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Abstract 20 

 Spontaneous coal combustion in the La Guajira coals was studied for the 21 

presence of carbon nanophases (e.g., carbon nanotubes), occurrence of rare earth 22 

elements (REEs) in them, and the probable mechanisms for concentration of these rare 23 

compounds. For this purpose, various techniques such as scanning electron microscopy 24 

(SEM), Field-emission SEM, transmission electron microscopy (TEM),  high-resolution 25 

TEM, and focused ion beam (FIB) were used. The development and alteration of the 26 

nanoparticles by geo-processes during the early modification periods of coal 27 

combustion were explored. Certain types of carbon nanophases and REE compounds 28 

may constitute nanominerals and ultra-fine particles accumulated in the coal peat. 29 

Assemblages of these nanophases (crystalline and amorphous compounds), 30 

predominantly the clay-monazite relationship and its connection to tonsteins in the coal 31 

combustion zones in the east region of the coal mines studied in this work, indicate that 32 

the coal area was subjected to REE concentration. The carbon nanophases contained 33 

several potential hazardous elements (PHEs), including, arsenic, bromine, cadmium, 34 

chlorine, fluorine, mercury, and other PHEs. While carbon nanotubes have been known 35 

to be produced from spontaneous combustion of coal of varying ranks, the present work 36 

is the first report on the naturally occurring REEs and carbon nanophases in the 37 

Colombian coal mining area.  38 

 39 

Keywords: Rare earth elements; Carbon nanotubes; Spontaneous coal combustion; 40 
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1. Introduction 44 

Globally, coal mining and subsequent coal fires are responsible for air, soil and 45 

water (e.g. gases, sulfuric acid, hazardous inorganic elements, polycyclic aromatic 46 

hydrocarbons) pollution involving, in part, a large amount of particulate matter which 47 

affects human health (Zheng et al., 2019; Hower et al., 2013; Ribeiro et al., 2010; 48 

Oliveira et al., 2019a,b,,d, 2018a,b, 2017, 2014; Gasparotto et al., 2018; Landim et al., 49 

2018; Schneider et al., 2016). The International Agency for Research on Cancer 50 

(IARC), an agency operating under the World Health Organization (WHO), has 51 

cataloged outdoor air contaminants as the principal (Group 1) carcinogens affecting 52 

health (IARC, 2013). In addition to the many man-made threats to the atmosphere, self-53 

combustion of coal also needs further scientific exploration (Kríbek et al., 2017; Garcia 54 

et al., 2014; Agudelo-Castañeda et al., 2017, 2016). The heterogeneity of a coal fire 55 

requires a more interdisciplinary approach to its local and global assessments (Dias et 56 

al., 2014). The coal-burning area studied in this work is located in the Department of La 57 

Guajira in northeastern Colombia between the areas of Albania, Barrancas, and 58 

Hatonuevo (Oliveira et al., 2019b). It is a combination of Wayúu ethnic settlements, a 59 

smaller Afro-Colombian population and rustic farming societies. 60 

On the other hand, rare earth elements (REEs) and carbon nanoparticles (CNPs) 61 

are vital to the modern society as they are used in high-tech industry and a variety of 62 

consumer goods such as computers, cell phones, catalysis, fluorescent lighting, 63 

permanent magnets, medical devices and advanced defense technology (Dai et al., 2018; 64 

Liang et al., 2020). However, there is a sharp discrepancy between the high demand for 65 

and low production of REEs due to the limited availability of raw materials and feasible 66 

resources. Acute shortage of REEs has aroused concerns and has stimulated scientific 67 

research and technological developments for the recovery of REEs from secondary 68 
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sources (Haberl et al., 2018). The REEs (including lanthanides and yttrium) are labeled 69 

as “critical materials” because of their importance for modern economy and the 70 

potential risks of supply disruptions (Liu et al., 2020). Over the recent years, there are 71 

growing interests in developing cost effective and environmentally friendly techniques 72 

for domestic recovery of REEs (Park et al., 2017). Coal combustion products have been 73 

suggested to be a promising REEs source (Dai and Finkelman, 2018). 74 

Coal for power generation alone is not sustainable as in most countries mining 75 

has diminished due to the high cost of recoveries, depleted reserves and competition 76 

from natural gas and renewable energy sources (Nordin et al., 2018; Dias et al., 2014; 77 

