – 99	min - h	min
Alkaline electrolyser	0.1 - 100	-	-	-	62 - 82	-	-
PEM electrolyser	0.1 - 100	-	-	-	67 - 84	-	-
SOEC electrolyser	-	-	-	-	75 - 90	-	-
SRM	-	-	-	-	62 - 82	-	-
P2G (H₂)	-	GWh - TWh	-	-	34 - 44	-	-
P2G (CH₄)	-	GWh - TWh	-	-	30 - 38	-	10min

Table 26. Technical characteristics comparation of electrochemical energy storage systems.

Technology Type	Power Range [MW]	Energy Range [MWh]	Energy Density [Wh/kg]	Energy Density [Wh/L]	Total Efficiency [%]	Discharge Duration [t]	Response time [t]
Lead-Acid	0.001- 50	0 -40	30 - 50	50 - 90	75 - 95	min - h	ms
Li–ion	0.001- 100	<200	75 - 250	200- 500	90 - 98	min - h	ms
NaS	0.5-50	>350	150 - 240	150- 300	75-90	min - h	ms
NiCd	0 - 40	-	45 - 80	15 - 150	60 - 91	min - h	ms
VRB	0.5-100	<100	10-30	-	75-85	s - h	ms
ZnBR	1-10	<100	80	-	66-80	s - h	ms
PSB	1-15	-	15-30	-	75	s - h	ms
Supercapacitor	0.01-5	0.001- 0.005	10 - 104	10 - 30	94 - 98	s - min	ms
Fuel cell	0.01- 58.8	-	800 - 10000	500- 3000	>60	s-h	S

Technology Type	Power Investment Cost [€/kW]	Energy Investment Cost [€/kWh]	Maintenance Cost [€/kW/year]	Lifetime [years]
PHES	500-4600	70-350	5-40	50-100
CAES	400-1200	95-230	17	20-40
Flywheel	100 - 300	1000 - 3500	1	15 - 20
SMES	100-400	700-7000	18.5	20-30
Molten Salts	100 – 300	25 – 70	-	30
Alkaline electrolyser	500-1000	-	-	-
PEM electrolyser	1100-1800	-	-	-
SOEC electrolyser	2800-5600	-	-	-
SRM	-	-	-	-
P2G (H₂)	-	-	-	-
P2G (CH₄)	1000-2000	-	-	-
	_	-	_	-

 Table 27. Economic characteristics comparation of non-electrochemical energy storage systems.

Table 28. Economic characteristics comparation of electrochemical energy storage systems.

Technology Type	Power Investment Cost [€/kW]	Energy Investment Cost [€/kWh]	Maintenance Cost [€/kW/year]	Lifetime [years]
Lead-Acid	100-500	200-400	7-15	15-20
Li–ion	150-1300	180-1000	6-20	10-20
NaS	300-3000	275-350	7-15	10-20
NiCd	500-1500	400-700	20	15-20
VRB	150-1500	100-1000	17-47	5-20
ZnBR	550-1800	100-700	11-34	5-15
PSB	150-1000	700-2500	-	10-15
Supercapacitor	10-400	300-20000	-	16-40
Fuel cell	550-2000	1-15	-	5 -25

3 Storage infrastructure installed in Spain

Regarding the *Global Energy Storage Database*[47], in 2020, the Spanish energy storage system is based primarily on PHES technology, and to a lesser extent, on molten salt deposits.

The installed power of PHES technology accounts for 88% of the entire Spanish system, while molten salts technology has an installed power of 12% of the total. In addition, with less than 1% incidence, there are other energy storage systems such as flywheels, electrochemical batteries and capacitors. The current mix of the Spanish energy storage system is described in Figure 15.

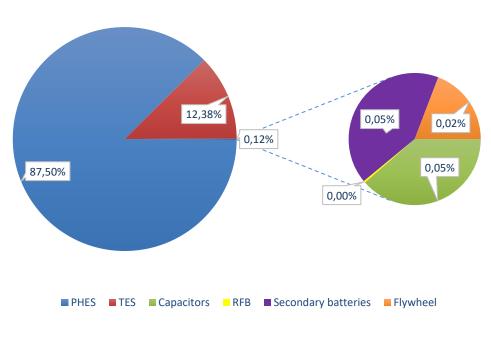


Figure 15. Installed Power mix of energy storage technologies in Spain.

3.1.1 PHES technology

The Spanish potential for PHES technology is enormous, and Spain is considered to be the second country in Europe with the most theoretical potential after Turkey [48]. At present, Spain is the 4th country in the world and the first in Europe with more PHES installed power with 8GW [49]. In addition, in the coming years it will be the country of Europe where the installed power will grow more [50]. The following graphic shows the PHES installed power from different countries around the world.

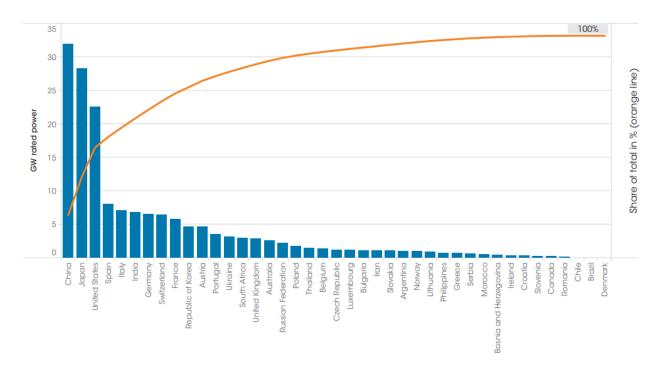


Figure 16. Global operational pumped hydro storage power capacity by country, mid-2017. [49]

In Spain there are about twenty PHES plants. The main uses are the integration of renewables, electric supply capacity and demand time shift.

Table 29 presents the details of the power, location and name of each of the PHES plants in Spain.

Name	Technology	Rated Power [MW]	Ubication
Gobantes	PHES	3.6	Gobantes
Urdiceto	PHES	7.2	Bielsa
El Hierro	PHES	11.3	El Hierro
Pintado	PHES	14	Cazalla Sierra
Guijo de Grandadilla	PHES	54	Guijo de Grandadilla
CH de Ip	PHES	88.5	Huesca
Montamara	PHES	90	Tavascan
Gabriel y Galan	PHES	111	Guijo De Granadilla
Torrejon	PHES	132	Torrejon
Tanes	PHES	133	Redes National Park

Table 29. PHES infrastructure installed in Spain. [47]

GuillenaPHES215GuillenaMoralets-LlausetPHES219.1HuescaValdencanasPHES225Valdecanas
Valdencanas PHES 225 Valdecanas
Conso PHES 228 Villarino Conso
Puente Bibey PHES 315 Manzaneda
Aguayo IPHES360Bárcena de Pie de Concha
Tajo de la EncantadaPHES360Ardales Y Alora
Estany de Sallent PHES 468 Capdella
VillarinoPHES810Villarino
Aguayo IIPHES1014Bárcena de Pie de Concha
Aldeadávila II PHES 1139 Duero
La Muela PHES 2000 Cortes-La Muela

3.1.2 Molten Salt technology

Spain is the country with the most installed power CSP plants [51]. Many of these solar plants have molten salts deposits to store surplus heat energy to produce electricity at peak times or when there is no solar radiation. These systems cannot store electricity coming from the grid, but despite this drawback, it increases the flexibility of the system, so it is as useful as any other storage technology. Table 30 presents list of solar thermal power plants that have molten salt deposits in Spain, in the total of 1.13 GW.

Name	Technology	Туре	Rated Power [MW]	Energy Range [MWh]	Ubication
Puerto Errado 1	TES	Molten Salt	1,4	0,7	Calasparra
PS10	TES	Water-Steam	11	10	Sanlúcar La Mayor
PS20	TES	Water-Steam	20	20	Sanlúcar La Mayor
Gemasolar Plant	TES	Molten Salt	20	300	Fuentes de Andalucía
Puerto Errado 2	TES	Molten Salt	30	15	Calasparra
Andasol 1	TES	Molten Salt	50	375	Aldiere

Table 30. TES infrastructure installed in Spain. [47][52][53]

	TOTAL		1131.4	8420.7	SPAIN
Termosol 2	TES	Molten Salt	50	450	Navalvillar de Pela
Termosol 1	TES	Molten Salt	50	450	Navalvillar de Pela
Termesol 50	TES	Molten Salt	50	375	San José del Valle
Manchasol 2	TES	Molten Salt	50	375	Alcazar de San Juan
Manchasol 1	TES	Molten Salt	50	375	Alcazar de San Juan
La Florida	TES	Molten Salt	50	375	Alvarado
La Dehesa	TES	Molten Salt	50	375	La Garrovilla
La Africana	TES	Molten Salt	50	375	Posadas
Extresol 3	TES	Molten Salt	50	375	Torre de Miguel Sesmero
Extresol 2	TES	Molten Salt	50	375	Torre de Miguel Sesmero
Extresol 1	TES	Molten Salt	50	375	Torre de Miguel Sesmero
Casablanca	TES	Molten Salt	50	375	Talarrubias
Caceres	TES	Molten Salt	50	375	Valdeobispo
Astexol II	TES	Molten Salt	50	400	Olivenza
Aste 1A	TES	Molten Salt	50	400	Alcázar de San Juan
Aste 1B	TES	Molten Salt	50	400	Alcázar de San Juan
Arenales	TES	Molten Salt	50	350	Morón de la Frontera
Arcosol 50	TES	Molten Salt	50	375	San José del Valle
Andasol 3	TES	Molten Salt	50	375	Aldeire
Andasol 2	TES	Molten Salt	50	375	Aldeire y la Calahorra

3.1.3 Supercapacitor energy storage technology

There are currently two active projects that use supercapacitors as a storage system, one in Madrid and the other in La Palma.

The supercapacitors located in La Palma are integrated into a conventional power plant and are able to respond to fast events and to maintain island frequency in an acceptable range.

The plant in Madrid is a hybrid system between a bank of batteries and supercapacitors, that is responsible for recovering and storing the energy generated by the action of the braking of a train.

Supercapacitors can charge and discharge faster and more efficiently than batteries, so, this hybrid system allows to recover more energy and extend the battery life by 20 to 25 percent [54].

Table 31. Supercapacitors infrastructure installed in Spain.

Name	Technology	Rated Power [kW]	Ubication
Ferrolinera WESS: Ultracapacitors - Win Inertia	Electro-chemical Capacitor	300	Madrid
Endesa STORE: La Palma	Electro-chemical Capacitor	4000	La Palma

3.1.4 Flywheel

Nowadays in Spain there are 2 flywheels projects located in the Canary Islands, specifically in Lanzarote and La Gomera. These two islands have very small and isolated systems with imbalances in frequency and voltage between generation and demand.

Flywheel plants allow a more stable and balanced electrical system as they can supply or consume large amounts of energy in a short time [55]. So, the main function of these two projects is to regulate the frequency and voltage of the system.

Below are the main features of these two plants.

Table 32. Flywheel infrastructure installed in Spain. $\left[47\right]$

Name	Technology	Rated Power [kW]	Ubication
Endesa STORE: La Gomera	Flywheel	500	La Gomera
Subestación de Mácher	Flywheel	1650	Tias, Lanzarote

In Spain there is between 3 and 4 MW of installed capacity of electrochemical batteries, without counting electric cars batteries. 3 different types of battery installations can be found: Lithium-Ion battery, Vanadium Redox Flow battery and Lead-Acid battery. The principal uses of these plants are the integration of renewables into electrical and mobility system, frequency and voltage regulation, energy recovery from the braking of a train, to reduce peak demand charge, and development and demonstration of rapid charging of electric vehicles.

Table 33 describes with the characteristics of electrochemical battery plants in Spain.

 Table 33. Electro-chemical batteries infrastructure installed in Spain. [47]

Name	Technology	Rated Power [kW]	Ubication
CENER VRB	Flow Battery	50	Sarriguren
Dutt Power Electronics BESS	Lead-acid Battery	40	Albiztur
FerroSmartGrid - Regulation Node	Lead-acid Battery	50	Antequera
Endesa HQ B2G	Lithium-ion Battery	20	Barcelona
IREC B2G	Lithium-ion Battery	23	Barcelona
Endesa: CRAVE	Lithium-ion Battery	47	Zaragoza
Endesa: V2G	Lithium-ion Battery	80	Malaga
Smart City Malaga	Lithium-ion Battery	106	Malaga
Ferrolinera WESS: Li-Ion Batteries - Win Inertia	Lithium-ion Battery	300	Madrid
Abengoa Li-ion project	Lithium-ion Battery	1000	Seville
Almacena Li-ion	Lithium-ion Battery	1000	Carmona
Endesa STORE: Gran Canaria	Lithium-ion Battery	1000	Gran Canaria
Acciona-ILIS project	Lithium-ion Battery	1000	Tudela

4 Storage needs assessment of the national electric system

This section provides a study of the energy storage needs of the Spanish electricity system in the future. A total of 6 possible energy scenarios have been developed for the study, which follow a deterministic model. The following is a brief explanation of each of them:

- Scenario 2018: Real scenario of the Spanish electricity system in 2018;
- Scenario 2030: Forecast of the Spanish electricity system for 2030;
- **Scenario 2040:** Forecast of the Spanish electricity system in 2040, it is assumed that hydrogen has practically no incidence on the industrial and transport sectors;
- **Scenario H2040:** Forecast of the Spanish electricity system in 2040, it is assumed that hydrogen has incidence on the industrial and transport sectors;
- **Scenario 2050:** Forecast of the Spanish electricity system in 2050, it is assumed that hydrogen has practically no incidence on the industrial and transport sectors;
- **Scenario H2050:** Forecast of the Spanish electricity system in 2050, it is assumed that hydrogen has incidence on the industrial and transport sectors;

The models used for the simulation have been constructed taking into account other studies and trying to achieve the objectives indicated in the official documents PNIEC[56] and PLCCTE[57], which are included in the 2050 long-term climate strategy to pursuit an economy with net-zero greenhouse gas emissions for 2050.

