
Master Thesis

MASTER IN INDUSTRIAL ENGINEERING

CORRUPTION IDENTIFICATION AND CLASIFICATION IN

STANDARD PLANE PRENATAL ULTRASOUNDS

REPORT

 Author: Lluís Cierco Corominas
 Director: Raúl Benítez Iglésias
 Course: July 2020

Escola Tècnica Superior
d’Enginyeria Industrial de Barcelona

Abstract

Artificial Intelligence (AI) has proven in the recent years to be a powerful tool to automate

simple and complex tasks. One of the main fields where it has been applied is medical science

where especially computer vision algorithms are gaining popularity.

This project aims to be useful both for medical staff and future projects on the field, easing the

process of data cleaning. Nowadays medical personnel have to invest time discarding

corrupted images to clean the data from the ultrasounds. It is also an impediment for other

machine learning projects as corrupted images can negatively affect the results.

Our goal is to develop a Deep Learning (DL) algorithm not only able to identify the corrupted

images but also to classify them by type of distortion. With this we will be able to clean the

dataset and bring an opportunity to future projects to apply artifact cleaning.

The proposed strategy has three main parts. First, we have designed a code to create semi

random artifacts on correct images to generate a dataset big enough for our experiments.

Secondly, we have studied the behavior under corrupted images of a previous deep learning

model, designed by Vicent at [6]. With this we determined the boundary between corruption

and correct images.

Finally, we successfully created and compared the result of two models based on a

Convolutional Neural Networks (CNNs) to identify and classify the corrupted images.

Summary

1. GLOSSARY __ 2

2. PREFACE __ 3

2.1. Project Origins ... 3

3. INTRODUCTION ___ 4

3.1. Project Objective .. 4

3.2. Project Pipeline .. 5

3.3. Programming Framework .. 7

4. DATASET __ 8

4.1. Raw Dataset .. 8

4.2. Generation of image artifacts and corruption ... 9

4.2.1. Scale up ... 11

4.2.2. Blur .. 12

4.2.3. Noise .. 13

5. ARTIFICIAL INTELLIGENCE ________________________________ 17

5.1. History .. 17

5.2. Machine Learning .. 18

5.2.1. Regression ... 19

5.3. Artificial Neural Networks ... 22

5.3.1. Deep Learning ... 23

5.3.2. Back-propagation ... 25

5.3.3. Convolutional Neural Networks .. 25

5.3.4. Predefined and custom .. 28

5.3.5. Transfer learning with pretrained networks .. 28

5.3.6. Data augmentation ... 29

5.3.7. Model validation ... 30

6. DEEP LEARNING WITH DISTORTED IMAGES _________________ 31

6.1. Methodology .. 31

6.2. Results ... 34

6.2.1. Accuracy vs intensity.. 34

6.2.2. Accuracy vs structural similarity (ssim) ... 36

6.2.3. Intensity vs structural similarity (ssim) .. 38

7. DEEP LEARNING FOR IMAGE DISTORTION RECOGNITION _____ 41

7.1. Image Preprocessing ... 41

7.2. VGG16 ... 43

7.2.1. Introduction ... 43

7.2.2. Model Implementation ... 44

7.2.3. Train and test .. 45

7.2.4. Results .. 46

7.3. Xception.. 48

7.3.1. Introduction ... 48

7.3.2. Model Implementation ... 50

7.3.3. Train and test .. 51

7.3.4. Results .. 51

7.4. Results Comparison ... 53

7.4.1. Overall accuracy ... 53

7.4.2. Accuracy by distortion class .. 55

8. ENVIRONMENTAL IMPACT ________________________________ 58

9. CONCLUSION ___ 59

BUDGET __ 60

BIBLIOGRAPHY __ 61

References ... 61

ANNEX ___ 63

A.1 Results Visualization with Saliency Maps .. 63

A.1.1 Original uncorrupted images ... 63

A.1.2 Scaled up images ... 64

A.1.3 Blurred Images .. 65

A.1.4 Noised Images .. 66

A.2 Results Comparison on different plots ... 67

A.3 Code .. 70

 Page 1

Page 2

1. Glossary

Neuron Node that acts as computational unit. It is a

function with an input and an output. Usually

refereed as part of a larger network.

Neural Network Structure of related neurons with an input

and an output.

Layer (context: Neural Networks) Group of neurons that are related by

common inputs and outputs. It can be

understood as a neurons part of a phase of

the neural network.

Artifact Feature appearing in an image not present

in the original object.

Distortion A modification or degradation something that

makes it appear unnatural.

Corrupted image An image with a distortion or an artifact that

makes it defer from the original object.

Degree or Intensity of Distortion Level of degradation

Structural Similarity Index (SSIM) Comparison between structural information

carried by two images. [1, -1] If equal, the

result is 1.

Noise Type of image degradation by the

appearance of random intensity pixels

Blur Degradation of the image edges, creating

diffuse shapes

Scale up Zoom, or crop like effect. When the image is

not correctly centered and the fetus appears

partially.

 Page 3

2. Preface

2.1. Project Origins

This project is result of a fruitful collaboration between Doctor Joan Sabrià Bach from the

obstretrics department of the hospital Sant Joan de Déu and the Lassie Lab from Univeristat

Politècnica de Catalunya.

After the previous successful projects of Safae [14] and Vicent [6] on classification of fetal

plane ultrasounds, it become clear a necessity for an automation process to discard corrupted

images form data bases.

From here, and thanks the images provided by Doctor Joan Sabrià, we decided to create a

Deep Learning algorithm to identify and classify corrupted images from fetal ultrasounds.

Page 4

3. Introduction

Artificial Intelligence (AI) has come a long way to arrive at where we are today. Thanks to the

increase in computer power and research on the field AI is revolutionizing the way we work.

Medicine has always been a focal point of development for new technologies and AI is not an

exception. From machine learning models to deep learning, AI is already been implemented

in several applications for medicine.

One of the most promising AI branches is visual recognition, with the arise of Convolutional

Neural Networks (CNNs) image classification algorithms have become a reality. It has already

proved its power in multiple applications like cancer detection [18] or ultrasound recognition.

On this project we will contribute on the efforts done to implement Artificial Intelligence on

medicine, and more specifically on fetal ultrasounds.

3.1. Project Objective

The aim of the project is to identify and classify distorted images of three standard fetal

biometry ultrasounds: BPD (Biparietal diameter), CRL (Crown-rump length) and NT (Nuchal

translucency).

The classification process has to be able to differentiate between correct images and three

different distortions:

- Original: correct unmodified ultrasound images, without difference by type.

- Scale up: the fetus is not correctly centered and appears zoomed in relation to its

shape.

- Blur: the outlines are diffused on different degrees obscuring details.

- Noise: the arbitrary alteration of brightness or color in an image by irregular pixels,

misrepresenting the luminance and tonality.

Comparison of different degree of distortion in ultrasound images:

 Page 5

Figure 1. Comparison of the three corruptions and the correct image. (Source: own)

3.2. Project Pipeline

The project is structured in four major steps all of equal importance and specific sequential

order:

1. Define Project Objectives: Set a goal to be able to define the success of the whole

Scale up

Page 6

project. As seen in the previous section the goal is to classify distorted ultrasound

images.

2. Obtain Raw Dataset: Collect a set of the desired ultrasound images big enough for

the project objectives. Most of the data has been provided by Doctor Joan Sabrià.

3. Inclusion of distortion and artifacts: we affect the images by introducing

distortions and artifacts inspired in those observed in actual ultrasound images from

the third trimester. Typically affected by different levels of blur, noise or scale like effect.

We produce three copies for each image, simulating a distortion. As these images are

artificial it is important to define the correct degree distortion applied.

4. Study of the impact of distortions in deep learning classification algorithms:

We start by the deep learning classification model previously created by Vicent [6] to

recognize ultrasound planed. In this section we study how the performance of the

classifier is affected by different levels and types of distortions. The goal is to identify

what should be considered a distortion and, as so, the current model cannot correctly

classify.

5. Model Selection and creation: investigate the different machine learning models,

specifically the ones using Convolutional Neural Networks (or CNN). In this project the

library explored has been “Keras”, comparing the models VGG16 and Xception

pretrained on ImageNet. We can differentiate two major layers: the CNN as feature

extraction and a dense connected layer as classifier.

