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Abstract

In this work we relate the factorization of polynomials modulo p with the splitting of primes in number
fields, and we study in which cases the different possibilities of factorization or splitting can be explained by
the coefficients of the q-expansion of a certain modular form.
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1. Introduction
In this dissertation we explore a relation between polynomial factorization modulo a prime, ideal factorization
in number fields, quadratic forms and theta series. The main goal of this work is to detail an example
explained in [1, pp. 41-43], with the intention to make it accessible to a reader with basic knowledge in
number theory.

In the first part of the work, we will start introducing the basic concepts of algebraic number theory
following [7]. The main phenomenon that we study is the splitting of primes in number fields, which is
tightly related to the factorization of polynomials modulo primes. This will allow us to understand the
factorization of the polynomial x3 − x − 1 modulo p through the splitting of p in F = Q(α), where α is a
root of x3 − x − 1.

To have a better understanding of the splitting of primes in F , we consider the normal closure H = FGal

of the extension F/Q, which can be achieved by adjoining every root of x3 − x − 1 to Q. We have that√
−23 ∈ H since the discriminant of x3 − x − 1 is

(
(α− β)(α− β̄)(β − β̄)

)2
= −23. Therefore the field

H has the imaginary quadratic field K = Q(
√
−23) as a subfield. We have the following diagram of field

inclusions

H = FGal

F = Q(α)

3
K = Q(

√
−23)

2

Q

Figure 1: Field diagram of this work. α is a root of x3 − x − 1.

It is well know that the splitting of a prime in a field and the splitting in its normal closure are related
in the sense that if a prime splits completely in one of these fields, it splits completely in the other. On the
other hand, the field extension H/K is normal, and we show that H is the Hilbert class field of K . Therefore
principal primes of K split completely in H. Using these facts, we show the relation between the splitting
of primes in the fields F and K .

In the second part of this work, we relate the splitting of a prime p in the imaginary quadratic field K ,
with the representations of p by certain quadratic forms. For each such quadratic form Q, we construct
its theta series ΘQ(z). This is the periodic function having as its n-th Fourier coefficient the number of
distinct representations of n by Q. These functions satisfy a concrete transformation property described by
the Hecke-Schoeneberg Theorem.

On the other hand we use a very important function in number theory, the Dedekind eta function,

η(z) = q1/24
∞∏
n=1

(1− qn), where q = e2πiz

to construct the function

f (z) = η(z)η(23z) = q
∞∏
n=1

(1− qn)(1− q23n). (1)
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Understanding the factorization mod p of polynomials via modular forms

We prove that f satisfies the same transformation property as the mentioned theta series. Using the theory
of modular forms, the functions f and each ΘQ belong to a certain vector space of modular forms. In this
space we find that two different forms must differ in the first four Fourier coefficients. Using this, we find
that f equals a particular linear combination of theta series.

Finally, the equality of the two functions implies that for any prime p, computing the p-th coefficient of
the formal product is sufficient to know the factorization of the polynomial x3 − x − 1 modulo p and vice
versa.

As an illustration, a few terms of (1) are

q
∞∏
n=1

(1− qn)(1− q23n) =q−q2 − q3 + q6 + q8−q13 − q16+q23 − q24 + q25 + q26

+q27 − q29 − q31 + q39 − q41 − q46 − q47 + q48 + q49 − q50

−q54 + q58+2q59 ...

The coefficients of the exponents 2, 3, 13, ... are −1, and x3 − x − 1 modulo these primes is irreducible.
The coefficients of the exponents 5, 7, 11, ... are 0, and x3 − x − 1 has two factors modulo these primes,

x3 − x − 1 ≡ (x + 3)(x2 + 2x + 3) (mod 5)

x3 − x − 1 ≡ (x + 2)(x2 + 5x + 3) (mod 7)

x3 − x − 1 ≡ (x + 5)(x2 + 6x + 2) (mod 11).

The 23-th position is the only prime position with coefficient 1, and we have the factorization

x3 − x − 1 ≡ (x + 20)(x + 13)2 (mod 23).

Finally the coefficients of the exponents 59, ... are 2, and x3−x−1 factors completely modulo these primes,

x3 − x − 1 ≡ (x + 17)(x + 46)(x + 55) (mod 59).
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Part I

Algebraic number theory

2. Introduction to number fields
Every field extension of Q can be considered as a Q-vector space. When this extension is of finite degree,
we say that the field is a number field. The elements of a number field are algebraic numbers: if α is an
element of a number field of degree n, there is some rational linear dependence between 1,α,α2, ... ,αn,
and therefore α is a root of some monic polynomial with rational coefficients.

The Primitive element Theorem shows that every number field K can be constructed by adjoining only
one generator α. This is usually written as K = Q(α). If K has degree n over Q, there are n distinct
embeddings σi of K in C which are fully determined with σi (α) = θi where θ1, ... , θn are the complex
roots of the minimal polynomial of α. Taking into account all these embeddings, we define the norm of an
element β of a number field K to be

NK (β) = σ1(β) ...σn(β).

Note that the norm is multiplicative, since the embeddings σi are.
The norm of a generator of K , is just the product of all their conjugates, which is the constant term

of its minimal polynomial (except for the sign), so it is rational. In general, if K is a degree d extension of
Q(α), we have NK (α) = (NQ(α)(α))d since each embedding of Q(α) in C extends to d embeddings of K
in C. Thus we conclude that the norm can only take rational values.

2.1 The ring of integers of a number field

The numbers whose minimal polynomial is monic and with integer coefficients are said to be algebraic
integers. The ring of integers OK of a number field K is the subset of algebraic integers that it contains.
For example, the ring of integers of Q is just Z. Therefore we can think that the ring of integers of a
number field is a generalization of the regular integers.

The ring of integers of a number field is finitely generated and every basis, called integral basis, has
exactly n elements (it is a free abelian group of rank n) [7, corollary of Theorem 9]. In general, it is not
straightforward to explicitly find an integral basis of a number field, but for our purposes we will be able to
verify that we have found one using the discriminant.

Let α1, ... ,αn be elements of OK , and let σ1, ... ,σn be the embeddings of K into C. The discriminant
of α1, ... ,αn is defined as

d(α1, ... ,αn) =

∣∣∣∣∣∣∣
σ1(α1) · · · σ1(αn)

...
. . .

...
σn(α1) · · · σn(αn)

∣∣∣∣∣∣∣
2

.

Given an integral basis {β1, ... ,βn}, we can write any integral set {α1, ... ,αn} asα1
...
αn

 = M

β1
...
βn

 (2)
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for some matrix M with integer coefficients. When the determinant of M is ±1, the matrix has an
inverse with integer coefficients and in this case {α1, ... ,αn} is also a basis.

Applying all σi to each row of Equation (2), we obtainσ1(α1) · · · σ1(αn)
...

. . .
...

σn(α1) · · · σn(αn)

 = M

σ1(β1) · · · σ1(βn)
...

. . .
...

σn(β1) · · · σn(βn)

 ,

and after taking determinants and squaring, we get

d(α1, ... ,αn) = det(M)2d(β1, ... ,βn). (3)

Thus det(α1, ... ,αn) = det(β1, ... ,βn) if and only if the set {α1, ... ,αn} is also an integral basis. Using this
fact, the discriminant of the number field K is defined as ∆K = d(β1, ... ,βn) for any basis {β1, ... ,βi}.

Let α be an algebraic number with minimal polynomial g(x) of degree n. From the definition, We
describe a method to compute the discriminant of 1,α,α2, ... ,αn−1. Let αi be the conjugates of α. From
the definition, the discriminant of 1,α,α2, ... ,αn is the square of the determinant of a Vandermonde matrix,

d(1,α,α2, ... ,αn−1) =

∣∣∣∣∣∣∣
1 α1 ... αn−1

1
...

...
. . .

...
1 αn ... αn−1

n

∣∣∣∣∣∣∣
2

=
∏
i 6=j

(αi − αj)
2 = disc(g).

Now we observe that the minimal polynomial of α is g(x) =
∏n

i=1(x −αi ) and its derivative is g ′(x) =∑n
j=1

∏
i 6=j(x − αi ). When we evaluate it at a root αj , almost every product becomes zero except for one:

g ′(αj) =
∏

i 6=j(αj − αi ). Now we consider the product N(g ′(α)) =
∏n

j=i g
′(αj), which has every factor

αi −αj repeated twice up to the sign. If we group similar factors together we obtain (−1)(n2) disc(g), since
we have to change one sign for each pair. We get a direct way to compute the discriminant,

d(1,α,α2, ... ,αn−1) = (−1)(n2)N(g ′(α)). (4)

Discriminant of a quadratic number field

We aim to understand the ring of integers of Q(
√
−23). More generally, we will work with any quadratic

field K = Q(
√
d) where d is a square-free integer. Its ring of integers consists of the algebraic numbers

of the form θ = α + β
√
d such that they are roots of some monic polynomial with integer coefficients.

Since the field Q(
√
d) is a 2 dimensional vector space over Q, there is some linear dependence between 1, θ

and θ2, for example θ2 − 2αθ + α2 − dβ2 = 0. This gives the minimal polynomial of θ, which has integer
coefficients if both coefficients 2α and α2 − dβ2 are integers. This is the case if both α and β are integers
or if α is half an integer, and dβ2 is a quarter of an integer, in which case β must be half an integer and
d ≡ 1 (mod 4).

Thus, we can conclude that the ring of integers is

OK =

{
{α + β 1+

√
d

2 | α,β ∈ Z} if d ≡ 1 (mod 4)

{α + β
√
d | α,β ∈ Z} otherwise

(5)
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Now we can compute its discriminant using the previous basis. We only need to compute the discriminant
of the minimal polynomial of its generator. We obtain

∆K =

{
disc(x2 − x + 1−d

4 ) = d if d ≡ 1 (mod 4)

disc(x2 − d) = 4d otherwise
. (6)

Therefore the discriminant of K = Q(
√
−23) is ∆K = −23.

Discriminant of the cubic field F

We check that the ring of integers of the field F = Q(α), where α is a root of x3−x−1, is OF = Z[α]. To
do so we will see that the discriminant of 1,α,α2 is squarefree, and by Equation 3 we deduce that 1,α,α2

is a basis for the ring of integers of F .
Since the minimal polynomial of α is g(x) = x3 − x − 1, using Equation (4), we need to compute

the norm of ξ = g ′(α) = 3α2 − 1. This can be done by finding a linear combination of 1, ξ, ξ2 and ξ3,
which is ξ3 − 3ξ2 − 23 = 0. This is the minimal polynomial of ξ, and we get the norm from the constant
term: disc(p) = −N(p′(α)) = −23. So we get disc(1,α,α2) = −23, which is square free. Therefore the
discriminant of F is ∆F = −23.