Duarte et al., 2019). On the other hand, in Colombia, even though it is a Latin American 78 

country with the largest coal extraction industry, there is no coal power plant to generate 79 

enough electricity to supply a medium-sized city (between 500 and 1 million 80 

inhabitants). Since, the Colombian social impacts (as shown in Figure1) and health of 81 

people have been of the most concern to scientists (Guerrero-Castilla et al., 2019; 82 

Caballero-Gallardo et al., 2015). The present study aims to demonstrate that even in 83 

areas where self-combustion of coal occurs, NPs that are of high economic value can be 84 

found. The government and local people can exploit such areas where there are no 85 

concessions for large multinational coal mining. 86 

Given this scenario, the present study aims to demonstrate that the presence of 87 

high economic value NPs can be a more profitable alternative to mining in Colombia. 88 

As such, coal mining is not only expected to provide cheap and profitable energy to 89 

other countries but can also be used as a source for extraction of NPs which can add 90 

value to coal mining waste treatment. In this study, an investigation on the fundamental 91 

occurrences of active coal mining in Colombia has been done in order to assess the 92 
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motivations for future studies for extracting NPs from these mines and offer new 93 

insights into a bulk geochemical process. 94 

 95 

2. Colombian Coal Mining Areas Studied and Coal Aspects 96 

Forests are the key players in the global carbon cycle because they store up to 30 97 

to 40% of terrestrial carbon (Rumpel, 2019). The net carbon balance in the sedimentary 98 

deposits in forests is driven by natural fires, which produce large carbon emissions and 99 

are necessary to maintain the productivity and biodiversity of these forests (Rumpel, 100 

2019). Coal deposit areas also considered as carbon sinks, mainly because they 101 

accumulate large amounts of carbon in the form of coal of different ranks, such as 102 

anthracite, bituminous, etc. (De Groot et al., 2013). Advances in micro and nanoscale 103 

analyses, as well as experimental approaches, are improving the characterization of 104 

these bio-signatures and restricting abiotic processes when combined with the 105 

geological context (Kronbauer et al., 2013; Ribeiro et al., 2013a,b). In this context, a re-106 

evaluation of the evidence of early coal formation is challenging but essential in order to 107 

develop an understanding of the origin and evolution of life, both on Earth and beyond 108 

it (Cerqueira et al., 2011, 2012). After all, by specifically investigating CNPs and rare 109 

earth elements in coal, rather than just quantifying, we can greatly improve our 110 

mechanistic understanding of how fire affects the ability of forests to act as a carbon 111 

sink on a wide scale (Walker et al., 2019). 112 

The zone that has been investigated in this work is a Colombian coal mining 113 

zone where a coal fire has been revealed. These fires are multifaceted assemblies that 114 

include a mixture of organic and inorganic complexes that contribute to the 115 

geochemistry of O2 and dispersion of NPs of a wide range of sizes. A large air flux can 116 

distinctly disperse temperature. However, for NPs, air depletion permits an increasing 117 
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build-up of heat. Several coal seams in the coal fire zones were sampled, basically at the 118 

same time and under equivalent weather conditions so as to reduce environment 119 

differences. Forty-three illustrative in-situ coal fire samples were sampled from 120 

different La Guajira coal zones (Figure 1) during March 2017, December 2017 and May 121 

2018. Further details on the sampling can be found in a previous study (Civeira et al., 122 

2016a ; Oliveira et al., 2019b).  123 

Colombia is currently the world's fourth largest thermal coal mining country. 124 