6. Results: once the model is trained the performance is tested to check for the

threshold values of identifiable distortion. Similarly, to the previous exploration the goal

is to verify what can be identified as distortion and, as so, the model can correctly

classify. To confirm the accuracy several visualization tools have been used to

determine what the model is “looking at”.

Figure 2. Project pipeline structure. (Source: own)

Raw

Dataset

Artifact
Creation

Impact
on DL

Model
Creation

Results

 Page 7

3.3. Programming Framework

The language used for the whole project is Python, a high-level and open programming

language created by Guido van Rossum in 1991. It is, currently, the most popular tool for

machine learning as stated in GitHub at [4]. There are several libraries created by the

community oriented to machine learning, the following are used in this project:

- NumPy: multidimensional data operations and scientific computing.

- SciPy: algebraic functions, it uses NumPy to create more complex functions.

- Scikit-Image (skimage): image processing package

- Scikit-learn (Sklearn): machine learning algorithms and functions

- Keras / TensorFlow: library for developing and evaluating deep learning models. It also

provides several popular pretrained models.

- Matplotlib: comprehensive library to create and edit visualizations.

The environment used is Google Colaboratory (Colab), a free cloud service based on Jupyter

Notebooks for machine learning. It provides a fully configured linux virtual machine for

machine learning projects with free CPU, GPU or TPU use for 12h a day. As part of google it

has a direct connection to google drive storage. To do this we simply have to mount drive into

Colab:

from google.colab import drive

drive.mount('/content/drive')

This code enables an identity check after which we can navigate through our google drive

folders and load or save content.

Page 8

4. Dataset

The ultrasound images used in the project are divided in two major categories: uncorrupted

original images and artificial distorted images with three different kinds of alterations (scale up,

noise or blur).

4.1. Raw Dataset

All the original images come from the previous project of Vicent [6]. Most of them were provided

by the collaboration between Doctor Joan Sabrià Bach from the obstetrics department of the

hospital Sant Joan de Déu and the Lassie Lab from the Univeristat Politècnica de Catalunya.

There is a total of 542 images classified by type (BPD, CRL or NT) and already clean of

annotations. All images have been normalized to the size 337x227 and are colored (while the

ultrasound is grayscale the untreated images have color tags).

The dataset was given in three different folders each with one class of ultrasound. All the

images were also labeled under the class name and a sequence number as identifier but

without any relevance. The set was merged in a single folder to ease the data loading process.

These images are the only external input to the model, a part from the data imported from

python libraries.

To load the dataset into the notebook, first we specify the folder path and list all the files

(images). We import the package “os” to use the command functions of the operating system.

#---------------------PREPROCESS AND DATA CREATION IMATGES---------

#Get the the Image folders

import os

directori1='/content/drive/My Drive/TFM Lluis Cierco - DeepLearning

/Agrupades'

y1=os.listdir(directori1)

 Page 9

4.2. Generation of image artifacts and corruption

As said, we will need a dataset of not only correct ultrasound images but also corrupted ones.

For this we could have manually selected and labeled a dataset of naturally distorted images.

However, this would have been and expensive process and without control on the corruption

itself. A better solution and the one we use in this project is to generate all the distortions by

code.

To do this, we have to assume that all the images from the original dataset are correct and, as

so, none present any kind of corruption. Because of this, we will often label the correct images

as original.

The process to create the distorted (also refereed as modified) images consist of making three

copies of all the original images and apply a different effect to each of them. With this we will

triplicate the dataset and have 542 images of every class.

As result we have four classified datasets each with one class of image that we want to identify

(correct, scale up, noise and blur).

It is important to keep in mind that the dataset has to be class balanced. This means that for

optimal results we must have an equal number of images for each class. Luckily, as we are

generating three of the four classes, we can easily maintain the balance. It is easy to see that

the number of original images is the bottleneck in the process. Whichever is the size of our

original dataset after the data generation process, we will have four times that size.

CLASS IMAGES

ORIGINAL 542

SCALED UP 542

BLUR 542

NOISE 542

TOTAL 2.168

Table 1. Number of images by class and total number after the corruption generation

process. (Source: own)

Page 10

We have divided the corruption generation in multiple steps. Below we explain in depth the

whole process:

First, we import several libraries to load and transform the images. All these packages are

already preinstalled in Colab so they are ready to use.

#---------------------IMPORT----------------------

import skimage as sk

import skimage.io

import numpy as np

import cv2

from skimage.morphology import disk

from skimage.filters import median

from skimage.util import random_noise

import random

Now we have to prepare some variables to use in the transformation process. We use two

groups of lists, one for the original (correct) images and one for the modified (transformed)

images. Both of them have one list to store the images and another one to store the class of

each image.

We also define the size of the images that we will load into the model by the width and height.

In this case we decided to use 244x244 instead of the original shape to normalize all images

after the transformation process, this will be further explained below.

#VARIABLES

#Create empty lists to fill with loaded and modified images

images_orig=[]

y_orig=[]

images_mod=[]

y_mod=[]

width=224 #Original shape 227

height=224 #Original shape 337

Now we start by looping through all the files in the folder previously specified. Every image is

loaded in grayscale on the variable “im_orig” and resized to the defined shape.

 Page 11

for image in y1:

#Load image in grayscale and resize it to a normalised square shape

 im_orig=sk.io.imread(os.path.join(directori1,image),as_gray=True)

 im_orig=cv2.resize(im_orig, (width,height))

From this point we start the transformation process.

4.2.1. Scale up

First, we copy the original image and perform a crop. The size of the crop is defined by the

four sides of the image with a random range that can accumulate up to 100 and at minimum

is 75 per axis.

Figure 3. Representation of the cropping parameters applied to an image to produce

the scale up effect. (Source: own)

After the crop the image size is drastically reduced, in the most extreme case (100 cropping

per axis) the resulting shape is 124x124. Now we must normalize all image sizes, to do this

we could scale up back to 224x224 but this would reduce the resolution of the scaled images.

On the other hand, we could scale down all images to 114x114 but this would also produce

higher differences in resolution. To keep it as neutral as possible we decided to scale all

images to the average 174x174.

Page 12

 # 1. Occlusion / Crop

 # Generate a random crop size for each side

 width_crop_a=random.randint(25,75)

 width_crop_b=random.randint(75,100)-width_crop_a

 height_crop_a=random.randint(25,75)

 height_crop_b=random.randint(75,100)-width_crop_a

 #Apply the crop

 im_crop=sk.util.crop(im_orig, ((width_crop_a, width_crop_b), (he

ight_crop_a,height_crop_b)))

 #Resize to normalised shape

 im_orig=cv2.resize(im_orig, (width-50,height-50))

 im_crop=cv2.resize(im_crop, (width-50,height-50))

4.2.2. Blur

The second transformation is the blur, as said it consist in diffusing the image making the

outlines harder to differentiate. The method used is the median filter, a non-linear digital filter

that replaces each entry with the median of its neighbors.

Figure 4. Example of the “window” used in median blur (left: original image, right:

window example). The central point, in red, is calculated in relation all the neighbor

pixels inside the yellow square. (Source: own)

The window is just a matrix where each position is the value of a pixel. As example we use a

window of 3x3 and calculate its median (sort the values and take the middle one), this result is

the new value of the central pixel. With this we replace each pixel in the image by the median

 Page 13

of its neighbors. It is then clear that the highest impact will occur in the edges, where the pixel

values have higher differences.

15 132 195

19 120 201

24 145 192

The window of neighbors taken into account is defined, in this case, by a disk of random radius

between 1 and 10. The disk nevertheless, is constant for a single image but can vary between

images.

 # 2. Blurr -- GAUSSIAN FILTER (MEDIAN)

 # Create a random disk and appy the median

 sel25 = disk(random.randint(1,10))

 img_med25x25 = median(im_orig, sel25)

4.2.3. Noise

Lastly, to create the noise we add a pseudorandom number to some pixels in the image. This

changes the brightness of each pixel by an intensity determined with a random distribution, in

this case we use the gaussian distribution. This is defined by the mean, which represents the

most probable value, we have set it to zero to maintain equal most of the pixels. To this, we

add a variance that translates to how easy is to deviate from the mean. The higher the variance

the more scattered the result.

15 19 24 129 132 145 192 195 201

Figure 5. Numerical example of the median blur. (Top: Matrix, bottom: median

selection). (Source: own)

Page 14

 # 3. Gaussian Noise

 #Create random sigma and apply normal noise

 sigma = random.randint(1,5)/10.0

 noisy_image_normal = random_noise(im_orig, var=sigma**2)

The limit to this method comes when the image is saturated with noise, meaning that almost

all pixels have been modified to some point. As the mean is set to zero this situation depends

on the variance. As show in the Figure 6 a higher variance means a flattened distribution curve

what makes all pixels affected.

