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Abstract. A viscous incompressible two-fluid model with a circular cylinder under
streamwise oscillations is investigated at a Reynolds number of 200 and at a displacement
amplitude of A = 0.13 and for the forcing cylinder oscillation frequency-to-natural vor-
tex shedding frequency ratios, f/f0 = 1.25, 1.75, 2.25, 2.75. Finite volume discretization
of the special integral form of two-dimensional continuity and unsteady Navier-Stokes
equations (when a solid body is present) are performed on a fixed Cartesian grid. Im-
proved volume-of-fluid method is used to discretize the free surface. The study focuses
on the laminar asymmetric flow structure transitions in the near wake region and lock-on
phenomena at a Froude number of Fr = 0.4 and for the cylinder submergence depths,
h = 0.25, 0.5 and 0.75. The results detail the link between the force and the wake dynam-
ics of the cylinder, and provide some insight into the understanding of active flow control
mechanisms on coastal and offshore engineering systems. The code validations in special
cases show good comparisons with previous numerical results.

1 INTRODUCTION

The transformation between kinetic and potential energies and the coexistence of vis-
cous and gravity forces at an unknown wavy boundary make the free surface phenomena
difficult to study. A great amount of work has been carried to explore the behaviour of
free surface vorticity. However, fundamental research is needed in order to understand the
interaction of a free surface with bluff body wakes which has been principally the subject
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of experimental studies (see e.g., [1], [2]). Such flows are found in ocean engineering appli-
cations and undersea technology. Computations of nonlinear viscous free surface problems
including cylindrical bodies are relatively few (see e.g., [3, 4]). In this paper two-phase
flow problem based on a viscous incompressible two-fluid model with a circular cylinder
is investigated numerically. A basic schematic that illustrates the problem is shown in
Figure 1. The present two-fluid model involve the fluids in the regions Ω1 and Ω2 with
densities, ρ1, ρ2, and dynamic viscosities, µ1, µ2, entering into the domain with uniform
velocity U at the inlet and leaving through the outlet boundary. The circular cylinder of

y∗

x∗

h∗

Ω1

Ω2

f∗

g∗

U

Figure 1: Schematic of the problem.

radius, d, is submerged in the fluid region Ω2 at the distance h∗ below the undisturbed
free surface. Initially, an infinitely long circular cylinder whose axis coincides with the
z-axis is at rest, and then, at time t = 0, the cylinder starts to perform streamwise
oscillations about the x-axis. The imposed oscillatory cylinder displacement is assigned
by x(t) = A cos(2πft). The relevant dimensionless parameters are the Reynolds number
R2 = Ud/ν2 (R1 = Ud/ν1); the forcing amplitude of the cylinder oscillations, A = A∗/d;
the frequency ratio, f/f0, with f = df ∗/U and f0 = df ∗

0 /U being the dimensionless forc-
ing frequency of the cylinder oscillation and the natural vortex shedding frequency; the
cylinder submergence depth, h = h∗/d, and the Froude number, Fr = U/

√
dg∗. Here,

ν1 = µ1/ρ1, ν2 = µ2/ρ2 are the kinematic viscosities of the fluids in Ω1 and Ω1, respec-
tively, f ∗ is the dimensional forcing frequency of cylinder oscillation, f ∗

0 is the dimensional
natural vortex shedding frequency of a stationary cylinder, g∗ is the acceleration due to
gravity, �g∗ = (0, g∗, 0), t∗ = td/U is the dimensional time, and t being the dimensionless
time. The dimensionless fluid pressure, p, is defined by p/ε = p∗/ρ2U

2, where ε = ρ1/ρ2

when �x ∈ Ω1, and ε = 1 when �x ∈ Ω2.

