
365

V International Conference on Computational Methods in Marine Engineering 
MARINE 2013 

B. Brinkmann and P. Wriggers (Eds) 

ADVANCES IN THE DEVELOPMENT OF A NEW CARTESIAN 
EXPLICIT SOLVER FOR HYDRODYNAMICS  

P. BIGAY†,*, C. LEROY†, G. OGER†, P.-M. GUILCHER* AND D. LE TOUZE †

† L’UNAM Université, Ecole Centrale Nantes, LHEEA lab., ECN / CNRS 
1 Rue de la Noë , 44000 Nantes , France 

* HydrOcean 
1 Rue de la Noë CS 32122 44321 Nantes Cedex 3, France 

 www.hydrocean.fr 

Key words: Explicit, Cartesian, Hydrodynamics, Weakly-compressible, Viscosity 

Abstract.  In order to efficiently address complex problems in hydrodynamics, the advances 
in the development of a new method are presented here. This new CFD solver aims at 
obtaining a good compromise in terms of accuracy, computational efficiency, and easy 
handling of complex geometries.  The chosen method is an Explicit Cartesian Finite Volume 
method for Hydrodynamics (ECFVH) based on a compressible (hyperbolic) solver, with an 
embedded method for interfaces and geometry handling. The solver's explicit nature is 
obtained through a weakly-compressible approach chosen to simulate nearly-incompressible 
flows. The explicit cell-centered resolution allows for an efficient solving of very large 
simulations together with a straightforward handling of multi-physics. The use of an 
embedded Cartesian grid ensures accuracy and efficiency, but also implies the need for a 
specific treatment of complex solid geometries, such as the cut-cell method in the fixed or 
moving body frame. Robustness of the cut-cell method is ensured by specific procedures to 
circumvent small cell volume numerical errors. A characteristic flux method for solving the 
hyperbolic part of the Navier-Stokes equations is used and introduces numerical viscosity. 
This viscosity is evaluated prior to modeling viscous and turbulent effects. In a first approach 
presented here viscous effects are computed via a finite difference Laplacian operator 
introduced as a source term. This solver is validated on 2-D test cases.

1 INTRODUCTION 
CFD has become an essential tool for engineers and tends to be more and more affordable 

in terms of computational costs or available resources. Most solvers in the field of 
hydrodynamics are implicit under incompressible flow assumption, for which large grid sizes 
can induce conditioning problems, parallelization difficulties, and nonlinear iterations 
increase on truly non-stationary problems. Thus, many physical problems such as flows 
around ships with air entrapment in the bow jet, presence of bubbles in the wake, sea-keeping 
of boats with complex moving appendages (thrusters...) cannot yet be easily solved. The 
explicit nature of the proposed method conversely allows for rather straightforward 
parallelization, robustness and multiphysic simulation handling (multiphase flows, fluid 
structure). The Cartesian nature of this method allows for a fast and accurate solver. 

In this method upwinding is introduced. This, in turn, results in some numerical diffusion. 

Advances in the Development of a New Cartesian Explicit Solver for Hydrodynamics
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Prior to modeling physical diffusion and turbulence, a particular care is paid to the assessment 
of this numerical diffusion, especially according to slope limiters used in the MUSCL scheme 
of the hyperbolic solution. Then viscous effects are addressed. In the first part of this paper,  
the compressible core solver is presented. Validation of this solver is achieved through 
academic test cases and inviscid flow around a cylinder. The second part mainly deals with 
explicit viscosity modeling. A numerical viscosity study is presented using the Taylor-Green 
Vortex test case. Finally the explicit viscous solver is validated on classical 2-D test cases 
such as the Poiseuille flow and the lid-driven cavity flow. 

2 ECFVH  

2.1 The Navier-Stokes Equations 
This method solves the compressible Navier-Stokes equations for viscous compressible 

flows: W + φ(W),, = Vısc (1)         (1)

To close the system and relate pressure and density, we use the Tait isentropic equation of 
state, thus decoupling the energy equation. This equation is particularly adapted for modeling 
liquids:: 

P − P = ρcγ  ρρ − 1 (2)

with the polytrophic constant γ, a reference pressure P0, the nominal density ρ0 and the 
nominal speed of sound c0. 