 Page 15

Figure 6. Three examples of gaussian distributions, and below the noise they create

in a white image and the noise created in the ultrasound images (read in vertical). The

variance increases from left to right as sigma=0.001, 0.1, 1.0 (variance=sigma2). The

first row of gaussian distributions shows in the y axis the probability to return the value

in the x axis. (Source: own)

To conclude the process, we triplicate the array representing each image to create a colored

(rgb) version. Images are represented by matrixes of numbers that set the brightness of each

pixel. Color images are just an aggrupation of three matrixes: red, green and blue (rgb). As the

color image that we create has the same value for each matrix the result does not modify the

information that the image brings. This whole conversion is done because the CNN models

that we will use require color images.

Then we store each image and its class into the lists that we created earlier, outside the loop.

The lists are not directly related so it is important to keep the sequence in order as the items

are related by the index. We can affirm that the “n” image of the list “images_orig” is the source

image for the transformed “n, n+1, n+2” images of the list “images_mod”. Equally we can

classify the “n” item of the list “images_mod” by the “n” item of the list “y_mod”.

Page 16

 #CNN model needs color images

 im_orig=cv2.merge((im_orig,im_orig,im_orig))

 im_crop=cv2.merge((im_crop,im_crop,im_crop))

 img_med25x25=cv2.merge((img_med25x25,img_med25x25,img_med25x25))

 noisy_image_normal=cv2.merge((noisy_image_normal,noisy_image_norm

al,noisy_image_normal))

 #Store image + 3 distortions to the lists

 images_orig.append(im_orig)

 images_mod.append(im_crop)

 images_mod.append(img_med25x25)

 images_mod.append(noisy_image_normal)

 #Save the class of the iamges

 y_orig.append(0)

 y_mod.append(1) #Crop

 y_mod.append(2) #Blurr

 y_mod.append(3) #Noise

This lists store all the dataset we prepared, as we did not store the images in the memory

everything is loaded in ram. While this is ram consuming it is much faster to operate because

we do not need to store and load every single image we create.

 Page 17

5. Artificial Intelligence

Artificial intelligence (AI) is a branch of computer science with the objective to build smart

machines able to perform some tasks “thinking” like humans. This field englobes multiple

subfields but, in recent years machine learning has been specially rising in popularity.

Machine Learning is a branch of Artificial intelligence where the algorithms can learn from

themselves without human intervention. Deep Learning is a subfield of Machine Learning

based on the idea to mimic biological neuronal structures to create nonlinear algorithms.

In traditional machine learning algorithms are feed with features, important characteristics

chosen and extracted by the programmer, from which the machine learns. Deep Learning uses

instead an end to end learning, and it is able to extract the features by itself.

Figure 7. Artificial Intelligence englobes Machine Learning which englobes Deep

Learning. (Source: Own)

5.1. History

The history of artificial intelligence began in antiquity with stories and myth of craftsman’s that

created artificial intelligent beings. It followed by philosophers reasoning about the structure of

human reasoning and thinking. Its foundations started to take with mathematics and calculus

but without the technology to make it possible AI was still far.

On 1940 some research was done and the first algorithms and intelligent machines where

build. Later, on 1950 when Alan Turing set up the question “Can machines think?” [16]. In his

article he created the “Turing Test” designed to identify whether a machine is intelligent by

testing its ability to trick a judge into thinking it is a human. It was not until 1956 that all started

Deep

Learning

Machine
Learning

Artificial
Intelligence

Page 18

to come together, a team of leading researchers met at the Dartmouth Conference where they

discussed of machine intelligence and “created” the term artificial intelligence.

On 1959 Hubel and Wiesel studied the cortex of a cat and determined that some neurons

activated to recognize simple structures as lines and other more complex combinations [7],

this was the foundations of computer vision.

From the Dartmouth conference up to 1966 a lot of investment propelled ai research and major

advancement where made however, the lack of computer power was a massive roof for its

true capabilities and at one point most funding stopped. Thus, started the called AI Winter for

roughly 30 years.

On this time AI kept developing by those who believed in it and started to generate more

specialized branches. On 1997 Deep Blue was the first computer to beat a chess game

champion. The recent advances in hardware explained by Moore’s Law, co-founder of Intel,

he observed (predicted) that the quantity of micro transistors to fit in an integrated circuit

doubles every year.

On 2012 the CNN AlexNet by Alex Krizhevsky and his team accomplishes a first position in

the ImageNet classification challenge, thanks in part to the use of GPUs as computation power.

From there major advancements have occurred and Artificial Intelligence is now commercially

available on many sectors. The increase of both computer power and data have proven to

propel artificial intelligence to where we are today.

5.2. Machine Learning

Machine Learning is based in the learning of the machines themself as opposite to the

traditional programming where the rules are defined by the programmer. Thus, in machine

learning the program is feed with data and it is able to automatically change its algorithms to

achieve the result without the intervention of the programmer. This process is understood as

the learning done by the machine.

Traditional machine learning needs the intervention of an engineer to extract and select the

most appropriate features for the data. In computer vision, for example, we could use edge

detection to extract features and then feed it to the algorithm. Then the machine would learn

what is known as “bag of words”, the characteristic features that define each class. From here

it can identify image of the same class by searching for this bag of words.

It is divided in three main fields:

- Supervised: the input data is correctly labeled and the algorithm learns the features

 Page 19

that define each label. At the end, the machine is able to predict the label of an input

data.

- Unsupervised: the input data is not labeled. The purpose of the algorithm is to find a

pattern in the structure and define clusters (groups).

- Reinforcement: the input data is not labeled and the learning process is based in the

experience. When the algorithm perform well it is reinforced with positive feedback

while when it is incorrect it is penalized.

In our case we will be focusing in supervised learning as our data is labeled and we need the

algorithm to be able to predict the label of new data. All this process is based in the idea of

regression.

5.2.1. Regression

In statistics regression is an approach to define that a model that represents the relationship

between one or more variable (dependents) and another one (explanatory). It is the algorithm

created by the machine learning process.

There are several models but the simplest case is linear regression. In a two-dimensional

situation we could have time (x) and the value of some stocks (y). Our intention is to know how

much these stocks will be worth next year. As data we have several data points of the time

and the value at that moment, obviously each one is more or less different. A linear regression

will create a line to represent the relation between time and value and with it, we will be able

to predict the value (y) at a given time (x). However, there is always some error between the

prediction and the real data.

Page 20

Figure 8. Simple example of linear regression. We have some datapoints and a linear

regression that represents the relation between x and y. [13]

The linear model result of the regression is defined as:

ℎ(𝑥) = 𝜃0 + 𝜃1 ∙ 𝑥 (Eq.1)

Where h(x) is the hypothesis function that fits the data, x is the feature and 𝜃 are the

parameters or weights, these are the variables that the algorithm will adapt to fit the relation

x/h(x).

To adapt the parameters to the data we use a loss or cost function. This function can be defined

in several ways but what it does is measuring how off the current hypothesis (h(x)) is from the

real data. From here the goal is to tune the weights (𝜃) to reduce the loss function making the

model to better fit the data and as close as possible to the real data.

A basic example of cost function is the squared difference between the hypothesis result and

the real data:

(ℎ(𝑥) − 𝑦𝑟𝑒𝑎𝑙)2 (Eq.2)

 Page 21

Figure 9. Visual example of linear regression and the error or loss, between the

predicted result (line) and the real data (point). [13]

What we need is to minimize the cost for every data sample (pair of x/y) we have. Then, as x

and y are defined all it remains is the parameters, which we will tune to reduce the cost.

There are again several methodologies to reduce the cost function, a general approach is to

use gradient descent. This focuses on variating each parameter by a small value that

accomplishes to reduce the cost function. It is usually compared to taking small steps in the

steepest direction until we reach the bottom. It is important to keep in mind that when we arrive

to the bottom we cannot assure if it is a global or local minimum of the function.

Page 22

Figure 10. Cost function representation with two paths of gradient descent arriving at

two different local minimums. [1]

To mathematically define this, we calculate the partial derivatives of the cost function for each

parameter to find the “steepest” direction, the direction that will reduce more the cost. We

repeat the process until converging into a local (or global) minimum.