The major coal-bearing mines are in the Paleocene Cerrejón Formation, situated in the 125 

area of La Guajira (Figure 1), the Paleocene Los Cuervos Formation located in the 126 

zones of Cesar and Norte de Santander, and the upper Maastrichtian to Paleocene 127 

Guaduas Formation, located in the zones of Cundinamarca and Boyacá. Several authors 128 

have reported that the geological and petrographical nature of the studied area was 129 

formed in deltaic and intermediate environments (Quetame and Sarmiento, 2004; 130 

Bayona et al., 2004) and had a significant impact on the region (Guzman, 1991). The 131 

geology and petrographic features of the studied coal areas differ significantly with coal 132 

ranks alternating from lignite to bituminous and anthracite (López and Ward, 2008). 133 

 134 

3. Materials and Methods 135 

The studied samples from different areas near the exhaust were removed from 136 

the coal mine drainages and topsoil. The color phases (reddish, yellowish, and whitish) 137 

will not be discussed in this study as other authors, who have evaluated the 138 

environmental contamination of the studied area previously, have discussed them 139 

(Oliveira et al., 2019b). In the present study, we focus on the non-superficial phases of 140 

the samples, aiming to find the NPs that are the most resistant to spontaneous coal 141 

combustion.  142 



7 
 

Several traditional methods, such as Particle-Induced X-ray Emission (PIXE), 143 

X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS),  scanning electron 144 

microscopy (SEM), X-ray fluorescence spectrometer (XRF), Raman spectroscopy (RS), 145 

inductively coupled plasma atomic emission spectrometry (ICP-AES) for major 146 

chemical elements and inductively coupled plasma mass spectrometry (ICP-MS) for 147 

trace chemical elements are available for the assessment of the simple morphology and 148 

proportion of chemical elements in such samples (Gredilla et al., 2019, 2017; León-149 

Mejía et al., 2016, 2018; Sehn et al., 2016; De Vallejuelo et al., 2017; Sindelar et al., 150 

2014; Martinello et al., 2014; Arenas-Lago et al., 2013, 2014). However, these methods 151 

do not offer evidence of the ultra-fine/nano-structure or the geochemical configuration 152 

of a single ultrafine particle (Civeira et al., 2016b; Cutruneo et al., 2014; Nordin et al., 153 

2018).  154 

The study of single NPs can offer evidence of the geochemical development of 155 

the size of the assemblage and geochemical configuration of NPs (Saikia et al., 2015, 156 

2014). Other spontaneous coal combustion studies on NPs have concentrated on their 157 

organization based on the size and geochemical structure of the whole NPs masses and 158 

only moderately based on the size, shape and geochemical configuration of individual 159 

NPs (Dalmora et al., 2016). Thus, considering the above mentioned aspects, field 160 

emission scanning electron microscopy (FE-SEM) combined with energy dispersive X-161 

ray spectrometry (EDS) was applied to study the NPs and the precise size for other 162 

particles that have been described in previous works (Civeira et al., 2016c; Ramos et al., 163 

2017; Quispe et al., 2012). They were initially investigated by a Nikon® SMZ645® 164 

stereoscopic optical microscope. Grain mounts for conducting studies under light 165 

microscopy were made with Cargille® Meltmount®. Photographs were taken with a 166 

Nikon® Labophot2-Pol® optical microscope having 10x, 20x and 40x objective lenses. 167 
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The microphotographs of complex mixtures were obtained by using a Nikon® Digital 168 

Sight DS-SM® camera. The refractive guides were determined by Cargille® Certified 169 