2.2 The ideals of the ring of integers

In a number ring, the analogue of prime numbers are irreducible elements, which are those elements that
cannot be obtained as the product of two noninvertible elements. It turns out that in general, the ring of
integers of a number field is not a unique factorization domain. For instance in Q(

√
−5) we have that 6

has two different factorizations: 2 · 3 = 6 = (1 +
√
−5)(1 −

√
−5) and every factor of this expression is

irreducible. This inconvenience can be solved working with ideals instead of with elements.
We say that an additive subgroup a of an arbitrary ring R , is an ideal, if it satisfies that whenever a ∈ a,

then ab ∈ a for any b ∈ R . In this case, the quotient group R/a has a well-defined induced ring structure.
Since any number ring OK is a free abelian group of rank n, any ideal is a subgroup of rank at most n,

so it is finitely generated. Therefore, any ring of integers OK is a Noetherian ring. We will prove unique
factorization in any ring of integers using this together with a divisibility property.

If the generators of an ideal a are the elements α1, ... ,αk , then one writes a = (α1, ... ,αk). If a is any
nonzero element of an ideal a, we have that a contains the rank n group aOK and since a has rank at most
n, the ideal a must have rank exactly n. This means that the group OK/a is the quotient of two free abelian
groups of the same rank, so it is finite. We define the norm of the ideal a as

N(a) = [OK : a] =
∣∣OK�a

∣∣.
2.3 Prime ideals and unique factorization

Let R be an arbitrary unitary commutative ring. We define the sum and the product of two ideals a, b ⊆ R
as

• a + b = {a + b | a ∈ a and b ∈ b} which is the minimal ideal containing both a and b.

• ab = {
∑

i aibi | ai ∈ a, bi ∈ b} which is the minimal ideal containing {ab | a ∈ a and b ∈ b}.
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An ideal a is called maximal if there is no ideal containing it different from R . This definition is equivalent
to saying that the quotient ring R/a is a field. A prime ideal p is an ideal different from R which satisfies
that if ab ∈ p, then either a ∈ p or b ∈ p. This definition is equivalent to R/p being an integral domain.
Since a field is in particular an integral domain, every maximal ideal is prime. The converse is not always
true, but in a ring of integers OK if p is a prime ideal different from {0} we know that the quotient OK/p is
a finite integral domain, so it is a field and p is also maximal. This field is called the residue field of p, and
it is often written as κ(p).

We prove that in a ring of integers OK , every ideal decomposes uniquely into prime ideals. Thus, they
are Dedekind domains. To do so, we need to use the cancellation law for ideals, if ac = bc with c 6= 0, then
a = b. This is not difficult to prove, but we will obtain a very simple proof later, while working on ideal
classes.

Theorem 1. If K is a number field, every ideal of OK decomposes uniquely in prime ideal factors.

Proof. First, we need to show that any ideal in OK contains a product of prime ideals. This can be done
using Noetherian induction as follows: if there were some counterexample a0, there must exist an ideal a
containing a0 such that any ideal containing it is a product of prime ideals, otherwise we could construct
an infinitely increasing chain a0 ⊂ a1 ⊂ ... of counterexamples. The ideal a is not prime, so there exist
some elements r , s ∈ OK r a such that rs ∈ a. Finally we have that a ⊂ a + (r) and therefore the ideal
a + (r) contains some product of primes. The same is true for the ideal a + (s). At the end we get to a
contradiction since (a + (r))(a + (s)) ⊂ a which means that a contains some product of primes.

If some ideal does not decompose in prime factors, using the same argument as before, we know that
there is some ideal maximally satisfying this property (any ideal containing it does not satisfy it). This ideal
cannot be prime. We know that it must contain some product of primes but at the same time it is contained
in a maximal ideal p. This means that p contains the product of primes. Hence it contains one of them.
But since a prime ideal is also a maximal ideal, they must be equal. We find that the ideal a is divisible by
p. Thus, a = a′p for some ideal a′. Since a ⊂ a′, and we assumed that any ideal containing a decomposes
in prime ideal factors, so does a.

Now we prove uniqueness of the prime decomposition. If we have two prime decompositions of an ideal
a = p1 ... pr = q1 ... qs . Then p1 contains a product of primes, so it contains one of them, say qi . Since p1

is maximal, it must be the case that p1 = qi . Cancelling p1 in both sides and repeating the argument we
get that r = s and the primes coincide except for some permutation.

This result can be used directly to compute the norm of an ideal a = p1 ... pr . It is only necessary to know
how to compute N(ap) when p is a prime ideal. In this case we have the equality [OK : ap] = [OK : a][a : ap]
which by definition is

N(ap) = N(a)[a : ap].

And finally we compute the index [a : ap] for any prime p. we know that ap ( a since we have unique
factorization, and if we take α ∈ a r ap, we have that ap + (α) = a, by the same reason. We define the
following surjective morphism

ϕ : OK → ap�p
x 7→ αx + p.

Its kernel is different than OK , and it contains p. Since p is a maximal ideal, we have that kerϕ = p. Thus,
OK/p ∼= ap/p. From this we have that [a : ap] = N(p), and we conclude that N(ap) = N(a)N(p). Therefore,
the norm of ideals is multiplicative.

8



To end this section, we show some general facts about ideals that will be useful later.
A principal ideal is one which can be generated by a single element. A principal ideal domain is an

integral domain for which any ideal is principal.
For any ideal a in a ring of integers OK , there exists an ideal a′ such that aa′ is principal. This fact

could be proved right now [7, Theorem 15], but later we will get this for free.
Let a and b be ideals of a ring of integers OK . We say that a divides b and we write a | b if there exist

an ideal c such that ac = b. This directly implies that a ⊃ b. The other direction also holds, there is some
ideal a′ such that the product aa′ is principal, say aa′ = (α). We have aa′ = (α) ⊃ a′b, so every element
of a′b is a multiple of α, and c = 1

αa
′b is a subset of OK . Clearly this is an additive group, and it is an

ideal; given x ∈ OK , y ∈ 1
αa
′b we have xy ∈ 1

αa
′b is equivalent to αxy ∈ a′b, but αy belongs to the ideal

a′b and so does αxy . This proves that xy ∈ 1
αa
′b, and finally ac = b.

In short, a ⊃ b and a | b are equivalent.

Corollary 2. A ring of integers OK is a unique factorization domain if and only if it is a principal ideal
domain.

Proof. Since we have unique factorization of ideals, in a number field where every ideal is principal we
have unique factorization of elements as well (take the generators of the prime ideals that appear in the
factorization).

On the other hand, in a unique factorization domain any ideal a can become a principal ideal when it is
multiplied by some ideal. Let (α) be that principal ideal. If we have unique factorization, α = π1 ...πn. And
every ideal (πi ) is actually a prime ideal, since xy ∈ (π), then π|xy and from primality of π, we have that
either π|x or π|y , which means that either x or y is in π. So we have found the unique decomposition of
(α) in principal prime ideals. Since (a) ⊃ a, the ideal a is a product of principal ideals, so it is principal.

9
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3. The splitting of primes

3.1 The splitting of primes in F

In the previous section we have seen that in a ring of integers OK any ideal decomposes uniquely in prime
ideals. Using the following theorem, we will find the explicit decomposition of a prime in the number field
F = Q(α), using that its ring of integers is Z[α].

Theorem 3 (Dedekind-Kummer). Let g(x) be an irreducible polynomial with integer coefficients. We
consider the factorization of g (mod p)

ḡ = ḡ e1
1 ḡ e2

2 · · · ḡ
er
r (mod p).

Let α be a root of g(x). Assuming that the ring of integers of the number field K = Q(α) is Z[α], the
prime divisors of the ideal pOK are pi = (p, gi (α)) and the prime factorization is given by:

pOK = pe1
1 · · · p

er
r .

Proof. We compute the set of prime ideals of OK that contain the ideal pOK , which are in correspondence
with the prime ideals of OK/pOK . From the assumption that OK = Z[α], we have the isomorphism OK

∼=
Z[x]/(g(x)). We deduce that

OK�pOK
∼= Z[x ]�(p, g(x))

∼= Fp[x ]�(ḡ(x)).

The maximal ideals from the latter ring are (ḡ1), ... , (ḡr ), since the quotient by any of them is the finite
field Fp [x]/ḡi (x). These ideals satisfy (ḡ1)e1 · · · (ḡr )er = (ḡ(x)) = 0, but no product of them with smaller
exponents is zero.

On the one hand, the ideal (ḡi (x)) in Fp [x]/ḡ(x) corresponds to the ideal (gi (α)) + pOK in OK/pOK . At
the same time this corresponds to the ideal pi = (p, gi (α)) in OK . Therefore p1, ... , pn are all the prime
ideals that contain pOK .

On the other hand, the ideal (ḡ1)e1 · · · (ḡr )er = (ḡ(x)) corresponds to the ideal (g1(α))e1 · · · (gr (α))er =
0 + pOK in OK/pOK , which leads to pe1

1 · · · perr ⊆ (p, g1(α)e1 · · · gr (α)er ) = pOK .
Finally, any ideal obtained from some product

∏
(ḡi (x))e

′
i with some e ′i < ei , is different from zero, so it

does not correspond to pOK in OK/pOK . From this, we have pe
′
1

1 · · · p
e′r
r ⊆ (p, g1(α)e

′
1 · · · gr (α)e

′
r ) 6⊂ pOK .

Let α be a root of the polynomial x3− x − 1. The ring of integers of the cubic number field F = Q(α)
is OF = Z[α], as we saw at the end of Section 2.1. Therefore for the number field F , Theorem 3 can be
applied and we obtain a direct relation between the factorization of x3 − x − 1 (mod p) and the splitting
of p in the number field F . As an illustration, in Table 1 we show an example of each possible kind of
decomposition. Note that the prime 23 has one factor with multiplicity 2. In section 3.2 we will show that
this is the only prime with some multiplicity. Note also that the number ring OF is a principal ideal domain.
Thus, every ideal on the right column is in fact a principal ideal.