In the documents previously mentioned the following goals can be emphasized:

- 1. Spain must achieve climate neutrality no later than 2050;
- 2. Before 2050, the electricity system in Spain has to be 100% renewable;
- 3. The renewable presence in 2030 must be at least 70% for electricity demand;
- 4. The mobility sector will drastically reduce its emissions in 2050;
- 5. The electrical system should be the main vector of decarbonization.

4.1 Modeling future scenarios

4.1.1 2018 Scenario

Final electric energy demand

The value of the demand for electricity has been obtained from the 2018 annual report prepared by *Red Eléctrica Española* [58]. The document considers an electricity demand of 243.7 TWh consumed throughout 2018.

This value includes the demand for electricity from the peninsula, plus the demand for the link that connects Spain with the Balearic Islands. As mentioned above, the demand for the Canary Islands has not been taken into account, as it has its own electrical system and it is not part of the study.

Installed power

As with electricity demand, the balance of the installed electric power has been obtained from the 2018 annual report prepared by *Red Eléctrica Española* [58], except for the value of *River Hydro* installed power, which has been obtained from the *Excel Inventory of generation 2015-2018* from [59]. Table 34 indicates the installed power of each type of technology and the percentage of its total representation within the system.

 Table 34. Spanish installed power by technology in 2018.

Technology	MW	%
On-shore wind power	23091	23.0%
River Hydro	1740	1.7%
Hydroelectric without pumping	17047	17.0%
Hydroelectric with pumping	3329	3.3%
Solar PV	4466	4.4%
Solar thermal	2304	2.3%
Renewable waste	123	0.1%
Other renewable	859	0.9%
Coal	9562	9.5%
Combined cycle	24562	24.5%
Cogeneration	5730	5.7%
Nuclear	7117	7.1%
Other no renewable	452	0.5%
TOTAL	100382	

Storage capacity

Regarding energy storage, for the year 2018, two technologies are considered: hydro pumping with 3329 MW of installed power according to [58] and deposits of molten salts in solar thermal plants with 8,4 GWh according to [47][52][53].

International electric energy exchanges capacity

The value of the Spanish capacity interconnection in 2018 has been obtained from the PNIEC and REE. In 2018 Spain, the interconnection capacity (with Portugal, France and Morocco) is 5200 MW, three times below the European directive [60] which requires to have installed a capacity of at least 15% of the rated power of the system by 2030.

4.1.2 2030 Scenario

Final electric energy demand

For the 2030 scenario, the value of the electricity demand provided by the PNIEC has been taken into account. The document considers that the annual electricity demand will increase by about 20 TWh in 12 years, in other words, it will grow from 243.7 TWh to 262.7 TWh.

Installed power

Regarding the installed power, it is considered that the architecture of the Spanish electrical system in 2030 will be the one indicated in the PNIEC, except for the value of the *River Hydro* technology. In 2018 the ENTSO body defined 3 possible scenarios (ST, DG, EUCO) on the Spanish electricity system, and in all three scenarios the value of the installed capacity of *River Hydro* was 3850 MW [61].

As the value of river hydro provided by the PNIEC is considered insufficient, it has been decided to take the value provided by the ENTSO as the reference for 2030. Table 35 presents the estimate installed power of each type of technology and the percentage of its total representation within the system.

Technology	MW	%
Onn-shore wind power	48550	31.2%
River Hydro	3850	2.5%
Hydroelectric without pumping	16250	10.4%
Hydroelectric with pumping	7890	5.1%
Solar PV	38404	24.7%
Solar thermal	7300	4.7%
Others renewable	1730	1.1%
Combined cycle	24560	15.8%
Cogeneration	3980	2.6%
Nuclear	3050	2.0%
TOTAL	155564	100%

Table 35. Forecast of the installed power in the 2030 scenario.

Storage capacity

In 2030 scenario, 3 energy storage technologies are planned: hydro pumping with 7890 MW, deposits of molten salts in solar thermal plants and batteries.

The installed capacity of batteries considered in PNIEC is 2500 MW, but in the present study, an installed capacity of 0 MW and 5000 MW is also considered. In addition, the PNIEC considers that the batteries will have a storage capacity of 2 hours at nominal power, therefore, the storage capacity will be 0 GWh, 5GWh and 10 GWh, respectively.

Regarding the storage capacity of molten salt deposits, the PNIEC indicates that solar thermal plants will have a storage capacity equal to 9 hours of operation at rated power of the plant. It is considered difficult for all solar thermal plants to achieve this condition, so this rule will apply to only 80% of the plants. Then, the storage capacity of molten salt deposits is:

$$7.3 \ GW \cdot 9 \ h \cdot 0.8 = 52.6 \ GWh$$

International electric energy exchanges capacity

By 2030, the PNIEC expects an interconnection capacity of 13100 MW. This represents 8.4% of the total installed power, still less than the 15% required by the directive of the European Union [60]. The interconnection capacity forecast provided by the PNIEC for each country is described in Table 36.

Table 36. Interconnection capacity forecast in 2030 according to PNIEC.

Interconnections	MW
ESP-FR	8000
ESP-PT	4200
ESP-MOR	900
Total	13100

Electric vehicle

Regarding the electrification of transport for the future, different projections made by different entities or authors have been considered [61][62][56] and are described in Table 37.

Table 37. Forecasts of electric car incidence in Spain at 2030 scenario.

Document	Scenario	N ^o of vehicles
PNIEC	-	500000
Article [62]	Low Penetration	2600000
Article [62]	Medium Penetration	4000000
Article [62]	High Penetration	600000
ENTSO	EUCO	5717299
THESIS		500000

To obtain the number of cars, the average between the medium and high penetration scenario of the paper [62] has been made. This value is the same that PNIEC proposes and it is similar to ENTSO value.

Load efficiency, battery capacity and charging power values have been obtained from [63]. In the following table you can see the car models and their characteristics:

Table 38. Characteristics of car models.

Model	Battery capacity [kWh]	Power of on-board charger [kW]
Nissan leaf II	40	6.6
Renault zoe	41	22

For the calculations of total storage capacity and total charging power, the values of the *Renault ZOE* model have been chosen and multiplied by the total number of cars. Regarding annual consumption, the value 18.08 TWh has been obtained from PNIEC. The results are presented in Table 39.

Table 39. Global characteristics of the electric cars network in 2030 scenario

Characteristics	Value
Battery capacity [GWh]	205
Charge power [MW]	110000
Efficiency	0.9 [64]
Annual consumption [TWh]	18.08

4.1.3 2040 Scenario

Final electric energy demand

Even though EU governance regulation required member states to submit their first national long-term strategies to the Commission by 1 January 2020 [65], at the time this study has been done, the Spanish state has not yet made the definitive document. On May 19 of this year, the PLCCTE bill was presented to the Spanish courts. Unfortunately, this is a very generic document and lacks specific technical content.

To be able to carry out the work, forecasts of future scenarios done by different agencies and authors have been compiled. As Portugal has similar climatic conditions to Spain, the scenarios proposed in document RNC250 [66] have also been extrapolated to the Spanish electricity system.

Table 40 presents the different forecasts for electricity demand in Spain for 2040:

Document	Year	Scenario	Demand [TWh]
AEE [67]	2017	-	345.0
Article [68]	2018	1,36%	374.8
Article [68]	2018	1,73%	413.6
ENTSO	2018	ST	282.7
ENTSO	2018	DG	317.3
ENTSO	2018	EU/GCA	290.3
Extrapolation RNC	2019	А	397.8
Extrapolation RNC	2019	В	405.2
Article [69]	2019	1,36%	346.0
Article [69]	2019	1,73%	376.8

Table 40. Forecasts of Spanish electricity demand for 2040.

Articles [68] and [69] consider two possible scenarios for the growth of electricity demand (1.36% and 1.73% per year), based on the results of the *Global Calculator Tool* [70]. Due to the crisis of the COVID19 and considering that the PLCCTE is clearly committed to a more sustainable future and a high incidence of RES, the most optimistic scenario has been chosen (1.36%) and this value has been applied on the forecast made by PNIEC of 2030 electricity demand.

Then the evolution of demand until 2040 is considered to be:

Table 41. Electricity demand evolution until 2040.

	2018	2030	2040
Electric Demand [TWh]	243.69	262.66	301.04

Installed power

As in the case of electricity demand, different scenarios have been compiled in order to create the mix of installed power that best suits the goals of the PNIEC and PLCCTE documents. The following table shows the values chosen for this study:

Table 42. Compilation of installed power forecast for 2040 scenario.

Installed power [MW]	AEE	ENTSO-GCA	Article [69]	Article [69]	THESIS
On-shore wind power	50000	47590	32100	39800	47590
Off-shore wind power	50000	3408	52100	39800	3408
Hydroelectric	20400	24920	24700	25900	24920
Hydro pump	-	10150	-	-	10150
Solar PV	45000	77000	24600	27300	77000
Solar thermal	-	3363	-	-	12300
Others renewable	2550	2550	-	-	2550
Combined cycle	-	24560	24948	24948	12280
Cogeneration	-	-	10800	13200	-
Nuclear	3200	3050	-	-	3050
Others no renewable	-	-	3800	3500	-
TOTAL	121150	196591	120948	134648	193248

The installed power mix considered in this study is a modification of the GCA 2040 scenario developed by ENTSO. The only modified values of installed power are those of solar thermal and combined cycle technologies.

The installed power of thermal solar is considered 12300 MW, so that it increases about 5000 MW, a similar value between the scenarios 2018 and 2030. In addition, it should be noted that the value proposed by ENTSO is lower than the power provided by the PNIEC for 2030, therefore, it has been discarded.

Regarding the installed power of combined cycle plants, it is reduced by half in order to reach the goal of PLCCTE to be 100% renewable in the electrical system by 2050.

Storage capacity

Compared to 2030 scenario hydro pumping storage installed power is increased to 10150 MW.

In 2040 scenario, the installed power of batteries it will be assumed between 5000 MW and 9000 MW. As in the 2030 scenario the batteries will have a storage capacity of 2 hours at nominal power, therefore, the storage capacity will be between 10 GWh and 18 GWh.

Regarding molten salt deposits, is considered that the storage capacity is equal to 9 hours of operation at rated power of the plant. It is considered difficult for all solar thermal plants to achieve this condition, so this rule will apply to only 90% of the plants. Then, the storage capacity of molten salt deposits is:

$$12.3 \ GW \cdot 9 \ h \cdot 0.9 = 99.63 \ GWh$$

International electric energy exchanges capacity

It is assumed that, in 2040, there will be at least an interconnection capacity equal to or greater than 15% of the rated power of the system, as it is indicated by the PLCCTE and the European directive [60].

Then the interconnection capacity is considered to be 28987 MW.

Electric vehicle

To obtain the number of electric cars for the 2040 scenario, the same methodology has been followed as with the 2030 scenario. The average between the medium and high penetration scenario of the paper [62] has been made. The estimated values are presented in Table 43.

Document	Scenario	Nº of vehicles
Article [62]	Low Penetration	6500000
Article [62]	Medium Penetration	8500000
Article [62]	High Penetration	13500000
ENTSO	EUCO	10427246
THESIS		11000000

The total storage capacity and total charge power have been calculated in the same way that scenario 2030. For 2040 scenario, the increase in annual consumption is directly proportional to the increase in the number of cars. Table 44 summarizes the results.

Table 44. Global characteristics of the electric cars network in 2040 scenario.

Characteristics	Value
Battery capacity [GWh]	451
Charge power [MW]	242000
Efficiency	0.9
Annual consumption [TWh]	39.78

4.1.4 H2040 Scenario

Final electric energy demand

As discussed before, in scenario H2040 it is hypothesized that green hydrogen will replace some of the fossil fuels used in the industrial and transportation sectors. So, the electricity demand of the H2040 scenario is the sum between the demand of the 2040 scenario and the electricity used for hydrogen production.

For the calculation of hydrogen consumption, an extrapolation of the forecast made by the Portuguese document RNC2050 to the Spanish system has been made. The following table shows the data indicated in RNC2050, as can be seen, considering two possibilities on hydrogen consumption:

Table 45. Forecast of hydrogen consumption in Portugal according to RNC2050. [66]

RNC 2050	2040		
Electricity consumption [TWh]	264.74 269.7		
Average [TWh]	267.22		
Hydrogen consumption [TWh]	4.61 13.71		
Hydrogen % on demand	1.7%	5.1%	

For the Spanish scenario, first the percentage of hydrogen has been applied in relation to the total demand for electricity. Then, the average of the two values has been made. Finally, the electricity required for produce hydrogen has been calculated by applying the efficiency mentioned in the article [71]. The values are shown below:

SPAIN	204	10
Electricity Demand [TWh]	30	1
Hydrogen consumption [TWh]	5.19 15.44	
AVERAGE [TWh]	10.32	
Electricity demand for Hydrogen Production [TWh]	13.76	

 Table 46. First calculation of hydrogen consumption in Spain at H2040 scenario.

Then the value of the electricity demand is recalculated:

$$301 + 13.76 = 314.76 TWh$$

The above procedures are repeated until the results converge, and in the Table 47 the final results can be seen:

Table 47. Hydrogen Spanish consumption at H2040 scenario.

SPAIN	2040		
Electricity Demand [TWh]	315.42		
Hydrogen consumption [TWh]	5.44 16,19		
AVERAGE [TWh]	10.81		
Electricity demand for Hydrogen Production [TWh]	14.42		

Therefore, the electricity demand considered by the H2040 scenario is 315.42 TWh.