Refractive Index Liquids Series A and B for non-fibrous mixtures. The complex 170 

conformations of the detected NPs consisting of minerals and/or amorphous phases 171 

were investigated. This analytical approach is suitable for investigating the involvement 172 

of REEs and carbon nanotubes within the detected NPs as there are elements with high 173 

atomic numbers appearing in the bright zones of the image (Silva et al., 2011 a, b, c) 174 

while some with low atomic numbers appear in the dark-field zones (Silva et al., 2011 175 

d, e). Thus, pictures of the NPs and precise sizes of 189 NPs were acquired and the 176 

findings have been summarized in the results and discussion section. The superficial 177 

geochemical configuration of the NPs was acquired by EDS (coupled with FE-SEM and 178 

H-TEM) from which the chemical elements were identified and that included Al, Ca, 179 

Fe, K, Mg, Mn, Na, P, S, Si, Ti, Zn and trace elements(Sánchez-Peña et al., 2018; Silva 180 

et al., 2009a,b; Wilcox et al., 2015). 181 

  182 

4. Results and Discussion 183 

In order to find the NPs that are most resistant to spontaneous coal combustion, 184 

numerous carbonaceous amorphous phases were measured. The principal NPs were 185 

amorphous NPs, organic coal phases that have an intact structure, clays containing a 186 

mixture of complex amorphous phases, isolated sulfate crystals and altered 187 

carbonaceous NPs, often including over 95% of the studied residual solids. These 188 

samples changed the geological composition of the environment in and nearby the 189 

studied coal area. At the Colombian coal mine areas studied in this work, considerable 190 

mineralization occurring due to an alteration in the coal itself caused by spontaneous 191 

coal fire has been noted (Oliveira et al., 2019). In addition, the high-temperature 192 



9 
 

pyrometamorphism due to coal fires is one of the most widely recognized features 193 

(Ciesielczuk et al., 2014). Several particles containing REEs and carbon nanotubes were 194 

found to be generated by the thermal disintegration of aluminum silicates, carbonaceous 195 

matter, carbonates, and other oxides at approximately 800–1400  °C (Saxby, 2000). 196 

Similar results were reported in this work (e,g, Figures 2, 3, 4, 5). This is in agreement 197 

with elucidations specified for Latin American coals by previous authors (Dias et al., 198 

2014; Oliveira et al., 2019).  199 

The morphology of the REE-bearing ultra-fine particles and NPs is illustrated in 200 

Figure 2 of the supplementary material. It should be noted that the identified NPs are 201 

normally asymmetrical in form and typically cluster to form a mass. Additionally, more 202 

than 60% of REE particles were amorphous; individual minerals were rare. The 203 

geochemical configuration of several REE crystals mixed with amorphous phases, for 204 

example, monazite (Figure 2) and hydrated clays, may change during the sample 205 

investigation or when subjected to an electron beam vacuum. The observation of a great 206 

variety of these NP phases implies that they control the superficial area during the 207 

combustion of coal and the heterogeneous effects play an important role in the 208 

atmosphere, waters, and topsoil contamination. As illustrated in Figure 2, different 209 

forms of REEs were found in the particles detected in the study area. Several studies 210 

report that monazite is one of the main forms of REEs found in coal deposits. Monazite 211 

usually occurs in association with Al-Si-clays owing to the high temperatures of coal 212 

fires. Such clays may undergo chemical and morphological degradation, thus justifying 213 

the observation of Al, Si, K, and Mg during EDS analysis, as exemplified in Figure 2. In 214 

addition, high temperatures and other environmental factors (such as sulfuric acid 215 

formation) during coal combustion can fragment the original monazite particles leading 216 

to the formation of nanoparticles of size between 5 and 120 nm. Such a monazite 217 
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degradation process has been previously reported in another study (Silva et al., 2010) in 218 

which hot sulfuric acid was added to a phosphate rock containing monazite, which 219 

justifies the interpretation of the REE particles in the present study.  The dehydration of 220 

clays (e.g., kaolinite) depends on the temperature of the coal fire. The FE-SEM analysis 221 

established the moderately multifaceted behavior of these clays in coal burned zones. 222 

