
 

EXPLORATORY RANS SIMULATIONS OF PARTIAL CAVITATION 
AND ITS DYNAMICS  

 

MARTIN HOEKSTRA* 

* Maritime Research Institute Netherlands (MARIN) 
Wageningen, The Netherlands 
e-mail: m.hoekstra@marin.nl 

 

Key words: Computational Fluid Dynamics, Cavitation, NACA0015. 

Summary. Partial cavitation on a 2D foil at given incidence goes through various stages 
when the cavitation number is lowered. This paper explores by numerical simulation the 
transition from more or less steady to dynamic behaviour, eventually leading to periodic 
shedding of vapour clouds. Cavitation modeling is in this paper based upon the single, 
variable-density fluid approach, solving the RANS equations with the k-ω SST turbulence 
model and the Sauer/Schnerr mass transfer model. Results are presented for the NACA0015 
foil at six degrees incidence. Effects of spatial and temporal resolution are included in the 
investigation. When shedding of vapour clouds occurs, the results clearly show that it is 
accompanied with dynamic stall behaviour, i.e. the flow on the suction side of the foil is 
intermittently separated and attached. 

 
 
1 INTRODUCTION 
This paper descibes a numerical study of cavitation in the two-dimensional flow over a foil at 
a fixed angle-of-attack. Numerical simulation of cavitation has for a long time been based 
exclusively on potential flow models. During the last two decades, however, the preferred 
model has for many researchers changed to RANS, DES or LES, with the prospect of more 
realism in the simulations. But such enhanced realism has of course to be shown and 
substantiated. Solving RANS equations for a single, variable-density fluid, the author has 
studied the cavitation behaviour of a 2D NACA0015 foil at 6 degrees angle-of-attack. Results 
for the steady regime have been published earlier1, while a critical examination of the re-
entrant jet flow - widely accepted as the cause of instability and cloud shedding - appeared 
recently as a follow-up 2. Experiments indicate that, even on a stationary foil in a steady and 
uniform inflow, the cavity can get in a dynamic state. This intrinsic instability locks in to a 
periodic behaviour, eventually including the regular shedding of vapour clouds. In this paper 
the focus is on the numerical reproduction of this transition from stationary to dynamic 
cavitation. Does the instability appear in the numerical simulation? If so, do the results give a 
clue to the origin of the instability? Why does the flow become periodic instead of chaotic? 
These questions will be addressed after a brief introduction of the mathematical model and the 
computational settings. Illustrative results will be presented.  
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2 MATHEMATICAL MODEL 
When the pressure in a liquid drops below the saturated vapour pressure at the prevailing 

temperature, the liquid gets in an unstable state and normally tends to form vapour pockets. 
The fluid is then locally either in liquid or in vapour state, if the presence of non-condensable 
gas is neglected, and we can deservedly speak of a two-phase flow. However, on the scale of 
a grid cell in a typical RANS simulation, the fluid may also be said to be in a mixed state, i.e. 
small regions exist which are nevertheless big enough to be partly filled with liquid, partly 
with vapour. In the mathematical model used in this paper we go one step further by assuming 
that the continuum hypothesis still applies. Thus we deal with cavitating flows by solving 
continuum equations for a single, variable-density fluid, the density ρ being linked to the 
vapour volume fraction αv by 

                                                 (1 )v l v v                                                                      (1) 
where the densities of liquid (ρl) and vapour (ρv) are assumed to be constants. In other words, 
the fluid may be water or vapour or a uniform mixture of both. It means that no discontinuous 
changes occur in the density, nor in any of the other variables, and that the liquid-vapour 
interface is never perfectly sharp. This is in contrast with potential-flow models for cavitating 
flows but at the same time not altogether unrealistic. Indeed, strict adherence to a sharp 
interface leads inevitably to conflicts. They are avoided in the single-fluid approach: there is 
no flow detachment paradox at the front end of a partial cavity, nor is there a mass balance 
problem as in the case of the re-entrant jet flow model 2. Moreover, in our approach no 
restrictions are imposed on the topology of the cavity, thereby allowing break-up of the cavity 
and shedding of vapour clouds. 

Taking the single-fluid approach as a starting point, we adopt the RANS equations with the 
k-ω SST turbulence model to control mass and momentum conservation. The molecular 
viscosity of the fluid is, like the density, assumed to be linearly dependent on αv. Compared to 
RANS for an incompressible fluid, the density is an extra variable, hence an extra equation is 
required to close the system. This is the evaporation/condensation model, in our case a 
transport equation for the vapour volume fraction with a source/sink term 
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in which the source term follows the proposal of Sauer/Schnerr 3, 4  and is here written as 
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The properties of this source term have been discussed by Hoekstra & Vaz 1. For later 
reference we give here the relation between source term and rate of expansion 
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and recall that the time rate of change of the total vapour volume equals the source integral 
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The single free parameter of the source term, the number of nuclei per unit of volume n0, has 
been set in all computations presented in this paper at n0 =108. Its sole function is to modulate 
the rate of evaporation and condensation.  