The important concept here is generalization, we need the model to be able to predict the

result of an input without having seen it before. If we train the model with insufficient data it will

“memorize” the result of the training inputs but, as it has not learnt all possible variations it will

give a wrong result on new inputs. As example we could take the data at Figure 9, if we would

create a regression line from only two points it is very unlikely that the result would have been

the same, instead the more points we take the more fitted is the line.

The selection of all these functions has a key role in the training and performance of all

machine learning models. More advanced models have substituted the simpler linear

regression as for example the sigmoid, tanh, ReLu (used in this project) or ReLu leaked to say

some. These models perform better and are faster to train. However, the underling idea

remains the same, optimizing the cost function to fit the data.

5.3. Artificial Neural Networks

Artificial neural networks (ANN) where first inspired by the brain, and they try to mimic the very

same behavior of neurons, thus the name.

 Page 23

5.3.1. Deep Learning

In a traditional structure, the network is composed by multiple neurons usually grouped by

layers. There are basically three types of layers: input, which is directly the input data. Second,

hidden (or middle) layers and lastly the output layer. ANNs with many hidden layers are called

Deep Learning.

Each neuron represents a computational unit, an operation similar to the regression defined

by the activation function. The input of each neuron comes from all the outputs of the previous

layer. The relation is modeled with weights (𝜃) which as before, the training process will adapt.

Figure 11. Artificial Neural Network Architecture. [5]

This combination of neurons permits automatic extraction of features and also generates a

nonlinear algorithm, fitted for more complex problems.

To help understand how this works we have prepared a visual example with three neurons

(one as bias, a constant value) and one output. With this structure we can easily create and

AND logic function.

Page 24

Figure 12. Example of neurons acting as AND logic function. (Source: own)

The output of the neurons is weighted and summed as input of the next neuron. The weights

have been adjusted in the training and now, the output of the first layer (x1, x2) will define our

output.

The activation function on the last neuron is the sigmoid function, shown below at Figure 13:

Figure 13. Sigmoid function plot, used as activation of the last layer neuron. (Source:

own)

The sigmoid function returns an output limited between 0 and 1. Large x values will return 1

while large negative values will return 0.

With this we can now create a decision table of the possible solutions based in the input values:

 Page 25

x1 x2 h(x)

0 0 h(-30) → 0

0 1 h(-10) → 0

1 0 h(-10) → 0

1 1 h(10) → 1

Table 2. Logic table representing AND function created by the ANN example. (Source:

own)

Combining multiple neurons and layers permits more advanced and complex algorithms.

A common approach in classification algorithms is to create the output layer with as many

neurons as classes we have. Then, while activation functions like ReLu or ReLu leaked are

usually better at hidden layers we set the output neurons with sigmoid functions. Now, each

neuron represents a class and the output of the sigmoid function, from zero to one, is the

predicted probability of the input data to belong to that class.

5.3.2. Back-propagation

To train a neural net we follow the same principles as before. Now we have an algorithm result

of combining multiple activation functions by weights. To correct the output, we will again use

the cost function and gradient descend. In this case however, we will use it from the last layer

and use the partial derivatives to “propagate” the correction thought the previous layers and

the network.

This process is highly resource consuming, and due this it is very important to choose the

correct activation functions. The shape of the derivative of the cost function will determine the

“velocity” of the training.

5.3.3. Convolutional Neural Networks

Convolutional neural networks or CNNs are a branch of artificial neural networks specifically

designed for image inputs. This specialization allows to adapt certain features into the

architecture that greatly enhance performance.

CNNs are much better than traditional ANNs at extracting features from images, as we will

see, the use of convolutions takes into account spatially related pixels rather than trying to

Page 26

connect all pixels. This characteristic is what makes CNNs much better and faster.

The basic idea is the same as in ANNs where several neuronal layers are connected between

each other. In the case of CNNs however, the layers are organized in 3 dimensional volumes:

height, width and depth. This structure represents an image itself and are usually referred as

feature maps.

Another important difference is that neurons are not fully connected to previous layers, instead

each neuron is only connected to a small region of neurons.

Figure 14. Convolutional neural network layer example. The red cube represents an

input image of 32x32x3, the neurons from the next layer only look at a small region.

[5]

All neurons from a certain depth of a layer share the same input size and parameters, while

they are “looking” at different regions all regionals are of equal shape and the weights are

equally distributed. This permits to drastically reduce the number of parameters as we have

unified all the neurons per depth. These specifics characteristics are referred as filter or kernel.

 Page 27

Figure 15. Visual representation of a convolution calculus. Notice that the kernel

represents the weights of each connection of the input to the neuron in the output. [5]

Adjusting the parameters of each filter we can tune the filters to identify certain structures. The

first layer would, for example, identify straight lines oriented in different directions. Then

combining these results in the next layer might identify shapes as squares or connected lines

at a certain degree. As the process dives deeper in the network the CNN is able to identify

more complex shapes.

Depending on the volum of the layers it is interesting to reduce the shape of the feature map

to control the ammount of parametrs and increase efficency (speed up the learning). To do it,

architecures usually include polling layers to reduce the size of the feature maps. The pooling

simply takes a region of the previous layer and merges it into one neuron using a max or

avergage operation. On the opposite of convolutional layers, the depth of the feature map

remains unchanged what means that the resulting shape is smaller than the input.

Combining convolutoion with pooling we can create a CNN and train it the same way than an

ANN using back propagation. Nevertheless, neither convolutions nor pooling are fitted to

classify the input images. Thus we have to add a traditional ANN on top (at the end) of the

CNN. To do this we must flatten the last layer of the CNN so we can feed it to a fully connected

network. This combination uses the feature extraction of convolutions and the classification of

ANNs.

Page 28

Figure 16. Convolutional Neural Network architecture example. [9]

5.3.4. Predefined and custom

There are an infinite number of ANN architectures to create, we can regulate layers, activation

functions and many more parameters to define a network. The problem relies on selecting the

right combination that performs best in our scenario.

Luckily, an architecture fitted for a specific case is usually also fitted for another case more or

less similar. Thus, we can reuse predefined architectures that have already proved to be good.

Because of this is much faster and straight forward to create models as we can simply import

an already existing.

On the other hand, we can opt to create a model from scratch to specially fit our requirements.

There are several libraries as Keras tensorflow, Caffe or Theano that provide both predefined

models and layer structures. We can easily combine these structures to create our own model.

Another option and the one that we will be using in this project is to use a predefined CNN

model and remove the top classification layer to create our own classification. If needed, we

can also modify specific layers and parameters of the network.

5.3.5. Transfer learning with pretrained networks

When we have defined our model whether is predefined or custom, we have to train it to fit our

data. As explained, this means using backpropagation to tune our model weights so it reduces

the loss function. Similar to the architecture we have two options: train from scratch or use

transfer learning with a pretrained model.

If we have a predefined model, we can opt for transfer learning which it relies on the concept

of general-purpose models. In this we case, we will import not only the model architecture but

also its parameters.

It is especially relevant in CNNs where the features to solve one problem are usually similar

 Page 29

for other problems. If we remember how convolutions work, we can understand that the basic

shapes that define one structure (lines, squares…) are the same for other structures.

Thus, we can save these feature extraction learning from one model and use it on another. By

recycling the learning, our model will already be able to extract some features from the data,

for example lines and curves from images.

A common approach and the one that we will use in this project, is to use a pretrained CNN

and add a custom classifier. Then we feed our data to the whole model (CNN + classifier) and

train it but, instead of starting to train the CNN from random weights we do it from the imported

ones.

This method accelerates the learning process and allow us to train models with less data, as

the model will “only” need to slightly adjust the weights instead of modify them completely. The

biggest improvement in weights is done in the classification layer as it is usually utterly specific

to each case.

If we train from scratch, we start by randomly initializing the weights of the model then, we feed

our data and the learning process adjusts step by step the weights to the optimal values. For

this, we need a relatively large amount of data to allow the learning process do enough

modifications.

5.3.6. Data augmentation

A useful resource in machine learning is use functions to increase the dataset. A common

approach is to perform slight modifications to the image dataset to create more images but

equally valid. Some of the main modifications are:

- Flipping: mirror the image in the vertical or horizontal axis to create its opposite

- Rotation: rotate images between some certain degrees, usually a defined range.

- Brightness: modify the intensity of each pixel to change the brightness, usually a range.

- Zoom: zoom in a particular area of the image.