2 NUMERICAL MODEL AND ITS VALIDATION

The present paper adopts basically the same two phase flow model and numerical
method as that used by Bozkaya et al. [4], and only a brief description of points of direct
relevance to the computations will be provided here, further details of the implementation
can be found in [4]. Versteeg and Malalasekera [5] provide an excellent description of the
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finite-volume method on which the computational code is based. The free surface interface
is discretized with the volume-of-fluid method due to Hirt and Nichols [6]. Its advection in
time is performed based on the strictly mass conserving volume-of-fluid advection method
in two dimensional incompressible flows, due to Aulisa et. al. [7]. For the moving fluid-
body interface the fractional area/volume obstacle representation method due to Hirt and
Sicilian [8], and the cut cell method due to Gerrits [9] are employed.

The governing equations are the two-dimensional continuity and the Navier-Stokes
equations given by

dV
dt

+

∫

A

(�u · �n) dS = 0, (1)

d

dt

∫

V

�u dV +

∫

A

(�n · �u)�u dS = −1

ε

∫

A∪I

p�n dS +
1

R

∫

A∪I

�n · ∇�u dS +

∫

V

�F dV (2)

where V and A are the fractional volume and area, respectively, open to flow within
the computational cell, V ; I is the length of the fluid-body interface open to flow; �u is
the dimensionless velocity vector, where �u = (u, v, 0); �n is the outward unit normal
vector; S is the control volume boundary. These dimensionless quantities are defined in
terms of their dimensional counterparts: x = x∗/d, y = y∗/d, u = u∗/U, v = v∗/U ;-

V = V ∗/d2, S = S∗/d, V = V∗/d2, A = A∗/d, I = I∗/d. The external force, �F =
(−a1, 1/Fr2 − a2, 0), is due to the dimensionless gravity force, �g = (0, 1/Fr2, 0), and
the dimensionless acceleration of the non-inertial frame of reference, (−a1, −a2, 0). The
single set of governing equations (1)-(3) are solved in the flow part of the computational
domain, Ω = Ω1 ∪Ω2, after setting the fluid properties to ρ1/ρ2=1/100 and µ1/µ2=1/100
(or ν1/ν2=1) following the work of Reichl et. al. [3]. Therefore, the Reynolds numbers in
the fluid regions Ω1 and Ω2 are the same (R ≡ R1 = R2) which is varied by altering the
viscosity.

The boundary conditions are no-slip of the fluid on the cylinder surface, u = 0, v = 0;
the uniform stream at the inflow, u = U − v1, v = −v2; and the free slip conditions at
the top and bottom boundaries of the computational domain, ∂u/∂x = 0, v = −v2. The
well-posed open boundary conditions,

1

R

∂u

∂x
+

h̄

F r2
= p,

∂v

∂x
= 0 (3)

are enforced at the outflow boundary. Here, v1 and v2 are the x- and y-components of the
velocity of the non-inertial frame of reference, respectively, and h̄ is the height of the fluid
at the outflow boundary. The uniform flow is used as the initial condition. It is assumed
that at time t = 0, the free surface is undisturbed.

Finite volume discretization of the governing equations are performed for two fluid
regions Ω1 and Ω2 on a fixed Cartesian grid based on the aggregated-fluid approach by
describing the behaviour of both fluids using one set of equations (1)-(2). A non-inertial
frame of reference is used to eliminate previously reported computational difficulties in
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solving the governing equations in an inertial frame of reference which results in pres-
sure spikes (see for example, Kleefsman [10]). A second-order accurate central-difference
scheme is used to discretize the governing equations in space in conjunction with first-
order explicit forward Euler scheme to advance the numerical solution in time. A cell
merging procedure is used to preserve a global second-order accuracy of the spatial dis-
cretization. The computational domain size and the number of cells per diameter are
the same as that used by Bozkaya et al. [4], since these are found to be satisfactory
and are checked carefully. The computational domain size and the number of cells per

L2L1

L3

Figure 2: Grid geometry parameters (left). The shaded region is uniform grid region. Grid used
for the majority of the simulations (right). It contains 250 × 190 cells.