Some remarks are in place here on the application of RANS to unsteady flows. The RANS 
equations are derived from the Navier-Stokes equations by time averaging, giving the 
Reynolds stresses as a by-product. A turbulence model is needed to account (approximately) 
for the effect of these Reynolds stresses on the mean flow. Time-derivatives disappear, and 
from the velocity, decomposed in a time-mean and a fluctuating component as: 

( , ) ( ) ''( , )U x t u x u x t       (6) 
the time-averaged part u  is computed, while the fluctuating component ''u  is not evaluated 
explicitly. 

But if the time-derivatives are maintained and a RANS simulation produces a velocity 
varying in time, denoted as ( , )u x t , we have 

( , ) ( , ) ''( , ) ( ) '( , ) ''( , )U x t u x t u x t u x u x t u x t        (7) 
and there are two time-varying components 'u  and ''u which may get mixed up. For instance, 
if we would increase the spatial and temporal resolution of the RANS simulation to a level 
suitable for Direct Numerical Simulation (DNS) the turbulence model would clearly be 
superfluous. So with increasing resolution in space and time the RANS model tends to have 
too much damping in an unsteady flow due to the turbulence model which has been 
constructed to account for all fluctuations. The usual argument is that when 'u  is 
characterized by low frequencies distinct from the high-frequency oscillations contained in 

''u , in other words when 'u  describes a low-frequency periodic motion and ''u  the 
turbulence, RANS can still do a fair job in unsteady flows. The periodic shedding 
phenomenon occurring in cavitation seems to be a case in point. But we can hardly expect 
grid-independent solutions with unsteady RANS and it is therefore important to check the 
extent of the influence of spatial and temporal resolution on the results. 

Apart from this fundamental issue of the meaning of unsteady RANS, there is also the 
question: can the same turbulence model be used in a cavitating flow as in a non-cavitating 
flow? Cavitation and turbulence are likely to have an effect on each other. However, these 
interaction effects are highly complex and as yet not well understood. Therefore clear-cut 
rules for adjustment of a turbulence model for cavitation effects are not readily available. 
Nevertheless Coutier-Delgosha et al. 5 have proposed to reduce the eddy viscosity level where 
vapour appears. And this route has been followed by others 6,7, claiming that only then an 
unsteady cavitation behaviour more or less corresponding with experiments can be obtained. 
We can confirm that the proposed correction is a strong stimulant of unsteadiness but it seems 
an ad-hoc proposal, lacking physical background. This seems to be confirmed in recent work 
by Bensow 8, comparing the eddy viscosity in RANS and DES simulations of the same flow 
problem. In the present paper all results are based on the application of the k-ω SST 
turbulence model in its original form without modification. As will be shown, this does not 
prevent unsteady behaviour of the cavity to occur. 
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3 FOIL, GRIDS AND COMPUTATIONAL SETTINGS 
We have chosen the NACA0015 foil at 6 degrees angle-of-attack for our numerical studies. 

The shape of this symmetric foil with a thickness-to-chord ratio of 0.15 is given by an 
analytical expression 9, yielding a finite thickness at the tail. Instead of modifying the shape so 
as to obtain a pointed tail, we have just rounded the tail, while maintaining the original chord 
length. 

With a chord length c=0.20 m, the foil was positioned in the middle of a laterally restricted 
channel of 0.57 m height. The length of the computation domain amounted to 7 chord lengths, 
from two chords ahead of the leading edge to 4 chords behind the trailing edge. The foil was 
rotated about its centre of gravity (located at 0.3086 chord behind the leading edge) to an 
incidence angle of 6 degrees. 

A uniform inflow speed U∞=6 m/s was chosen at the inlet plane, while the pressure was 
prescribed on the outlet. This outlet pressure p is also the reference pressure for the cavitation 
number σ. On the foil surface no-slip and impermeability conditions were imposed, but on the 
top and bottom walls free-slip conditions. The fluid properties were chosen as ρl = 998 kg/m3 
and ρv = 0.024 kg/m3; μl = 1.02x10-3 kg/ms and μv = 1.002x10-5 kg/ms. The Reynolds number 
based on chord length, inflow speed and the kinematic viscosity of the liquid (water) is 
Rn=1.2x106. 

Five grids were prepared with variable density but of the same lay-out, viz. an O-grid 
embedded in an H-grid. Three grids are geometrically similar and are the same as those used 
in 1; two extra grids were made which have extra resolution in the region covering the cavity. 
The number of grid cells varies as 27808 (G1), 62568 (G2), 111232 (G3), 131736 (G4) and 
145602 (G5). The number of cell edges on the foil surface are 234 (G1), 351 (G2), 468 (G3), 
500 (G4) and 596 (G5), respectively. An impression of the coarsest grid near the foil can be 
obtained from Figure 1. 

 
Figure 1: Coarsest grid G1 in the vicinity of the foil 
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All grids permit full near-wall resolution; the use of wall functions was deliberately 

avoided. As mentioned before, the k-ω SST turbulence model has been used for all 
computations reported here.  

