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Abstract. A numerical model for the simulation of the fluid-structure interaction (FSI)
between the wind and the sails of a sailing boat is presented. This problem is characterized
by an extremely light structure (in particular when downwind sails, spinnaker or gennaker,
are considered) experiencing large displacements under the action of a complex (turbulent
and separated) flow field. The model is based on a strongly coupled segregated FSI
approach which guarantees adequate stability properties for the FSI problem at hand. A
Dirichlet-Neumann coupling algorithm is adopted with a finite-volume Reynolds Averaged
Navier-Stokes (RANS) flow solver interacting with a finite-element shell structural solver.
Numerical results of unsteady FSI simulations are presented and discussed.

1 INTRODUCTION

Fluid-structure interaction (FSI) problems are still subject of intensive investigation
in several application fields and many different formulations have been considered in the
literature for their numerical solution.

In this work, we focus on a specific application where the interaction between a fluid
flow (the wind) with a flexible (and light) structure (a sail) is considered. When upwind
sailing configurations are considered, the flow around the sails is mainly attached and
simplified flow models based on potential flow theory can usually be adopted, as in [1, 2].
Downwind configurations are much more demanding in terms of model complexity since,
on one hand, the flow around gennaker (or spinnaker) is usually detached thus requiring
the solution of the full Navier–Stokes equations [3, 4, 5, 6]; on the other hand, downwind

1



267

Nicola Parolini and Matteo Lombardi

sails can often undergo large displacements, which should be accounted for by both the
structural model and the mesh motion solver.

This paper is organized as follows: in Section 2 we briefly recall the structural and
fluid models adopted and we introduce an unsteady strongly-coupled FSI scheme used
for wind/sail interaction problems; in Section 3, we present a numerical (space and time)
convergence analysis carried on for a benchmark FSI test case and then we present the
results of the FSI simulation for an unsteady downwind two-sail configuration; finally,
some conclusions are drawn in Section 4.

2 FLUID-STRUCTURE INTERACTION PROBLEM

Sails are flexible structures that deform under the action of the wind. The pressure
field acting on the sail changes its geometry and this, in turn, alters the flow field.

The structural and fluid solvers are briefly introduced in the following sections before
describing the coupling scheme that has been devised to simulate the FSI problem as
well as the numerical techniques adopted for the interface data transfer and for the mesh
motion. A detailed description of the different components of the FSI solver can be found
in [7].

2.1 Structural solver

To model the structural behavior of the sails subjected to an external stress field
we consider a shell finite element approach. Given a shell body of constant thickness
h immersed in a fixed reference frame {ei}, i = 1, 2, 3 and based on the inextensible
director shell theory, the geometry of the shell in the reference configuration is given by
the mapping

X = Φ(ξ̄) = Φ̄(ξ1, ξ2) + ξ3L(ξ1, ξ2), −h

2
≤ ξ3 ≤ h

2
, (1)

where X is the position vector of a material point in the shell body identified by the
convective system of coordinates ξ̄ = (ξ1, ξ2, ξ3); X̄ = Φ̄(ξ1, ξ2) are the points on the shell
middle surface M(ξ3 = 0), with boundary ∂M, and the unit vector L(ξ1, ξ2) denotes the
director field. We assume L to be normal to the middle surface in the original configuration
but this property s, in general, lost during the deformation. Moreover, we assume that
the material line originally normal to the shell midsurface in the reference configuration
remains straight and unstretched during motion and that the stresses in the direction of
the material line are zero.

A shell deformed configuration at time t ∈ [0, T ] is defined by the mapping x = χt(X)
where χt represents the motion. For this kinematics, the displacements d at a generic
point X is given by

d(ξ̄) = x(ξ̄)−X(ξ̄). (2)
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For a solid with density ρ0 subjected to forces B, the equation of motion (balance of
momentum) in the reference configuration reads:

ρ0
∂2 d

∂t2
= ∇R · S+ B, (3)

where ∇R· is the divergence operator in the reference configuration and S = JσSF
−T is

the first Piola-Kirchhoff stress tensor, σS is the Cauchy stress tensor, F is the deformation
gradient defined as

F =
∂χt(X, t)

∂X
=

∂x(X, t)

∂X
,

and J is the determinant of F.
The spatial discretization of problem (3) is based on the finite element method using the

MITC4 elements [8]. This approach proved to be adequate [9] to simulate the dynamics
of light structures, in particular with respect to the typical occurrence of post-buckled
configurations triggered by local instabilities, known as wrinkling. A time adaptive explicit
second-order scheme is considered for the time discretization (see [7]).