This methodology is based on the concept that the more situations we show our model, the

better it will perform. Even if it is the same image changing some characteristics will improve

the learning.

Nonetheless it is important to keep in mind that the root image is the same, thus it can produce

the undesired effect of overfitting. As we feed our model many variations of few images the

learning process memorizes these data rather than generalizing the solution.

Page 30

5.3.7. Model validation

When the model has been defined and trained, we must do a validation test to ensure that the

predictions are correct and generalized to the problem and not only fitted to the training data.

Due to this, it is common to part the dataset between training and test data.

Once trained the test data will be feed into the model for first time to check if the predictions

are correct. There are several metrics that we can use to do so:

- Accuracy: proportion of correct predictions in relation to the quantity of predictions

done. It is the most straight forward way to evaluate a model.

- Sensitivity or Recall: it is the proportion of correct positive predictions in relation all

real positive cases (positive refers to the input belonging to the class). Proportion of

true positive.

- Specificity: as opposite to the sensitivity it refers to the proportion of negative

predictions in relation all real negative cases, inputs that do not belong to a certain

class. Proportion of true negative.

- Precision: proportion of true positive in relation all positive predictions.

- F1 Score: a unique metric to sum up precision and recall, it usually uses a harmonic

average that shows if one of the metrics is especially low.

To present a more visual representation of the results we can use the confusion matrix: Table

3. We see on the diagonal (top left to bottom right) the correctly predicted inputs. The rest of

the matrix shows the wrongly classified (False) proportions. The simplest version is a binary

classification but the same principles apply to multiple class.

ACTUAL

POSITIVE NEGATIVE METRICS

PREDICTIED

POSITIVE TP FP
Precision 𝑇𝑃

𝑇𝑃 + 𝐹𝑃

NEGATIVE FN TN

METRICS

Sensitivity

𝑇𝑃

𝑇𝑃 + 𝐹𝑁

Specificity

𝑇𝑁

𝑇𝑁 + 𝐹𝑃

Accuracy

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁

Table 3. Confusion Matrix and formulas for performance metrics. (Source: own)

 Page 31

6. Deep Learning with Distorted Images

The main goal of this project is to build a model that is able to detect and classify distorted

ultrasounds from correct ones. For this we must first define what is considered a distortion and

explore the limits between correct and corrupted images.

6.1. Methodology

As previously explained, one option would be to use a dataset with correct and distorted

images labeled by an expert in the field. The model could then learn from these data without

us having to define an explicit limit at which an image is no longer considered correct.

Nevertheless, this process has some drawbacks, as the database is quite hard to obtain and

we have no control over the corruptions.

Instead we opted to create artificial artifacts on correct images. This methodology is far more

flexible than the previous as we can easily control the degree of corruption and the size of the

dataset. As we will see this will allow us to study in detail each distortion.

Then, we used the model designed by Vicent at [6] to experiment its behavior classifying Fetal

Biometric Planes under different degrees of image corruption.

For the experiment, we used the structure with the best results, a pretrained Xception model

from Keras plus a densely connected neural network as classifier, and trained it with the data

we had (keeping a 20% of the images as test). With this we can accquire a fairly high accuracy,

over 90% under only correct images.

Page 32

Figure 17. Model training and testing for a classifier (CNN + dense layers) of Medical

Biometric Planes. The result is over 90% on accuracy. (Source: own)

From here we apply the transformations to create the distortions onto the test dataset. We

apply the same intensity of the effect to all the test images and use a loop to successively scale

up the intensity on each iteration.

This means that on a first iteration we will apply scale up to the full test dataset cutting out all

the borders 4pixels. On a next iteration we increase the intensity to 8pixels. We keep this

process until we have done 50 iterations of the same transformation and then repeat it onto

the next distortion, starting again at the “lowest” intensity of the effect and scaling it up.

 Page 33

Figure 18. Different degrees of distortion for each corruption. The labels indicate the

value of the variable used to create the effect and the structural similarity index (ssim).

(Source: own)

With each iteration we create a new dataset of test images transformed a certain degree by a

certain distortion. We then use this dataset to test the model and get its accuracy by distortion

intensity.

Page 34

Figure 19. Structure of the experiment to define the distortion limits. (Source: own)

6.2. Results

6.2.1. Accuracy vs intensity

To visualize the results, we have plotted three graphs (one for each distortion) that relate the

accuracy of the model (y-axis) with the intensity of the corruption (x-axis). Each intensity

represents the defining parameter of the corruption. The scale up is defined by the proportion

of image “lost” in relation of the original image. The noise is defined by the value of sigma and

the blur by the radius of the disk used.

 Page 35

Figure 20. Relation of accuracy and intensity for each distortion. (Source: own)

As it is predictable the more the intensity of distortion the lower the accuracy of the model. We

observe, nonetheless, an inflation points where more distortion does not translate into

Page 36

accuracy loss Figure 20. We clearly see that all graphics have a minimum accuracy level, this

is because at some point even if the model is randomly classifying it will sometimes predict the

correct class.

Combining all the results we can set a threshold value of what the model considers a distortion.

We set a limit accuracy of 90% or an equivalent accuracy loss of around 5%. When the

intensity of the corruption makes the accuracy drop under this value, we will consider the effect

a distortion. The results of this experiments are:

- Scale up: proportion of the image lost 0.015 (1,5%)

- Noise: the sigma that defines the variance is sigma = 0.18

- Blur: the pixel size of the disk radius is r = 4 pixels

6.2.2. Accuracy vs structural similarity (ssim)

To further understand the results, we decided to measure the distortion by a standardized

method. On the one hand, this will let us have an idea of how much the image is distorted in

relation to the original. And on the other hand, it will permit a comparison between effects.

The method used is the structural similarity index [20]. It defines a value of similarity between

a reference image and a distorted one, comparing both images and the structure of the

information they carry. This approach is inspired on how humans see, as it does not compare

pixel by pixel but instead it focuses in structures.

The key relies in the idea that pixels have strong interrelations specially between neighbors.

To measure this, the algorithm compares sets of spatially close pixels (windows) of both

images in multiple ways, to finally determine an index between 1 and -1 where 1 means

identical images, 0 no similarity at all and -1 opposite structure. For our problem we only have

to take into account 1 or 0.

Now we can represent the effect of the distortion based on the real impact on the image.

Because the structural similarity index is based in how humans see it will be easier to

understand why the model fails to correctly classify.

 Page 37

Figure 21. Relation of accuracy and structural similarity index (ssim) for each distortion.

(Source: own)

Page 38

 Now we can extract a lot of information from how the corruptions affect the images by studying

the Figure 21.

First, we can see that the shape of the curve is similar in the three cases, they have a first

phase where small changes of ssim do not affect the accuracy, especially short in the blur

effect.

Then in a second phase the slope decreases in concave shape. At this point the accuracy

drastically drops in relation to the ssim. It is interesting to see that not in all cases this occurs

on the same moment. For scale up and noise it seems to be close to 0.4 while for blur it is

around 0.8 and 0.6.

Another difference is the steep of the slope, for noise and blur is somewhat similar but for scale

up is almost vertical. We cannot explain for sure the reason of this and it is outside the scope

of the current project, however, we estimate that the moment we lose a part of the image with

relevant information for the classification is when the accuracy drops, as there is no longer any

way to classify the image. Relevant parts of the image might be the shapes surrounding the

fetus or parts of the fetus itself.

The third and last phase starts when the curve loses the slope and ends with the last point. In

the case of noise and blur the slope completely flattens while on the scale up we see that both

accuracy and ssim stop decreasing. We clearly see that the points are much more grouped

almost with no more drop in accuracy and ssim. It is easy to understand the lower limit of

accuracy but harder to explain why the ssim seems to have a limit too. We will now explore

further this situation.

6.2.3. Intensity vs structural similarity (ssim)

To understand how the behavior of the structural similarity index we studied its relation with

the corruption intensity. It is obvious that the ssim will go down as the intensity increases but it

is interesting to understand how it evolves.

 Page 39

Figure 22. Relation between structural similarity index and corruption intensity.

(Source: own)

We clearly observe that at some point while the intensity increases the ssim remains equal.

Page 40

This explains as well why the ssim drop has a lower limit the image is already “saturated” in

distortion. We observe a different behavior for each distortion, below we will explain each of

them:

- Scale up: convex shaped curve with steep slope at the beginning. We rapidly get to

the point of ssim saturation, meaning the image has lost most of its relation with the

original but still keeps some. This is because while the shapes and content are

different, they still possess some relation as both images are ultrasounds and show,

although partially, the same image. It arrives so fast to the saturation that we cannot

even see the flattening of accuracy and ssim in the Figure 21.