4 RESULTS 
Extensive experimental work on the NACA0015 foil has been done by the groups of 

Arndt, Keller and Tsujimoto and in Kjeldsen & Arndt 10 an overview diagram of the 
cavitation behaviour has been given, reproduced here in Figure 2. This will serve as a 
reference while discussing the results of our numerical simulations. The diagram shows that 
inception occurs somewhat below the Cpmin curve, and the various types of cavitation (bubble, 
patch, sheet and super cavitation) are indicated. In addition three regions I, II and III are 
marked to distinguish different dynamic behaviour. Lines of constant cavity length (relative to 
the chord) are drawn as a reference, representing the result of linearised cavitation theory 
which concludes that l/c is proportional to α/σ (α is the angle of attack). The same linearised 
theory gives l/c=0.75 as a border beyond which no steady solution exists until the 
supercavitation stage is reached. 

 

 
Figure 2: Cavitation behaviour of the NACA0015 foil as a function of cavitation number and angle-of-

attack (from Kjeldsen & Arndt 10) 
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4.1 Steady flow regime 
In our RANS simulations we have found a minimum pressure on the foil at 6 degrees 

incidence in the non-cavitating flow of Cpmin = -2.08, which fits nicely in Figure 2, 
considering that the tunnel height-to-chord ratio is 2.34 in the experiments and 2.85 in our 
computations. Noteworthy is also the absence of boundary layer separation in the non-
cavitating flow. 

As soon as the cavitation number σ falls below -Cpmin the source term of the evaporation 
model (see equations (2) and (3)) is activated and phase change starts. Static or thermal delay 
(as apparently occurs in the experiments summarized in Figure 2) is not part of the model, 
although it could easily be added if required. So once the flow coming from the stagnation 
region on the nose of the foil and passing over the suction side reaches the location of Cp = -σ  
vapour production starts, but as the pressure coefficient rises again above –σ  a little further 
downstream condensation is activated and vapour will be destroyed. So σ has to be distinctly 
below -Cpmin to “see” any cavitation, in other words to have something corresponding with 
detection of inception by the naked eye in an experiment.  

Evaporation comes with a strong expansion and a change of the pressure. The fluid has to 
make way to accommodate the expansion and streamlines adjust correspondingly. These 
effects are connected: the pressure rises (relative to its value in non-cavitating flow) where the 
cavity starts to form, it decreases where the cavity reaches maximum thickness and rises again 
when the streamlines bend back to the foil at the closure of the cavity. Correspondingly, the 
streamline curvature is first reduced, then increased and then decreased again relative to the 
streamline curvature in the non-cavitating flow (which is only slightly less than the curvature 
of the foil surface).  

The change of the pressure distribution on the foil is illustrated in Figure 3 for σ=1.8 and 
for two mass transfer models. Notice that the coordinate on the horizontal axis has its origin at 
the centre of gravity of the foil, i.e. at 0.3086c from the leading edge. For both models the 
pressure starts to deviate from the wetted flow pressure as soon as the Cp=-σ barrier is passed. 
Notice that even in the cavitating flow predictions the pressure coefficient stays well below    
–σ, which is necessary because evaporation would stop if the pressure would not go below the 
vapour pressure (as the source term formulation in equation (3) indicates). For Sauer’s model 
the pressure coefficient goes further below –σ than for the alternative Kunz model. This is 
caused by the slower rate of evaporation in Sauer’s model, which is considered by the author 
to be the more realistic one. 

The change of the pressure field brings about an increase of the adverse pressure gradient 
close to the tail of the cavity as evidenced by Figure 3, and when strong enough it will induce 
flow separation. If the flow re-attaches to the foil further downstream (as it does in the given 
circumstances) a closed separation bubble is established with a recirculating flow inside. 
Recalling that no boundary layer separation occurred in the non-cavitating flow, the 
separation is cavitation-induced. And once it has appeared – which happens in our 
calculations at about σ=1.9 – there is a region with reversed flow, viz. the lower part of the 
separation bubble. This should not be called a re-entrant jet if the latter is understood as a 
liquid stream coming from the external flow, curling around the cavity tail and then 
penetrating underneath the cavity 2. 
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Figure 3: Comparison of pressure distribution on forward part of suction side in wetted flow and 
cavitating flow (σ=1.8) for two mass transfer models 

 
Reduction of the cavitation number σ leads to growth of the size (length and thickness) of 

the cavity as well as of the flow re-circulation zone. The increase of the cavity length with 
decreasing σ is practically linear, which is in accordance with observations (see Fig. 13 in 1) 
and reasonably fitting with the linearised theory prediction l  σ -1. For the developed but 
more or less steady partial cavity the flow is as schematically drawn in Figure 4. We see the 
shape of the cavity represented by a red line (an iso-line for the vapour volume fraction) and a 
set of streamlines to represent the underlying flow (notice that the vertical scale has been 
exaggerated). This picture has some remarkable features, especially for those who are familiar 
with cavitation simulations based on potential flow assumptions: 

- The liquid-vapour interface is not everywhere a material surface, i.e. not everywhere 
aligned with the flow. This is particularly evident at the tail of the cavity, but it is also true at 
the front end. Notice the strong convergence of streamlines near the cavity tail, needed to 
compensate the huge change in fluid density.  