2.2 Fluid solver

In the context of sails simulations, potential flow models have been used extensively in
case of upwind sailing configurations where the flow can be considered mainly attached.
For downwind configurations, large flow separations usually occur and thus the solution
of the full Navier-Stokes equations is required. Due to the typical Reynolds number
characterizing the problem, a turbulence model approach is required and the Reynolds
Averaged Navier-Stokes (RANS) equations are considered, which read




∂(ρu)

∂t
+∇ · (ρu⊗ u)−∇ · σF = 0, in Ω(t)× (0, T ),

∇ · u = 0 in Ω(t)× (0, T ),

u = u0 in Ω(t = 0),

u = uD on ΓD × (0, T ),

σF · n = 0 on ΓN × (0, T ),

u = ḋ on ΓSail(t)× (0, T )

(4)

where u and p are the averaged velocity and pressure, ρ is the air density, w is the mesh
velocity and σw = µ(∇u + ∇uT ) − pI is the stress tensor, with µeff = µ + µt denoting
the total viscosity (sum of the dynamic and turbulent viscosity). On the portion ΓD of
the domain boundary (which usually includes the inlet), a Dirichlet velocity boundary
condition uD is imposed while on ΓN (usually the outlet boundary) a Neumann-type
condition imposes zero normal stress. The velocity on the moving sail is equal to ḋ, the
rate of deformation of the structure interpolated on the fluid interface. The turbulent
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viscosity is evaluated using the Shear-Stress-Transport (SST) model [10] which requires
the solution of two additional partial differential equations for the turbulent kinetic energy
ε and for the specific dissipation ω, which are solved in a segregated fashion with respect
to problem (4). Note that, in order to deal with the moving domain due to the sail
deformation, a Arbitrary Lagrangian Eulerian (ALE) formulation of the RANS equations
[11] has been adopted.

2.3 Mesh motion

The third computational ingredient of the FSI algorithm has to deal with the fluid mesh
motion. Indeed, on one hand, the structural solver is based on a Lagrangian approach
in which the problem is always recasted into a reference structural domain; on the other
hand, the ALE approach adopted in the flow solution requires the extension of the sail
displacement to the whole fluid domain. Different approaches can be adopted to face this
problem. In this work, we have considered a technique based on the Inverse Distance
Weighting (IDW) interpolation [12].

2.4 FSI coupling

Let us denote with F the fluid problem (4) defined on domain ΩF (t) and with S the
structural problem (3) defined on domain ΩS(t). Moreover, we denote with M the mesh
motion problem that is solved at each iteration to adapt the fluid computational grid to
the updated sail geometry. In mathematical terms, the FSI problem can be defined as
a coupled system that comprises the fluid problem F , the structural problem S and the
mesh motion problem M. In abstract form, the problem can be formulated as follows




F(u, p,w) = 0 in ΩF (t)

S(d) = 0 in ΩS(t)

M(η) = 0 in Ω0
F

u = ḋ on Γ(t)

σF (u, p)nF = σS(d)nS on Γ(t)

η = d on Γ0 ,

(5)

where the three (fluid, structure and mesh motion) problems are coupled through three
conditions over the interface Γ(t) stating the continuity of velocity, the equilibrium of
forces and the geometric continuity, respectively. In (5), d denoted the structural dis-
placement, η the mesh displacement, Ω0

F and Γ0 denote the reference fluid domain and
interface, respectively. The fluid mesh motion velocity w, needed in the ALE formulation
of the RANS equations, is the time-derivative of the mesh displacement w = η̇.

For the solution of problem (5), different FSI schemes can be devised. Monolithic
schemes are based on the solution of a global system which is assembled and solved for
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all the unknowns of the problem simultaneously; on the other hand, when existing (and
independent) fluid and structural solvers have to be coupled, partitioned schemes, in which
the fluid, structure and mesh motion problems are solved iteratively, are preferred. For the
case at hand, a strongly-coupled partitioned scheme has been devised, which guarantees
that at each time step the equilibrium is reached between the different sub-problems.
To compute the solution at time tn+1, a sub-iteration between the three sub-problems is
required. The structural solution is first computed

S(dn+1
k+1) = 0 in ΩS

n+1
k

σS(d)
n+1
k+1nS

n+1
k = σF (u, p)

n+1
k nF

n+1
k on Γ,

followed by the mesh motion update

M(ηn+1
k+1) = 0 in Ω0

F

ηn+1
k+1 = αdn+1

k+1 + (1− α)dn+1
k on Γ0,

and finally the flow solution

F(un+1
k+1 , p

n+1
k+1 ,w

n+1
k+1) = 0 in ΩF

n+1
k+1

un+1
k+1 = αḋn+1

k+1 + (1− α)ḋn+1
k on Γn+1

k+1 ,

where α is a coefficient computed using the Aitken relaxation. The iteration over the
index k is stopped when a suitable convergence criterion is fulfilled, namely



||dn+1
k+1 − dn+1

k ||/||dn+1
0 || ≤ εd

||un+1
k+1 − un+1

k ||/||un+1
0 || ≤ εu

||pn+1
k+1 − pn+1

k ||/||pn+1
0 || ≤ εp

,

where both L2 and L∞ norms have been tested. In the numerical tests discussed in Section
3, a convergence criterion based on the L2 norm has been used.