This fact is directly associated with the observation of NPs and ultrafine particles 223 

containing REEs. 224 

An abundant quantity of ultrafine carbonaceous NPs containing halogens (e.g., 225 

fluorine, Figure 3) was detected in the Colombian spontaneous coal combustion. These 226 

NPs may combine with the ambient air. Figure 3 shows a wide variety of carbon 227 

nanotubes with various diameters and lengths. This can be better observed from Table 1 228 

in which, besides the dimensional characteristics, the main chemical elements 229 

associated with such carbonaceous NPs are also given. It is important to mention that no 230 

halogen-containing particles were crystalline indicating that such elements were present 231 

as amorphous phases associated with carbonaceous matter and/or phosphate minerals. 232 

More importantly, only carbon nanotubes were detected in the blackest samples. The 233 

samples that were in large numbers and showed yellowish as well as reddish color did 234 

not contain such NPs. Although the NPs were detected in more than 95% of the 235 

samples, carbon nanotubes were detected in only 16 of the 43 samples. This implies that 236 

in the samples collected superficially in the previous study (Oliveira et al., 2019), no 237 

carbon nanotubes were detected, probably because in such samples sublimates 238 

generated from the decomposition of the coal components are formed. Therefore, 239 

carbon nanotubes occur only in samples collected from areas below a depth of 30 cm, as 240 

is the case in the present study. Depending on the Colombian coal's self-combustion 241 

conditions, the studied samples also have the environment required for spontaneous 242 
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burning but do not essentially have self-combustion properties. Thus, the possibility of 243 

coal oxidation is moderately high in the area. For a better understanding of the 244 

occurrence of carbon nanotubes, further studies in which coal self-combustion does not 245 

occur need to be carried out (Deng et al., 2018). 246 

Referring to Table 1 and the results reported by Oliveira et al., 2019, it can be 247 

confirmed that samples CF 1, CF 17 and CF 38, being the closest samples where mullite 248 

and salammoniac were detected, indicate that carbon nanotubes were formed due to 249 

higher temperatures, as these two minerals are formed only at temperatures above 900 250 

oC. This indicates that in the area under study, the geochemistry of carbon nanotube 251 

formation is associated with REE phases. Several previous authors have studied the 252 

geochemical speciation and physical dispersal of REEs in coal and coal by-products in 253 

order to develop effective approaches for REEs extraction (Taggart et al., 2018; Liu et 254 

al., 2019). Datas from those works exposed that REE-bearing phases might undergo 255 

varied degrees of speciation change and re-distribution during coal combustion. For 256 

example, REE-bearing phases (e.g., monazite and zircon) displayed morphological 257 

characteristics of spherical shape (Liu et al., 2019) and size reduction (Hood et al., 258 

2017) as observed by scanning electron microscopy (SEM). In addition to the 259 

occurrence of REE-bearing particles encapsulated in aluminosilicate glass phase (e.g., 260 

Hower et al., 2018), REEs were also found to be dispersed throughout glass, likely 261 

resulting from the decomposition of REE-bearing phases and mobilization into glass 262 

(Liu et al., 2019). Moreover, most REEs are generally present at trivalent oxidation 263 

state, while Ce can occur as both Ce(III) and Ce(IV). Using micro X-ray absorption 264 

spectroscopy (μ-XAS), Stuckman et al. (2018) found 10-μm Ce(IV) oxides and partially 265 

oxidized Ce-bearing particles in CA, which might have resulted from the decomposition 266 

and oxidation of REE-bearing phases during coal combustion. 267 
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The results presented in Table 1 motivate further extraction studies, after all, the 268 

detected carbon nanotubes adsorb various hazardous elements, including highly volatile 269 

elements such as Hg, As, F, Br, among others. The datas from this work, if REEs-270 

organic complexes, REEs carbonates, and REEs-bearing carbonates are present in coal 271 

fire area, they would decompose and Ce would oxidize during coal spontaneous 272 

combustion, and finally occur as REEs oxides or REE-bearing oxides. Such findings are 273 

consistent with previous studies on REEs speciation in CA at both micro and bulk 274 

scales. At the micro scale, REEs oxides (Montross et al., 2018) and REEs-bearing lime 275 

in coal ashes (Liu et al., 2019) have been observed using SEM-EDS. At the bulk scale, 276 