10



p factorization of x3 − x − 1 (mod p) prime decomposition of pOF

2 x3 + x + 1 (2,α3 + α + 1) = (2)

5 (x + 3)(x2 + 2x + 3) (5,α + 3)(5,α2 + 2α + 3)
(−α2 + α + 2)(2α2 + 2α + 3)

23 (x + 20)(x + 13)2 (23,α + 20)(23,α + 13)2

(−3α2 + α + 1)(α2 − 3α− 1)2

59 (x + 17)(x + 46)(x + 55) (59,α + 17)(59,α + 46)(59,α + 55)
(−α2 − 3α + 2)(−2α2 + 3α + 4)(α2 − 4α)

Table 1: Applying Theorem 3 we have a correspondence between the factorization of x3 − x − 1 modulo p
and the splitting of p in F = Q[x ]/(x3 − x − 1). Every ideal is also written in its principal form.

3.2 Splitting in the extension H/K

Following the main setting of this thesis, we consider the normal closure H = FGal of the field extension
F/Q. As we explained in the introduction, H contains the field K = Q(

√
−23). Before dealing with the

splitting of primes in the extension H/K , we study its behaviour in general extensions.
Let L/K be a degree n extension of number fields. For every prime ideal p of OK we consider the

factorization of the ideal pOL in prime ideals of OL,

pOL = Pe1
1 ...Per

r . (7)

This product is called the splitting of p in L. We say that the primes Pi of OL lie over the prime p of OK and
that p lies under each Pi . Every prime of OK lies under at least one prime of OL, given by the factorization
above, and every prime P of OL lies over a unique prime of OK namely P ∩ OK . For each prime Pi over
p, we define two important numbers. The ramification indices ei are the exponents that appear in Equation
7, and the inertial degrees fi are defined as the degrees of the extension of finite fields [OL/Pi : OK/p]. This
is a field extension because we have a ring homomorphism OK → OL/Pi induced from the inclusion OK in
OL, and whose kernel is OK ∩Pi = p [7, Theorem 19]. Therefore, we have an embedding OK/p ↪→ OL/Pi.

The ramification indexes and the inertial degrees will be written as e(Pi|p) and f (Pi |p) if the extension
is not clear from the context.

We say that a prime p ramifies in L/K if some ei is greater than 1. Otherwise we say that p is unramified.
We say that an unramified prime is inert if r = 1, and we say that it splits completely if its inertial degrees
are all 1.

We have a precise control in how much a prime can split in a extension of finite degree.

Proposition 4. Let L/K be a field extension of degree n. If the splitting of a prime p ⊂ OK is pOL =
Pe1

1 ...Per
r , then the ramification indexes and the inertial degrees satisfy

∑r
i=1 ei fi = n.

Proof. We compute the norm NL(pOL) in two different ways. On the one hand this is NK (p)n since every
embedding of K extends to n embeddings of H. On the other, using that the norm is multiplicative, we
have NL(pOL) = NL(P1)e1 · · ·NL(Pr)

er . Since the quotient OL/Pi is a finite field of degree fi over OK/p, by
definition we have NL(Pi ) = NK (p)fi . Combining this, we get

NK (p)n = NK (p)f1e1 · · ·NK (p)fr er .

The equality is obtained directly from the exponents.

11
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Proposition 5. The ramification indexes and the inertial degrees are multiplicative in towers. This means
that if we have a tower extension H/L/K and a prime P ⊂ OH with the primes p = L ∩P, p = K ∩P
under it, then the ramification indices satisfy e(P|p) = e(P|p)e(p|p) and the inertial degrees satisfy
f (P|p) = f (P|p)f (p|p).

Proof. The multiplicativity of the ramification indexes follows directly from unique factorization. For the
inertial degrees it follows from multiplicativity of the indexes of field extensions.

Splitting in normal extensions

Now we will prove that when the extension H/K is Galois, the splitting of a prime p ⊂ OK is of the form

pOH = (P1 ...Pr )e .

First, we prove that the Galois group acts transitively over the primes over p.

Lemma 6. Given a normal extension H/K , the primes lying over a prime ideal p ⊂ OK are transitively
permuted by Gal(H/K ) i.e. for any two primes P,P′ over p there exist some σ ∈ Gal(H/K ) such that
σ(P) = P′.

Proof. Since H/K is normal, H is invariant under any automorphism σ ∈ Gal(H/K ). The ideal σ(P) is a
prime in σ(OH) = OH over σ(p) = p.

For the sake of contradiction, let’s assume that there is some pair of primes P,P′ over p which do not
satisfy this property. Using the Chinese Remainder Theorem for ideals, we have that the following system
of equations has a solution α ∈ OH{

x ≡ 0 (mod P)

x ≡ 1 (mod σ(P′) for all σ ∈ Gal(H/K )
.

One of the factors of the relative norm NH
K (α) is α, which belongs to P (by the first equation).

Therefore we have NH
K (α) ∈ OK ∩P′ = p [7, Theorem 19]. On the other hand we know that α 6∈ σ(P)

for all σ ∈ Gal(H/K ), therefore we have σ−1(α) 6∈ P, and

NH
K (α) =

∏
σ∈Gal(H/K)

σ−1(α) 6∈ P.

But we have already seen that NH
K (α) ∈ p ⊂ P. This is a contradiction from the assumption that σ(P) 6= P′

for all σ ∈ Gal(H/K ). Therefore there is some σ such that σ(P) = P′.

Proposition 7. Given a normal extension of number fields H/K , the factorization of a prime ideal p ⊂ OK

in OH is
pOH = (P1 ...Pr )e ,

where the primes P1, ... ,Pr are all distinct and they have the same inertial degree f . Moreover, we have
that

efr = n.

12



Proof. For any pair of primes Pi,Pj ⊂ OH over p, there is an automorphism such that σ(Pi) = Pj. Since
σ(p) = p and we have unique factorization of ideals in OH , it follows that the ramification indexes ei are
all equal.

For the inertial degrees, we have the following isomorphism between the fields OH/P and OH/P′,

OH�P→
OH�P′

x + P 7→ σ(x) + P′.

Using the normal closure of a number field K , we can find a condition that we can use to find the
ramified primes of K .

Proposition 8. Any prime that is ramified in K divides the discriminant ∆K .

Proof. Let {β1, ... ,βn} be a basis of OK . If the prime p ramifies in K there is a prime pi over p such that
p2
i |p. Then we can write pOK = pa with a divisible by all primes of OK lying over p. We consider an

element α ∈ ar pOK . When we write it as α = α1β1 + · · ·+αnβn one of the αi is not multiple of p (since
α /∈ pOK ). Without loss of generality we can assume it is α1 after a suitable rearrangement of the basis of
OK . We have

d(α,β2, ... ,βn) = α2
1d(β1, ... ,βn) = α2

1∆K .

By assumption, we have that α is contained in every prime p over p. Now we consider the normal closure
H of K . Every prime ideal P ⊂ OH over p also contains α. Therefore the prime σ−1(P) ⊂ σ(OH) = OH

contains α. Applying σ we have σ(α) ∈ P.
This means that the prime p contains d(α,β2, ... ,βn). Since the discriminant is integer, it is in the ideal

P ∩ Z = pZ. Therefore, p | α2
1∆K and p | ∆K .

In the fields F = Q(α) and Q(
√
−23), the prime 23 is ramified since it splits as (−3α2 + α + 1)(α2 −

3α − 1)2 and (
√
−23)2 respectively. Using the previous theorem, we know that there is no other ramified

prime in these fields, since both have discriminant −23.

Proposition 9. The field extension H/K defined above is normal, abelian and unramified.

Proof. Since H/Q is a normal extension, the extension H/K is also normal. Since the extension has degree
3, it’s Galois group is the cyclic group of order 3, thus abelian.

Finally, assuming for the sake of contradiction that a prime p ⊂ OK ramifies in OH , we must have
that the factorization of pOH is P3 for some prime in P ⊂ OH , since the extension H/K is normal. By
multiplicativity on towers, we have the ramification index in H of the prime under p must be either 3 or 6,
since K/Q is a degree 2 extension.

On the other hand the only prime which ramifies in F is 23, and its ramification indexes are 1 and 2.
Since H/F is a degree 2 extension, any ramification index is at most 2. We get a contradiction, since it is
impossible to get 3 or 6 form the product of two numbers that are at most 2.

13
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4. Relating the splitting in K and F

Using the results of the previous section, we classify the different ways in which a prime p distinct from 23
can split in F . There are three categories, it can be inert, split completely or split as the product of two
primes. These are related with the factorization of the polynomial x3 − x − 1 modulo p, which may be
irreducible, factor in three linear factors or factor as the product of two polynomials. Now we will describe a
classification of the different ways a prime different from 23 can split in K in terms of the ideal class group,
and later we will find that they are closely related to the splitting in F .

4.1 The ideal class group of K = Q(
√
−23)

For any number field K we define an important equivalence relation for the ideals of its number ring OK .
We say that two ideals a, b ⊂ OK belong to the same class if there exist some element α ∈ K such that
a = αb. This is easily seen to be an equivalence relation, and we write it as a ∼ b. The following result
implies that in a number ring OK , there are a finite number of ideal classes.

Theorem 10 (Minkowski bound). Every ideal class of a number ring OK contains an ideal a with norm

N(a) ≤ n!

nn

(
4

π

)s√
|∆K |.

Where s is the number of pairs of complex embeddings of K to C.

The proof of Minkowski’s Theorem [7, Corollary 2 of Theorem 37] requires an accurate use of geometry
of numbers. Here we will give a proof of a slightly better bound that only works for quadratic fields.

After realizing that there is a finite number of ideal classes, we can see that the product of equivalence
classes is well-defined, and it actually forms a group. We can also see that the set of principal ideals P forms
a class, and that [a]P = P[a] = [a]. So it behaves as the neutral element. For any ideal a, the sequence
[a], [a]2, [a]3, ... eventually repeats, therefore [a]n = [a]m for some integers n and m. The inverse of [a] is
[a]m−n−1.

Remark 11. When OK is a principal ideal domain, all the ideals belong to the same class, thus the class
group Cl(K ) is trivial. In some sense, the class group is a measure on how far from a principal ideal domain
the ring OK is.

Now we can prove the cancellation law that we used to prove unique factorization. If we have ab = ac,
then we can multiply both sides of the equality by some ideal a′ belonging to the class [a]−1 to make the
product a′a principal. Let α be its generator, we have αb = αc and it follows that b = c.

Proposition 12. Every ideal class of a quadratic number ring OK contains an ideal a with norm

N(a) ≤
√
|∆K |/3.

In particular, the class group of a quadratic field is finite.