The FSI scheme described above can be adopted when non-conforming (at the interface)
space discretizations are adopted for the fluid and structural problems. In this case,
suitable interpolation operators for the data transfer at the interface are required. The
approach adopted in this work is based on Radial Basis Functions and was introduced in
[13]. Non-conforming interface grids are considered, for example, in the FSI sail simulation
that will be presented in Section 3.2.

3 NUMERICAL RESULTS

The strongly-coupled FSI algorithm introduced in the previous sections has been ap-
plied for the simulation of different sail configurations. For an overview of the results,
we refer to [7], where a large set of simulations on one- and two-sail configurations are
discussed, together with an analysis of the effect of the sail trimming.

In order to assess the convergence properties of the model, we present here a simple
benchmark test case comparing our results with those published in the literature. More-
over, to display the ability of the model in capturing complex sail dynamics, we report
the result of an unsteady numerical simulation on a two-sail downwind configuration.
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3.1 Cavity with flexible wall

As in the test case proposed in [14], a three-dimensional cavity with flexible bottom is
considered with a pulsating flow field imposed on a small inlet section on the upper part
of one side, while, on the opposite side a small outlet section is present.

On the inlet section, a pulsating linear velocity profile in x−direction, ranging from 0
to

utop(t) = (1− cos(2πt/5), 0, 0),

with a period of 5 s is considered. On the top surface, a uniform Dirichlet boundary
condition u = utop is imposed, while on the outlet boundary the normal stress is set to
zero. The flexible bottom surface is modeled using the shell finite element model described
in Section 2.1 and the FSI interface conditions introduced in Section 2.4 apply. Finally, on
the remaining boundaries homogeneous Dirichlet boundary conditions u = 0 are imposed.
The fluid and structural physical properties are reported in Table 1.

Fluid Density [Kg/m3] Viscosity [m2/s] Cavity size [m] Inlet size [m]
1.0 0.01 1 0.125

Structure Density [kg/m3] Poisson’s ratio Young’s modulus [N/m2] Thickness [m]
500 0.0 250.0 0.002

Table 1: Fluid and structural properties used in the cavity test case.

In Figure 1, the deformation undergone by the flexible bottom and the streamlines on
the longitudinal vertical midplane are reported for different time instants. The pulsating
flow field generates a suction pressure on the bottom and the creation of a large vortex
inside the fluid domain.

Figure 1: Structural surface deformation and fluid streamlines on a vertical cross section at different time
instant over a period.

The time evolutions of the vertical displacement of the bottom surface midpoint are
displayed in Figure 2 for different resolutions and show the space and time convergence
of the method. The results are in agreement with those obtained in [14] where, however,
no convergence analysis is reported.

6



272

Nicola Parolini and Matteo Lombardi

Figure 2: Time evolution of the bottom surface midpoint displacement: space (left) and time (right)
convergence.

3.2 Unsteady FSI simulation for downwind sails

In this section, we present the results of the unsteady FSI simulation of a two-sail
configuration. Only the sails are considered in this simulation and the computational
domain is a parallelepiped surrounding them. The computational grid is based on a
hybrid approach, where in the far field region a block structured grid is generated, while
in a small region around the sails an unstructured grid is used (see Figure 3). The gennaker
has two fixed vertices and the third one, attached to the trimming sheet, as the sheet is in
tension, is constrained to stay at a fixed distance from the attachment point on the boat,
thus moving on a spherical surface. The main sail motion is much more constrained, as
the side attached to the mast is fixed (no mast deformation is considered), as well as the
side attached to the boom.

The velocity boundary conditions imposed at the inlet of the domain is the composition
of the opposite of the boat speed (here equal to 5.48 m/s in the x−direction) and the wind
velocity (see Figure 4, left). The wind velocity magnitude is modeled with the following

Figure 3: Hybrid structured-unstructured mesh for the gennaker-main sail simulations. The cylinder
surface delimits the unstructured domain.
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atmospheric boundary layer law (assuming y the vertical axis pointing upwards and the
sea level being at y =0 m):

u(y) = uref

(
y

yref

)Cr

(6)

where uref is the reference wind velocity at the reference height yref and Cr is a constant
reflecting the roughness of the surface over which the wind is blowing. In our simulations,
we considered the reference wind velocity uref = 6.632 m/s, the reference height zref = 10
m and the roughness constant Cr = 0.1. In the downwind configurations considered here
the boat is reaching : the wind is coming diagonally from behind, with an angle equal to
155 degrees to the bow direction.