- Noise: convex shaped curve that reaches zero ssim. We stated that the noise is

created with a gaussian distribution of mean equal to 0 that affects all pixels. As we

increase the variance (or sigma) the resulting ssim keeps dropping as we modify all

the pixels of the image by some degree until losing all relation to the original. This effect

is clearly seen at the most extreme cases in Figure 6 and Figure 20.

- Blur: convex shaped curve that flattens just under 0.5 ssim. This premature flattening

is due to the function used to create blur and the definition of the corruption itself. As

what we are doing id dissolving the edges the more general shapes remain more or

less equal thus, maintaining the relation with the original image.

 Page 41

7. Deep Learning for Image Distortion Recognition

In this section we will use machine learning tools to create a model able to classify distorted

images and accomplish our goal. We will take advantage of the learning done with the previous

datasets, for example Image Net, to recognize patterns and transfer it to our model. Then we

will feed these patterns to predict the class of the input image.

Before going further, we will recap all the steps done and define where we are:

- We have gathered all medical images used by Vicent [6] and provided by the

collaboration between the medical staff at Hospital Sant Joan de Déu and the Lassie

Lab from UPC.

- Defined the limits between what is considered distortion and correct images.

- Expanded the original dataset with generated distorted images of blur, noise and zoom

or scale up.

7.1. Image Preprocessing

From here we can now proceed to train our own machine learning model but first, we must

prepare the dataset to fit it. This is a required step because the models we will use are

predefined. While we can modify some parts of the model, they do require some specific

formatting in the input data.

First of all, we merge the original and modified lists that we previously prepared to have two

unique lists: one for images and another one for labels. As we generated this lists in an ordered

sequence all the data has a specific order. It will be interesting to avoid this in order to properly

train our model.

With the two list we then, use a Keras functionality to split the train and test data. By default, it

is set 80% for training and 20% for test. This is actually a pretty common and also good

approach so we will not modify it. The build in function also shuffles the dataset so we avoid

having a certain order in the training that may cause adverse effects in the result.

Page 42

#---------------------PREPARE DATA FOR CNN----------------------

#Merge lists of images and merge lists of labels

all_images = images_orig + images_mod

all_y = y_orig+y_mod

#Split train and test images

x_train, x_test, y_train, y_test = train_test_split(all_images,all_

y)

The result of this process are two groups, one for train and one for test, with a list of images

and another of labels. The sizes are quite important to understand the validity of the model.

Again, the balance of the number of classes is important and the function automatically

balances the result (when possible).

CLASS TRAIN (80%) TEST (20%)

ORIGINAL 434 108

SCALED UP 433 109

BLUR 434 108

NOISE 433 109

TOTAL 1.734 434

Table 4. Sum of train and test data by class type. The dataset is split 80% for training

and 20% for test. (Source: own)

Finally, we reshape the arrays into the format taken by the model. For the images we will

convert our list into a numpy array of 174x174x3. While the ultrasounds are greyscale the

models are built for colored images so we have to adapt our data to the requirements, as

explained previously. The labels, on the other hand, are converted into an array of 4 positions

per image each corresponding to a class. As before, we use a function that automatically

converts each label that we have (0,1,2,3) to a 1 in a concrete position of the array.

 Page 43

#Reshape into np array

x_train=np.array(x_train).reshape(np.shape(x_train)[0],width-

50,height-50,3)

x_test=np.array(x_test).reshape(np.shape(x_test)[0],width-

50,height-50,3)

Code classes on shape (4,) arrays

y_train = utils.to_categorical(y_train)

y_test= utils.to_categorical(y_test)

Now, the data is ready to be used by our model. The next step is creating a model and adapt

it to our data so it meets our requirements.

As explained, there are many strategies to implement our model so we will explore and

compare some to get the best results. Nevertheless, we cannot assure whether there is a

model that can outperform ours.

7.2. VGG16

7.2.1. Introduction

The VGG16 is a convolutional neural network model proposed by Oxford’s university Visual

Geometry Group (VGG) at [15]. The model became famous for securing the first position at

the Image Net Challenge 2014 achieving a 92,7% top 5 test accuracy. It is also known for the

good performance when generalizing to other datasets using transfer learning. The model is

trained under the ImageNet dataset with 14 million images of 1000 different classes.

Figure 23. Small sample of ImageNet dataset. [8]

The model consists of multiple convolutional layers connected by max pooling filters. The

output is then flattened and classified by a fully connected network. The default input image is

Page 44

244x244 colored image.

Figure 24. Graphic representation of VGG16 architecture. From the input image to the

classification output, left to right.[9]

7.2.2. Model Implementation

With everything set up we can now proceed to create our own model. The model will be a

combination of the predefined convolutional neural network VGG16 and a densely connected

network. The CNN will extract the patterns and the neural network will predict the class from

these.

To begin with, we define a sequential model. This means that each layer that we add goes

after the last one and so, all the layers are connected. The output of the previous layer is the

input of the new layer. The whole process has an inherent order, from the CNN to the final

classifier layer.

The first layer is the predefined VGG16 convolutional neural network. While this is a model

itself with its own layers, we can use it as a unique layer with one input and one output. This

CNN has its own dense classifier layer however, we will use our own classifier as the shape it

has to classify are fairly different from the ones it was made for.

We also have to define the input shape of the images, while we can slightly modify it, we must

respect the three-color input.

Finally, the VGG16 CNN returns an output array of 7x7x512. From here the output is flattened

 Page 45

in one layer so, as the input is 7x7x512 the flat result is size 1x25.088. Then we create the

neural network, with a first layer of 1.024 nodes fully connected to the flattened input. We set

the activation to ReLu (Rectified Linear Unit) as it is relatively fast to train and with good

performance.

To end with, we connect the 1.024 nodes to 4 output nodes that will serve as classifiers. The

activation function in this case is the softmax as we want to have a probabilistic prediction.

Function to create secuential model CNN + Dense classifier

def baseline_model():

 from tensorflow.keras.applications.vgg16 import VGG16

 model=Sequential()

 model.add(VGG16(include_top=False,

input_shape=(width-50,height-50,3)))

 model.add(Flatten())

 model.add(Dense(1024, activation='relu'))

 model.add(Dense(4, activation='softmax'))

 return model

Now, from any input image the model will calculate the value of each classification node and

give a number from zero to one on the probability of that image to belong to each class.

7.2.3. Train and test

The model is now able to extract relevant patterns from the images but, it is still unable to

correctly relate these features to a class. To do so, we will use the train data to feed the model

with input images and their correct class, with this the model will learn which patterns define

each class adapting the weights of each layer to match the data with the prediction.

To train the model we can tune some hyperparameters that will define the learning process.

These include multiple parameters that help to adapt the process to the circumstances, in our

case we will modify two basic factors: epochs and batch size. We have set the epochs to one

hundred because, for the data we have, it is a safe number that guarantees the model will

achieve the maximum training. On the other hand, we set the batch size to a standard measure

of 64 (recommended values are 32, 64, 128).

Page 46

Define model

model = baseline_model()

model.compile(optimizer='adam', loss='categorical_crossentropy', me

trics=['accuracy'])

Train the model to fit the data and validate the result with the

test

history=model.fit(x_train, y_train, validation_data=(x_test, y_test

), epochs=100, batch_size=64, shuffle=True)

Figure 25. Model with vgg16 CNN training and testing per epoch. (Source: own)

After the training process we can see that the accuracy arrives to its maximum without

overfitting. The accuracy is over 90% which we can estimate it is a fairly good result.

7.2.4. Results

To better visualize the results, we plot the confusion matrix for the test data. This will allow us

to understand how the model performs for each class.

 Page 47

Figure 26. Confusion Matrix by proportions, of the VGG16 model. Y axis represents

the predicted class and the X axis the true class. (Source: own)

The results are quite good as the diagonal (top left to bottom right) which represents the correct

predictions has the highest success in the four classes. Moreover, the accuracy in all classes

is over 90%. Moreover, the noise has 100% accuracy and, as shown on Table 5, it actually

has perfect precision and recall. This means that it is a differentiable corruption and the model

has never predicted it wrong.

Now we can calculate more metrics to sum up the confusion matrix in a few key performance

indicators (KPIs).