Proof. We start with any ideal a, of norm N(a) = a, and we will reduce its norm as much as we can while
staying on the same ideal class. First, if a is divisible by a principal ideal (k) with k ∈ Z, dividing a by k
doesn’t change its ideal class. Therefore we may assume that a is not divisible by any integer different from
±1.

14



Each class of OK/a has an integer representative: Let m be an integer. Since a|a, we have that a|m
implies a|m. On the other hand, if a|m, then a|m: Let a = pe1

1 ... penn be the prime factorization of a, and
let pi = N(pi), so a = pe1

1 ... penn . We check that peii |m implies that peii |m for every i .

• The prime pi can’t be inert, since then a would be divisible by an integer.

• If pi ramifies, the exponent ei must be 1 (otherwise p1|a). We have pi|m. After taking the norm, we
obtain pi |m2 and therefore pi |m.

• If pi splits, then peii |m and this is also true for the conjugate: p̄eii |m. Therefore, since p = pi p̄i , we
conclude that peii |m.

Since a|m is equivalent to a|m, the characteristic of O/a is a, and therefore Z/aZ ⊆ OK/a. But this is in
fact an equality, since N(a) = |O/a| = a.

Using this, we can find an integer s such that α ≡ s (mod a), where α is the following generator of
OK :

α =

{
1+
√
d

2 if d ≡ 1 (mod 4)√
d otherwise .

Let

r =

{
2s−1

2 if d ≡ 1 (mod 4)

s otherwise .

In both cases we have that r −
√

∆
2 belongs to the ideal a. This remains true even if we add a multiple of

a to r . Therefore we can add the restriction |r | ≤ a/2.

We have that a|r −
√

∆
2 , so there exist an ideal b such that ab =

(
r −
√

∆/2
)
. Its norm is N(ab) =∣∣∣r2 − ∆

4

∣∣∣, which is bounded by r2 + |∆|
4 ≤

1
4a

2 + |∆|
4 .

Since N(b) = bb̄, and both ab and bb̄ are principal, we have a ∼ b̄. Now if N(a) ≤ N(b), then
N(a)2 ≤ N(ab) ≤ N(a)2

4 + |∆|
4 , and we deduce that N(a) ≤

√
|∆|/3.

Otherwise, N(b̄) = N(b) < N(a). We repeat this process again with the ideal b̄, until we obtain an
ideal with norm bounded by

√
|∆|/3.

Using the previous result, we show that the class number of Q(
√
−23) is 3. Every ideal class contains

an ideal with norm bounded by
√

23
3 ≈ 2.77 < 3. Therefore we only need to consider all ideals with norm

at most two to determine the class number. Those are the principal ideal (1) and the factors of (2).
Using Theorem 3, we can compute the factorization of the ideal (2) by factoring the polynomial x2−x+6

(mod 2)

x2 − x + 6 ≡ x(x + 1) (mod 2) =⇒ (2) = p2p
′
2 = (2,

1 +
√
−23

2
)(2,

1 +
√
−23

2
+ 1).

Finally, the ideals (2, 1+
√
−23

2 ), (2, 1+
√
−23

2 + 1) are not principal, since its generator would be an
element of norm 2, which do not exist. They belong to different ideal classes since the ideal (2, 1+

√
−23

2 )2 =

(4, 1 +
√
−23, 1+

√
−23

2

2
) is not principal (it has norm 4, but it is not generated by any elemeny of norm 4,

which are ±2), but (2, 1+
√
−23

2 )(2, 1+
√
−23

2 + 1) is. Therefore, there are exactly 3 ideal classes in OK .
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4.2 The Frobenius automorphism

Before relating the splitting in F and K , we will relate the splitting of primes in F and H = FGal. In
particular, we will prove that if a prime splits completely in F , it also splits completely in H.

Let’s consider an arbitrary normal extension L/K . For each prime P of OL, we define the decomposition
group

DP = {σ ∈ Gal(L/K ) | σ(P) = P},

which is a subgroup of Gal(L/K ). The prime P lies over some prime p ⊂ OK , hence we can define the
group homomorphism

ϕP : DP → Gal(κP/κp)

σ 7→ σ|OL
(mod P)

which is well defined since for any element x ∈ OL we can write its the class x̄ as x + P. We have

σ̄(x̄) = σ̄(x + P) ≡ σ(x + P) ≡ σ(x) (mod P)

since for any σ ∈ DP we have σ(P) = P. The kernel of ϕP is

kerϕP = {σ ∈ DP such that ϕP(σ) = id}.

Using the chain of equivalences

σ̄(x̄) = x̄ ⇐⇒ σ(x + P) = x + P ⇐⇒ σ(x) ≡ x (mod P),

the inertia group is defined as

IP := kerϕ = {σ ∈ DP : σ(α) ≡ α (mod P) ∀α ∈ OL}.

Proposition 13. When the prime ideal p ⊂ OK is not ramified in OL, then the homomorphism ϕP is an
isomorphism.

Proof. Let pOL = P1 · · ·Pr be the prime factorization of p in OL into distinct primes (p is unramified).
Let f be the intertial degrees, which are all equal since the extension is normal. Let P be one of the primes
over p.

Since the decomposition group DP is a subgroup of the Galois group, we can partition the latter into
cosets of the form σiDP. Any member of such coset sends P to σi (P). It is clear that σDP = τDP is
equivalent to σ(P) = τ(P). So there is a one to one correspondence between the right cosets DPσ and
the primes σ(P). Since the Galois group acts transitively over the primes over p, these primes include all
primes of OL lying over p. Hence [Gal(L/K ) : DP] = |{primes over p}| = r . Since |Gal(L/K )| = n = ref ,
this implies that |DP| = f . By the first isomorphism Theorem, we have DP/IP ∼= Im(ϕ).

If we prove that |D/I | ≥ |Gal(κP/κp)| = f , we are done. We will write LD , LI for the subfields of L
fixed by the decomposiotion and inertia groups respectively.

We have [LI : LD ] = |D/I |. By multiplicativity on towers, we have f = f (P|PI )f (PI |PD)f (PD |p).
We prove that the first and the last factor are 1, therefore [LI : LD ] ≥ f (PI |PD) = f and we will be done.

• f (PD |p) = 1: P is the only prime lying over PD , since H/HD is a normal extension with Galois
group D, which fixes P. Therefore, since e = 1 and [LD : K ] = r , f = [L : LD ] = f (P|PD).
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• f (P|PI ) = 1: By definition, we have to prove that κ(P) ∼= κ(PI ). We will show that the Galois
group Gal(κ(P)/κ(PI ) is trivial. For each element θ ∈ κ(P), the polynomial (x−θ)m has coefficients
in κ(PI ) for some m ≥ 1: Picking any element α ∈ OL of the class θ, the following polynomial has
coeficients in OI

L,

g(x) =
∏
σ∈IP

(x − σ(α)).

Since σ(α) ≡ α (mod P) for any element σ of the inertia group, we have that the reduced polynomial
ḡ(x) = (x−θ)|IP| has coefficients in κ(PI ). Thus, any element of the Galois group Gal(κ(P)/κ(PI ))
maps θ to the only root of ḡ , which is θ itself. We conclude that this Galois group is trivial.

The Galois group of a extension of finite fields is cyclic, generated by the Frobenius endomorphism
x̄ 7→ ¯xN(p). When p is unramified in H, since ϕ is onto, some element σ ∈ DP has the Frobenius as image,
and σ(x̄) = x̄N(p) (mod P) for all x ∈ OH . This element is called the Frobenius automorphism FP ∈ DP.

Now, if H/K is an abelian extension and p ⊂ OK is an unramified prime, we can talk about the Frobenius
Fp as an element of Gal(H/K ). We can extend it for any ideal of OK which is not contained in a ramified
prime, mapping pe1

1 ... pern to F e1
p1

...F er
pr .

When the extension H/K is unramified, then this map is defined for any ideal of OK and induces a
surjective map Cl(K )→ Gal(L/K ).

4.3 Relating the splitting in K and F using the Artin symbol

We finish the first part of this dissertation with a correspondence between the splitting of primes in the
fields F and K . We assume H/K to be an Abelian extension.

Lemma 14. For any σ ∈ Gal(H/K ), we have Fσ(P) = σFPσ
−1.

Proof. By definition we have Fσ(P)σ
−1(x) ≡ (σ−1(x))N(p) (mod P). After applying σ, we obtain

σFσ(P)σ
−1(x) ≡ σ

(
σ−1(x)N(p)

)
≡ xN(p) (mod σ(P)).

In particular, when Gal(H/K ) is an abelian group, we have Fσ(P) = FP, so if p ⊂ OK is unramified,

we can define the Artin symbol
(
H/K
p

)
∈ Gal(H/K ) = FP for any prime P over p. This definition of

the Artin symbol can be extended for any ideal a = pe1
1 · · · perr where p1, ... , pr are unramified primes, as(H/K

a

)
=
∏(H/K

pi

)ei .
Definition 15 (Hilbert class field). The Hilbert Class Field of a field K is the maximally unramified abelian
extension of K .

Theorem 16 (Class Field Theory). If H is the Hilbert class field of K , then the Artin map is an isomorphism
between the ideal class group of K and the Galois group Gal(H/K ). [3, Theorem 5.23]
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Using Theorem 16, we know that the degree of the extension H/K is finite and equals the class number
of K . Since in Theorem 9 we have found a unramified abelian extension of K of degree 3, and we have also
proved that the class group of K has tree elements, we can conclude that H is the Hilbert class field of K .

Theorem 17. A prime ideal of K is a principal ideal if and only if it splits completely in H.

Proof. Using class field theory, we know that Cl(K ) ∼= Gal(H/K ) via the Artin map and therefore their
neutral elements correspond to each other. In other words, a prime ideal p ⊂ OK is principal if and only if
(H/K , p) is trivial. This is equivalent to the congruence xN(p) ≡ x (mod P) holding for all x ∈ OH/P ∼=
Fqf , which means that f = 1 and r = efr = [H : K ]. This is, the prime splits in r primes in a r degree
extension.

Continuing with the main setting, let F = Q(α) where α is a root of x3− x −1 and let K = Q(
√
−23).

Corollary 18. A prime ideal of K = Q(
√
−23) is non-principal if and only if it is inert in H = FGal.

Proof. Since H/K is a normal extension of degree three, a prime either splits completely or it is inert, by
Theorem 7. Using the contrapositive of Theorem 17 we get the result.

Corollary 19. There are no inert primes in the extension H/Q.

Proof. If a prime were inert in H/Q, it would be inert in K/Q. Hence it would be principal. But since
principal ideals split completely we get a contradiction.