These choices result in a twisted profile imposed on the inflow boundary: the resulting
velocity profile is in fact the opposite of the boat speed at sea level but rapidly change
direction and magnitude as the height increases (see Figure 4, right).

In order to be able to simulate such flow boundary layer accurately and preserve it
inside the fluid domain, a refinement in the vertical direction of the computational grid
in the area close to the sea level is required.

�����

���������

�����

Figure 4: Boat velocity and wind speed directions (left) and resulting twisted inflow boundary condition
(right).

The sail fabric is modeled with a simple isotropic constitutive law, while the presence of
battens (stiff elements inserted in the main sail to better control its shape) is accounted for
considering local changes in the structure mechanical properties. The fluid and structural
physical properties are reported in Table 2.

The deformation undergone by the sails can be observed in Figures 5 and 6. In the first
instants, the vertex attached to the trimming sheet is free to move and travel forward
under the pressure of the wind being the sheet not yet under tension (Figures 5, (a)).
Being the bow vertex fixed, a wrinkle is generated in the lower forward part of the sail.
When the maximum sheet length is reached, the motion of the sheet attached vertex is
abruptly stopped and the sheet starts pulling down and backward: such impulse prop-
agates very quickly from the vertex upward (Figure 5, (b)-(c)-(d)) and merges with the
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one propagating from the bow wrinkle. After 2.8 seconds the deformation is already quite
small and the simulation very close to a steady solution.

(a) Time = 0.5 [s]. (b) Time = 1.0 [s]. (c) Time = 1.2 [s].

(d) Time = 1.5 [s]. (e) Time = 2.0 [s]. (f) Time = 2.8 [s].

Figure 5: Two-sail transient FSI simulation: gennaker time evolution colored by displacement velocity
contour.

The motion undergone by the main sail is much smaller if compared with the one of
the gennaker due to the higher stiffness of the sail and, more importantly, to the very
constraining boundary conditions. It is interesting to notice though that the presence of
the battens, modeled with a local higher Young’s modulus, has an influence on the motion,
as can be observed in Figure 6, (a). The displacement of the main sail is characterized by
deformation waves almost aligned with the vertical axis and propagating from the mast to
the rear of the sail: once again this is physically compatible with the imposed constraints
over the sail edges.

Fluid Density [Kg/m3] Viscosity [m2/s]
Air 1.0 1.5 10−5

Structure Density [kg/m3] Poisson’s ratio Young’s modulus [N/m2] Thickness [m]
Gennaker 100 0.3 3.76 108 0.001
Main sail 340 0.3 1.93 109 0.003
Battens 500 0.3 1.0 1010 0.012

Table 2: Fluid and structural properties used in the wind/sails FSI simulations.
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(a) Time = 0.1 [s].
Small scale.

(b) Time = 1.33 [s] s. (c) Time = 3.18 [s].

(d) Time = 4.98 [s]. (e) Time = 7.78 [s]. (f) Time = 13.3 [s].

Figure 6: Two-sail transient FSI simulation: main sail time evolution colored by displacement velocity
contour.

The time evolution of the forward force on the gennaker is displayed in Figure 7. In
the first instants, the forward force on the gennaker drops to a very low value while the
gennaker trimming sheet is not yet under tension and the sail is free to open up. When
the trimming sheet starts pulling, the force abruptly rises to a large value and only slowly
stabilize to an asymptotic regime when the sail is almost at rest. Nonetheless, a small
fluctuation can still be observed even at convergence, showing that the asymptotic solution
is unsteady and thus justifying the adoption of an unsteady FSI solver. In Figure 7, the
present unsteady result is compared to the converged force value on the initial geometry
configuration and to that obtained by a steady FSI simulation, where steady versions of
both flow and structural solvers are considered.

Regarding the computational cost of such simulation, it is worth mentioning that,
given a fixed FSI coupling tolerance, the residuals over the main sail converge much faster
than those over the gennaker sail, due to much smaller motion magnitude. The structural
solvers for the two sails are run independently, with the one simulating the main sail takes
the longest time for each structural solution (being the sail stiffer, a smaller time step
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Figure 7: Two-sail transient FSI simulation: time evolution of the forward force on the gennaker.

constraint is imposed to the explicit solver to be able to catch the higher frequencies).

4 CONCLUSIONS

A model for the simulation of the unsteady dynamics of sails interacting with the
wind has been presented. The model has been conceived in order to guarantee the strict
stability requirements needed by fluid-structure interaction problems with light struc-
ture. In this respect, a strongly-coupled partitioned approach was considered with a FSI
sub-iteration reaching a dynamic equilibrium at each time step. Moreover, an energy
preserving interface data transfer between the fluid and the structure was used at the
non-conforming interface. The convergence and robustness of the method have been as-
sessed with numerical results on both an academic FSI test case and a real downwind sail
dynamic problem.
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