- Because the flow is steady, the flow re-circulation zone is bordered by the streamline 
connecting the separation point and the re-attachment point. We see that the cavity partly 
overlaps this zone, implying that the flow in the zone is in a continuous process of 
evaporation and condensation: vapour is generated, travels with the flow and then 
condensates. While the cavity is stationary, the vapour is in motion.  

- Another part of the cavity occurs in the flow field outside the separation bubble. Also 
here vapour is travelling while the cavity keeps a position stationary to the foil. 

- The cavity is on top of the separating shear layer and its tail stays well apart from the foil 
surface. 
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- The streamline pattern is different from the classical re-entrant jet flow model, the latter 
having a liquid stream curling around the cavity tail as a distinct feature. 

 

 
 

Figure 4: Cavity outline and streamlines for a stable partial cavity 
 

As is physically understandable and as equation (5) indicates, there is no net source left in 
equation (2) if the cavity is steady. It does not mean that all sources vanish; our results clearly 
show sources, particularly at the forward part of the cavity, and compensating sinks, 
concentrated in the tail part. So instead of a cavity filled with the same vapour over time, there 
is a continuous creation and destruction of vapour even under steady flow conditions. 

The effect of spatial resolution on the results is moderate. The total vapour volume tends to 
decrease slightly with increasing grid refinement, the liquid-vapour interface getting sharper 
where it is more or less aligned with the flow. 

In our calculations the cavity is steady for small cavity lengths. Referring to Figure 2, the 
experiments show patch cavitation for these small cavity lengths, i.e. a coherent cavity with 
small fluctuations. Tulin 11 has called this a cavity which is “steady in the mean”. The 
fluctuations of small partial cavities observed in an experiment are presumably due to 
turbulence or to slight perturbations of the flow conditions in the experimental facility. 

4.2 Cavitation compliance 
The trend in the steady regime is that with decreasing cavitation number the vapour 

volume increases: –dV/dσ > 0, if Vdenotes the total vapour volume. This is related to the 
concept of cavitation compliance (K = -ρl dV/dp), a measure for the change of cavity volume 
with decreasing pressure. If the pressure in K is assumed to be the far-field pressure, K is 
directly proportional to –dV/dσ. The computational results indicate that –dV/dσ rises to a 
maximum at about σ=1.5 and then decreases for lower σ. Consequently there is a gradual loss 
of cavitation compliance beyond σ=1.5. 

That cavitation compliance possibly has a role in the onset of dynamic behaviour can be 
made plausible by a simplified analysis as follows. From the definition of the compliance K 
we derive 
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if K is assumed not to vary with time. Differentiating with time yields 

  
  
       

   
     

But a fluctuating cavity volume radiates an acoustic pressure of which the lowest harmonic is 
proportional to the second time derivative of the volume: 

    
  
                 

If the pressures in the last two equations are considered the same, we arrive at 
   
    

  
      

For K>0 this equation leads to p ~ e iωt , a harmonic oscillation with frequency         , 
but for K<0 it allows exponential growth solutions: p ~ e at, with          . 

In the analysis given above, p seems a near-field rather than a far-field pressure. Looking 
for a quantity representing more or less a near-field pressure, the lift coefficient comes to 
mind. If the pressure on the suction side decreases, the lift coefficient is expected to increase. 
So for positive K one expects dV/dCL > 0. This is the case for 2.1<σ<1.9, and in a potential 
flow this would be explained as a gain of lift due to a slight increase of the effective camber 
of the foil by the presence of the cavity. But below σ=1.9 CL drops quickly with lowering σ. 
This is due to the appearance of flow separation; the foil gets stalled. The trend for CL is 
comparable with the change of static lift with angle-of-attack in non-cavitating flow: the lift 
grows with increasing α, but it breaks down on the appearance of flow separation. In passing, 
we observe that in non-cavitating flow the NACA0015 foil is a trailing-edge stalling foil 
(separation occurs first at about α=8o in the vicinity of the trailing edge), but in cavitating 
flow a leading-edge stalling foil. These global trends are plotted in Figure 5 (CLo being the 
lift in non-cavitating flow). It shows that dV/dCL < 0  for the developed cavity but tends to 0 
on approaching the unsteady regime.  

Whether a loss of cavitation compliance is the cause or a symptom of the onset of dynamic 
behaviour can unfortunately not conclusively be decided. 
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4.3 Oscillatory behaviour 
Our computations indicate that oscillatory behaviour starts near σ=1.2. The cavity has 

grown then to about 1/3 of the chord and the flow re-attachment point (aft end of separation 
bubble) has moved beyond mid-chord. As noted above, on approaching the onset of dynamic 
behaviour the total vapour volume gets rather insensitive to a change in CL. The oscillation is 
not immediately accompanied with shedding of vapour clouds, although there is shedding of 
vorticity. We rather observe a “breathing” cavity in the initial phase of unsteady behaviour. 
So there are vapour volume oscillations accompanied with lift force oscillations, the lift 
variation having a phase lag relative to the vapour volume variation. Shedding of vapour 
clouds occurs for still lower values of the cavitation number. 