Installed power

The H2040 scenario has more installed power than the 2040 scenario. The increase in installed power is proportional to the increase in electricity demand due to hydrogen production.

It has been considered that the production of green hydrogen will be done from photovoltaic plants, therefore, the increase in installed power with respect to the 2040 scenario will be made in photovoltaic solar energy. Below, there is the installed power mix for the H2040 scenario:

Table 48. Installed power mix in the H2040 scenario.

Technology	MW	%
Onn-shore wind power	47590	23.5%
Off-shore wind power	3408	1.7%
River Hydro	3850	1.9%
Hydroelectric without pumping	21070	10.4%
Hydroelectric with pumping	10150	5.0%
Solar PV	77000	38.0%

H ₂ Solar PV	9255	4.6%
Solar thermal	12300	6.1%
Others renewable	2550	1.3%
Combined cycle	12280	6.1%
Nuclear	3050	1.5%
TOTAL	202503	100%

Storage capacity

The H2040 scenario has the same storage capacity as the 2040 scenario.

Photovoltaic plants that produce hydrogen can also be used to regulate the system by producing hydrogen and storing it, when there is a surplus of energy and using photovoltaic plants at times of low production of other renewables (as long as solar irradiance is available).

International electric energy exchanges capacity

Then the interconnection capacity it is assumed to be a 15% of the rated power of the system. So, the interconnection capacity of H2040 scenario will be 30376 MW.

EV and FCEV

In the H2040 scenario, the sum of EVs and FCEV (Fuel Cell Electric Vehicle) will be equal to the number of EVs in the 2040 scenario. The FCEVs will have a 10% penetration as indicated in the article [72]. Table 49 and Table 50 shows the number of cars of each type and the characteristics:

H2040 scenario	Value
Number of EV Vehicles	9900000
Battery capacity [GWh]	405.90
Charge power [MW]	217800
Efficiency	0.90
Annual consumption EV	35.80

Table 49. Global characteristics of electric cars network in H2040 scenario.

Table 50. Global characteristics of FCEV network in H2040 scenario

H2040 scenario	Value
Number of FCEV Vehicles	1100000
Annual consumption FCEV	3.98

4.1.5 2050 Scenario

Final electric energy demand

As in the 2040 scenario, the value of electricity demand has been obtained by applying an annual increase of 1.36%. The evolution of electric demand is:

Table 51. Evolution of electricity demand in Spain until 2050 scenario

	2018	2030	2040	2050
Electric Demand [TWh]	243.69	262.66	301.04	344.6

Installed power

The year 2050 must be 100% renewable as it is one of the goals of the PLCCTE. Because no 100% renewable scenario has been found, the 2050 scenario has been build following the next steps:

1. Installed power grows with the same proportion as demand.

Table 52. Total installed power at 2050 scenario.

	2040	2050
Installed power [GW]	193.2	221.2
Demand [TWh]	301.0	344.6

- 2. The hydroelectric installed power maintains the same value as in the 2040 scenario. It is considered that the best places for the use of this energy will have already been built. In addition, large hydroelectric power plants are a type of construction that have a big environmental impact.
- 3. The installed Biomass power is 5000 MW. An extrapolation of the Portuguese system to Spanish has been made, and the value of biomass is near 5000 MW. The results of the extrapolation are shown below:

Table 53. Spanish installed power [GW] mix extrapolation from RNC2050.

SPAIN	2050	2050
Natural Gas	0.6	0.6
Hydroelectric	15.8	14.1
Hydroelectric with pumping	10.5	9.4
On-shore wind power	37.1	36.1
Off-shore wind power	0.6	3.6
Centralized Solar PV	40.1	40.0
Decentralized Solar PV	37.1	36.1
Biomass/Biogas/Waste	4.3	5.0
Batteries	12.7	38.8
Hydrogen	40.1	59.6
Installed power [GW]	198.9	243.3
Demand [TWh]	344.6	344.6

4. The rest of installed power is going to be divided following the same proportion than the year 2040.

Table 54. Increase of the installed power of wind, solar PV and solar thermal technologies.

Technology	2040		2050)
On-shore wind power	47590	34%	61440	34%
Off-shore wind power	3408	2%	4400	2%
Solar PV	77000	55%	99409	55%
Solar thermal	12300	9%	15880	9%
TOTAL	140298	100%	181128	100%

The following table show the installed power mix for the 2050 scenario:

Table 55. Installed power mix of 2050 scenario.

Technology	MW
On-shore wind power	61440
Off-shore wind power	4400
Hydroelectric	24920
Hydro pumping	10150
Solar PV	99409
Solar thermal	15880
Biomass	5000
TOTAL	221198

Storage capacity

As in the previous scenarios, energy storage is mainly based on 3 technologies: hydro pumping, batteries, molten salt deposits. As mentioned in the previous section, the installed power of hydro pumping storage remains constant.

In 2050 scenario, the installed power of batteries it will be assumed between 10000 MW and 14000 MW. As in the 2040 scenario the batteries will have a storage capacity of 2 hours at nominal power, therefore, the storage capacity will be between 20 GWh and 28 GWh.

About molten salt deposits storage capacity, is calculated in the same way as in the 2040 scenario. So, the storage capacity of molten salt deposits is:

 $15.88 \, GW \cdot 9 \, h \cdot 0.9 = 128.6 \, GWh$

International electric energy exchanges capacity

As in the 2040 scenario, the interconnection capacity of the Spanish Electric System will be 15% of the rated power of the system.

Then the interconnection capacity is 33180 MW.

Electric vehicle

For the calculation of the number of electric cars in 2050, the same calculations have been made as in the 2030 and 2040 scenarios. The following table shows the number of electric cars expected for the 2050 scenario.

Table 56. Forecasts of number of electric cars in Spain at 2050 scenario.

Document	Scenario	2050
Article [62]	Low Penetration	1000000
Article [62]	Medium Penetration	14000000
Article [62]	High Penetration	2000000
THESIS		17000000

The following table shows the values of charge and discharge efficiency, total storage capacity, total charge power and annual consumption. These values have been obtained in the same way as the 2040 scenario.

Table 57. Global characteristics of electric cars networks in 2050 scenario.

Characteristics	Value
Battery capacity [GWh]	451
Charge power [MW]	242000
Efficiency	0.9
Annual consumption [TWh]	39.78

4.1.6 H2050 Scenario

Final electric energy demand

As in the H2040 scenario, the electricity demand of the H2050 scenario is the sum between the demand of the 2050 scenario and the electricity used for hydrogen production.

The calculation of hydrogen production has been done in the same way as in scenario H2040, that is, by performing an extrapolation of the forecast made by the Portuguese document RNC2050 to the Spanish system.

In the following table, we can see the values of electricity demand and hydrogen consumption, among other values:

Table 58. Hydrogen Spanish consumption at H2050 scenario.

SPAIN	2040	
Electricity Demand [TWh]	370.80	
Hydrogen consumption [TWh]	15.43	25.53
AVERAGE [TWh]	20.48	
Electricity demand for Hydrogen Production [TWh]	26.26	

Installed power

Due to the increase in electricity demand, the total installed power of the H2050 scenario will increase in the same proportion as the demand.

As in the H2040 scenario and for the same reasons, the increase in the installed power, with respect to the 2050 scenario, will be made in photovoltaic solar energy. The following table shows the installed power mix for the H2050 scenario:

Technology	2050	%
Onn-shore wind power	61440	25.8%
Off-shore wind power	4400	1.8%
River Hydro	3850	1.6%
Hydroelectric without pumping	21070	8.9%
Hydroelectric with pumping	10150	4.3%
Solar PV	99408	41.8%
H ₂ Solar PV	16855	7.1%
Solar thermal	15880	6.7%
Biomass	5000	2.1%
TOTAL	238053	100%

Table 59. Installed power mix of H2050 scenario.

Storage capacity

The H2050 scenario has the same storage capacity as the 2050 scenario.

International electric energy exchanges capacity

The interconnection capacity it is assumed to be a 15% of the rated power of the system. So, the interconnection capacity of H2050 scenario will be 35708 MW.

EV and FCEV

In the H2050 scenario, the sum of EVs and FCEVs will be equal to the number of EVs in the 2050 scenario. The FCEVs will have a 10% penetration as indicated in the article [72]. The following tables shows the number of cars of each type and the characteristics:

Table 60. Global characteristics of electric cars network in H2050 scenario.

H2050 scenario	Value
Number of EV Vehicles	9900000
Battery capacity [GWh]	557.6
Charge power [MW]	299200
Efficiency	0.9
Annual consumption EV	49.18

Table 61. Global characteristics of FCEV network in H2050 scenario.

H2050 scenario	Value
Number of FCEV Vehicles	3400000
Annual consumption FCEV	12.29

4.2 EnergyPlan Simulation

The EnergyPlan program has been used to simulate the different scenarios. Energyplan is a program developed by Henrik Lund in 1999 to conduct macro-energetic studies of countries or regions, although small-scale studies can also be done. The program makes an hourly annual energy simulation on the electricity, heating, cooling, industry, and transportation sectors, although, in the present study, it has only been used to study the electrical system.

EnergyPlan can perform the following two types of simulations:

- **Technical simulation**: Optimizes the operation of the given system considering only technical parameters.
- **Economic Simulation:** The simulation optimises the operation of each plant in accordance with business-economic profits, including any taxes and CO₂ emissions costs.

4.2.1 Methodology

For the simulation, a series of data must first be introduced, such as demand, system installed power mix, technology costs, annual distributions, and other parameters. In addition, the program allows you to choose different simulation strategies, which are mainly related to imports/exports and excess energy production. Once the inputs of the program have been defined, it carries out an annual study of the system introduced, giving as outputs annual values and hourly evolutions of energy production, costs, CO₂ emissions, among others.

In summary, the steps to follow for the simulation of the scenarios are simplified in the following list:

- 1. Input of electricity demand;
- 2. Input of energy supply and energy storage systems;
- 3. Input of annual distributions and parameters that characterize the demand;
- 4. Simulation and output of the results.

For this study, the program has been first calibrated by performing the simulation of the year 2018. The year 2018 was chosen as a reference, as it is the year closest to the present with the updated values. For the calibration, specific values of the program have been adjusted until the results are close to the real values of the year 2018.

Once the program has been calibrated, the models of the years 2030, 2040 and 2050 have been simulated.

4.2.2 Simulation parameters

As mentioned in the methodology section, to perform the simulation with EnergyPlan, it is necessary to enter initial parameters, among other things, as discussed in the previous section. The most important program parameters are specified below

Fuel distribution

In our case study, fuel distribution refers to the consumption of fuels that power plants have used to generate electricity.

Fuel consumption has been divided between cogeneration power plants (PP1) and non-cogeneration thermal power plants (PP2). The following 4 tables show the distribution of fuel consumption for the years simulated in the study:

Table 62. 2018 distribution of fuel consumption.

2018 [TWh]	Coal	Oil	Ngas	Biomass
PP1	2	7.6	78.6	9
PP2	101.8	24.8	68.1	14.8

Table 63. 2030 distribution of fuel consumption.

2030 [TWh]	Coal	Oil	Ngas	Biomass
PP1	1.4	5.3	54.6	6.3
PP2	0	0	68.1	29.8

Table 64. 2040 distribution of fuel consumption.

2040 [TWh]	Coal	Oil	Ngas	Biomass
PP1	0	0	0	0
PP2	0	0	34.1	43.9

Table 65. 2050 distribution of fuel consumption.

2050 [TWh]	Coal	Oil	Ngas	Biomass
PP1	0	0	0	0
PP2	0	0	0	86.1

The values for 2018 have been obtained from "Ministerio para la Transición Ecológica y el Reto Demográfico" website [73].

For the rest of the years, the consumption of each type of fuel has increased or decreased in proportion to the installed power of each type of plant and what they consume.

CO₂ price

 CO_2 price is way to promote the reduction of greenhouse gas emissions. It is based on applying a cost to each ton of CO_2 emitted so that it has an economic cost for pollutants, thus the reduction of emissions results also in economic savings.

The value of the CO_2 price for 2018 has been obtained from the website [74]. For the years 2030 and 2040 the value has been obtained from the ENTSO-DT scenarios. Finally, the price in 2050 has been taken arbitrarily, taking into account the values of previous years. Below is the summary table:

Table 66. CO₂ price evolution.

	2018	2030	2040	2050
Price CO ₂ [Eur/ton]	15.9	50.0	80.0	110.0

It should be noted that in 2050 renewables and storage systems will be quite mature technologies and with competitive costs, so it is very possible that it will not be necessary to increase the price of CO_2 so much.

Technology Costs

As Henrik Lund explains in[75], it is very difficult to predict the cost of technologies for the future. For this reason, it has been decided to use the data provided by EnergyPlan on its website. Table 67, Table 68, Table 69 summarize the considered values.

Table 67. Technology Costs of 2018 and 2030.

	2018			2030			
Technology	Investment (M€/unit)	Lifetime (years)	Fixed OM (% of inv.)	Investment (M€/unit)	Lifetime (years)	Fixed OM (% of inv.)	
Large Power plants	1.32	31	2.43	1.26	31	2.45	
Nuclear plants	4,5	60	2	4.12	60	1.9	
Pump hydro	0.6	50	1.5	0.6	50	1.5	
Pumped storage	7.5	50	1.5	7.50	50	1.5	
Onshore wind power	1.02	26	3.20	0.91	30	3.27	
Offshore wind power	2.19	26	2.02	1.75	30	1.94	
Photo Voltaic	1.14	33	1	0.85	40	1	
CSP solar power	4.94	30	4	3.80	30	4	
River hydro	5.56	60	1.5	5.62	60	1.5	
Dammed Hydro power	2.48	60	1.25	2.55	60	1.25	
Dammed Hydro Storage	7.5	50	1.5	7.5	50	1.5	
Hydro pump	0.6	50	1.5	0.60	50	1.5	
Geothermal Electricity	5.19	30	1.52	4.47	30	1.8	
Electrolyser	0.78	25	5	0.55	25	5	
Interconnection	1.2	40	1	1.2	40	1	
Hydrogen storage	-	-	-	7.60	25	2.5	
Batteries	-	-	-	0.05	20	1.5	
Storage batteries	-	-	-	0.20	20	0.5	
Tidal	-	-	-	3.4	20	3.8	

Table 68. Technology Costs of 2040 and 2050.