diameter are the same as that used by Bozkaya et al. [4], since these are found to be
satisfactory and are checked carefully. The computational domain geometry is defined
with respect to the mean position of the cylinder. In the vicinity of the mean cylinder
position, the grid has fine resolution and is uniform. Outside of the uniform grid region,
the grid expands exponentially towards the four boundaries of the computational domain.
The computational grid geometry is defined by specifying the locations of inflow and out-
flow boundaries, L1 and L2, along the x-axis and the location of the top and bottom
boundaries, L3, along the y-axis as shown in Figure 2. For a Reynolds number of 200,
this mesh give a natural shedding frequency of f0 = 0.198. This is within 0.1% of the
accepted value of 0.197 − 0.199 as shown in Table 1. In this table, the predicted values
of the maximum lift coefficient, CL,max; the mean drag coefficient, ĈD, and the predicted
natural shedding frequency, f0, are displayed using the numerical grid with L1 = 20,
L2 = 30, L3 = 40; 60 cells per cylinder diameter and ∆t = 0.005, 0.0075 and 0.01. The
predicted present results are in good agreement with previous numerical and experimen-
tal studies. Thus, this numerical grid with 60 cells per diameter seems to be sufficient
to capture the physical development of the flow in the boundary layer region accurately.
The present computations for R = 200 are terminated at tmax = 100 and 150, in the
presence and absence of a free surface (symbolically h = ∞), respectively. The choice
of these various parameters and the time step, ∆t = 0.005, are the same as that given
by Bozkaya et al. [4]. The development of the drag coefficient at small values of time is
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R Ref. f0 ĈD CL,max

200 Present (∆t = 0.005) 0.197239 1.3324 0.682

Present (∆t = 0.0075) 0.197239 1.3312 0.681

Present (∆t = 0.01) 0.19646 1.3302 0.680

Poncet [11] 0.199 1.3389 0.70

Henderson [12] 0.1972 1.3412 -

De Palma et al. [13] 0.19 1.34 0.68

Table 1: The comparison of the predicted natural vortex shedding frequency, f0; the maximum lift
coefficient, CL,max; the mean drag coefficients, ĈD, with the previous numerical results.

(iv)
(iii)
(ii)
(i)1.4

1.2

1
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0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t
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Figure 3: The drag coefficient, CD, for uniform flow past a stationary cylinder in the absence of
a free surface at R = 550 : (i) Gubanov [16], (ii) Ploumhans and Winckelmans [14], (iii) Li et

al. [15], (iv) present work.

compared with previous numerical results for uniform flow past a stationary cylinder at
R = 550 as shown in Figure 3. The predicted drag coefficient values are slightly lower
than the ones obtained by Ploumhans and Winckelmans [14] and Li et al. [15]. This is
due to numerical viscosity introduced by the relatively low-order scheme employed in the
present study. This artificial diffusion results in a flow behaving as if it were at a slightly
lower Reynolds number, which is consistent with smaller ĈD values observed in Table 1.
The drag coefficients of Gubanov’s [16] single-phase fluid model and the present two-fluid
model differ appreciably (about 20%). The present two-phase flow model enables implicit
application of boundary conditions at the free surface and uses free slip wall boundary
conditions unlike Gubanov’s single-phase fluid model and thus produces more accurate
results.
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3 RESULTS

The present study focuses on the problem of unsteady flow of a viscous incompressible
fluid past a oscillating circular cylinder in the presence of a free surface at a Froude number
of Fr = 0.4. The numerical simulations are carried out in both absence (symbolically
h = ∞) and presence of a free surface at cylinder submergence depths, h = 0.25, 0.5, 0.75,
for the case of R = 200: A = 0.13 and f/f0 = 1.25, 1.75, 2.25, 2.75. The unsteady flow
calculations are conducted for the time up to t = 150 when h = ∞ and up to t = 100 when
h = 0.25, 0.5, 0.75 with the time step size ∆t = 0.005. In all equivorticity patterns that
follow, black colours correspond to counterclockwise rotation (positive) and gray colours
indicate clockwise rotation (negative). All snapshots that follow, t = 0T corresponds
to the instant when the cylinder reaches its maximum displacement, x(t) = A. In the
pressure contour plots, black and gray colours represent high (positive) and low (negative)
pressure regions, respectively. Results indicate that it is possible to generate distinctly
different vortex formation modes than that of the well know classical modes observed by
Williamson and Roshko [17]. These new modes are the combination of the two, four and
five C(2S) mode i.e., C(4S), C(8S), C(10S) modes.