The initial oscillatory behaviour can de characterized as follows (we describe the results at 
σ=1.2). While in the steady regime (with short partial cavities) an increase in the cavity length 
is always accompanied with an increase in the total vapour volume, now there is evidence of 
the opposite tendency: a reduction of vapour concentration and a thinner cavity while it is 
elongating. Perhaps this is related to a change of the tail part of the cavity, being coincident 
with the separating shear layer and clearly away from the foil surface, from attached sheet to 
shear cavitation. Anyway, thinning of the cavity is directly linked with further penetration of 
liquid underneath the cavity. When the length of the cavity and the extent of the separation 
bubble are at a maximum, the lift force is also at its maximum but then starts to drop while the 
vapour volume continues to decrease, the cavity retreats and the separation bubble shrinks. 
Lift reduction implies the shedding of vorticity (connected with the loss of circulation around 
the foil) and while this vorticity travels over the suction side it first induces separation at the 
tail of the foil and upon passing the trailing edge a counter rotating vortex is shed there. A pair 
of counter-rotating vortices is then traveling downstream and the cavity starts to grow again. 

We observe that the lift reaching a maximum when the separation bubble is at maximum 
extent is in great contrast with the static lift behaviour. 

Shedding of cavitation clouds starts in our calculations at σ=1.1. A sequence of pictures 
illustrating the cavitation behaviour during one cycle is shown in Figure 6. The main 
difference with the results at σ=1.2 is that the separation bubble now covers the complete 
suction side of the foil during part of the oscillation and is subsequently swept from the foil so 
that the flow is practically free of separation during another part of the cycle. In other words, 
shedding is related to a dynamic stall process.  

Starting from the moment that the cavity is smallest (Figure 6a), its length and volume 
grow rapidly (Figure 6b-d). Because the cavitation-induced separation bubble grows in length 
and thickness, the distance of the cavity tail to the foil surface grows. While the cavity length 
is between 0.5c and 0.65c (the flow re-attachment point being between 0.6c and 0.75c), we 
see a thin layer of liquid penetrating under the forward part of the cavity (Figure 6d-f). Some 
would immediately call this a re-entrant jet, but seeing nothing of the flow features of the 
classical re-entrant jet flow, but rather a process of thinning of the cavity with as a 
consequence the appearance of more liquid under the cavity, the author is reluctant to follow 
this interpretation (see also 2). Although a weak spot in the cavity occurs close to the forward 
end of the cavity it does not break there. Instead we see a break in the cavity appearing above 
about mid chord a few instants later (Figure 6g). The flow reattachment point (end of the  
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a: t = t0 sec      e: t = t0+0.14 sec 
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d: t = t0+0.12 sec     h: t = t0+0.19 sec 
 

Figure 6: Snapshots of periodic cavity shedding at σ=1.1; cycle period ~0.28 sec 
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separation bubble) has then not yet reached the trailing edge. While the separation zone grows 
to the trailing edge, the forward part of the cavity retreats and the shed cloud – which is at the 
centre of a clockwise-rotating vorticity region - moves downstream and collapses near a chord 
position of 0.2c ahead of the trailing edge (Figure 6h). Just before this collapse, the lift force 
takes its maximum value which is in excess of the lift in non-cavitating flow. Although the 
cavitation in the shed cloud has disappeared, the vorticity is still there and just before that 
vorticity reaches the trailing edge we see the direction in which the flow leaves the trailing 
edge changing (more upward inclination). The lift is meanwhile dropping quickly. 
Subsequently, when the cavity has reduced to minimum size, flow reattachment occurs just aft 
of the cavity, causing the separation bubble to split into two parts, and while the cavity starts 
growing again the flow detachment point of the rear part of the separation region quickly 
moves towards the trailing edge. Just before it has reached the trailing edge the lift force is at 
a minimum value. A strong reaction at the trailing edge follows: a counter-clockwise rotating 
vortex is shed from the trailing edge, implying rising lift. While the separation zone is swept 
off the foil, a series of clockwise-rotating vorticity clouds is passing over the suction side. 
Exactly this feature is also reported by McCroskey 12 to happen in dynamic stall of an airfoil 
under forced oscillations. Evidence of these vortices is further given in LES simulations 
reported by Arndt and Song 13,14. This is presumably the vorticity shed due to lift reduction. 

The lift variation is not just a matter of trailing edge flow conditions, the position of the 
stagnation point on the nose of the foil is also changing. While the separation is swept from 
the foil the angle of attack is at a minimum. 

Lowering the cavitation number to σ=1.0, gives similar results as for σ=1.1, but the amount 
of vapour is greater and the dynamic process is getting more violent. A much bigger cloud is 
being shed, the cavity breaking apart when the closure point of the separation bubble has 
practically reached the trailing edge of the foil. The collapse occurs when the cloud is above 
the trailing edge. The counter-clockwise rotating vortex shed from the trailing edge gets filled 
with vapour at its core and this cavity grows while the shed cloud above the trailing edge 
collapses. The oscillation frequency is not much affected. CL drops before vapour volume 
drops. A short period of negative lift is now part of the oscillation cycle. 