	2040			2050			
Technology	Investment (M€/unit)	Lifetime (years)	Fixed OM (% of inv.)	Investment (M€/unit)	Lifetime (years)	Fixed OM (% of inv.)	
Large Power plants	1.23	31	2.46	1.20	31	2.48	
Nuclear plants	3.93	60	1.75	3.76	60	1.6	
Pump hydro	0.6	50	1.5	0.6	50	1.5	
Pumped storage	7.5	50	1.5	7.50	50	1.5	
Onshore wind power	0.92	30	3.33	0.93	30	3.4	
Offshore wind power	1.62	30	1.93	1.50	30	1.93	
Photo Voltaic	0.78	40	1	0.72	40	1	
CSP solar power	3.6	30	4	3.40	30	4	
River hydro	5.62	60	1.5	5.62	60	1.5	
Dammed Hydro power	2.55	60	1.25	2.55	60	1.25	
Dammed Hydro Storage	7.5	50	1.5	7.5	50	1.5	
Hydro pump	0.6	50	1.5	0.60	50	1.5	
Geothermal Electricity	4.04	30	2	3.61	30	2.2	
Electrolyser	0.52	25	5	0.50	25	5	
Interconnection	1.2	40	1	1.2	40	1	
Hydrogen storage	6.4	25	2.03	6.40	25	2.03	
Batteries	0.05	20	1.5	0.05	20	1.5	
Storage batteries	0.2	20	0.5	0.20	20	0.5	
Tidal	1.9	20	4.9	1.9	20	4.9	

Table 69. Fuel price evolution.

Fuel Price [EUR/GJ]	2018	2030	2040	2050
Coal	2.4	3.2	3.8	4.5
Fuel Oil	7.7	14.3	19.7	25.2
Diesel/Gasoil	12.5	18.4	23.4	28.3
Petrol/JP	13.2	18.6	23.0	27.5
Ngas	6.9	9.4	11.4	13.5
Biomass	5.0	6.6	8.0	9.3
Dry mass	10.3	11.4	12.4	13.3
Wet Biomass	0.0	0.0	0.0	0.0
Nuclear/Uranium	1.5	1.5	1.5	1.5

Distributions

One of the most important data to be introduced into the program are the distributions files. The distributions are archives of 8784 hours values (all the hours of a leap year) that allow to establish, together with an annual value, the distributions of the evolution of prices, electricity demand or energy generation for each energy source.

All values have been obtained from the *esios* database [76] provided by the REE. The main distributions used are explained below.

Energy Generation

The distributions values of energy generation are relative (between 0 and 1) and have been obtained by dividing the generating power of each hour by the total installed power for each type of technology. All values have been obtained from 2018 year except for the Dry hydro distribution.

Dry hydro is a distribution that has been used in the work to simulate the generation of hydraulic energy in dry years. The value of the dry hydro distribution has been obtained from 2017 year, because according to the report [77] of the REE, it has been the driest year of the last decade. Below you can see the graphics of hydraulic generation of recent years:

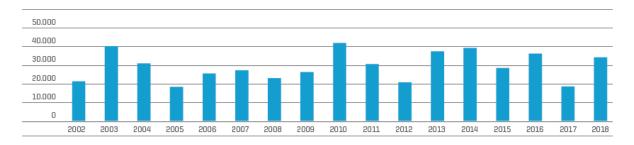


Figure 17. Evolution of electricity generation [GWh] by hydraulic plants in Spain.

The other electricity generation technologies that have also needed distribution for the simulation of the program are: Nuclear, PV, Solar thermal, Wet hydro and Eolic. The following graphs show the hourly capacity factor and the monthly capacity factor of each of the technologies.

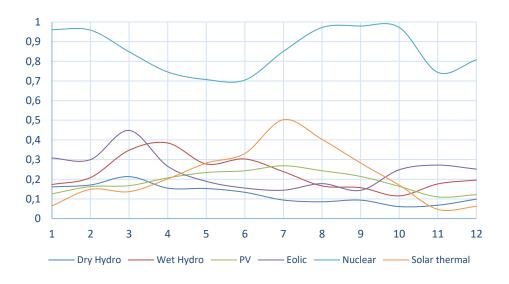


Figure 18. Monthly Capacity Factor.

Monthly capacity factor graphic has been made by averaging all the hours of each month, so the graph is much clearer and allows to see in which seasons of the year each type of technology produces more energy. As can be seen PV and solar thermal technologies have more production in the months with higher solar irradiance, while hydro and wind produce more in the spring and winter seasons.

The following graph shows the capacity factor hourly evolution of the 2018 during the day by energy source. As expected, PV and Solar thermal have more production in the middle hours of the day, when there is more solar radiation. It can also be seen a two-hour shift of the solar thermal curve with respect to the PV curve, this displacement is mainly due to the thermal inertia that CSP plants have. In addition, solar thermal power plants, unlike PV, can produce energy during the night thanks to the deposits of molten salts that allow to store energy.

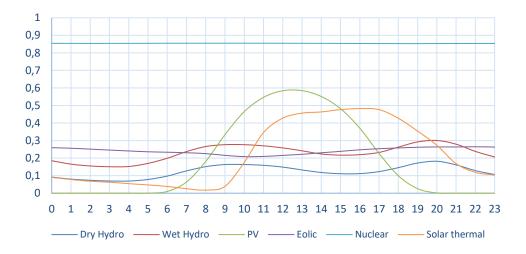


Figure 19. Hourly Capacity Factor.

Electricity demand

The electricity demand distribution values are relative (between 0 and 1) to the annual electricity demand.

Two distributions have been used for electricity demand: the 2018 annual distribution extracted from esios [76] and the COVID19 distribution.

The COVID19 distribution is a variation of the 2018 distribution COVID19 distribution is flatter than 2018 distribution and it aims to represent the effect that COVID19 may have on society's electricity consumption habits over the coming years.

The following steps have been taken to carry out the COVID19 distribution:

1. Comparison of the demand of the year 2020 with the demand of the year 2018 of the same period.

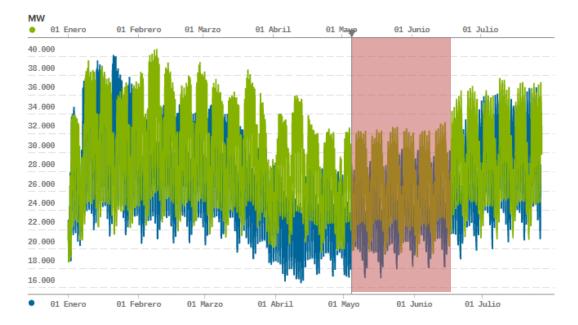


Figure 20. Evolution and comparison of electricity demand in 2018 (green) and 2020 (blue).

2. Choice of the weeks where demand remains most stable to make the new distribution. The six weeks marked with red in Figure 20 and which are between May 4 and June 14 have been chosen.

Figure 21 shows in detail the evolution of electricity demand in the six weeks chosen. It can be clearly differentiated, as demand in 2018 decreases over the weekends, while durign the COVID-19 period, there is not much difference between the weekday and weekend. It can also be noticed a delay, so the electricity consumption peak started earlier and finished earlier, as people id not have to move from home to work and back.

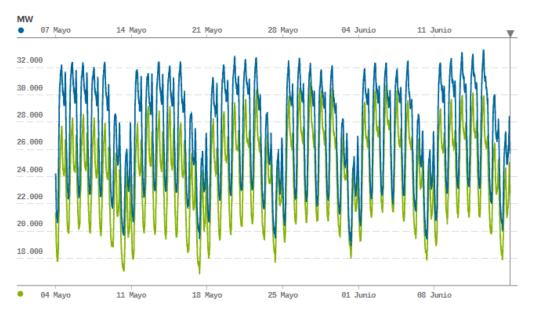


Figure 21. Evolution and comparison of electricity demand in the chosen period.

3. Calculation of the average week for the year 2018 and 2020. The average of the 6 weeks has been made for both years. Below can be seen the 2 profiles:

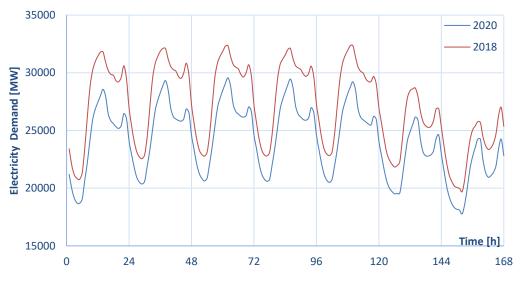


Figure 22. Average week of the electricity demand.

4. Calculation of the percentage decrease in demand for each hour of the average week. This value has been obtained by dividing the decrease in demand by the demand in 2018 for each hour. The percentage decrease in demand ranges between 5.64% and 15.86%. We can see that at the end of the lockdown period, the reduction value decrease as people start to move around and get back to previous routines. The following is a graph of the percentage decrease over a week:

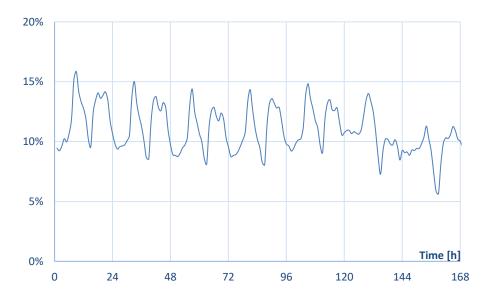


Figure 23. Decrease of COVID19 demand with respect to 2018 year.

5. Finally, the percentage decrease in demand has been applied to all weeks of 2018 to prepare the COVID19 distribution. It should be noted that the difference between the maximum and minimum value of the COVID19 distribution is smaller than in 2018, so it has a flatter demand curve.

Once the COVID19 distribution has been obtained, the graphs below show the hourly load curve and the monthly load curve of both distributions:

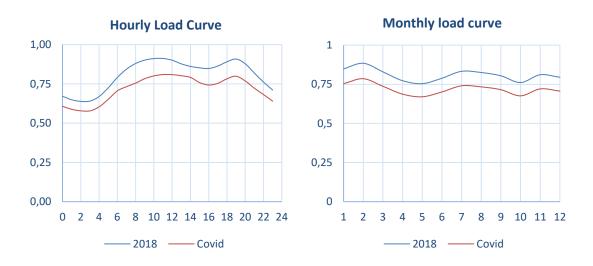
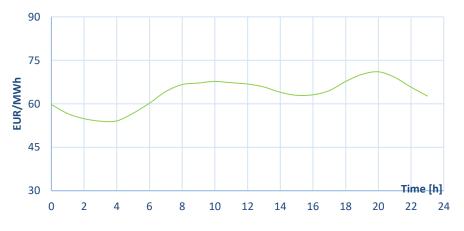
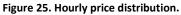




Figure 24. Hourly load curve and monthly load curve distributions

Energy Price

Fort the energy price distribution, all the values are absolute and have been obtained from [75]. Below it is possible to see the hourly evolution energy price of the average day of the year 2018:

4.3 Results

For each scenario, various simulations have been made combining different inputs, in order to be able to choose the best energy storage strategy. Below, these are the inputs that have varied in the different simulations:

- Installed power of the batteries.
- Economic/Technical simulation.
- Wet hydro/Dry hydro distribution. To see the influence of dry and rainy year.
- Simulation strategies.

For the analysis of the results, different indicators have been used depending on the simulated scenario. The main indicators used are annual costs of the electric system, CO_2 emissions, RES% and saturation of the interconnection line.

4.3.1 2018 scenario

This scenario is the reference model and it has been used to verify that the distributions and the program are working properly and can reproduce the current energy system of Spain.

For the 2018 scenario calibration, two simulations have been performed, one with Wet hydro distribution and the other with Dry hydro distribution. All other inputs have remained the same.

In the simulation that has been used the dry hydro distribution, it is intended to check that the generation of electricity produced by the hydraulic power plants is the same that in 2017. While the other simulation, checks that the generation of renewables, PP and Nuclear have similar values to those generated in 2018.

The results of electricity generation with the Wet hydro distribution are the following:

	Official [TWh]	Economic [TWh]	Error %	Technical [TWh]	Error %
Eolic	48.95	48.98	0.1%	48.98	0.1%
River Flow	-	3.31	-	3.31	-
Hydraulic	34.10	34.10	0.0%	34.03	-0.2%
Hydro Pump	2.01	1.21	-40%	0.00	-100%
Solar PV	7.37	7.40	0.4%	7.40	0.4%
Solar thermal	4.42	4.45	0.6%	4.45	0.6%
Others RES	4.28	6.53	52.7%	3.15	-26.3%
RES	101.14	105.98	4.8%	101.32	0.2%
РР	92.56	86.83	-6.2%	89.01	-3.8%
Nuclear	53.20	53.39	0.4%	53.39	0.4%
Generation	246.89	246.20	-0.3%	243.72	-1.3%

Table 70. Economic and technical results of Wet scenario 2018.

In both economic and technical simulation, the results offered by the program are very similar to those of reality. The main difference is that EnergyPlan, both in the Technical and Economical optimization, assumes a higher generation from hydro a other renewables and lower generation from thermal power plants (PP). This means that in real management of the Spanish grid, the use of renewables follows more conservative rules of integration than the ones simulated in EnergyPlan. Further, the value of PP (power plants) includes coal plants, cogeneration, combined cycle, and non-renewable waste. However, the way Energyplan distributes the generation among these technologies, varies from the real values, which means that the program assumes slightly different dispatch rules between thermal generation than the ones actually followed. However, as the objective is to test systems with 100% renewables, it will not have a significant impact in the results for 2040 and 2050.