Table 2 summarizes the effect of free surface inclusion on the flow regimes, the vortex
shedding modes and their periods, Tv, for the case Fr = 0.4 at h = 0.25, 0.5, 0.75
when f/f0 = 1.25, 1.75, 2.25, 2.75. It is evident that the presence of the free surface at
h = 0.25 seems to break up the periodicity of vortex shedding when f/f0 = 1.75, 2.25.
Destabilization of the flow also occurs at h = 0.5 when f/f0 = 2.75 and at h = 0.75
when f/f0 = 1.25, 2.75, compared to the reference case h = ∞. Moreover, the flow shows
two different regimes in the presence of free surface for several h − f/f0 combination at
Fr = 0.4, whereas it becomes periodic/quasi-periodic after the initial transition period
for all f/f0 in the absence of free surface. Moreover, new vortex shedding modes are
observed for the quarter-integer values of frequency ratio. These modes are the quasi-
locked-on C(4S) mode, per 4T , when h = 0.25, f/f0 = 1.25; the quasi-locked-on C(8S)
mode, per 5T (or 9T ), when h = 0.5, f/f0 = 1.25 (or h = ∞, f/f0 = 2.25); the quasi-
locked-on C(10S) mode, per 7T , when h = ∞, f/f0 = 1.25. The detailed analysis of the
near wake structures will be presented only for the case when h = 0.25, f/f0 = 1.25 (full
details will be published elsewhere).

The equivorticity patterns and the pressure contours over four periods of cylinder
oscillation, 4T , when f/f0 = 1.25 are displayed in Figure 4 (quasi-periodic state). The
vortex shedding mode is the quasi-locked-on C(4S) mode, per 4T , within 7T ≤ t ≤ 14T .
This mode is the combination of the two classical C(2S) modes. The flow becomes non-
periodic within 14T < t < 25T . It is seen from the figure that positive and negative
vortices developed in the previous vortex shedding cycle are alternately shed into the
downstream of the cylinder at t ≈ T/2 and t ≈ 3T/2, respectively. The positive vortex
becomes oval shaped with the major axis laying parallel to the free surface. Then, a single
positive vortex formed by the coalescence of a pair of positive vortices over T/2 ≤ t ≤ 3T/2
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h = 0.25 h = 0.5 h = 0.75 h = ∞

f/f0 Mode Tv Mode Tv Mode Tv Mode Tv

1.25

C(4S)∗
7T ≤ t ≤ 14T ;

non-locked

15T < t < 24T

4T

C(8S)∗
3T ≤ t ≤ 13T ;

non-locked

14T < t < 24T

5T non-locked - C(10S)∗ 7T

1.75 non-locked -

C(2S)∗
13T ≤ t ≤ 19T ;

non-locked

20T < t < 34T

2T

C(P+S)∗
6T ≤ t ≤ 12T

non-locked

13T < t < 34T

2T 2P 2T

2.25 non-locked -

C(2S)∗
4T ≤ t ≤ 22T ;

non-locked

23T < t < 44T

2T

C(2S)∗
4T ≤ t ≤ 19T ;

non-locked

20T < t < 44T

2T C(8S)∗ 9T

2.75

C(2S)∗
19T ≤ t ≤ 27T ;

non-locked

28T < t < 54T

4T non-locked - non-locked - C(P+S)∗ 3T

Table 2: The effect of the free surface inclusion at Fr = 0.4 and h = 0.25, 0.5, 0.75, ∞, on vortex shedding
modes and their periods, Tv, at Re = 200: A = 0.13, f/f0 = 1.25, 1.75, 2.25, 2.75. The superscript “∗”
denotes quasi-locked-on modes.