Since F/K is a degree 3 extension, a prime p can split in three different ways in OF : either it is inert, it
splits completely or it is the product of two prime ideals with inertias 1 and 2. At the same time, it can also
split in three different ways in OK , either it is inert, it splits in principal ideals or it splits in non principal
ideals. The following result shows that there is a one to one correspondence between them.

Proposition 20. Given a prime p 6= 23, we have the following equivalences between the splitting of p in K
and F .

p splits in two non-principal primes in K ⇐⇒ p is inert in F .

p splits in two principal primes in K ⇐⇒ p splits completely in F .

p is prime in K ⇐⇒ p splits in two primes inF .

Lemma 21. If a prime p splits completely in the fields F and K , then it splits completely in the composite
field KF [7, Theorem 31].

Lemma 22. If a prime p splits completely in F , then it also splits completely in its normal closure H = FGal .

Proof. If a prime p splits completely in F , it also splits completely in σ(F ) for any σ ∈ Gal(H/F ). Since H
is the composite field of σ(F ) for every embedding σ in C , by the previous lemma p must split completely
in H as well.

Proof. Since there are three different possibilities for the splitting of p in OF and in OK , we only need to
prove that two of them are in correspondence and the third equivalence will automatically follow.
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1. If p splits into two non-principal primes in OK , then by Corollary 18 they cannot split further in H.
Therefore pOH = P1P2 with f (Pi|p) = 3. Let p be the prime under P1 in OF . Since the extension
H/F is of degree 2, the only possibility is that f (p|p) = 3, therefore p is inert in OF . On the other
hand, if p is inert in OF , it must split in OH . If it remained inert in H, it would be also inert in OK ,
and it would be principal, but this would mean that it would split in OH . Therefore pOH = P1P2.
If p splits into a principal prime in OK , it would split in at least 3 primes in OH . Therefore it splits
into non principal primes.

2. If p splits into two principal ideals (π) and (π′), they split completely in H. Therefore pOH = P1 ...P6.
The only compatible possibility for pOF is that it splits completely. Conversely, if p splits completely
in F , then it also splits completely in H by lemma 22. all the primes in H over p must have inertial
degree 1 over K . Therefore p splits completely in K and the primes over it must be principal, since
they also split completely in H.

This ends the part on algebraic number theory. Now we will explore quadratic forms and theta series,
and we will get another interpretation of each of the possible cases.
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Part II

Quadratic forms and modular forms

5. Quadratic forms

A binary quadratic form is a homogeneous quadratic polynomial on two variables, ax2 + bxy + c2 where
a, b, c are integers.

If a prime p splits into principal ideals in the field K = Q(
√
−23), then pOK = (π)(π̄) for some element

π in the ring of integers of K . We know that π = x + y 1+
√
−23

2 for some integers x , y , and its norm is
given by the following quadratic form:

p = N(π) =

(
x + y

1 +
√
−23

2

)(
x + y

1−
√
−23

2

)
= x2 + xy + 6y2.

On the other hand, if a prime p can be represented as x2 + xy + 6y2 for some integers x , y , then there
exists an element in OK of norm p, given by π = x + y 1+

√
−23

2 . Since the norm of a principal ideal is the
norm of its generator, the ideal (π) has norm p, and p splits as pOK = (π)(π̄).

In this section we generalize this fact. We associate a quadratic form to any ideal class of an imaginary
quadratic field in such a way that a prime over p belongs to a certain ideal class if and only if p can be
represented by its associated quadratic form.

In a quadratic field K = Q(D) with D < 0 and squarefree, any ideal of OK is a rank 2 Z-module. We
associate the following quadratic form to any ideal a = αZ+ βZ,

qa,α,β(x , y) =
N(xα + yβ)

N(a)
=

N(α)

N(a)
x2 +

Tr(ᾱβ)

N(a)
xy +

N(β)

N(a)
y2,

and its discriminant is

Tr(αβ̄)2 − 4N(αβ)

N(a)2
=

(αβ̄ + ᾱβ)2 − 4αβαβ

N(a)2
=

(αβ̄ − ᾱβ)2

N(a)2
= ∆K .

There is a slight inconvenience that we face. This quadratic form depends on whichever basis of a we
pick.

Definition 23. We say that the basis (α,β) is ordered if the signed area of the parallelogram spanned by
α and β is positive, which is Im(ᾱβ) = (αβ̄ − ᾱβ)/2i > 0.

We observe that for any pair of ordered bases (α,β), (α′,β′), the matrix σ which transforms one into
the other (α′,β′) = (α,β)σ, satisfies αβ̄ − ᾱβ = (α′β̄′ − ᾱ′β′) detσ, and therefore detσ = 1. Conversely,
applying any change of basis σ with detσ = 1 to an ordered basis, we obtain another ordered basis.

Given two ordered bases of an ideal a, they are related by a change of variables σ ∈ SL2(Z), for instance
(α′,β′) = (α,β)σ. We have

xα + yβ = (x , y)(α,β)T = (x , y)σT (α′,β′)T = (X ,Y )(α′,β′)T ,

Where (x , y) = (X ,Y )σT . Therefore qa,α,β(x , y) = qa,α′,β′(X ,Y ). The forms associated to an ideal and
a pair of ordered basis differ only by a change of variables in SL2(Z).
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This motivates the following equivalence relation among quadratic forms. We say that to quadratic forms
Q(x , y), Q̃(x , y) are equivalent if there exists a change of variables (X ,Y ) = (x , y)σ with σ ∈ SL2(Z),
such that Q̃(X ,Y ) = Q(x , y). This change of variables is called a unimodular transformation of Q.

The discriminant of a quadratic form Q is defined as ∆Q = b2 − 4ac , and it is an invariant under
any unimodular transformation. To show this it is more convenient to express quadratic forms in matrix
form, AQ = 1

2

(
2a b
b 2c

)
. With this notation Q(x , y) = (x , y)AQ( x

y ), and the discriminant of a quadratic
form equals the determinant of its associated matrix with opposite sign. If two quadratic forms Q, Q̃ are
equivalent, there exists a matrix σ with determinant 1, such that σTAQσ = AQ̃ , and then ∆Q = ∆Q̃ .

We have proved that unimodular transformations define an equivalence relation of quadratic forms of a
given discriminant. Now we show that there is a finite number of equivalence classes of quadratic forms of
negative discriminant. We define reduced forms in such a way that each equivalence class has exactly one
reduced form.

Definition 24. A positive definite quadratic form is reduced if it satisfies

|b| ≤ a ≤ c , with b ≥ 0 if a = |b| or a = c .

Any form can be transformed into a reduced one of the same equivalence class, using the pair of
unimodular substitutions S and Tk defined as follows,

S =

(
0 −1
1 0

)
: (a, b, c) 7→ (c ,−b, a)

Tk =

(
1 k
0 1

)
: (a, b, c) 7→ (a, b + 2ka, k2a + kb + c).

If a > c , we can apply S to decrease a without changing |b|. On the other hand, if a ≤ c and |b| > a,
using Tk with k = ba−b2a c reduces |b| while keeping a unchanged. It is clear that after repeating this process
a finite number of times, we obtain a reduced quadratic form.

Moreover, each equivalence class contains only one reduced form [3, Theorem 2.8]. Indeed, for quadratic
forms with |b| < a < c , Legendre observed that the smallest value represented by the reduced quadratic
form ax2 + bxy + cy2 is a, and the second smallest with gcd(x , y) = 1 is c . These values are obtained
only by the values (x , y) = (±1, 0) and (0,±1) respectively. Once a and c are fixed, b is determined up to
sign. Since two equivalent forms represent the same integers, two reduced forms with different a or c are
not equivalent. It only remains to see that the reduced quadratic forms ax2± bxy + cy2 are not equivalent.

Let Q and Q̃ be equivalent reduced quadratic forms. We show that in fact they are equal. There is
some change of variables (X ,Y ) = (x , y)σ with σ ∈ SL2(Z) such that Q̃(X ,Y ) = Q(x , y). On the one
hand, using Legendre’s observation, we have that the smallest value represented by Q and Q̃, is Q(1, 0) =
Q̃((1, 0)σ), and by Legendre’s observation on Q̃, we have that (0, 1)σ = (±1, 0). Using the same argument
with the second smallest value properly represented by Q and Q̃, we have that Q(0, 1) = Q̃((0, 1)σ)), which
implies (0, 1)σ = (0,±1). Since detσ = 1, we have σ = ±( 1 0

0 1 ). This proves that Q(x , y) = Q̃(x , y) as we
wanted. For quadratic forms with a = |b| or a = c , the only representations of a are ±(1, 0), and the ones
for c with gcd(x , y) = 1 are ±(0, 1) and ±(1,−1). This determines the coefficients a and c of a reduced
quadratic form, and b is also determined since in this case b > 0.

Now we find all reduced quadratic forms of discriminant −23. Since a reduced quadratic form has
|b| ≤ a ≤ c , we have b2 = 4ac − 23 ≥ 4b2 − 23, which leads to |b| ≤

√
23/3 ≈ 2.77. Moreover, since

−23 = b2 − 4ac , we only need to check the odd possibilities for b, which are b = ±1 so ac = 6. Doing
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case analysis, we obtain the three reduced forms of discriminant −23:
b = 1, a = 1, c = 6 Q0(x , y) = x2 + xy + 6y2

b = 1, a = 2, c = 3 Q1(x , y) = 2x2 + xy + 3y2

b = −1, a = 2, c = 3 Q2(x , y) = 2x2 − xy + 3y2

5.1 The class group

The quadratic form associated to an ideal remains unchanged after scaling a,α,β by some nonzero γ ∈ OK ,

qγa,γα,γβ(x , y) =
N(xγα + yγβ)

N(γa)
= qa,α,β(x , y). (8)

This is true since in an imaginary quadratic field K = Q(
√
D), every nonzero element γ has positive norm.

Equation (8) implies that this is a well defined application between ideal classes and reduced quadratic
forms. This application is in fact an isomorphism [10, Theorem 2.28], whose inverse is

Q(x , y) = ax2 + bxy + cy2 7→ aQ =
[
a,

b +
√

∆K

2

]
. (9)

In Section 4.1 we defined a group structure for ideal classes in a number field. We can transport the
group structure of the ideals in K = Q(

√
D) with D < 0 and squarefree, to the set of equivalence classes

of quadratic forms of discriminant ∆K .