Table 5. VGG16 performance summary. (Source: own)

All metrics are above 90% and have good support, we can define the results as good.

Page 48

7.3. Xception

7.3.1. Introduction

Xception is a convolutional neural network that stands for extreme inception. The name come

from one of the previous versions of the network in which is based, the winner of the Image

Net Challenge: Inception.

With 71 layers, the model is much deeper than the VGG architecture and is able to achieve

better results [3]. It also uses a different methodology called depth wise separable convolutions

that dramatically reduces training time by enhancing efficiency rather than reducing

parameters or accuracy.

Depth wise convolution divides a normal convolution in two steps. Actually, it is more correct

to call it a separable convolution as it divides the operation in depth wise and pointwise

convolution.

Depth wise uses a kernel size that operates one channel at a time to create one image with

the same channels as the original one.

Figure 27. Depth wise convolution, the kernel iterates through each channel and then

the result is stacked together. [12]

The pointwise convolution uses a Keras size of one pixel and the number of channels the

 Page 49

original image has (a normal rgb would be 1x1x3).

Figure 28. Pointwise convolution, single pixel kernels of depth equal to the input

channels. [12]

Then we simply create as many kernels as output channels we need to create the final image.

Figure 29. Pointwise convolution with as many kernels as output channels. [12]

One way to see it is that it transforms the image once (depth wise) and then elongates it to the

output channels with the pointwise convolution. Thus, this process is much more efficient than

the traditional convolution that would transform the image as many times as output channels

we have.

The predefined model is accessible at Keras also pretrained with Image Net. The model takes

as default input a 299x299 colored image and includes a fully connected layer as classifier

(removable).

Page 50

The 71 layers mix some traditional convolutions with separable convolutions and pooling. It

uses the ReLu function to learn and softmax for the classification layers. The full architecture

can be divided into three parts: entry, middle, exit as shown in the Figure 30.

Figure 30. Xception model architecture divided in three parts [3]

7.3.2. Model Implementation

We can reuse almost all the structure prepared for the VGG16. As before, the model will be a

combination of the predefined convolutional neural network Xception and a densely connected

network. Again, the CNN will extract the patterns and the neural network will predict the class

from these.

We will use the same sequential model as before but we will change the first layer so instead

of a VGG16 we will use the Xception CNN.

We also have to define the input shape of the images, as said the Xception has a predefined

input of 299x299 colored image but, this would require a resizing to increase the shape. As

said, this might cause some blurring due to the scalation. Because of this we will keep the

same image size.

Now, from any input image the model will calculate the value of each classification node and

 Page 51

give a number from zero to one on the probability of that image to belong to each class.

7.3.3. Train and test

We will again reuse most of the code used before to train and validate the model. We maintain

the same hyperparameters and train our model.

Figure 31. Model with vgg16 CNN training and testing per epoch. (Source: own)

After the training process we can see that the accuracy arrives to its maximum without

overfitting. The accuracy is over 90% which we can estimate it is a fairly good result. The

learning curve as well as the general accuracy is quite similar to the VGG16.

7.3.4. Results

As before, we plot the confusion matrix for the test data to better visualize the results.

Page 52

Figure 32. Confusion Matrix by proportions, of the Xception model. Y axis represents

the predicted class and the X axis the true class. (Source: own)

Similarly, to before the results are quite good as the diagonal (top left to bottom right) has the

highest success in the four classes. Moreover, the accuracy in all classes is over 90%.

Now we can calculate more metrics to sum up the confusion matrix in a few key performance

indicators (KPIs).

Table 6. Xception performance summary. (Source: own)

Again, the results are quite similar to the VGG16 for what we can say that both of our models

perform good enough for our requirements.

 Page 53

7.4. Results Comparison

From exploring both models we have acquired two valid models with accuracy over 90%. We

will prepare and experiment to select one of the models and better understand the results.

One of the advantages of creating the corrupted images is that we have full control on thus

corruptions. As so we will now increase our test dataset using a similar methodology of that

we used in the previous performance experiment at 6. Deep Learning with Distorted Images.

With this we will be able to validate our models on a more specific way exploring all possible

scenarios.

The only difference with the previous experiment is that we will filter only the original images

from the test and from these create all the corruptions to experiment. This is because

corruptions are easily created and controlled from original images.

This experiment has two main objectives: check which is the best model and check how does

the model perform in each situation. Both will be approached by the same methodology.

7.4.1. Overall accuracy

To expand the results obtained while validating the models we will first test the overall accuracy

of the models but with a larger and more detailed test set. As said, we will use the original

images from the test and corrupt them in different degrees to obtain a full range of corruptions

and validate the model with it. However, this process has a limitation on testing original images

as we can only have as many as there are in the first test dataset.

It also important to notice that the images are corrupted from the first value we consider a

corruption until the ssim starts to flatten, refer to Figure 22 for relation between intensity and

ssim.

Below we compare the two models under the generated test datasets:

Page 54

Table 7. VGG16 performance summary under full range of image corruption. (Source:

own)

Table 8. Xception performance summary under full range of image corruption.

(Source: own)

Again, we see that while close to one another the Xception outperforms the VGG16by 3% in

accuracy. It is also remarkable the high level of accuracy but explained, as we see below in

Figure 33, by the extreme cases where the corruptions are at its peak and easily identifiable.

While we would probably never have these cases in real life ultrasounds it is interesting for the

experiment to understand the whole range.

It is important to notice that at Figure 33 the accuracy is closer to zero when the ssim is close

to one. To understand the reason behind we must remember the methodology with which it

was created. We start from the original images and start apply increasing corruption to the

images, however to see how the accuracy evolves we have labeled each image as corrupted.

Obviously the first created images with low corruption should be considered originals, thus the

low accuracy.

 precision recall f1-score support

 Original 0.98 0.97 0.98 2622

 Scale up 0.85 0.95 0.90 966

 Blur 1.00 0.87 0.93 690

 Noise 1.00 1.00 1.00 966

 accuracy 0.96 5244

 macro avg 0.96 0.95 0.95 5244

weighted avg 0.96 0.96 0.96 5244

 precision recall f1-score support

 Original 0.98 1.00 0.99 2622

 Scale up 1.00 0.96 0.98 966

 Blur 1.00 1.00 1.00 690

 Noise 1.00 1.00 1.00 966

 accuracy 0.99 5244

 macro avg 1.00 0.99 0.99 5244

weighted avg 0.99 0.99 0.99 5244

 Page 55

Figure 33. Average accuracy and ssim, all images are label as corrupted. (Source:

own)

With Figure 33 we can now confirm that the Xception model performs better overall than the

VGG16. Nevertheless, we have to validate that the model is good enough for each corruption.

7.4.2. Accuracy by distortion class

Now we will study the behavior with each corruption. As we cannot define the range of usual

corruption in ultrasounds, we will have to study the full range and then pay especial attention

to the limit values that we defined to distinguish corrupted images from originals.

We will now plot the result of accuracy for the three corruptions but taking into account the limit

values of each distortion. The ideal result would be, obviously, a straight line of 100% accuracy.

However, we can expect the accuracy to drop near the limit as the algorithm may not be able

to distinguish the thin line of difference between corruption and unmodified image. This is due

to the fact that we set a single value as limit instead of a range.

Looking the results at Figure 34 we confirm our expectations on the output. In every corruption

we distinguish three major phases:

A first stage at which the accuracy is fairly high, both noise and blur have a 100% accuracy

while the scale starts at 100% and drops slowly to 85% by the end of the phase. This phase is

reason of the low intensity corruptions where the images are quite similar to the originals. The

algorithm can identify most of the images as correct but start to fail in some of them.

A second phase where the accuracy has a major drop. Close to the limit threshold value the

algorithm identifies all distortions but they are still labeled as correct. As we expected, this is

Page 56

because the value that we set as limit is not perfectly aligned with the model capabilities. A

minor change in our decision boundaries might have a huge impact on the results.

When the corruption arrives to the classification limit the result have a drastic nonlinear change

as all images are now labeled with distortion. Again, this is because the limit is a single value

not perfectly aligned with the model. We can observe that this change is mirrored like, if the

model was at 20% accuracy it suddenly passes to 80%. This is inherent to the model as all

images are different and setting an exact point to swap from one class to another is practically

unachievable.

The last phase the accuracy it is again at its peak as all images are highly corrupted and thus,

easily identifiable by the algorithm. This phase could continue until the maximum value of

distortion but it would be highly impractical and complicated due to computer power limitations.