4.4 Re-entrant jet or not? 
As we have observed above, from the instant that the cavity volume (not its length!) 

reaches a maximum the cavity tends to get thinner and more liquid is appearing under the 
cavity as a consequence. This seems to be a condensation phenomenon, rather than a re-
entrant jet. For a re-entrant jet one would expect the vapour-liquid interface to travel with 
local fluid speed, but this is not generally the case. In steady flow conditions this is 
immediately clear: the interface is stationary while the fluid moves beneath the cavity in 
upstream direction. But it holds also in dynamic conditions, where the interface may be 
moving faster than the fluid itself. It is the author’s impression that what is called re-entrant 
jet behaviour is a strong visual illusion: the human brain tends to interpret the motion of the 
interface as the motion of the fluid. Sato15 has given experimental corroboration to this 
viewpoint. He and his student Shimojo studied dynamic cavitation in a convergent-divergent 
nozzle and have cast doubt on the occurrence of the re-entrant jet phenomenon in the 
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following remark: “The mechanism of this advancing motion remains to be completely solved 
whether the motion is caused mainly by the re-entrant jet or mainly by the propagation of 
bubble collapses due to pressure. For the present study, the latter mechanism <…> appears 
to be main or dominant at the last stage of the re-entrant motion because the detailed 
observation near the nozzle throat indicates that the collapse of bubbles propagates upstream 
at some speed while the translational speed of bubbles seems to be very small”. 

4.5 Vapour volume versus lift 
We have seen in Figure 5 how the vapour volume behaves against the static lift under 

changing cavitation number. Figure 7 gives an example of vapour volume against lift for  
constant σ in dynamic conditions. For σ=1.2 (Figure 7a) we see a closed loop (representing an 
almost harmonic oscillation) instead of  a curve spiraling to a single point if the flow would 
become steady. During the greater part of the cycle dV/dCL > 0. It is a clockwise loop: the lift 
variation has a phase lag relative to the vapour volume variation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Figure 7a: Cavity volume versus lift for σ=1.2  Figure 7b: Cavity volume versus lift for σ=1.1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7c: Cavity volume versus lift for σ=1.0 
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Figure 7b for σ=1.1 is plotted on the same scale as Figure 7a, clearly bringing out that the 
oscillation amplitude is growing with decreasing cavitation number. The lift exceeds the 
wetted-flow lift significantly over a part of the cycle. This is typical for dynamic stall 
processes 12. The behaviour at σ=1.1 (Figure 7c) requires an adjustment of the scale on the 
horizontal axis of the plot. The loop is now traversed in counter-clockwise direction. 

4.5 Oscillation frequency 
The dominant frequency of the periodic cavity oscillation varies in our results somewhat 

with σ and with spatial/temporal resolution but is nevertheless within a narrow band between 
3.5 and 4 Hz. The Strouhal number Str=fc/U is then in the range 0.117<Str< 0.133. How does 
this compare to other sources of information? Strikingly, there is no uniformity in the 
Strouhal number as it is reported for partial and transitional cavity oscillations on foils, either 
based on experiments or on numerical simulations. As a matter of fact, leaving apart the high 
Strouhal numbers found for small partial cavities, the oscillation frequencies for well-
developed cavities (mean cavity length between 0.5c and 1.2c) fall in two categories, either in 
the range 0.12<Str<0.15 or at roughly the double frequency 0.25<Str<0.30. For instance, 
Wade and Acosta 16 report based on their early experiments Strouhal numbers in the range of 
0.07 to 0.14. Sato et al. 17 found later 0.13<Str<0.15 and similar results were reported by 
Watanabe et al. 18. But lots of other experiments indicate a frequency which is roughly twice 
as high, 0.25<Str<0.3. Focussing on the NACA0015 foil, we are in the happy circumstances 
that extensive measurements have been made in three cavitation tunnels (Minnesota, 
Obernach and Osaka) by Arndt, Keller and Tsujimoto in close cooperation. Arndt 19 has 
recently given a summary of the outcome in an invited lecture during the last Cavitation 
Forum. But also here a division appears, the Obernach data falling in the high frequency 
range, the Minnesota and Osaka data in the low frequency range. Actually, Arndt et al. 14 
indicate that the two frequencies can occur in the same experiment, but not simultaneously. 

On the computational side we can also mention a few results for the NACA0015 foil. 
Schnerr et al. 20 report Str=0.133 based on results of their Euler code CATUM, Li et al. 6 
report 3.5 Hz or Str=0.117 using the RANS model of FLUENT and computing exactly the 
same configuration as we have done. But LES simulations tend to show frequency spectra 
with a higher peak near Str=0.25-0.30 than at Str=0.12-0.15 21,22. 