In the dry scenario, the generation of electricity produced by hydro technology has been 18.51 TWh in the economic simulation and 18.48 TWh in the technical simulation. These results are similar to the 18.36 TWh indicated in the REE report for 2017 [78].

Therefore, it is considered that the calibration of the system and the distributions work correctly achieving results very similar to reality.

4.3.2 2030 Scenario

For 2030, the next 6 hypothetical scenarios have been performed:

Scenario	Dry/Wet Year	Batteries [MW]
1	Wet	0
2	Wet	2500
3	Wet	5000
4	DRY	0
5	DRY	2500
6	DRY	5000

Also, for each scenario, an economic and a technical simulation of the electric system have been made. For the identification of the simulations, the legend of the graphs indicates the simulation number indicated in Table 71 accompanied by a suffix. The suffix E is used for economic simulations and the suffix T is used for technical simulations. Therefore, the "4E" simulation would be the economic simulation of scenario number 4 in the previous table.

The results of the indicators explained above are shown below.

Percentage of renewables in electricity generation

In the following graph, only 2 technical simulations of the program are represented, since the percentage of renewables, in the technical simulation, is exactly the same for simulations 1,2,3 and 4,5,6, which means that the use of batteries dos not change with the available battery capacity.

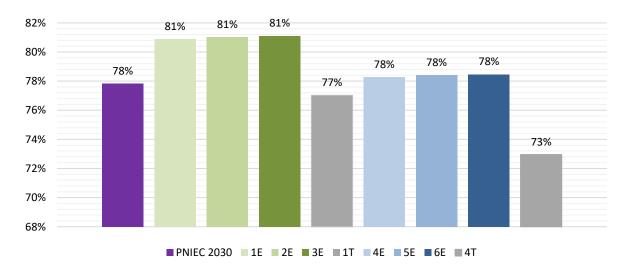
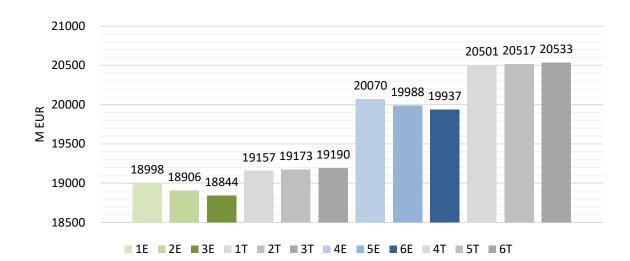
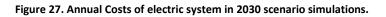



Figure 26. RES % of 2030 scenario simulations.


As can be seen in Figure 26, a higher installed power of batteries has a small positive influence on the generation of renewables when economic scenarios are considered. In addition, economic simulations tend to have a greater penetration of renewables in the system.

Saturation of interconnection line

In the 2030 scenario, the interconnection line is saturated several times in all simulations. This is because the percentage of interconnection capacity is well below of the 15% of the installed capacity recommended by the European Union.

Annual costs

As expected, the costs in the less rainy years are higher, as hydro generation needs to be replaced by thermal generation. It should also be noted that the effect of increasing the installed power of the batteries has the opposite effect in technical and economic simulations. In economic scenarios, the cost decrease with the increasing capacity of batteries as they enable the use of additional renewables, while in technical simulations the overall costs are very similar (and the small increase has to do with the additional investment in batteries)

Optimal scenario

Figure 28 presents the energy mix production of 2030 Scenario, for the dry and wet years, considering the installed battery power of 2500 MW (value proposed by the PNIEC). Can be observed that the reduction of hydropower generation is compensated by the absorption of more wind and an increase in the thermal generation (combine cycle, cogeneration), nuclear and biomass.

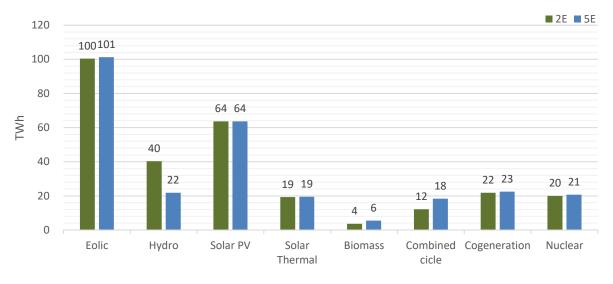
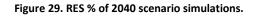


Figure 28. Energy mix production of 2030 Scenario.

4.3.3 2040 Scenario

For 2040, 10 different scenarios have been simulated.

As can be seen in the following table, demand distribution COVID19 (which simulates a future with less mobility between home and work and therefore less consumption in office buildings and more residential consumption) has been combined only with 7000 MW of battery installed power. This is because, in the previous 8 simulations have shown that taking into account the indicators Annual Costs, RES % and Saturation of the line, the best solution was the one with an installed battery power of 7000 MW.


Table 72 shows the combinations made for each simulation:

Scenario	Dry/Wet Year	Batteries [MW]	Demand Distribution
1	Wet	0	2018
2	Wet	5000	2018
3	Wet	7000	2018
4	Wet	7000	COVID19
5	Wet	9000	2018
6	DRY	0	2018
7	DRY	5000	2018
8	DRY	7000	2018
9	DRY	7000	COVID19
10	DRY	9000	2018

Table 72.	Simulated	scenarios	of the	vear	2040.
			• • • • • •	,	

Percentage of renewables in electricity generation

In the technical simulation, all wet scenario simulations have a RES penetration of 89.61% while in dry scenario simulations it is 87.36%. All simulations have very similar values, but in simulations 4E and 9E, the cases where a demand similar to the one observed during COVID19, the RES % is slightly higher.

Saturation of interconnection line

Figure 30 presents the results for the interconnection maximum value. The 1T simulation refers to all technical simulations. As can be seen in the graph, in all technical simulations the interconnection line reaches the saturation point several times during the year. Regarding economic simulations, they never get saturated. It should be noted that in 4E simulation (COVID19 demand in a wet year), the value of the maximum imports/exports is much lower than the others.

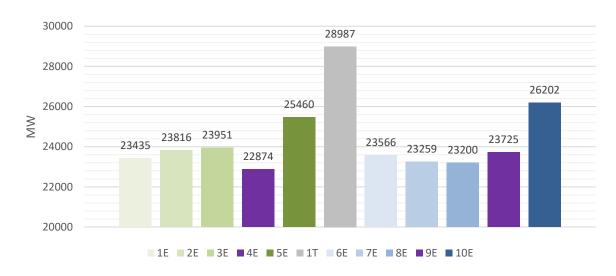


Figure 30. Maximum annual value of Imports/Exports in the 2040 scenario.

Annual costs

As seen in Figure 31 and Figure 32, in both dry and rainy years, scenarios with an installed battery power of 7000 MW have a lower cost than the rest. In addition, when the COVID19 distribution has been used, the costs are lower than using the 2018 demand distribution.

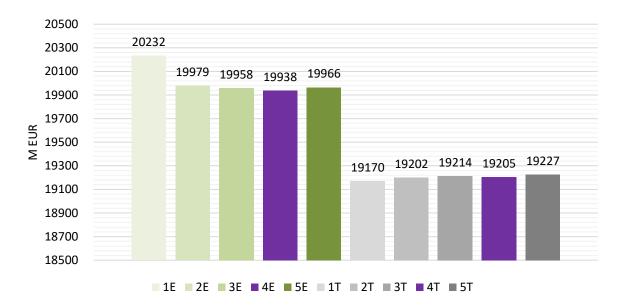


Figure 31. Annual Costs of electric system in 2040 Wet scenario simulations.

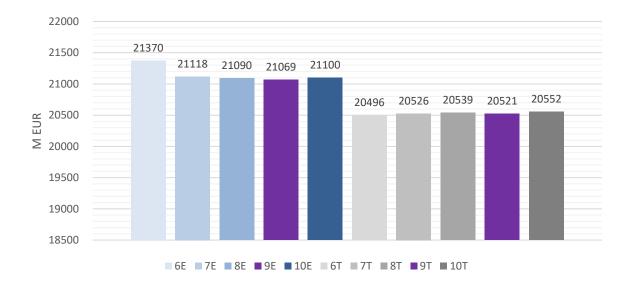


Figure 32. Annual Costs of electric system in 2040 Dry scenario simulations.

Optimal scenario

The most optimal scenario is number 9, as it has the highest RES percentage, the interconnection line is not as saturated as the other options and generally has a lower annual cost of the electric system. The following is the mix of electricity generation by type of technology:

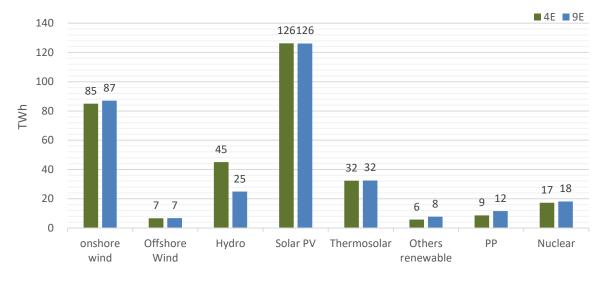


Figure 33. Energy mix production of 2040 Scenario.

It should be noted that the generation of electricity from wind is slightly lower than the 2030 scenario. This is because the program, as a stabilization tool, allows to stop the generation of electricity from renewable sources when there is a critical excess of electricity production, to prevent the collapse of the electrical system. This means that the installed capacity of renewables is above the required in case the demand decreases significantly, as simulated in COVID19 demand.

4.3.4 2050 Scenario

In 2050, 10 simulations have been performed. For this year, it is considered that the entire generation of electricity comes from renewable sources, so there is no section that explains the RES% of the different simulations made, as it is 100% in all cases. As in the 2040 scenario, the COVID19 distribution has been only used in 2 scenarios (4 and 9 scenarios). The election of the chosen scenarios was made in the same way as in the previous section. The following table shows the different scenarios proposed for 2050.

Scenario	Dry/Wet Year	Batteries [MW]	Demand Distribution
1	Wet	7000	2018
2	Wet	10000	2018
3	Wet	12000	2018
4	Wet	12000	COVID
5	Wet	14000	2018
6	DRY	7000	2018
7	DRY	10000	2018
8	DRY	12000	2018
9	DRY	12000	COVID
10	DRY	14000	2018

Table 73. Simulated scenarios of the year 2050	Table 73	. Simulated	scenarios of	f the year	2050.
--	----------	-------------	--------------	------------	-------

Saturation of interconnection line

As shown in Figure 34, In both rainy and dry years, technical simulations exceed the maximum interconnection capacity of 33180 MW, so they are discarded as valid simulations. It can also be verified that the saturation of the line increases as the installed power of the batteries increases, except for the 10E simulation, which seems to indicate that the batteries are being charged by the interconnection electricity.

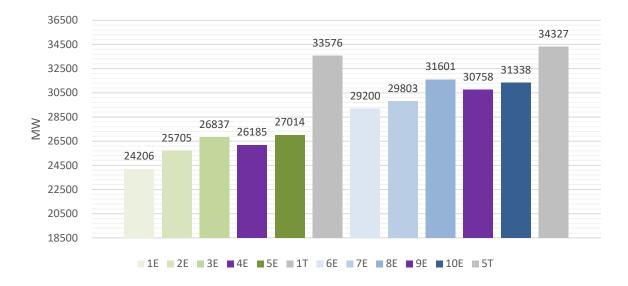


Figure 34. Maximum annual value of Imports/Exports in the 2050 scenario.

Annual costs

In Figure 35, we can observe that the costs of the technical simulation are lower. However, as mentioned above, the results of the technical simulations are not considered valid due to the oversaturation of the line. Also, can be seen that the annual costs tend to be lower when more battery power is installed.

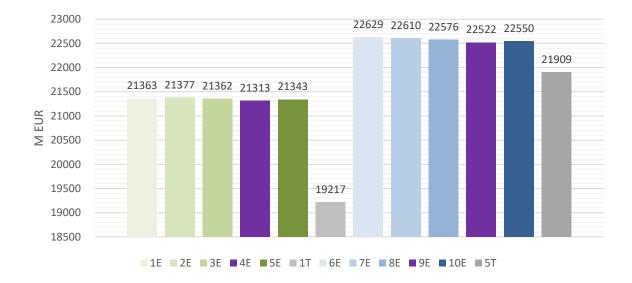


Figure 35. Annual Costs of electric system in 2050 scenario simulations.

Optimal scenario

Taking into account the indicators discussed above, it is considered that the scenarios with an installed battery power of 12000 MW are optimal. This is an arbitrary opinion, the 5E and 10E simulations could also have been chosen as optimal. The electrical power generation mix for simulations 4E and 9E is represented in Figure 40 It can be seen that in the wet scenario there is a lot of renewable electricity that is not being used, as the diminish of generation of 19 TWh by hydro power plants from wet to dry year is compensated by an increase of only 6TWh in biomass, wind and solar. This means this solution is resilient to decreases in hydro power generation.