becomes detached from the lower part of the cylinder at t ≈ 5T/2. Finally, a negative
vortex is shed into the upper vortex shedding layer at t ≈ 3T , by the development and
the propagation of a positive vortex from the free surface. However, this vortex remains
attached to the free surface. Thus, the cylinder alternately sheds two single vortices from
each sides over one vortex shedding cycle, Tv = 4T , which results in the quasi-locked-on
C(4S) mode. The pressure plots shows that when the cylinder reaches its maximum
displacement at t = 0T , the high pressure region is associated with the stagnation region
while the low pressure concentrates rear and through the downstream of the cylinder
where both positive and negative vortices are located. It is also noted that the shedding
of the positive vortices at t ≈ T/2 and t ≈ 5T/2 seems to induced a local free surface
rising and thus leads to the appearance of sufficiently high pressure region near the curved
free surface interface. On the other hand, the lowest pressure region concentrated rear
and below of the cylinder at t = 0T switches to the above of the cylinder when the free
surface falls down sufficiently in this region.

Figure 5 displays the effect of cylinder submergence depth, h, and the frequency ra-
tio, f/f0, on the equivorticity patterns. The reference case h = ∞ is also presented to
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2T
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5T/2

3T
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Figure 4: The equivorticity patterns (left) and pressure contours (right) in the near wake over
four periods of cylinder oscillation, 4T , at R = 200: A = 0.13, f/f0 = 1.25 when Fr = 0.4 and
h = 0.25 [T ≈ 4.04, 32.32 ≤ t ≤ 48.48 : (8T, 12T )]. The quasi-locked-on C(4S) mode, per 4T,
is observed.

demonstrate the changes the vorticity undergoes in the near wake of the cylinder with
the inclusion of free surface. It is noted that for the periodic/quasi-periodic cases the
snapshots are taken over the time interval in which the flow reaches to a periodic/quasi-
periodic state whereas in non-periodic cases the commonly appearing equivorticity plots
at x(t) = A (within the time interval 0 < t � 100) are drawn. It is obvious that free
surface undergoes considerable deformations resulting in localized interface sharpening
and wave breaking as h decreases from 0.75 to 0.25 and f/f0 increases from 1.25 to 2.75.
This yields the formation of a considerable amount of opposite signed vorticity from the
free surface for all f/f0. This vorticity interferes with the development of negative vor-
ticity in the upper vortex shedding layer especially at small cylinder submergence depths,
h = 0.25, 0.5. The near wake structures of the vorticity at h = 0.5, 0.75 for each f/f0

is similar to the reference case h = ∞, whereas a significant change is observed at the
smallest submergence depth, h = 0.25. At each cylinder submergence depth, h, the shed
negative vortices seem to be lifted up toward the free surface aided by the propogation
of positive vorticity into the upper vortex shedding layer. As a result, these negative
vortices dissipate rapidly, and become weak, as they approach the free surface. Hence,
the vortex shedding becomes more skew symmetric in favour of the positive vortices as
h decreases from ∞ to 0.25. It can be seen that the major axes of the negative vortices

8
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h = 0.25 h = 0.5 h = 0.75 h = ∞
f/f0 = 1.25

f/f0 = 1.75

f/f0 = 2.25

f/f0 = 2.75

Figure 5: The effect of the cylinder submergence depth, h, and the frequency ratio, f/f0, on the equiv-
orticity patterns at R = 200: A = 0.13, Fr = 0.2.

downstream of the cylinder tend to lie perpendicular to the free surface for the larger
cylinder submergence depths, h = 0.5, 0.75, ∞. On the other hand, the major axes of
the negative vortices at h = 0.25 tend to lie more parallel to the free surface. This is
a result of the strong interaction with the free surface and the rapid diffusion of these
vortices after contact is made. Both cases also apply to the shed positive vortices in the
downstream of the cylinder, except that the positive vortices do not primarily interact
with the free surface. In general, the vortex formation length remains consistent as h
decreases from ∞ to 0.25 for all f/f0, except the cases h = 0.25 when f/f0 = 1.25, 1.75,
2.75 (maximum increase ≈ 23%). On the other hand, an increase in f/f0 from 1.25 to
2.25 results in a decrease in vortex formation length (maximum by ≈ 44%) for all cylinder
submergence depths.