This puzzling issue of the oscillation frequency is to be sorted out further. An extra 
complication is that in a closed-circuit experimental facility system instabilities may interfere. 
Duttweiler and Brennen 23,24 but also Kawakami et al. 25 have reported on the possible 
interference of facility dynamics with cavitation dynamics. And one may wonder whether 
numerical simulations are in this respect free of domain-size influences. Equation (4) 
expresses that the cavitation source function is directly proportional to the divergence of the 
velocity field. So a fluctuating source gives rise to mass flow oscillations. Since the mass flow 
rate at inflow is constant (by the boundary conditions) the mass flow rate at outflow must be 
varying in time. There the pressure is held fixed and pressure fluctuations due to the 
oscillating source, traveling with infinite signal speed (incompressible liquid), are 
“cushioned” close to the outlet. Is there a possible feed-back? 

495



M. Hoekstra 

 15 

5 CONCLUSIONS 
In this paper we have explored the capabilities of the single-fluid RANS model for cavitation 
simulations for a 2D foil, specifically the NACA0015 foil at 6 degrees angle-of-attack. The 
focus has been on the transition from steady to dynamic behaviour of the partial cavity. The 
following conclusions are drawn: 

- The single-fluid model in combination with the RANS equations for the simulation 
of cavitation in flowing liquids is able to give realistic results for the behaviour of a 
partial cavity on a 2D foil. It is able to predict the change from steady to oscillatory 
behaviour and is informative on the flow behaviour in steady as well as unsteady 
conditions. 

- It is widely accepted that a re-entrant jet determines the onset of dynamic behaviour 
of the cavity. Also in the results presented here there is a reversed flow and a clear 
indication of liquid penetrating under the cavity. Yet, no evidence has been found of 
the classical re-entrant jet flow. 

- The onset of unstable cavity behaviour can perhaps be associated with a loss of 
cavitation compliance, a measure for the cavity volume to grow with decreasing 
pressure. At least the instability is initiated when the length of the cavity increases 
while the cavity volume decreases. 

- The periodic oscillations following the appearance of instability could be 
convincingly shown to be a dynamic stall phenomenon. When shedding of vapour 
clouds is observed, the cavitation-induced separation bubble grows until it covers the 
complete suction side of the foil and is subsequently swept from the foil in periodic 
succession. 

 

NOMENCLATURE 
 c chord length 
 CL lift coefficient 
 CLo lift coefficient in non-cavitating flow 
 Cp pressure coefficient 
 K cavitation compliance 
 p pressure 
 Rn Reynolds number 
 Str Strouhal number based on chord 
 V total vapour volume 

α angle of attack 
 αv vapour volume fraction 
 ρ density of mixture fluid 
 ρl liquid density 
 ρv vapour density 
 σ cavitation number 
 

496



M. Hoekstra 

 15 

5 CONCLUSIONS 
In this paper we have explored the capabilities of the single-fluid RANS model for cavitation 
simulations for a 2D foil, specifically the NACA0015 foil at 6 degrees angle-of-attack. The 
focus has been on the transition from steady to dynamic behaviour of the partial cavity. The 
following conclusions are drawn: 

- The single-fluid model in combination with the RANS equations for the simulation 
of cavitation in flowing liquids is able to give realistic results for the behaviour of a 
partial cavity on a 2D foil. It is able to predict the change from steady to oscillatory 
behaviour and is informative on the flow behaviour in steady as well as unsteady 
conditions. 

- It is widely accepted that a re-entrant jet determines the onset of dynamic behaviour 
of the cavity. Also in the results presented here there is a reversed flow and a clear 
indication of liquid penetrating under the cavity. Yet, no evidence has been found of 
the classical re-entrant jet flow. 

- The onset of unstable cavity behaviour can perhaps be associated with a loss of 
cavitation compliance, a measure for the cavity volume to grow with decreasing 
pressure. At least the instability is initiated when the length of the cavity increases 
while the cavity volume decreases. 

- The periodic oscillations following the appearance of instability could be 
convincingly shown to be a dynamic stall phenomenon. When shedding of vapour 
clouds is observed, the cavitation-induced separation bubble grows until it covers the 
complete suction side of the foil and is subsequently swept from the foil in periodic 
succession. 

 

NOMENCLATURE 
 c chord length 
 CL lift coefficient 
 CLo lift coefficient in non-cavitating flow 
 Cp pressure coefficient 
 K cavitation compliance 
 p pressure 
 Rn Reynolds number 
 Str Strouhal number based on chord 
 V total vapour volume 

α angle of attack 
 αv vapour volume fraction 
 ρ density of mixture fluid 
 ρl liquid density 
 ρv vapour density 
 σ cavitation number 
 

M. Hoekstra 

 16 

REFERENCES 
 
[1] M. Hoekstra and G. Vaz, “The partial cavity on a 2D foil revisited”, 7th Int. Symp. on 

Cavitation, Ann Arbor, Michigan, USA (2009).  
[2] M. Hoekstra, “The myth of the re-entrant jet”, 3rd Int. Cavitation Forum, University of 

Warwick, UK (2011).  
[3] J. Sauer, “Instationär Kavitierende Strömungen – Ein Neuse Modell, Basierend auf Front 

Capturing (VoF) und Blasendynamik”, PhD University of Karlsruhe, Germany (2000).  
[4] G.H. Schnerr and J. Sauer, “Physical and numerical modeling of unsteady cavitation 

dynamics”, 4th Int. Conf. on Multiphase Flow, New Orleans, USA (2001).  
[5] O. Coutier-Delgosha, R. Fortes-Patella and J.L. Reboud, “Evaluation of the Turbulence 

Model Influence on the Numerical Simulations of Unsteady Cavitation”, J. Fluids 
Engineering, 125, 38-45 (2003). 