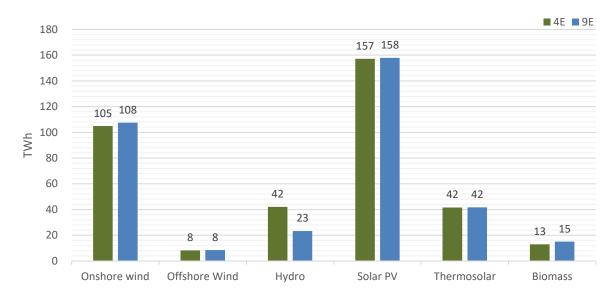
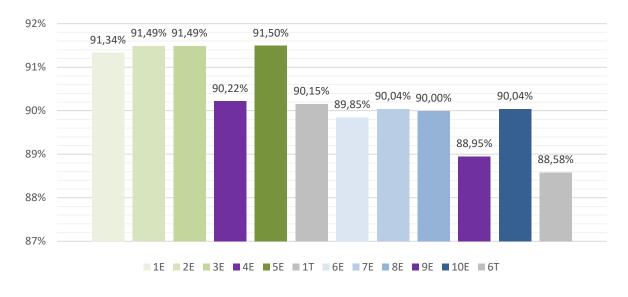
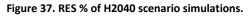


Figure 36. Energy mix production of 2050 Scenario.


4.3.5 H2040 Scenario


In H2040 Scenario, 10 scenarios have been performed as before, with 2 simulations for each scenario, one economic and one technical. The next table shows the combinations made for each scenario:

Scenario	Dry/Wet Year	Batteries [MW]	Demand Distribution
1	Wet	0	2018
2	Wet	5000	2018
3	Wet	7000	2018
4	Wet	7000	COVID
5	Wet	9000	2018
6	DRY	0	2018
7	DRY	5000	2018
8	DRY	7000	2018
9	DRY	7000	COVID
10	DRY	9000	2018

Percentage of renewables in electricity generation

The percentage of RES is quite similar between the simulations of the rainy years and between the simulations of the dry years. It should be noted that the technical simulations and those that have used the distribution of demand COVID19, the penetration of renewables into the electrical system is slightly lower.

Saturation of interconnection line

As in the 2040 scenario results, the 1T simulation refers to all technical simulations. As can be seen in the graph, in technical simulations the interconnection line it is saturated several times during the year. Regarding economic simulations, it should be noted that the scenarios with a battery installed capacity of 7000 MW, the value of the maximum imports/exports is much lower than the others.

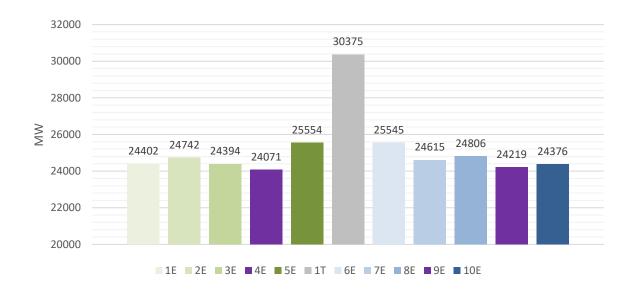
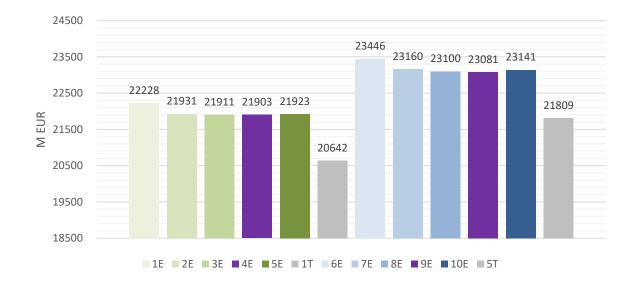
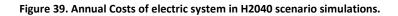
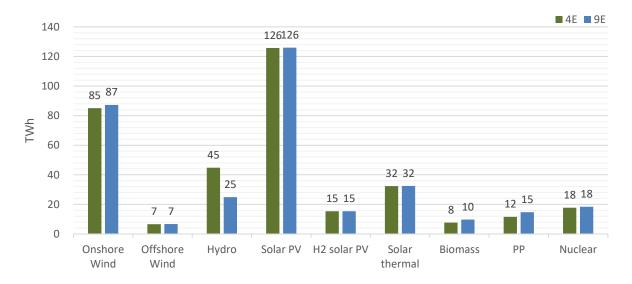
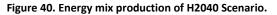




Figure 38. Maximum annual value of Imports/Exports in the H2040 scenario.

Annual costs

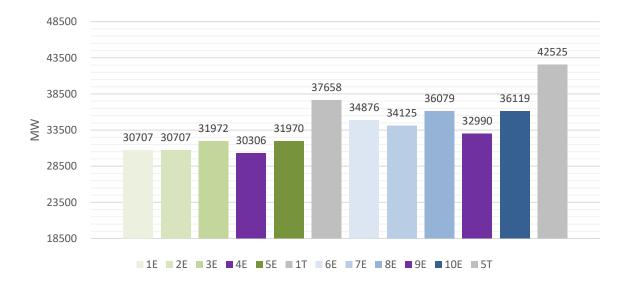

Figure 37 shows a lower annual cost in technical simulations. This is possibly due, to a greater use of the line of interconnection with other countries at times of peak generation or peak demand. In terms of economic simulations, the scenarios with the lowest annual cost are those with an installed battery capacity of 7000 MW.



Optimal scenario

Below is show the electric generation mix by technologies of 4E and 9E scenarios. These are the scenarios that saturate the least the interconnection line and that have the lowest annual cost. As can be seen, the sources that use the solar resource generate most of the electricity. It is also necessary to emphasize the importance of thermal power plants in the years where hydraulic energy has less impact.

4.3.6 H2050 Scenario


Finally, in H2050 Scenario, 10 possible scenarios have been developed. As above, COVID19 distribution has been only used in 2 scenarios. The following table shows the different scenarios proposed for 2050:


Scenario	Dry/Wet Year	Batteries [MW]	Demand Distribution
1	Wet	7000	2018
2	Wet	10000	2018
3	Wet	12000	2018
4	Wet	12000	COVID
5	Wet	14000	2018
6	DRY	7000	2018
7	DRY	10000	2018
8	DRY	12000	2018
9	DRY	12000	COVID
10	DRY	14000	2018

Table 75. Simulated scenarios of the year H2050.

Saturation of interconnection line

As indicated in Figure 39, the technical simulations, and some of the economic ones exceed the capacity of the line which is 35708 MW. The simulations that saturate less the line are those that consider the demand distribution COVID19.

Annual costs

As can be seen in the graph, when the installed battery power increases, the annual cost is lower. As indicates Figure 42, the simulations 8E, 10E and the technical simulations oversaturate the line of interconnection with the other countries. Therefore, the valid lower cost simulations are 4 and 9.

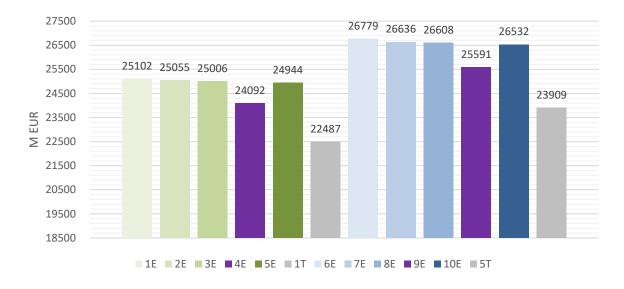


Figure 42. Annual Costs of electric system in H2050 scenario simulations.

Optimal scenario

From everything discussed in the two graphs above, it is considered that the optimal simulations are the 4E and 9E. The energy mix is shown in Figure 43. The production of electricity from wind plants is increasing again, after the decrease in production in 2040, due to an oversizing of the system. Therefore, wind power replaces part of the electricity generated by traditional thermal plants, which operated precisely at times of lower solar irradiance.

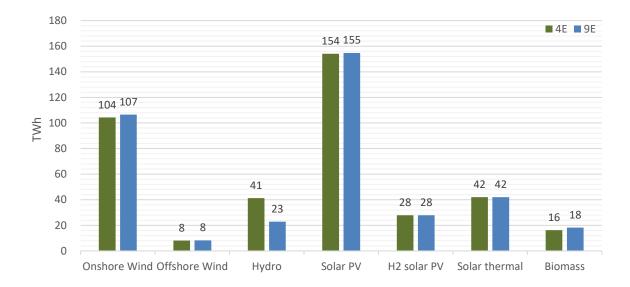


Figure 43. Energy mix production of H2050 Scenario.

4.4 Summary of results

In this section is shown the evolution of the electricity system from 2018 to 2050. Also, it is analysed the incidence of different energy technologies in the stabilization of the electricity system.

4.4.1 Evolution of the Spanish electrical system

To show the evolution of the electrical system, the wet year values of the optimal scenarios have been used. These values have show that are resilient to the decrease of hydro power generation in dry years.

RES%

As can be seen in the following graph, both the electric scenario and the H_2 scenario, the evolution of the percentage of renewables in the electricity generation mix is as expected. The goals set by the PLCCTE are achieved: the presence of renewables in 2030 is at least 70% and the Spanish electric system in 2050 is 100% renewable.



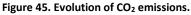


Figure 44. Evolution of RES%.

CO₂ emissions

 CO_2 emissions from the Spanish electricity system are reduced to a value of 0 kg in 2050, as the system is 100% renewable.

In 2040, the result of CO_2 emissions in the H₂ scenario is 4.4 Mt, while in the electrical scenario 3.68 Mt are emitted. This is because the demand is higher in H2040 scenario and, even though more

photovoltaics have been installed, thermal power plants are working more hours to stabilize the system.

According to [79], 0.182 kg of CO_2 are emitted for every kWh of natural gas used. By 2040, hydrogen production will be 10.81 TWh. Assuming that, if the hydrogen produced replace natural gas in the industry, 1.97 Mt of CO_2 are going to be saved, which largely compensate for the increase in direct CO_2 emissions of electricity.

The following table shows the annual CO_2 emissions and the estimated emissions avoided with the use of hydrogen:

Table 76. Evolution of CO₂ emissions until 2050.

CO ₂ emissions [Mt]	2018	2030	2040	2050
Electric scenario	62.3	15.4	3.68	0
H ₂ scenario	62.3	15.4	4.40	0
H ₂ emissions avoided	-	-	1.97	3.7

Generation mix

The evolution of the generation energy mix is shown below. As can be seen, traditional generation technologies loose importance, until they have been completely replaced by renewable energy sources. The largest investment is expected to be done with solar.

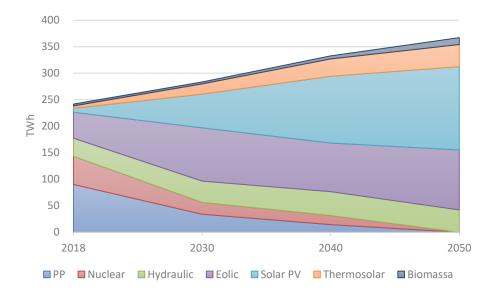


Figure 46. Evolution of the generation mix in H_2 scenario until 2050.

Storage production

The following graph shows the evolution of electricity generation from batteries and pumped hydro. To perform the analysis, the optimal simulations (chosen in the results section) of the dry and wet scenarios are plotted. The aim is to see how it affects rainfall and the installed capacity to electrical energy storage systems. To differentiate them, the simulations of wet years are indicated with the suffix W, while dry years with the suffix D.

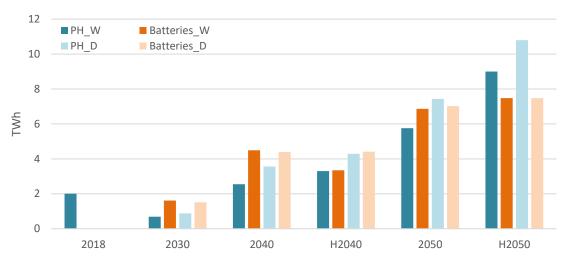


Figure 47. Evolution of electricity production by storage technologies.

As expected, electricity production from storage systems is increasing and batteries can play a role as important as the hydro pump storage. This is mainly due to an increase in the installed capacity of storage systems, but also to a higher production of energy from intermittent renewable sources.

For example, the scenarios of the 2040s and 2050s have the same installed power of pumped hydro. However, production has been almost double. This indicates that the more intermittent the system is, the variation in prices makes storage systems more profitable.

Regarding the influence of rainfall, the production of batteries practically does not change, while pumping stations produce more in dry years than in rainy ones, which means that are used to capture the excess of renewables and compensate for the lack of hydro generation.

4.4.2 Hourly data

This section represents the average hourly data distributions of the results obtained in the H2050 scenario. These distributions allow us to analyse the effects of the different technologies on the system.

Price

The hourly curve of the electricity price is quite similar to the curve of demand. The highest prices correspond to the hours when there is more electricity demand and lower electricity production.

Figure 48. Hourly curve of the electricity price.

Production by technology

The following graphic shows the hourly data curve of power generation by technologies. The energy demand curve is also represented.

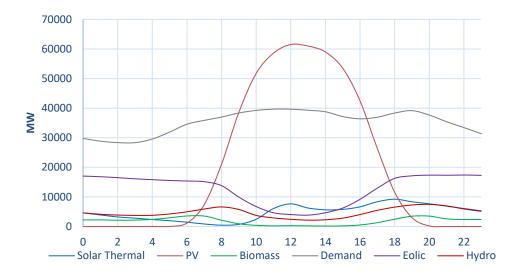


Figure 49. Hourly data curve of power generation by technologies and hourly demand curve.

Biomass power plants work mainly as a load following power plants, producing electricity when the system needs it, especially during the morning increase and even increase. The graph shows that biomass peaks occur at a time when demand is high and photovoltaic energy does not generate much energy.

About solar thermal technology, its production curve does not correspond to the irradiance curve. Due to the thermodynamic cycles of these plants, the production of electricity is delayed with respect to irradiance. In addition, solar thermal plants have deposits of molten salts that allow them to store energy and produce it during the hours when the irradiance is very low or zero. As you can be seen in the graph, the time of maximum electricity generation corresponds to 6pm, when the demand of electricity and the price of energy are high and the irradiance is low.