5.2 Representability of a number by quadratic forms

Let w be the number of units of the field Q(
√
D), D < 0. The total number of ways of representing a

prime by some reduced quadratic form of discriminant D is∑
[Q]

R(p,Q) = w

(
1 +

(
D

p

))
. (10)

We prove this following the approach from [5, Section 4.4]. We show that there is a correspondence
between the ways of representing n by a quadratic form Q and factorizations of the ideal (n) of the form
(n) = aā with a belonging to the ideal class aQ .

First, for any factorization (n) = aā with a ∼ aQ , we have N(a) = n. After fixing some oriented basis
(α,β) of a, we have that n = N(a) = αx + βy for some integers x , y , since N(a) ∈ a. Therefore the
quadratic form qa,α,β(x , y) = N(αx+βy)

N(a) represents n. Moreover, for each unit γ ∈ K we have γn ∈ a, and
setting γn = αx + βy we get distinct representations of n.

Now suppose that n is representable by a quadratic form Q, we want to find a factorization (n) = aā
with a ∈ [aQ ].

Lemma 25. If an integer n is representable by a quadratic form Q(x , y) = ax2 + bxy + cy2, then Q is
uniquely equivalent to a form

Q̃(x , y) = nx2 + b′xy + c ′y2 with 0 ≤ b′ ≤ 2n, c ′ ∈ Z.
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Proof. Let Q(p, q) = n, for some coprime p, q. There exist integers r , s such that ps − qr = 1, and all
solutions are given by r = r0 + kp, s = s0 + kq with k ∈ Z. Then

Q(px + ry , qx + sy) = Q(p, q)x2 + (2apr + bps + brq + 2cqs)xy + Q(r , s)y2

= nx2 +
(
b′0 + 2k(ap2 + bpq + cq2)

)
xy + Q(r , s)y2

= nx2 + (b′0 + 2kn)xy + Q(r , s)y2.

Where b0 = 2apr0 + bps0 + br0q + 2cqs0. For a unique k the last quadratic form is of the desired form.

Finally the ideal corresponding to Q̃ given by (9), has norm n, and therefore (n) = aQ̃aQ̃ .

Using Theorem 3, we can compute the splitting of a prime p in K = Q(
√
D), D squarefree. Using the

structure of the ring of integers of a quadratic field, computed at (5), we know that the index [OK : Z [
√
D]]

is less than two. We have that the decomposition of any odd prime is given by the factorization of the
minimal polynomial of

√
D modulo p, which is x2 − D (mod p). If D ≡ 1 (mod 4), then 2 divides the

index [OK : Z [
√
D]], and we have to work with 1+

√
D

2 , whose minimal polynomial is x2 − x + 1−D
4 . This

polynomial has no roots modulo 2 when 1−D
4 is odd, and have different roots if 1−D

4 is even. This coincide
with

(
D
2

)
= 1 and

(
D
2

)
= −1 respectively. Taking everything into account, we have

pOK =


prime if

(
D
p

)
= −1

pp̄ if
(
D
p

)
= 1

p2 if
(
D
p

)
= 0.

Note that
(
D
p

)
+ 1 gives the number of ordered decompositions of p as the product of two primes, and

Equation (10) follows.

5.3 Theta series

Given a positive definite binary quadratic form Q, we define its theta series as

ΘQ(z) =
∑
x ,y∈Z

qQ(x ,y) where q = e2πiz ,

which is absolutely convergent in the complex plane. When we collect the terms with the same exponent, we
get the q-expansion of Θ, which is ΘQ(z) =

∑
n≥0 rQ(n)qn where rQ(n) is the number of representations

of n as values of Q(x , y) with integers x , y .
Note that the prime coefficients of the theta series of quadratic forms of discriminant 23 satisfy the

following relation
rQ0(p) + 2rQ1(p)

2
= 1 +

(
−23

p

)
. (11)

It is clear that every theta series satisfies the functional equation Θ(z + 1) = Θ(z), but they satisfy
additional functional equations. One of those is given by the Hecke-Schoeneberg Theorem [1, p.32],[9,
Theorem 19].
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6. Modular forms and bounds on dimensions
In this section, we will introduce modular forms, which will have a connection with the number of represen-
tations of quadratic forms.

Definition 26. A holomorphic function f is said to be weakly modular of weight k (usually an integer) if
it satisfies the pair of functional equations

f (z + 1) = f (z), f

(
−1

z

)
= zk f (z). (12)

We can define the following action of SL2(Z) on the upper half plane H,

SL2(Z)×H→ H(
a b
c d

)
z 7→ az + b

cz + d
.

This is a group action since a direct computation shows that the imaginary part of γz is 1
|cz+d |2 Im(z),

which means that H is invariant under it. Additionally, it satisfies that (γ1γ2)z = γ1(γ2z) for any pair
γ1, γ2 ∈ SL2(Z) and any z ∈ H.

Observing that z + 1 = ( 1 1
0 1 ) · z and −1

z =
(

0 −1
1 0

)
· z and the fact that this two matrices together

generate the hole special linear group SL2(Z), we can express the equations in 12 as

f (γ · z) = f

(
az + b

cz + d

)
= (cz + d)k f (z) for any γ =

(
a b
c d

)
∈ SL2(Z).

If we define the weight k slash operator to be f |γ,k(z) = (cz + d)−k f (γ · z), the last condition simply
becomes f |γ,k(z) = f (z) for any matrix γ ∈ SL2(Z).

We generalize the definition of weakly modularity for some subgroups of SL2(Z).
We define the principal congruence subgroup of level N,

Γ(N) =

{(
a b
c d

)
∈ SL2(Z) |

(
a b
c d

)
≡
(

1 0
0 1

)
(mod N)

}
.

A congruence subgroup is a subgroup of SL2(Z) which contains a principal congruence subgroup of some
level. For this work, the congruence subgroup Γ0(N) will be specially important:

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z) | c ≡ 0 (mod N)

}
.

Definition 27. Let Γ be a congruence subgroup. A meromorphic function f : H→ C is said to be weakly
modular of weight k with respect to Γ if

f (γ · z) = (cz + d)k f (z), for any γ =
(
a b
c d

)
∈ Γ
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The valence formula

Recall that a meromorphic function on H is holomorphic on H except on some isolated points, called poles.
The valuation vp(f ) of a meromorphic function f at a point p ∈ H∪{∞} is defined as the integer n which
satisfies that the function (z − p)−nf (z) is holomorphic and non-vanishing at p. We say that a function
f is meromorphic at infinity if it is of the form f (z) =

∑
n≥n0

anq
n for some integer n0. If an0 is the first

nonzero coefficient, we define v∞(f ) = n0.

Definition 28. For a congruence subgroup Γ, we say that its set of cusps is Cusps(Γ) = Γ\P1(Q). In other
words: Γ acts on Q ∪ {∞}, and the cusps of Γ are the orbits of this action.

Let P be a cusp of a congruence subgroup Γ. Let γP be any element of Γ such that γP(∞) = P . Let
HP be group γ−1

P ΓγP ∩ SL2(Z)∞ ⊆ SL2(Z)∞, which does not depend on the choice of representative for P
[8, Lemma 2.2.4].

Definition 29. We define the width of a cusp P for Γ as the minimum nonnegative integer h such that HP

contains either
(

1 h
0 1

)
or
(−1 h

0 −1

)
, and we write it as hP(Γ).

Definition 30. Let f be a weakly modular form of weight k for Γ, and let P be a cusp of Γ of width hΓ(P).
Since f (z + N) = f (z), we can write f as a Laurent series in qN = e2πiz/N , say

f (qN) =
∑
n≥n0

anq
n
N , an0 6= 0.

We define the order of vanishing of a weakly modular form f at P as vP(f ) = hΓ(P)n0/N.

Theorem 31 (Valence formula for congruence subgroups). Let Γ ⊂ SL2(Z) be a congruence subgroup. Let
f 6= 0 be a weakly modular form for Γ of weight k . Then∑

z∈Γ\H

vz(f )

#Γ̄z
+

∑
P∈Cusps(Γ)

vP(f ) =
k

12

[
PSL2(Z) : Γ̄

]
,

Where Γ̄ is the image of Γ into PSL2(Z) = SL2(Z)/{±1}.

The proof of this theorem uses the Valence formula, which can be proved using complex analysis by
computing a contour integral using the Residue Theorem [8, Theorem 2.6.1].

Using the Valence formula, we can bound the dimensions of modular spaces.

Theorem 32. Let f be a modular form of weight k for the congruence subgroup Γ. If the terms of the q
expansion of f are zero up to the term k

12 [PSL2(Z) : Γ̄], then it is identically zero.

Proof. Every term in the Valence formula is nonnegative. This means that v∞(f ) ≤ k
12 [PSL2(Z) : Γ̄]. If

f 6= 0, the hypothesis is that v∞(f ) ≥ k
12 [PSL2(Z) : Γ̄]. Therefore it must be f = 0.

25



Understanding the factorization mod p of polynomials via modular forms

7. Hecke-Schoenberg Theorem
Now we will follow [6, Chapter 10] to prove the Hecke-Schoeneberg Theorem. Given a quadratic form
Q(v) = 1

2A[v ], it describes the transformation property of its theta series with respect to the congruence
subgroup Γ0(N), where N is the least integer such that NA−1 is integral.

Theorem 33. (Hecke, Schoeneberg). Let Q : Z2k → Z be a positive definite integer-valued form in 2k
variables of level N and discriminant ∆. Then ΘQ is a modular form on Γ0(N) of weight k and character
χ∆, i.e., we have

ΘQ

(
az + b

cz + d

)
= χ∆(a)(cz + d)kΘQ(z) for all z ∈ H and

(
a b
c d

)
∈ Γ0(N)

We will prove this statement for binary quadratic forms, which means that we set k = 1. And for all
z ∈ H and

(
a b
c d

)
∈ Γ0(N),

ΘQ

(
az + b

cz + d

)
=

(
∆

a

)
(cz + d)ΘQ(z). (13)

This section is devoted to prove it using Poisson summation formula.

Poisson summation formula

Recall that the d-dimensional Fourier transform of a Lebesgue integrable periodic function f is

f̂ (ξ) =

∫
Rd

f (x)e−2πi〈ξ,x〉 dx ∀ξ ∈ Rd .

Lemma 34 (Poisson summation formula). Let f : R→ C be a Schwarz function. Then

∞∑
n=−∞

f (x + n) =
∞∑

n=−∞
f̂ (n)e2πinx for all x ∈ R.