REEs-organic complexes are estimated to account for ~25% of total REEs in coal (Lin 277 

et al., 2017), therefore, it is reasonable to expect that REEs oxides would be a 278 

significant fraction in CA if the abovementioned transformations occur during coal 279 

combustion. 280 

The significant alteration in the coal configuration and geology, i.e., the 281 

assembly of the samples studied from the spontaneous coal combustion zones, are 282 

simply identified from FE-SEM and H-TEM analyses as “oxidation rims” along with 283 

coal fire-grain margins or cracks and openings. Numerous carbonaceous NPs containing 284 

Cr, Na, and Si (Figure 4) have also been detected in the studied zones and cracks 285 

containing hot gas and water discharge. These data are from the sub-surface coal 286 

combustion and carbonaceous topsoil debris.  287 

 288 

4.1 Environmental Considerations  289 

The study on the relationship of the complex NPs found from the Colombian 290 

mines due to the spontaneous combustion of coal needs a multifaceted interdisciplinary 291 

methodology and can be done in three steps: mapping, modeling, and inspection. 292 
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Significant quantities of inorganic and organic NPs encompassing hazardous complexes 293 

might have been liberated over many years. Besides, the hazardous components such as 294 

organic gases, As, Br, Cd, Ce, F, Hg, La, Pb, Se and others (Table 1) might have also 295 

been released into the atmosphere and preserved within the detected nanoparticles by 296 

geological developments that lead to an incomplete trapping of the gaseous vapors.  297 

The distribution of semi-volatile dangerous compounds in the studied coal 298 

combustion zone corresponds to that of the volatile compounds existent in the 299 

Colombian coals. It can consequently be incidental that the large quantities of volatile 300 

(organic complexes, halogens, S, Hg, and Se) as well as the non-volatile elements (e.g., 301 

Si, Ce, La, Pr, Nd) found in the studied zones may be due to the large quantities of trace 302 

compounds in the original coal. 303 

The data from this study indicate that the health risk of people who work and 304 

live in this region is highly compromised. Therefore, greater government action is 305 

required to reduce such impacts. A good proposal on the basis of the results presented 306 

would be a profound financial investment in order to undertake REE and carbon 307 

nanotube extraction and purification studies, as these materials have a high economic.  308 

With respect to the hazardous element (HEs) concentrations detected in this 309 

study, the HEs found in the coal area at higher temperatures, reported by Oliveira et al., 310 

(2019), had higher proportions with small diameters. It revealed that partial vaporization 311 

during spontaneous coal combustion was followed by subsequent condensation of the 312 

semi-volatile elements on the coal solid nuclei. The exact progression by which HEs 313 

convert from the vapor level to the condensed phase is important for evaluating the 314 

human hazards from the by-products of spontaneous coal combustion. 315 

 316 

4.2 Social vision 317 
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 Engrained coal benefits have blocked the progress of a sustained fair and just 318 

transition movement in La Guajira by weakening union power, creating several 319 

advocacy groups that construct positive images of coal, and portraying local 320 

environmental activists as radical outsiders (Lewin et al., 2018). This is the dilemma 321 

where can the movement attract locals while simultaneously bringing in non-local 322 

participants. Non-local activists provide vital resources and help strengthen networks 323 

for building a national movement. Yet, in order to truly attain a fair and just transition 324 

and to practice energy democracy, those who bear the social costs of energy transitions 325 

must be part of the movement (Veelen and van der Horst, 2018). Where the pathway to 326 

contention seems clear, the pathway for standing together and having a debate about La 327 