As Figure 49 shows, photovoltaic panels have a high production during the central hours of the day. This causes, especially in the summer months, a critical excess of electricity production. In order to prevent the electrical system collapse, the program decreases the production of electricity from wind energy, implying a loss of efficiency in the system. To avoid this, it would be better to have a more balanced energy mix of different renewable energy sources, PV power plants with different inclinations/orientations or wind parks located in uncorrelated climate areas.

Import/Exports

As can be seen in the graph, electricity is exported during the central hours of the day, which, as mentioned above, is the time of the biggest production of electricity. It can also be seen that imports occur at times of low production and/or high demand. Therefore, interconnections can be considered as a system that helps stabilize the network by allowing greater penetration of renewables.

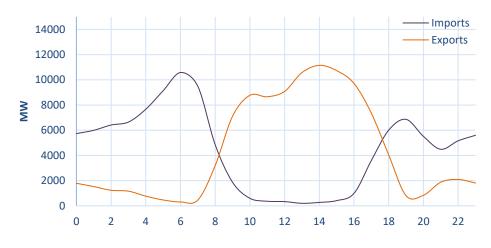
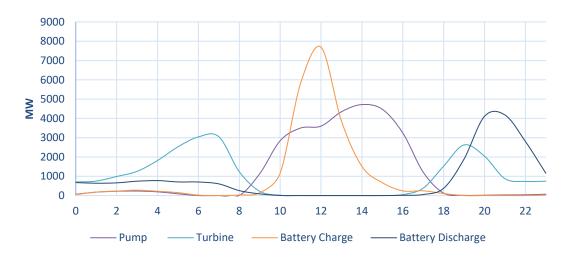



Figure 50. Hourly data curve of Imports and exports.

Battery and hydro storage

As in the case of exports and imports, storage systems store energy in the middle hours of the day and produce electricity at times when demand cannot be met by energy production. In fact, the import and turbine curves are virtually identical.

Regarding the discharge of the batteries, this occurs for a few specific hours. This may happen because these are the hours when energy is most expensive.

V2G and H₂ production

Both V2G and H_2 are elements that help to stabilize the network at times of maximum production. These two systems consume energy at times of higher production, preventing interconnections from saturating themselves when exporting excess energy. They also take advantage of the energy that would possibly be lost as in the case of the wind energy discussed above.

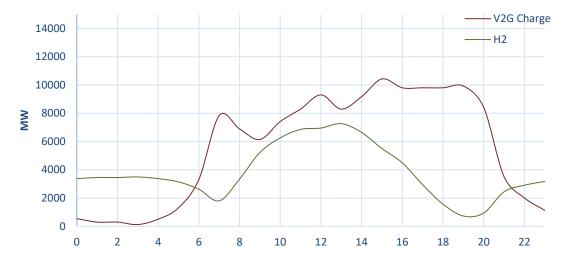


Figure 52. Hourly data curve of V2G charge and H_2 production.

Weekly distribution

Below there are two graphs provided by the program. In them, it is possible to see how the different technologies act in order to stabilize the electrical system.

For example, at peak production, electricity is stored or exported. On the other hand, when powergenerating systems do not produce enough electricity to supply demand, storage technologies release electricity or the electricity is imported from other countries. We must also comment on the importance of biomass plants, which allow us to generate electricity when production cannot meet demand.

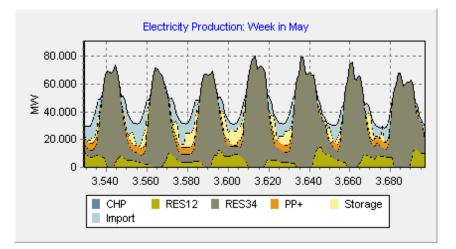


Figure 53. Electricity production curve

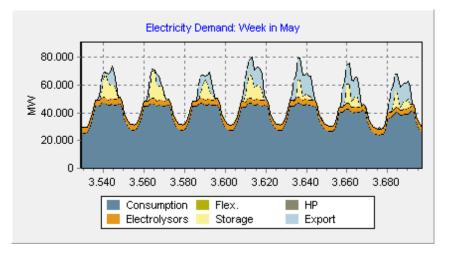


Figure 54. Electricity demand curve.

4.5 Comparative with Spanish 2050 long-term strategy

Once the study was completed, the Spanish state released the document "Borrador de la Estrategia de Descarbonización a Largo Plazo". It is a roadmap to move towards climate neutrality by the 2050 horizon, with intermediate milestones in 2030 and 2040 [80].

In this section, a comparison is made between the different values used or obtained in the work and the values presented in the document ELP (Estrategia Largo Plazo) by the Spanish Ministry of Energy Transition. The following are the scenarios used to compare results:

Electric scenario: Scenario constructed in the present work where it is assumed that hydrogen will not have incidence on the industrial and transport sectors.

H₂ Scenario: Scenario constructed in the present work where it is assumed that will has incidence on the industrial and transport sectors.

Trend Scenario ELP (TS ELP): PNIEC target scenario extended until 2050 and does not meet the climate neutrality target.

Climate Neutrality Scenario (CNS): Expected scenario in ELP report, if the policies and measures needed to achieve the 2050 climate neutrality target are implemented.

4.5.1 Electricity demand

As can be seen in Figure 55, the demand forecast for the scenarios described in the ELP is lower than that used in the work. From 2030 onwards, the demand for the "climate neutrality scenario" follow a growth trend very similar to the H_2 scenario. In the event that the ELP document had proposed the same demand as the PNIEC for the year 2030, the evolution of the demands would be practically the same.

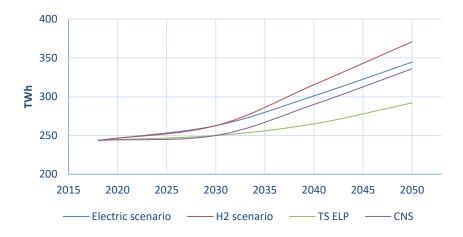


Figure 55. Electricity demand comparation.

4.5.2 Installed power

The evolution of the installed power in the Climate Neutrality Scenario and in the H₂ scenario is shown below.

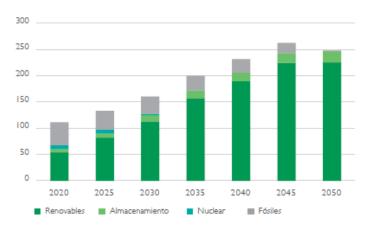


Figure 56. Electric power generation [GW] park in the Climate Neutrality Scenario. [80]

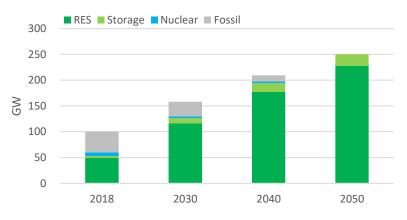


Figure 57. Electric power generation mix in the H_2 scenario.

As can be seen in the graphs above, both the installed power of RES and the installed power of storage are similar. The main differences are in the installed power of nuclear energy and power plants that consume fossil fuels. In scenario H₂, nuclear power plants will continue to be used until 2040, while in the CNS they are used only until 2030.

On the other hand, the Climate Neutrality Scenario proposes that fossil plants are going to be used until 2045 with an installed capacity of near 20 GW. In contrast, in scenario H₂, fossil plants are used until 2040 but with an installed capacity of 12 GW, almost half of what is proposed in Climate Neutrality Scenario.

5 Conclusion

This research aimed to contribute to the development of a national strategy for storage systems in Spain up to 2050. To do that, it has been necessary to study in depth the different storage technologies, analyse the potential and infrastructure installed in Spain of storage technologies, and develop possible models of future scenarios of the Spanish electricity system.

After carrying out the work, the following conclusions have been identified:

- Hydraulic pumping and batteries must be the pillars of the Spanish national strategy for storage system. These 3 technologies have features that allow them to work with large volumes of energy at a low economic cost. In addition, due to the climatic and orographic characteristics of the peninsula, hydro pumping and molten salt deposits are considered technologies with great potential in Spain.
- Hydrogen production and V2G are technologies that in the future will play a relevant role in the energy sector. The intelligent use of V2G will allow the vehicle fleet to function as a large battery, helping to match the curve between production and demand. On the other hand, hydrogen production will be a key element in the decarbonization of the industry and will work as a seasonal storage technology.
- A high capacity of interconnection, the use of biomass power plants and having a balanced energy mix, are elements that help to have a more stable and secure electrical system. Interconnection capacity can supply electricity almost instantly, which allows to reach the peaks of demand. Biomass plants allow to produce in the times of need. In addition, having a balanced energy mix makes the production curve smoother and therefore storage systems can work less.
- Energy legislation is an essential element in achieving the goal of 100% renewable. Without regulations, and only with the regulation of the economic market itself, it would be very difficult to achieve the decarbonisation targets by 2050.

On the other hand, the following limitations of the work and the lines to be followed for new studies are considered:

- For new studies, it is recommended to update the economic and technical characteristics of storage technologies, especially those that are immature. Most of the predictions that are made are usually wrong and from one year to the next the values can change a lot.
- In the simulations carried out, the program did not take into account the import or export needs of neighbouring countries. This fact does not correspond to reality, as it is possible that at the same time, Portugal, Morocco, France and Spain need to import or export energy. For future studies it is recommended to perform simulations in conjunction with models from neighbouring countries. In this way, it is believed that the calculation of interconnections, and of the system in general, will be closer to reality.

- Finally, it is also recommended to use the scenarios provided by the ELP once the official document has been submitted. The installed power scenarios used in the work have been developed using different assumptions. For future work, it is recommended to use scenarios built from computer programs specialized in these topics.

In short, it is believed that this work contributes to the knowledge related on storage systems and how they affect with the development of the Spanish electricity system. In addition, the specific and personal goals of the project are considered to have been achieved.

REFERENCES

- [1] S. S. Carlos *et al.*, "Tecnologias de Armazenamento de Energia e seu potencial para os sistemas elétricos," 2015.
- [2] EASE, "Energy Storage Technology Descriptions," [Online]. Available: https://easestorage.eu/energy-storage/technologies/ [Accessed: 15-Apr-2020].
- [3] K. Mongird *et al.*, "Energy Storage Technology and Cost Characterization Report," [Online]. Available: https://energystorage.pnnl.gov/pdf/PNNL-28866.pdf [Accessed: 11-Apr-2020].
- [4] X. Luo, J. Wang, M. Dooner, and J. Clarke, "Overview of current development in electrical energy storage technologies and the application potential in power system operation," *Appl. Energy*, vol. 137, pp. 511–536, Jan. 2015, doi: 10.1016/j.apenergy.2014.09.081.
- [5] F. Report, *Study on energy storage Contribution to the security of the electricity supply in Europe*, no. March. 2020.
- [6] W. E. Council, "Five Steps to Energy Storage Innovation Insights Brief 2020," [Online]. Available: https://www.smartenergyportal.ch/five-steps-to-energy-storage-innovationinsights-brief-2020/ [Accessed: 17-Apr-2020].
- [7] IEA, "Technology Roadmap: Energy Storage 2014 edition," no. April, p. 64, 2014.
- [8] S. Rehman, L. M. Al-Hadhrami, and M. M. Alam, "Pumped hydro energy storage system: A technological review," *Renewable and Sustainable Energy Reviews*, vol. 44. Elsevier Ltd, pp. 586–598, 2015, doi: 10.1016/j.rser.2014.12.040.
- [9] GIA (Grupo Interplataformas de Almacenamiento), "Almacenamiento Estado de las tecnologías," 2016.
- [10] T. Kousksou, P. Bruel, A. Jamil, T. El Rhafiki, and Y. Zeraouli, "Energy storage: Applications and challenges," *Solar Energy Materials and Solar Cells*, vol. 120, no. PART A. North-Holland, pp. 59– 80, 01-Jan-2014, doi: 10.1016/j.solmat.2013.08.015.
- [11] L. Li, W. Liang, H. Lian, J. Yang, and M. Dusseault, "Compressed air energy storage: characteristics, basic principles, and geological considerations," *Adv. GEO-ENERGY Res.*, vol. 2, no. 2, pp. 135–147, 2018, doi: 10.26804/ager.2018.02.03.
- [12] M. Budt, D. Wolf, R. Span, and J. Yan, "A review on compressed air energy storage: Basic principles, past milestones and recent developments," *Applied Energy*, vol. 170. 2016, doi: 10.1016/j.apenergy.2016.02.108.
- [13] M. E. Amiryar and K. R. Pullen, "A review of flywheel energy storage system technologies and their applications," *Appl. Sci.*, vol. 7, no. 3, 2017, doi: 10.3390/app7030286.
- [14] T. C. Allison, "Thermal-Mechanical-Chemical Energy Storage Technology Overview," [Online]. Available: https://www.netl.doe.gov/sites/default/files/2020-02/TMCES/Tim%20Allison%20Energy%20Storage%20Technology%20Overview_TMCES%20W orkshop%202020_rev2.pdf [Accessed: 15-Mar-2020].
- [15] S. Sundararagavan and E. Baker, "Evaluating energy storage technologies for wind power integration," Sol. Energy, vol. 86, no. 9, pp. 2707–2717, Sep. 2012, doi: 10.1016/j.solener.2012.06.013.