This equation can be written in the following conservative form: 
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(3)   

The viscosity terms in Navier-Stokes equations can be represented as viscous stress tensor 
components: 

Vısc =  0τττ + 
τττ + 

τττ
(4)         

It can also be seen as a source term in a Laplacian operator manner as presented in this 
paper by assuming that compressibility effects in viscosity are negligible due to the weakly-
compressible feature of the model. 
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	F = μ 0∆u∆v∆w
(5)         

For solving both hyperbolic and elliptic parts, two distinct procedures are setup and 
described in the next section 

2.2 Finite volume characteristic flux scheme
Our solver is based on Finite Volume method, chosen to ensure conservativeness of the 
method. In this method, the unknowns are located at the center of cells.  

To solve the Euler equations a new method originally developed by Ghidaglia et al. [1] in 
1996 is used here. This method computes the fluxes needed at each edge by rewriting the 
equations with the flux Jacobian matrix and using its hyperbolic properties. The solution is 
then obtained via a projection on the solution in the characteristic base. These fluxes are not 
expressed in terms of conservative variables as in the Godunov scheme but directly in 
physical fluxes. For more details, the reader can refer to [2][4][5]. The solution flux is finally 
expressed as follows: 

int
( ) ( ) ( ) ( )( ( , )) .

2 2
L R L R

Solution

F w F w F w F w
sign J w n nφ

 + −= + 
 

   

  

(6)         (

with  and  the conservative variables vector of left and right cells respectively,  intw


the value at the interface of the two cells and the Jacobian matrix defined as:   ̿ = () . int( ( , ))sign J w n
 

is a special matrix constructed with the reduction elements of the 
Jacobian. This method is an alternative to Roe schemes, HLLE and AUSM+ schemes. This 
method is general and applicable to any hyperbolic system, easy to implement and efficient in 
terms of computational costs. The explicit core of the method has been validated on classical 
test cases such as one and two dimensional shock tubes, backward facing step [2][4][5]. 
 The hyperbolic solving method is based on an upwind method that uses both cell 
center and face conservative values. To enhance the method and evaluate the latter variables 
the classical MUSCL scheme [11] is used. Left and right interface values are computed using 
right and left cell gradients, together with a flux limiting procedure ensuring the Total 
Variation Diminishing property (TVD) and the non-inversion of the Riemann problem. Flux 
limiters used have a great deal of importance on the quality and diffusion property of the 
schemes. Limiters can have a diffusive and/or a dispersive behavior that needs to be evaluated 
regarding the targeted application. The reconstruction procedure and a few classical limiters 
are presented in the next page : 
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(7)

Table 1. Some of the classical limiters used in the MUSCL scheme. 

2.3 Time stepping
Temporal integration stability of the scheme for solving the Euler equations is ensured by 

respecting the following Courant-Friedrichs-Lewy (CFL) condition based on the area Γ   of 
the interface between two adjacent cells. 

int

min
max ( )

i

i
k i k

Vol
dt

u c

 
 ≤  Γ + 
 

(8)         (

2.4 Weakly-compressible approach 

The specificity of this method resides on the use of a weakly-compressible approach. We 
indeed use a full compressible model, time step is thus determined via the CFL stability 
criteria. This criterion leads to very small time steps for near boundary cells, increasing the 
overall computational costs of the simulations. In order to maximize the time steps and to 
conserve the physical behavior, the sound speed  is chosen to be about 10 times the 
maximum value of velocity in the simulations. Simulations are therefore performed at Mach 
numbers  Ma≈0.1. Under these assumption, it has been shown [6] that the compressible 
solution can be seen as the superimposition of the incompressible solution and an acoustic 
solution. Purely compressible effects are negligible ()). Note that such approach is 
widely used in the SPH community for instance [3]. 
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3 MESHING
Flow simulation around moving complex bodies is a challenging problem, especially when a 
fixed Cartesian grid is used to discretize the fluid. Local grid modification should be 
performed on the body surface, without significant increase of the computational cost. Our 
model is based on the use of cut-cells, together with cell merging procedures to avoid the 
well-known “small cell” problems, so that reasonable time steps can be preserved [2][4][5]. 
Cartesian meshing, cut-cell and cell merging techniques therefore allow for an automatic 
generation of computational meshes (given a surface mesh). An adaptive mesh refinement 
parallel model will be implemented in the following development steps of the model in order 
to speed up the computations and to allow massive simulations.  