Figure 6 illustrates the link between the lift coefficient and the corresponding vorticity
patterns and pressure contours. In this figure the lift coefficient, CL, is shown along with
the cylinder displacement, x(t), and the images of vorticity and pressure are obtained at
the time indicated by dots. The lift trace contained three dominant peaks at h = 0.25
shows a periodic behaviour over two periods of cylinder oscillation, 2T , resulting in a
quasi-locked-on C(4S) vortex shedding mode. The lift trace progresses from the one
contained three peaks per 2T to a near sinusoidal trace with an increase in h from 0.25 to
0.5 and finally to 0.75. The disapperance of the secondary peaks following the increase in
the cylinder submergence depth leads to the development of the quasi-locked-on C(8S)

9
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h = 0.25

h = 0.5

h = 0.75

CL, f/f0 = 1.25

t = 11T C(4S)∗

C(8S)∗

non-locked

Figure 6: The lift coefficient (black), CL, along with cylinder displacement (gray), x(t) (left); and
the corresponding equivorticity patterns (middle) and pressure distributions (right) at R = 200:
A = 0.13, f/f0 = 1.25, Fr = 0.4 when h = 0.25, 0.5, 0.75 from above to bottom. Dots
indicate point at which images of vorticity and pressure are obtained, (T ≈ 4.04, t = 11T ). The
superscript “∗” denotes quasi-locked-on modes.

mode at h = 0.5. Further increase in h to 0.75 causes a transition into the non-periodic
state although the vorticity and pressure images show almost similar patterns at both
h = 0.5 and h = 0.75 unlike the case when h = 0.25. The high pressure region is
concentrated upper left side of the cylinder at h = 0.25, and is shifted towards the front
stagnation point as h increases. On the other hand, the low pressure region concentrated
in the lower vortex shedding layer at h = 0.25 moves in the counterclockwise direction
and is mostly confined at the back of the cylinder at h = 0.5, 0.75, giving a positive CL.

4 CONCLUSION

The problem of two-dimensional uniform viscous flow past a circular cylinder subject
to forced streamwise oscillations beneath a free surface is investigated numerically based
on a two fluid model. The numerical simulations are carried out at Reynolds number
of R = 200 and Froude number of Fr = 0.4: A = 0.13 and h = 0.25, 0.5, 0.75 when
f/f0 = 1.25, 1.75, 2.25, 2.75. The results shows two different flow regimes. Flow either
becomes non-periodic in the whole time interval or becomes periodic (or quasi-periodic)
over several periods of cylinder oscillation, and then a transition into the non-periodic
state occurs. A similar phenomena has been reported in the experimental study by
Cetiner and Rockwell [2] for the case of cylinder subject to streamwise oscillations in
uniform flow in the presence of the free surface. On the other hand, in the absence of free
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surface the flow shows periodic/quasi-periodic behaviour over the whole time interval after
the initial transition period for each f/f0. The resulting new modes are the combination
of the two, four and five C(2S) classical modes i.e., C(4S), C(8S) and C(10S) modes.
It is also observed the near wake structures differs depending on the fluctuation of the
lift coefficient, CL, as the cylinder submergence depth, h, increases (see Figure 6). As h
decreases from 0.75 to 0.25, the almost sinusoidal fluctuation of CL for f/f0 = 1.25 changes
to one that contains alternative secondary peaks. Moreover, a phase shift between CL

and x(t) and a change in the value of CL from negative to positive occur with an increase
in h from 0.25 to 0.75. All of these changes in CL result in a transition in the vortex
shedding mode (from C(4S) to non-loked-on state for f/f0 = 1.25) and a displacement
of the high and low pressure fields around the cylinder.
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