Proof. We write F (x) for the left hand side and G (x) for the right hand side. Since both functions are
periodic with period 1, to prove the equality we only need to see that all of their Fourier coefficients coincide,
namely, ∫ 1

0
F (x)e−2πi`x dx =

∫ 1

0
G (x)e−2πi`x dx for all ` ∈ Z.

We start with F (x). Using absolute convergence, we have∫ 1

0
F (x)e−2πi`x dx =

∞∑
n=−∞

∫ 1

0
f (x + n)e−2πi`x dx =

∫ ∞
−∞

f (x)e−2πi`xdx ,

which is f̂ (`). On the other hand, a direct computation shows that the `-th Fourier coefficient of G (x) is
f̂ (`) : ∫ 1

0

( ∞∑
n=−∞

f̂ (n)e2πinx

)
e−2πi`x dx =

∞∑
n=−∞

f̂ (n)

∫ 1

0
e2πinxe−2πi`x dx = f̂ (`),

since the integral
∫ 1

0 e2πinxe−2πi`x dx is nonzero only when n = `.
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Remark 35. Poisson summation formula for x = 0, is just
∑

f (n) =
∑

f̂ (n), with both sums running
trough Z. For higher dimensions, Poisson summation formula remains true, and the idea of the proof is
similar.

To prove Hecke-Shoenberg Theoren we will also need the Fourier transform of a linear transformation.

Lemma 36. Given a function f in L1(R)2, and let ϕ(x) = f (γx) where γ is an invetible linear transforma-
tion, then its Fourier transform is

ϕ̂(ξ) =

∫
R2

f (Mx)e−2πi〈x ,ξ〉 dx =
1

detM

∫
R2

f (x)e−2πi〈M−1x ,ξ〉 dx

=
1

detM

∫
R2

f (x)e−2πi〈x ,M−tξ〉 dx =
1

detM
f̂ (M−tξ),

where M−t =
(
Mt
)−1.

Proof of the Hecke-Schoeneberg Theorem

We start with a proposition that will turn out to be quite useful.

Proposition 37. Let A be the matrix associated to a positive definite quadratic form Q, so that Q(v) =
1
2A[v ] = 1

2v
tAv . Then for any z ∈ H we have

∑
v∈Z2

q
1
2
A[v+x] =

i√
|A|z

∑
v∈Z2

e
2πi

(
−A−1[v ]

2z
+v tx

)
(14)

Proof. Let M be such that MTM = A. We can prove the equality using Poisson summation formula applied
to ϕ(v) = q

1
2
A[v ]. ∑

v∈Z2

q
1
2
A[v+x] =

∑
v∈Z2

ϕ (v + x) =
∑
v∈Z2

ϕ̂(v)e−2πi〈v ,x〉.

We have ϕ(v) = f (
√
−izMv) where f (v) = e−π|v |

2
is the 2-dimensional Gaussian. Combining Lemma 36

with the well known fact that the Fourier transform of the Gaussian is its own Fourier transform, we have

ϕ̂(v) =
1

−iz detM
f̂

(
1√
−iz

M−tv

)
=

1

−iz detM
f

(
1√
−iz

M−tv

)
=

i

z
√
A
e−π|M

−tv/
√
−iz|2 .

Now since |M−tv/
√
−iz |2 = A−1[v ](−iz)−1, we arrive to the desired result.

Congruent theta series

Definition 38. Given h ∈ Z2, we define the congruent theta series of A as:

ΘA,h(z) =
∑
m≡h

q
A[v ]

2N2 ,
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where the sum runs for all v ∈ Z2 with v ≡ h (mod N). Note that for h = 0 we have the original theta
series.

Lemma 39. If h is such that Ah ≡ 0 (mod N), then

ΘA,h(z + 1) = eπi
A[h]

N2 ΘA,h(z).

Proof. For any v equivalent to h, we have v = h + wN for some w ∈ Z2. Since A is symmetric, A[w ] is
even, so we have

A[v ] ≡ A[h] + 2NwTAh + N2A[w ] ≡ A[h] (mod 2N2).

Therefore

ΘA,h(z + 1) =
∑
v≡h

e2πi A[v ]

2N2 (z+1) =
∑
v≡h

e
2πi

(
A[v ]

2N2 z+ A[h]

2N2

)
= e2πi A[h]

2N2 ΘA,h(z),

where the sums run over v ∈ Z2 such that v ≡ h (mod N).

Now we establish the transformation property for ΘA,h(z) with respect to the involution z 7→ −1
z . Let

H = {h (mod N) : Ah ≡ 0 (mod N)}.

Proposition 40. For any h ∈ Z2 with Ah ≡ 0 (mod N) we have

ΘA

(
−1

z
; h

)
= |A|−1/2(−iz)

∑
`∈H

e2πi h
tA`
N2 ΘA,`(z).

Proof. We use Equation (14) with x = hN−1,

∑
v

q
1
2
A[v+hN−1] =

i√
|A|z

∑
v

e
2πi

(
−A−1[v ]

2z
+v thN−1

)

ΘA,h(z) =
i√
|A|z

∑
Aw≡0

e
2πi

(
−N−2A[w ]

2z
+N−2w tAh

)
,

where we have changed v to w = NA−1v , and the condition v ∈ Z2 is equivalent to w ∈ Z2 and Aw ≡ 0
(mod N). Changing z to −1

z we have

ΘA

(
−1

z
; h

)
=
−iz√
|A|

∑
Aw≡0

e
2πi

(
A[w ]

2N2 z+wtAh
N2

)
=
−iz√
|A|

∑
Aw≡0

e2πi w
tAh
N2 q

A[w ]

2N2 .

Finally, splitting the summation into classes modulo N, we get the result.

Now we will find the transformation properties for the group Γ0(D).
Let γ =

(
a b
c d

)
∈ SL2(Z), The case d = 0 is already covered, since γ = ±

(
T −1
1 0

)
= ±

(
1 T
0 1

)(
0 −1
1 0

)
.

And we are done since we know how Θ transforms under τ 7→ τ + T and τ 7→ −1
z .

We can assume d > 0, since the transformation for −γ is the same that the one for γ. We compute
first the transformation for

γ =

(
a b
c d

)(
0 −1
1 0

)
=

(
b −a
d −c

)
.
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Since dγz = b − (dz − c)−1, we have

Θ(dγz ; h) =
∑
v≡h

e2πi A[v ]

2N2 (b− 1
dz−c )

Changing dγz to γz and splitting the sum into classes modulo dN,

Θ(γz ; h) =
∑

v≡h (mod N)

e
2πi A[v ]

2N2

(
b
d
− 1

d(dz−c)

)
=

∑
g (mod dN)
g≡h (mod N)

e2πi A[g ]

2N2
b
d

∑
v≡g (mod dN)

e
2πi dA[v ]

2(dN)2
−1

(dz−c) .

Here the innermost sum is the theta function associated with the matrix dA and the residue class g
modulo dN, evaluated at the point −(dz − c)−1. Since dAg ≡ 0 (mod dN), We can apply Proposition 40
to this sum, giving

∑
v≡g (mod dN)

e
−2πi dA[v ]

2(dN)2
1

(dz−c) =
i(c − dz)√
|dA|

∑
` (mod dN)

A`≡0 (mod N)

e2πi `
tAg

dN2
∑

v≡` (mod dN)

e2πi A[v ]

2dN2 (dz−c).

Hence we deduce that

Θ(γz ; h) =
i(c − dz)

d
√
|A|

∑
` (mod dN)

A`≡0 (mod N)

ϕ(h, `)
∑

v≡` (mod dN)

e2πi A[v ]

2N2 ,

where

ϕ(h, `) =
∑

g (mod dN)
g≡h (mod N)

e2πi bA[g ]+2`tAg−cA[`]

2dN2 .

We shift g to g + c` so the new variable ranges over classes modulo dN which are congruent to h − c`
modulo N, and since ad − bc = 1, the fraction in the exponential becomes

bA[g ] + 2ad`tAg + acdA[`]

2dN2
.

In the middle term, we can replace g by its class h− c` (mod N), and using that c ≡ 0 (mod N) and that
A[`] ≡ 0 (mod 2N) for any ` with A` ≡ 0 (mod N), we get

ϕ(h, `) =
∑

g (mod dN)
g≡h−c` (mod N)

e
2πi

(
2a`tAh−acA[`]

2N2 + bA[g ]

2dN2

)
= e2πi a`

tAh
N2 ϕ(h − c`, 0) (15)

Therefore ϕ(h, `) only depends on ` (mod N), and we get

Θ(γz , h) =
i(c − dz)

d
√
|A|

∑
h′∈H

ϕ(h, h′)Θ(z , h′).
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Now we obtain the transformation for τ = γS−1, so γ(−1
z ) = τz . We set h = 0 and we change in the

previous equation z 7→ −1
z , and we apply Proposition 40 to each Θ(−1

z , h′) inside the sum. We obtain

Θ(τz) =
(cz + d)

d |A|
∑
h′∈H

ϕ(0, h′)
∑
`∈H

e2πi h
′tA`
N2 Θ(z , `)

=
(cz + d)

d |A|
∑
h′∈H

Θ(z , h′)
∑
`∈H

ϕ(0, h′)e2πi h
′tA`
N2 .

Using Equation (15),

Θ(τz) =
(cz + d)

d |A|
∑
h′∈H

Θ(z , h′)
∑
`∈H

ϕ(−ch′, 0)e2πi h
′tA`
N2 .

Since c ≡ 0 (mod N),

Θ(τz) =
(cz + d)

d |A|
ϕ(0, 0)

∑
h′∈H

Θ(z , h′)
∑
`∈H

e2πi `
tAh′
N2 .

And by the orthogonality of the characters,

Θ(τz) =
(cz + d)

d |A|
ϕ(0, 0)

∑
h′∈H

Θ(z , h′)

{
|A| if l ≡ 0 (mod N)

0 otherwise

=
(cz + d)

d
ϕ(0, 0)Θ(z , 0) =

(cz + d)

d
ϕ(0, 0)Θ(z).

It remains to compute the Gaussian sum associated with the quadratic form 1
2A[x ]

ϕ(0, 0) =
∑

x (mod d)

e2πi bA[x]
2d .

Assuming that d ≡ 1 (mod 2). Then (d , 2c |A|) = 1 and changing x to 2cx modulo d we get

G =
∑

x (mod d)

e−2πi 2cA[x]
d .

This is a generalized Gaussian sum, which is evaluated in [6, Lemma 10.5] as(
|A|
d

)(
−1

d

)
d = d

(
−|A|
d

)
.