4 INVISCID VALIDATION OF FLOW AROUND A CYLINDER
To validate the hyperbolic solver and the geometry handling, we propose here to study an 
inviscid flow past a fixed cylinder, with an imposed incident velocity of 1 m/s .This cylinder 
is located in the center of a 20 meters long infinite tank. As a second step of this study, the 
pressure solution obtained on this fixed cylinder is then compared to the case of a cylinder 
moving with an imposed velocity of 1 m/s in a zero velocity flow field. Such conditions are 
equivalent, so that identical solutions can be expected. In both cases we use potential flow 
result as an analytical solution. The Van Leer limiter is used here and the results are shown 
for several grid sizes to show the convergence.	

         
Figure 1. Pressure and velocity fields of the fluid flow around a cylinder. 

Figure 2. Local steady pressure around the cylinder for different grid sizes with Van 
Leer limiter. (left) Local pressure comparison between fixed and  moving cylinder( right). 
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Previous figures validate the inviscid solver with fixed and moving geometries. Indeed given 
proper discretizations the pressure profile matches the theoretical potential solution. Fixed and 
moving solutions match very well thus validating the embedded boundary treatment. 

5   VISCOSITY MODELING 

5.1 Evaluation of the Numerical Viscosity

Solving the Euler equations requires the use of upwind methods. However these methods are 
known to be diffusive. In order to properly simulate viscous flows one needs to ensure that 
numerical viscosity stays negligible compared to physical viscosity. A study is then 
performed to evaluate this viscosity according to several important factors: discretization, use 
of MUSCL scheme and flux limiters, and the influence of sound speed. 

The use of MUSCL scheme allows to reach second order accuracy for the hyperbolic part. 
Nevertheless it requires the use of limiters. TVD limiters are very numerous, they are more or 
less dispersive (overshoots, oscillations in shocks) and diffusive. One of the aims of this study 
is then to select the limiter with the best trade-off between diffusion and dispersion. The 
process of selection had a first step (not presented here) where its behavior was studied on 1-
D shock tubes. Some limiters (e.g. Superbee) appear to be too dispersive and were not studied 
in the following test case. Among the tested limiters, only the Minmod and Van Leer limiters 
are shown in this paper. 

To evaluate this numerical viscosity, the Taylor-Green Vortex test case is chosen [9]. This 2-
D case consists in four eddies occurring in a square shaped domain of size L. Periodic 
boundary conditions are imposed at each side of the domain. The initialization is achieved as 
follows:  
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(9)         (

The initial pressure and velocity fields are presented in the following page. 
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Figure 3. Pressure and Velocity fields of Taylor-Green Vortex test case. 

In absence of physical viscosity, the solution is steady. In our case since the method exhibits 
numerical viscosity, the velocities of eddies decrease. Then by measuring the local velocity 
decay, it is possible to measure an equivalent numerical kinetic viscosity.  Figure 4 shows the 
velocity decay in time of a point of the flow for different grid sizes. 

Figure 4. Local velocity of a point for different grid sizes without (left) and with (right) the 
MUSCL scheme.

As expected the method's upwindind leads to numerical dissipation. Without the MUSCL 
scheme numerical diffusion is much too important to enable simulating any physical viscosity 
except for the use of extremely fine grids (in about 3s the eddies are fully dissipated). With 
the MUSCL scheme, the velocity decay is much less important and will not mask physical 
viscous effects. To find the better compromise in the MUSCL scheme parametrization, 
limiters have to be tested in order to achieve the best diffusion/dispersion trade-off. Other than 
the use of the MUSCL scheme, grid discretization plays an important role: the finer the grids 
are the less dissipation there is. 

The figure below shows the equivalent viscosity without MUSCL, and with MUSCL 
(Minmod and VanLeer Limiters). As expected, the level of numerical viscosity without 
MUSCL is too important and would hide all physical viscous effects. 
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Figure 5. Equivalent kinematic viscosity computed for several discretizations and schemes 
  
Different limiters have been tested, and among them the ones presented in Table 1. The 
results with the most interesting limiters are presented here. The Minmod limiter is a  
dissipative-only limiter and Van Leer’s one is less diffusive but exhibits a dispersive 
behavior. According to all the tests performed the latter limiter appears to be the one 
presenting the best compromise in terms of diffusion and dispersion. A refined grid seems 
necessary with the Minmod limiter.  Results with the Van Leer limiter are better and this 
limiter is finally adopted in our following simulations. As a conclusion, numerical viscosity 
will not be an issue for simulating viscous and turbulent flows, especially with turbulent 
viscosity of an order of magnitude of about 0.001 m2/s. 