 Page 57

Figure 34. Comparison of accuracy evolution vs ssim of both models. (Source: own)

Comparting one model to the other we observe again similar results yet some differentiable

characteristics.

First of all, we see that the accuracy of the Xception model is superior at the first phase on all

cases.

On the second phase there is a huge different in the noise as it starts far before on the VGG16

thus, the Xception model is far more accurate and closer to the limit for the noise artifact.

The third and final phase, is again quite similar with both models giving good results.

We conclude that the Xception model is slightly better and have a fairly good accuracy. As the

limit of corruption is a single point it produces a drastic drop in accuracy and a mirror like effect.

Nevertheless, we estimate that this drop is of minor importance as the classification close to

the limit could easily be interchangeable meaning that an image classified as corrupted could

probably be interpreted as correct without major consequences. The real problem are images

further from the boundary that present serious corruption, as seen, these are easily identified

by our model.

Overall, we conclude that the model is successful and the goal of identifying and classifying

corruption is accomplished.

Page 58

8. Environmental Impact

The environmental impact of this project is fairly low. There are two possible sources to track:

one is the hardware equipment used and the other is the electricity usage to run the program.

The hardware is a full workstation of multiple components all of which have a useful life far of

roughly 10 years, far larger than the project itself. The most hazardous part is the battery, with

potentially toxic chemicals inside as lithium, nickel or cadmium to say some.

When not recycled these substances can pollute land fields, rivers, lakes, oceans and even air

by combustion as some are highly volatile. Correctly recycling the battery and all computer

parts will drastically reduce the pollution footprint of the workstation.

On the other hand, the electricity usage is quite low. The workstation has a power of 70W

roughly 30 times less than an oven. We cannot estimate the power consumption of Google

Collaboratory servers as the data is confidential but, as Google is buying all of its energy from

renewable sources (solar and wind farms mainly) we can expect lesser environmental impact.

 Page 59

9. Conclusion

This project has been structured in several sub projects, following we list its goals and results:

- First of all, we required to define a limit value to differentiate corrupted images from

correct ones. By representing the effect of the distortions on the previous classification

model created by Vicent at [6] we determined the boundary value for each corruption.

- To understand the project own limitations, we need to understand how corruptions

behave and its extreme values. We represented the relation between the structural

similarity index (ssim) and the intensity degree of corruption applied.

- The main objective was to identify and classify corruptions in fetal ultrasound

images. By combining a convolutional neural network and a fully connected artificial

neural network we managed to obtain over 90% of accuracy on the three classes of

distortion.

- Additionally, to the main objective we wanted to obtain the best results by

comparing different models. We created both models and train – test them in a full

range of possible corrupted images to obtain the best model.

We believe that a next step to the project could be to reuse the corruption production code to

create a Generative Adversarial Network (GAN) to remove the corruption from images.

Research on this fairly new technology have achieved impressing results removing rain or

snow from images [19] and filling gaps (inpainting) [2]. With this we would not only detect the

corruptions but also fix them.

From now on, this project can serve as cleaning tool for medical databases, as it can discard

corrupted images. It can be specially interesting when combined with other classification

models to correctly classify a full data base. Our model can prepare the database to assure

the next classification is done only over correct data.

With all this, we state that the goal of the project has been achieved. It can now be implemented

to clean databases or help in the selection of ultrasound fetal images. Further work can be

done to combine this project with a classifier to automate a full classification process. With this

a complete algorithm could help sanitary professionals and researchers on their tasks.

Page 60

Budget

Reason Description Qty Unit Price Price

Data

Generation
50 h 50 €/h 2.500,00 €

Corruption

Analysis
100h 50 €/h 5.000,00 €

Model

Development
180h 50 €/h 9.000,00 €

Result Analysis 60 h 50 €/h 3.000,00 €

Total 390h 50 €/h 19.500,00 €

Report 120 h 50 €/h 6.000,00 €

Total 120 50 €/h 6.000,00 €

Workstation 1 1.000 €/un 1.000,00 €

Programing - Free - €

Windows and

Office
1 150 €/un 150,00 €

Total - - 1.150,00 €

TOTAL 26.650,00 €

Programming

Equipment

Documentation

 Page 61

Bibliography

References

[1] Andrew, Ng, Seminar 2: Linear regression with one variable, lecture notes, Machine

Learning, Stanford University, 21 May 2020.

[2] D. Pathak, P. Krähenbühl, J. Donahue, T. Darrell and A. A. Efros, "Context Encoders:

Feature Learning by Inpainting," 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), Las Vegas, NV, 2016, pp. 2536-2544, doi:

10.1109/CVPR.2016.278.

[3] F. Chollet, "Xception: Deep Learning with Depthwise Separable Convolutions," 2017

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI,

2017, pp. 1800-1807, doi: 10.1109/CVPR.2017.195.

[4] GitHub [online]. GitHub Blog. The State of the Octoverse: machine learning, 2019.

[https://github.blog/2019-01-24-the-state-of-the-octoverse-machine-learning/, 24th may

2020].

[5] GitHub [online]. Stanford Course: Convolutional Neural Networks for Visual Recognition,

2020. [https://cs231n.github.io/convolutional-networks/, 2nd june 2020].

[6] Gregori. Vicent, “Classificació Automàtica de plans ecogràfics en ecografies prenatals”,

Final Degree Thesis on Biomedic Engineering, Barcelona, UPC, 2018

[7] HUBEL, D H, and T N WIESEL. “Receptive fields, binocular interaction and functional

architecture in the cat's visual cortex.” The Journal of physiology vol. 160,1 (1962): 106-

54. doi:10.1113/jphysiol. 1962.sp006837

[8] Image-net [online]. [https://image-net.org/, 10 june 2020]

[9] Kamruzzaman, Abu. (2018). A Comparative Study of Convolutional Neural Network

Models with Rosenblatt’s Brain Model.

[10] Krizhevsky, Alex & Sutskever, Ilya & Hinton, Geoffrey. (2012). ImageNet Classification

with Deep Convolutional Neural Networks. Neural Information Processing Systems. 25.

10.1145/3065386.

[11] MathWorks [online]. Deep Learning. Convolution Neural Networks,

[https://www.mathworks.com/solutions/deep-learning/convolutional-neural-

https://www.mathworks.com/solutions/deep-learning/convolutional-neural-network.html

Page 62

network.html, 12 june 2020]

[12] Medium [online]. Towards Data Science. A basic introduction to separable convolutions,

2018. [https://towardsdatascience.com/a-basic-introduction-to-separable-convolutions-

b99ec3102728, 3 june 2020]

[13] Medium [online]. Towards Data Science. Linear Regression for machine learning, 2018.

[https://towardsdatascience.com/how-does-linear-regression-actually-work-

3297021970dd, 5 june 2020]

[14] S. Bendali, “Biometric Plane Classification in Fetal Ultrasound Scan”, Final Degree

Thesis on Biomedic Engineering, Barcelona, UPC, 2017

[15] Simonyan, Karen & Zisserman, Andrew. Very Deep Convolutional Networks for Large-

Scale Image Recognition. arXiv 1409.1556. . (2014).

[16] Turing A.M. (2009) Computing Machinery and Intelligence. In: Epstein R., Roberts G.,

Beber G. (eds) Parsing the Turing Test. Springer, Dordrecht

[17] University of Oxford [online]. Department of Engineering Science Page. Visual Geometry

Group [http://www.robots.ox.ac.uk/~vgg/, 29th may 2020].

[18] Yamashita R, Nishio M, Do RKG, Togashi K. Convolutional neural networks: an overview

and application in radiology. Insights Imaging. 2018;9(4):611-629. doi:10.1007/s13244-

018-0639-9

[19] Zhang, He & Sindagi, Vishwanath & Patel, Vishal. (2017). Image De-raining Using a

Conditional Generative Adversarial Network. IEEE Transactions on Circuits and Systems

for Video Technology. PP. 10.1109/TCSVT.2019.2920407.

[20] Zhou Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, "Image quality assessment:

from error visibility to structural similarity" in IEEE Transactions on Image Processing,

vol. 13, no. 4, pp. 600-612, April 2004, doi: 10.1109/TIP.2003.819861.

https://www.mathworks.com/solutions/deep-learning/convolutional-neural-network.html
https://towardsdatascience.com/a-basic-introduction-to-separable-convolutions-b99ec3102728
https://towardsdatascience.com/a-basic-introduction-to-separable-convolutions-b99ec3102728