Guajira's future does not. In order to stem ecological protest that would challenge their 328 

political power, the coal industry constructed economic identities that were strongly 329 

pro-coal in their ideology. Bell and York (2010) argue that the US coal industry 330 

successfully engaged in cultural manipulation through the astroturf group, Friends of 331 

Coal, by appropriating iconography and tying the region's history and culture to coal. 332 

Pro-coal culture gains resonance through effective frames of energy security and casting 333 

environmentalists’ arguments. In other hand, To moderate the worldwide challenge of 334 

climate change, several countries must burn less coal. For example, In recent years, the 335 

share of U.S electricity generated by coal has fallen from nearly 50% to 33%. In genral 336 

the global reduction in coal use for generating power is especially notable because it has 337 

occurred without the worldwide imposing carbon pricing or a carbon tax (Cragg et al., 338 

2013). In U.S the substitution away from coal is mainly due to adoption of fracking 339 

technology and some states sharply ratcheting up their renewable portfolio standards 340 

(Eye et al., 2020). 341 
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 Colombia has encouragements to promote the growth of one of their key 342 

industries. Given the durability of housing capital and the built up social networks 343 

established in coal mining areas, its residents face both migration costs and asset losses 344 

if the demand for coal mining declines. Such individuals face a fundamental job 345 

retraining challenge that middle-aged workers who have worked in mines will have 346 

trouble transitioning to other works. Resident officials in coal zones are well aware that 347 

many of their constituents depend on the continuing viability of the coal industry. Local 348 

officials internalize the benefits of coal’s prolonged sunset but they ignore the social 349 

environmental costs associated with such implicit subsidies. 350 

 Given all the challenges encountered in La Guajira, we believe that carbon 351 

nanophases and REEs quantification, processing and extraction studies can be a 352 

medium-term solution for the population to obtain more resources that are used to 353 

reduce the impacts of coal mining. 354 

 355 

5. Conclusions 356 

The morphology and geochemical structure of several REEs and CNPs were 357 

described using advanced electron beam spectroscopy techniques. The NPs were 358 

typically asymmetrical and produced due to the coalescence of primary compounds. The 359 

generation of amorphous and crystalline NPs, which strongly depends on the 360 

temperature in the spontaneous coal combustion areas, was detected. Complex carbon 361 

nanophase assemblages (carbon nanotubes, graphene, and several amorphous phases), 362 

hazardous elements and several REE phases were observed in the samples. The studied 363 

coal fire areas presented a continuous alteration in the size of the NPs. The electron 364 

beam spectroscopy results confirmed the presence of amorphous carbon and several Al-365 

Si-K-Mg-O-C NPs that are considered as dangerous elements.  366 
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 This study provides an overview of the occurrence of REEs and CNP in 367 

spontaneous coal combustion in La Guajira, Colombia. It also presents a directional 368 

dataset for further scientific studies for investigating the connections between the 369 

organo-metallic NPs and other ecological issues in numerous spontaneous coal 370 

combustion zones. In addition, studying diverse samples of spontaneous coal 371 

combustion from a specific coal mining area may be of significance in understanding 372 

the geological structures of spontaneous coal combustion in other coal zones in 373 

Colombia. This study can be considered as a "door-opener" for future REE and CNP 374 

extraction studies. 375 
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Figure captions  692 

Figure 1: Studied coal fire area. 693 
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 695 

Figure 2: Detected REEs microcrystals and general EDS.  696 
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Figure 3: Carbon nanotubes and halogens association.  700 

 701 

 702 

Figure 4: Complex organometallic nanoparticles. 703 

 704 
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 706 

Figure 5: Carbon nanotubes with different crystallites. 707 
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Table 01 - Dimensional characteristics of C-nanotubes and associated chemical 710 

elements present in sampled coal fire areas. 711 
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