  5.2  Simulation of physical viscosity

As shown in equations (4) and (5), the elliptic part of Navier Stokes can be computed in 
two different manners: as a source term or as a viscous flux. In most hydrodynamic CFD 
codes, viscous terms are computed in an implicit manner. Our choice is to conserve a fully 
explicit scheme, so that an explicit viscous solver had to be developed.

In this first approach, the source term approach is adopted. To compute viscous effects, 
second spatial derivatives of velocities are computed at the cell centers. For this Finite 
Difference schemes, here second order or third order central differences are used (stencil on 3 
or 5 points). Central differencing for elliptic schemes is always stable. This solution is robust 
and quite efficient.   

Using this explicit viscous solver requires to respect another stability condition on the time 
step superimposed to the acoustic one, as: 

2

2
int

min i

i

Vol
dt

ν
 

≤  Γ 

(10)         

5.3  Explicit viscous solver validation for low Reynolds number flows

Two different laminar test cases are used in this section to validate  this explicit viscous 
solver: a periodic Poiseuille flow and a lid driven-cavity test cases.  
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5.3.1 Poiseuille flow 

The fluid domain retained for this validation is a square shaped domain of size L = 1 m. 
The fluid is initialized in the whole domain with a uniform velocity of 1m/s. A longitudinal 
pressure gradient is imposed as a source term on the flow, while periodic boundary conditions 
are imposed on the left and right side of the domain to allow the fluid motion in the x 
direction. No-slip boundary conditions are imposed at top and bottom walls. The theoretical 
velocity profile expected is parabolic and should write:  

(11)

                                                               	
Several simulations for different Reynolds numbers are performed and perfectly match the 
analytical solution. Here are the results for a 50x50 grid and Re = 1.

Figure 7. Poiseuille flow velocity field and velocity profile compared to theoretical profile. 

5.3.2 Lid-Driven cavity flow 

This test case is a classical incompressible test case and has been extensively studied, in 
particular by Ghia et al. [7]. In this test case, all boundaries are no-slip walls, and the fluid is 
set into motion by the moving upper wall. Results are available from Re=100  Re=10000. The 
validation consists in comparing streamlines, velocity profiles at location x=0.5 m and y=0.5 
m, and the positions and dimensions of primary and secondary vortexes appearing in the 
corners. 

 Simulations have been carried out from Re=100 to  Re=3200 for which the flow is still 
laminar. The velocity of the upper wall is imposed as 1 m/s, and the Reynolds number is 
varied via the value of the fluid viscosity. All these simulations show very good agreement to 

Re eU Lρ
µ

=

2 2

2

4( ) 1
8
L dP y

v y
dx Lη
 

= − 
 
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the results available in [7]. In this paper, the results are compared to the reference for Re=100 
for a grid size of 100x100.  

Figure 8. Lid-driven Cavity Re=100, Comparison of results with Ghia et al results , Velocity 
fields and streamlines , Vorticity fields . 

The Re=100 lid-driven cavity results presented in figure 8 show an excellent agreement with 
the results from Ghia et al.. The relative errors in positions and dimensions of the vortexes are 
lower than 2%. Velocity profiles also compare very accurately with the reference.  

6  CONCLUSION 
A solver based on the Finite Volume method and using upwinded characteristic fluxes has 

been developed for hydrodynamic flows. This explicit solver relies on a fixed non-conform 
Cartesian grid into which bodies can freely move thanks to a dedicated cut-cell technique. 
Simulation of viscous effects has been addressed, namely by studying the influence of 
numerical viscosity. First validations have been presented on academic test cases, showing 
very encouraging results. Nevertheless, this method is not straightforward for complex 
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geometries. Another explicit viscous solver based on viscous fluxes is under development, 
and methods from [8] and [10] will be investigated. Then higher Reynolds numbers and 
turbulent simulations will be addressed by means of Large Eddy Simulation (LES). Further 
developments will also deal with Adaptive Mesh Refinement (AMR) in a parallel framework.   
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