[6] D.Q. Li, M. Grekula and P. Lindell, “A modified SST k-ω turbulence model to predict 
the steady and unsteady sheet cavitation on 2D and 3D hydrofoils”, 7th Int. Symp. on 
Cavitation, Ann Arbor, Michigan, USA (2009).  

[7] E. Sorgüven and G.H. Schnerr, “Modified k-ω model for simulation of cavitating flows”, 
Proc. Appl. Math. Mech. 2, 386-387 (2003). 

[8] R.E. Bensow, “Simulation of unsteady cavitation on the Delft twist11 foil using RANS, 
DES and LES”, 2nd Int. Symp. on Marine Propulsors, Workshop 1, Hamburg (2011). 

[9] I. A. Abbott and A. E. von Doenhoff, Theory of Wing Sections, Dover Publications, New 
York (1958). 

[10] M. Kjeldsen and R.E.A. Arndt, “Spectral characteristics of sheet/cloud cavitation”, J. 
Fluids Engineering, 122, no. 3, 481-487 (2000). 

[11] M.P. Tulin, “On the theory and modeling of real cavity flows”, 5th Int. Symp. on 
Cavitation, Osaka, Japan (2003).  

[12] W.J. McCroskey, “The phenomenon of dynamic stall”, NASA Technical Memorandum 
(1981). 

[13] R.E.A. Arndt, C.C.S. Song and Q. Qin, “Experimental and numerical investigations of 
cavitating hydrofoils”, 22nd IAHR Symp. on Hydraulic Machinery and Systems, 
Stockholm, Sweden (2004). 

[14] R.E.A. Arndt, C.C.S. Song, M. Kjeldsen, J. He and A. Keller, “Instability of partial 
cavitation: a numerical/experimental approach”, 23rd Symp. on Naval Hydrodynamics, 
Val de Reuil, France (2000). 

[15] K. Sato and S. Shimojo, “Detailed observations on a starting mechanism for shedding of 
cavitation cloud”, 5th Int. Symp. on Cavitation, Osaka, Japan (2003).  

[16] R.B. Wade and A.J. Acosta, “Experimental observations on the flow past a plano-convex 
hydrofoil”, Transactions ASME, Jnl. Basic Engineering, 88, no.1 (1966). 

[17] K. Sato, M. Tanada, S. Monden and Y. Tsujimoto, “Observations of oscillating 
cavitation on a flat plate hydrofoil”, 4th Int. Symp. on Cavitation, California Institute of 
Technology, Pasadena, California, USA (2001).  

[18] S. Watanabe, Y. Konishi, I. Nakamura and A. Furukawa, “Experimental analysis of 
cavitating behaviour around a Clark Y hydrofoil”, WIMRC 3rd Int. Cavitation Forum, 
University of Warwick, UK (2011). 

497



M. Hoekstra 

 17 

[19] R.E.A. Arndt, “Some remarks on hydrofoil cavitation”, WIMRC 3rd Int. Cavitation 
Forum, University of Warwick, UK (2011). 

[20] G.H. Schnerr, S. Schmidt, I. Sezal and M. Thalhammer, “Shock and wave dynamics of 
compressible liquid flows with special emphasis on unsteady load on hydrofoils and on 
cavitation in injection nozzles”, 6th Int. Symp. on Cavitation, Wageningen, The 
Netherlands (2006). 

[21] S.E. Kim, “A numerical study of unsteady cavitation on a hydrofoil”, 7th Int. Symp. on 
Cavitation, Ann Arbor, Michigan, USA (2009). 

[22] N.X. Lu, R.E. Bensow and G. Bark, “Grid resolution effects in simulating unsteady sheet 
cavitation”, in Large Eddy Simulation of Cavitating Flow on Hydrofoils, PhD, Chalmers 
University of Technology, Gotheburg, Sweden (2010). 

[23] M.E. Duttweiler, S.E. Schell and C.E. Brennen, “The effect of experimental facility 
dynamics on a cavitation instability”, ASME Fluids Engineering Division Summer 
Meeting, Boston Massachusetts (2000).  

[24] M.E. Duttweiler and C.E. Brennen, “Surge instability on a cavitating propeller”, 4th Int. 
Symp. on Cavitation, California Institute of Technology, Pasadena, California, USA 
(2001).  

[25] D.T. Kawakami, A. Fuji, Y. Tsujimoto and R.E.A. Arndt, “An assessment of the 
influence of environmental factors on cavitation instabilities”, J. Fluids Engineering, 130, 
(2008). 

 

498