- [16] Y. Ding and S. B. Riffat, "Thermochemical energy storage technologies for building applications: a state-of-the-art review," Int. J. Low-Carbon Technol., vol. 8, no. 2, pp. 106–116, 2013, doi: 10.1093/ijlct/cts004.
- [17] A. H. Abedin, "A Critical Review of Thermochemical Energy Storage Systems," *Open Renew. Energy J.*, vol. 4, no. 1, pp. 42–46, Aug. 2011, doi: 10.2174/1876387101004010042.
- [18] H. Kerskes, "Thermochemical Energy Storage," in *Storing Energy: With Special Reference to Renewable Energy Sources*, 2016, pp. 345–372.
- [19] P. Babiński, M. K. Morańska, and J. Zuwała, "Thermochemical energy storage from fundamental research to TRL IV," E3S Web Conf., vol. 108, p. 02013, 2019, doi: 10.1051/E3SCONF/201910802013.
- [20] M. Mutarraf, Y. Terriche, K. Niazi, J. Vasquez, and J. Guerrero, "Energy Storage Systems for Shipboard Microgrids—A Review," *Energies*, vol. 11, no. 12, p. 3492, Dec. 2018, doi: 10.3390/en11123492.
- [21] M. A. Al Zaman, M. R. Islam, and H. M. A. R. Maruf, "Study on Conceptual Designs of Superconducting Coil for Energy Storage in SMES," *East Eur. J. Phys.*, no. 1, pp. 111–120, Feb. 2020, doi: 10.26565/2312-4334-2020-1-10.
- [22] M. H. Qais, H. M. Hasanien, and S. Alghuwainem, "Output power smoothing of wind power plants using self-tuned controlled SMES units," *Electr. Power Syst. Res.*, vol. 178, Jan. 2020, doi: 10.1016/j.epsr.2019.106056.
- [23] H. Chen, T. N. Cong, W. Yang, C. Tan, Y. Li, and Y. Ding, "Progress in electrical energy storage system: A critical review," *Progress in Natural Science*, vol. 19, no. 3. Science Press, pp. 291– 312, 2009, doi: 10.1016/j.pnsc.2008.07.014.
- [24] BVES, "FACT SHEET SPEICHERTECHNOLOGIEN Pumpspeicherkraftwerke (PSW)," 2016. [Online]. Available: content/uploads/2016/03/FactSheet_mechanisch_Pumpspeicher_PSW.pdf. [Accessed: 26-Apr-2020].
- [25] A. Bielecki, S. Ernst, W. Skrodzka, and I. Wojnicki, "Concentrated Solar Power Plants with Molten Salt Storage: Economic Aspects and Perspectives in the European Union," *Int. J. Photoenergy*, vol. 2019, pp. 1–10, 2019, doi: 10.1155/2019/8796814.
- [26] R. A. Huggins, "Energy storage. STATE OF THE AR T OF ENERGY STORAGE REGULATIONS AND TECHNOLOGY," [Online]. Available: https://www.springer.com/gp/book/9781489990310 [Accessed: 23-Apr-2020].
- [27] "Power-to-Gas: Linking Electricity and Gas in a Decarbonising World?," [Online]. Available: https://www.oxfordenergy.org/publications/power-gas-linking-electricity-gas-decarbonisingworld/ [Accessed: 21-Jun-2020].
- [28] F. Dawood, M. Anda, and G. M. Shafiullah, "Hydrogen production for energy: An overview," International Journal of Hydrogen Energy, vol. 45, no. 7. Elsevier Ltd, pp. 3847–3869, 07-Feb-2020, doi: 10.1016/j.ijhydene.2019.12.059.
- [29] IRENA, "Hydrogen: a Renewable Energy Perspective," [Online]. Available: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Sep/IRENA_Hydrogen _2019.pdf [Accessed: 19-Mar-2020].

- [30] I. Dincer and C. Acar, "Review and evaluation of hydrogen production methods for better sustainability," *Int. J. Hydrogen Energy*, vol. 40, no. 34, pp. 11094–11111, Aug. 2014, doi: 10.1016/j.ijhydene.2014.12.035.
- [31] A. Maroufmashat and M. Fowler, "Transition of future energy system infrastructure; through power-to-gas pathways," *Energies*. 2017, doi: 10.3390/en10081089.
- [32] T. Schaaf, J. Grünig, M. R. Schuster, T. Rothenfluh, and A. Orth, "Methanation of CO2 storage of renewable energy in a gas distribution system," *Energy. Sustain. Soc.*, vol. 4, no. 1, pp. 1–14, Dec. 2014, doi: 10.1186/s13705-014-0029-1.
- [33] "Energiewirtschaftliche und ökologische Bewertung eines Windgas-Angebotes Gutachten Fraunhofer Institut für Windenergie und Energiesystemtechnik (IWES) Kassel FuE-Bereich Energiewirtschaft und Netzbetrieb," 2011.
- [34] European Commission, "Energy storage the role of electricity," pp. 1–25, 2017.
- [35] "Introducing Megapack: Utility-Scale Energy Storage | Tesla." [Online]. Available: https://www.tesla.com/es_ES/blog/introducing-megapack-utility-scale-energy-storage. [Accessed: 15-Apr-2020].
- [36] D. Akinyele, J. Belikov, and Y. Levron, "Battery storage technologies for electrical applications: Impact in stand-alone photovoltaic systems," *Energies*, vol. 10, no. 11. MDPI AG, 01-Nov-2017, doi: 10.3390/en10111760.
- [37] X. Granados, "State of the art of Energy Storage Regulations and Technology." [Online]. Available: https://www.futured.es/?dlm_download_tag=gia [Accessed: 16-Apr-2020].
- [38] F. Pan and Q. Wang, "Redox species of redox flow batteries: A review," *Molecules*, vol. 20, no. 11. MDPI AG, pp. 20499–20517, 18-Nov-2015, doi: 10.3390/molecules201119711.
- [39] "Dalian exhibition feng human resources development co., LTDzzz." [Online]. Available: http://www.rongkepower.com/Product/show/catid/175/id/103/lang/en.html. [Accessed: 18-Apr-2020].
- [40] M. L. Perry and A. Z. Weber, "Advanced Redox-Flow Batteries: A Perspective," *J. Electrochem. Soc.*, vol. 163, no. 1, pp. A5064–A5067, 2016, doi: 10.1149/2.0101601jes.
- [41] Y. Wu and C. Cao, "The way to improve the energy density of supercapacitors: Progress and perspective," *Science China Materials*, vol. 61, no. 12. Science China Press, pp. 1517–1526, 01-Dec-2018, doi: 10.1007/s40843-018-9290-y.
- [42] Q. Li, M. Horn, Y. Wang, J. MacLeod, N. Motta, and J. Liu, "A review of supercapacitors based on graphene and redox-active organic materials," *Materials*, vol. 12, no. 5. MDPI AG, 01-Mar-2019, doi: 10.3390/ma12050703.
- [43] M. Winter and R. J. Brodd, "What are batteries, fuel cells, and supercapacitors?," *Chem. Rev.*, vol. 104, no. 10, pp. 4245–4269, Oct. 2004, doi: 10.1021/cr020730k.
- Y. Zheng, Y. Yang, S. Chen, and Q. Yuan, "Smart, stretchable and wearable supercapacitors: Prospects and challenges," *CrystEngComm*, vol. 18, no. 23. Royal Society of Chemistry, pp. 4218–4235, 2016, doi: 10.1039/c5ce02510a.
- [45] IEA, "*The Future of Hydrogen*," [Online]. Available: https://www.iea.org/reports/the-future-ofhydrogen [Accessed: 27-Apr-2020].

- [46] R. Rosa, "The Role of Synthetic Fuels for a Carbon Neutral Economy," *C*, vol. 3, no. 4, p. 11, Apr. 2017, doi: 10.3390/c3020011.
- [47] US EPA, "Global Energy Storage Database | Energy Storage Systems," 2020. [Online]. Available: https://www.sandia.gov/ess-ssl/global-energy-storage-database-home/. [Accessed: 21-Apr-2020].
- [48] M. Gimeno-Gutiérrez and R. Lacal-Arántegui, *Assessment of the European potential for pumped hydropower energy storage storage potential*. 2013.
- [49] I. Renewable Energy Agency, *ELECTRICITY STORAGE AND RENEWABLES: COSTS AND MARKETS* TO 2030. 2017.
- [50] "Renaissance for Pumped Storage in Europe Hydro Review." [Online]. Available: https://www.hydroreview.com/2011/07/01/renaissance-for-pumped-storage-in-europe/. [Accessed: 20-Apr-2020].
- [51] Kusch-Brandt, "Renewables 2019 Global Status Report," [Online]. Available: https://www.ren21.net/gsr-2019/ [Accessed: 27-Mar-2020].
- [52] Idae, "Evaluación del potencial de energía solar termoeléctrica. Estudio Técnico PER 2011-2020," 2011.
- [53] "Mapa de proyectos en España PROTERMOSOLAR." [Online]. Available: https://www.protermosolar.com/proyectos-termosolares/mapa-de-proyectos-en-espana/. [Accessed: 19-May-2020].
- [54] S. Tse, "News Release: Win Inertia Incorporates Maxwell Technologies Ultracapacitors for Braking Energy Recuperation in Spanish Rail System," *Maxwell Technologies*, 2014. [Online]. Available: https://www.prnewswire.com/news-releases/win-inertia-incorporates-maxwelltechnologies-ultracapacitors-for-braking-energy-recuperation-in-spanish-rail-system-271828331.html. [Accessed: 22-Apr-2020].
- [55] Red Eléctrica de España (REE), "Estabilizador de frecuencia y tensión basado en el volante de inercia. Proyecto de I+D+i," 2014.
- [56] Ministerio para la Transición Ecológica y el Reto Demográfico, "Borrador Actualizado del Plan Nacional Integrado de Energía y Clima 2021-2030," *Gob. España*, pp. 1–8, 2020.
- [57] Gobierno de España, Proyecto de Ley de cambio climático y transición energética. 2020, p. 34.
- [58] Red Eléctrica de España, "Informe del Sistema Eléctrico español 2018," 2019.
- [59] "Power Statistics." [Online]. Available: https://www.entsoe.eu/data/power-stats/. [Accessed: 08-Aug-2020].
- [60] EU Commission Expert Group, "Electricity interconnections with neighbouring countries.," 2019.
- [61] "Maps & Data." [Online]. Available: https://tyndp.entsoe.eu/maps-data/. [Accessed: 09-Aug-2020].
- [62] Z. Navas-Anguita, D. García-Gusano, and D. Iribarren, "Prospective life cycle assessment of the increased electricity demand associated with the penetration of electric vehicles in Spain," *Energies*, vol. 11, no. 5, 2018, doi: 10.3390/en11051185.

- [63] A. Małek, J. Caban, and Ł. Wojciechowski, "Charging electric cars as a way to increase the use of energy produced from RES," *Open Eng.*, vol. 10, no. 1, pp. 98–104, Jan. 2020, doi: 10.1515/eng-2020-0009.
- [64] Â. Casaleiro, R. A. Amaro E Silva, and J. Serra, "Plug-in electric vehicles for grid services provision: Proposing an operational characterization procedure for V2G systems," *Energies*, vol. 13, no. 5, Mar. 2020, doi: 10.3390/en13051240.
- [65] European Commission, "Regulation on the governance of the energy union and climate action," *Off. J. Eur. Union*, vol. 61, no. 21 December, pp. 1–230, 2018.
- [66] APA, "RNC2050 Roteiro para a Neutralidade Carbónica," [Online]. Available: https://descarbonizar2050.apambiente.pt/ [Accessed: 15-Jun-2020].
- [67] AEE, "Elementos necesarios para la transición energética. Propuestas para el sector eléctrico," Asoc. Empres. Eólica, 2017.
- [68] M. Bailera and P. Lisbona, "Energy storage in Spain: Forecasting electricity excess and assessment of power-to-gas potential up to 2050," *Energy*, vol. 143, pp. 900–910, Jan. 2018, doi: 10.1016/j.energy.2017.11.069.
- [69] L. M. Abadie and J. M. Chamorro, "Physical adequacy of a power generation system: The case of Spain in the long term," *Energy*, vol. 166, pp. 637–652, Jan. 2019, doi: 10.1016/j.energy.2018.10.096.
- [70] Department of Energy and Cimate Change, *Prosperous living for the world in 2050: insights from the Global Calculator*. 2015.
- [71] J. Gorre, F. Ortloff, and C. van Leeuwen, "Production costs for synthetic methane in 2030 and 2050 of an optimized Power-to-Gas plant with intermediate hydrogen storage," *Appl. Energy*, vol. 253, Nov. 2019, doi: 10.1016/j.apenergy.2019.113594.
- [72] Z. Navas-Anguita, D. García-Gusano, J. Dufour, and D. Iribarren, "Prospective techno-economic and environmental assessment of a national hydrogen production mix for road transport," *Appl. Energy*, vol. 259, Feb. 2020, doi: 10.1016/j.apenergy.2019.114121.
- [73] "Ministerio para la Transición Ecológica y el Reto Demográfico Eléctricas 2016-2018." [Online]. Available: https://energia.gob.es/balances/Publicaciones/ElectricasAnuales/Paginas/Electricas-Anuales2016-2018.aspx. [Accessed: 12-Aug-2020].
- [74] "Precios CO2 Sendeco2." [Online]. Available: https://www.sendeco2.com/es/precios-co2. [Accessed: 12-Aug-2020].
- [75] H. Lund, P. Sorknæs, B. V. Mathiesen, and K. Hansen, "Beyond sensitivity analysis: A methodology to handle fuel and electricity prices when designing energy scenarios," *Energy Res. Soc. Sci.*, vol. 39, pp. 108–116, May 2018, doi: 10.1016/j.erss.2017.11.013.
- [76] "Bienvenido | ESIOS electricidad · datos · transparencia." [Online]. Available: https://www.esios.ree.es/es. [Accessed: 14-Aug-2020].
- [77] Red Eléctrica de España, "Las energías renovables en el sistema eléctrico español," *Ree*, p. 66, 2018.
- [78] R. Electrica de España http, "El sistema electrico español 2017," 2017.

- [79] Oficina Española de Cambio Climático, "Factores de emisión. Registro de huella de carbono, compensación y proyectos de absorción de dióxido de carbono," 2019.
- [80] MITECO, "Borrador 'Estrategia a Largo Plazo para una Economía Española Moderna, Competitiva y Climáticamente Neutra en 2050,'" 2020.