Since ∆ = −|A|, we get

Θ(τz) =

(
∆

d

)
(cz + d)Θ(z).

Now we return to the original setting of quadratic forms of discriminant −23. The Jacobi symbol
satisfies

(−23
d

)
=
(
d
23

)
, and if γ ∈ Γ0(23), we have that ad ≡ 1 (mod 23). We have that the theta series

of a quadratic form of discriminant −23 satisfies

Θ(τz) =
( a

23

)
(cz + d)Θ(z) for any γ ∈ Γ0(23)
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8. A special eta product
In this section we set ourselves the goal of constructing a function which satisfies the functional equation

f (γz) =
( a

23

)
(cz + d)f (z), for any γ ∈ Γ0(23).

Observe that this is the same functional equation that the theta series of quadratic forms of discriminant
−23 satisfy. This function will be constructed by taking an appropriate product of the Dedekind eta function,
which is defined as

η(z) = q
1

24

∞∏
n=1

(1− qn) z ∈ C, where q = e2πiz . (16)

We can check that it is holomorphic and non-vanishing on the upper half plane by taking the logarithm and
differentiating. The Dedekind eta function in addition to the functional equation η(z + 1) = e

πi
12 η(z), it

also satisfies η
(
−1

z

)
=
√
−izη(z). This makes the function ∆(z) = η(z)24 a modular form of weight 12,

and we say that η(z) is a modular form of weight 1/2. Using this functional equations, we show that the
eta product f (z) = η(z)η(23z) satisfies Equation (16).

8.1 Transformation property of the eta function

As we mentioned, the Dedekind eta function satisfies η(z + 1) = e
πi
12 η(z). In this section we prove the

following transformation property

η

(
−1

z

)
=
√
−izη(z).

Lemma 41. For any z 6= 0 we have ∑
n∈Z

1

(z + n)2
= −4π2

∞∑
n=1

nqn. (17)

Proof. On the one hand, we compute the second derivative of the logarithm of Euler’s product formula
sin(πz) = πz

∏∞
i=1

(
1− z2

n2

)
,

−π2 csc2(πz) = − 1

z2
−
∞∑
n=1

(
1

(z − n)2
+

1

(z + n)2

)
.

This sum can be reordered to match the left hand side of Equation 17. On the other hand, the first derivative
of sin(πz) is π cot(πz) = π cos(πz)/ sin(πz). Using the exponential form of the trigonometric functions,
we have

π cot(πz) = πi
(e iπz + e−iπz)

(e iπz − e−iπz)
= πi

(
1− 2

1− e2πiz

)
= πi

(
1− 2

∞∑
n=1

e2πinz

)
. (18)

Finally differentiating this again we obtain −(2πi)2
∑

neπinz as we wanted.

Remark 42. Replacing z with mz in Equation (17), and adding over m we have
∞∑

m=1

∑
n∈Z

1

(mz + n)2
= −4π2

∞∑
m=1

∞∑
n=1

nqnm.
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Theorem 43. The Dedekind eta function satisfies the functional equation

η

(
−1

z

)
=
√
−izη(z).

Proof. To prove the equality, we compute the logarithmic derivative of the eta function evaluated at −1/z ,
and we obtain the equality except for a multiplicative constant, which turns out to be 1.

The logarithmic derivative of the eta function is

d

dz
log η(z) =

d

dz

(
2πiz

24
+
∞∑
n=1

log(1− qn)

)
=
πi

12
+
∞∑
n=1

−2πinqn

1− qn

=
πi

12
− 2πi

∞∑
n=1

n
∞∑

m=1

qnm.

Using Remark 42, this sum can be rewritten as

d

dz
log η(z) =

πi

12
− 1

2πi

∞∑
m=1

∑
n∈Z

1

(mz + n)2
. (19)

Evaluating this expression at −1/z , we have

d

dz
log η

(
−1

z

)
=
πi

12
− 1

2πi

∞∑
m=1

∑
n∈Z

z2

(m − nz)2
=
πi

12
− z2

2πi

 ∞∑
m=1

∑
n 6=0

1

(m + nz)2
+ ζ(2)

 .

We can include πi
12 inside the sum as twice the 0-th term, since for m = 0 we have

− z2

2πi

∑
n 6=0

1

(m + nz)2
= − z2

2πi

2π2

6z2
=
πi

6
.

Writing
∑

m∈Z with the meaning of
∑∞

m=0 +
∑−∞

m=−1,

d

dz
log η

(
−1

z

)
= − z2

4πi

∑
m∈Z

∑
n 6=0

1

(m + nz)2
+ 2ζ(2)


= z2

− 1

4πi

∑
n∈Z

∑
m 6=0

1

(mz + n)2
+
πi

12

 . (20)

On the other hand, from Equation 19, and using that d
dz log

(√
−iz
)

= − 1
2z ,

d

dz
log
(√
−izη(z)

)
= − 1

2z
+
πi

12
− 1

4πi

∑
m 6=0

∑
n∈Z

1

(mz + n)2
.

We subtract
∑

n∈Z
1

(mz+n)(mz+n+1) =
∑

n∈Z
1

mz+n −
1

mz+n+1 = 0 term by term to the previous sum,

d

dz
log
(√
−izη(z)

)
=− 1

2z
+
πi

12
− 1

4πi

∑
m 6=0

∑
n∈Z

1

(mz + n)2
− 1

(mz + n)(mz + n + 1)

=− 1

2z
+
πi

12
− 1

4πi

∑
m 6=0

∑
n∈Z

1

(mz + n)2(mz + n + 1)
. (21)
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Now subtracting Equations 20 and 21,

z−2 d

dz

(
log η

(
− 1

z

)
−
√
−izη(z)

)
=

1

2z
+

1

4πi

∑
m 6=0

∑
n∈Z

1

(mz + n)2(mz + n + 1)
−
∑
n∈Z

∑
m 6=0

1

(mz + n)2


=

1

2z
− 1

4πi

∑
n∈Z

∑
m 6=0

1

(mz + n)(mz + n + 1)
.

This sum is absolutely convergent, so we can change the order of summation.

lim
N→∞

N−1∑
n=−N

∑
m 6=0

(
1

mz + n
− 1

mz + n + 1

)
= lim

N→∞

∑
m 6=0

N−1∑
n=−N

(
1

mz + n
− 1

mz + n + 1

)

= lim
N→∞

−1

z

∑
m 6=0

(
1

N/z + m
+

1

N/z −m

)
= lim

N→∞

−2π

z
cot(πN/z)

Finally using Equation (18),

lim
N→∞

N−1∑
n=−N

∑
m 6=0

(
1

mz + n
− 1

mz + n + 1

)
= lim

N→∞
−2πi

z
+

4πi

z

∑
e2πimN/z = −2πi

z
.

In conclusion, d
dz

(
log η

(
− 1

z

)
−
√
−izη(z)

)
= 0. Which means that log η(−1

z ) = C log
(√
−izη(z)

)
.

Evaluating this equality at z = i , we find that C = 1.

8.2 Transformation property of the eta product

Now we will proof the transformation property of f for Γ0(23) described in Equation 16. We will write
f (γz) = η(γz)η(23γz) in terms of f (z) = η(z)η(23z) for any γ =

(
a b
c d

)
∈ Γ0(23). First, we can write 23

as an action on γz , and it satisfies(
23 0
0 1

)(
a b
c d

)
=

(
a 23b

c/23 d

)(
23 0
0 1

)
.

Let γ̃ denote
(

a 23b
c/23 d

)
. With this notation we have

η(γz)η(23γz) = η(γz)η(γ̃23z).

To compute the transformation property of η for γ and γ̃, we write both matrices as a product of S and T,
and then we can successively apply the transformation properties for S and T .

If two matrices γ =
(
a b
c d

)
, γ′ =

(
a′ b′

c ′ d ′

)
of Γ0(23) satisfy

f (γz) =
( a

23

)
(cz + d)f (z),
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then its product also satisfies it.

f (γγ′z) =
( a

23

)
(c(γ′z) + d)f (γ′z) =

( a

23

)
(c

a′z + b′

c ′z + d ′
+ d)

(
a′

23

)
(c ′z + d ′)f (z)

=

(
aa′

23

)
((ca′ + c ′d)z + (cb′ + dd ′))f (z).

Note that the fist entry of γγ′ is congruent to aa′ modulo 23. Therefore it is only necessary to check that
this trasnformation property holds for any set of generators of Γ0(23). Using the computer algebra system
SageMath, we have checked that for each element of a set of generators of Γ0(23), the following identity
holds (

f (γz)

f (z)(cz + d)

)2

= 1.

Since f (γz)
f (z)(cz+d) is continuous and takes the values ±1, it must be constant. Evaluating it at some point

will be enough to know how it behaves for any z ∈ H. We choose to evaluate it at i , and we find that the
following transformation property holds for all the generators of Γ0(N),

f (γz) =
( a

23

)
(cz + d)f (z).

Since the Legendre symbol
(

a
23

)
is multiplicative, we deduce that this property holds for any matrix γ ∈

Γ0(N). These computations are detailed at the appendix, with the required code included.

8.3 The Sturm bound

The q-expansions of the Theta series of the quadratic forms of discriminant −23 are

ΘQ0(z) = 1 + 2q +2q4 + 4q6 + ...
ΘQ1(z) = 1 +2q2+2q3 +2q4 + 2q6 + ...

Now we use Theorem 32 to deduce that f (z) =
ΘQ0

(z)−ΘQ1
(z)

2 = q − q2 − q3 + q6 + ... .
Both functions are weakly-modular for Γ0(23) with character χ(γ) =

(
a

23

)
.

The value of the index [SL2(Z) : Γ0(N)] is well known [8, Lemma 2.1.2],

[SL2(Z) : Γ0(N)] = N
∏
p|N

(
1 +

1

p

)
.

For N = 23 we have [SL2(Z) : Γ0(23)] = 24. We use this to compute a bound on the number of Fourier
coefficients that we have to check in order to decide that two functions of the modular space M1(23,χ)
coincide. This bound is the Sturm bound.

For any modular form f ∈M1(Γ0(23),χ), we construct a modular function in M2(23) in the following
way

M1(23,χ) ↪→ M2(23)

f → f f̄ .

If the first four Fourier coefficients of f are zero, then the first four Fourier coefficients of f f̄ are also
zero as well. Using Theorem 32, we deduce that all of them are zero.

Since first four coefficients of f (z) and
ΘQ0

(z)−ΘQ1
(z)

2 coincide, we deduce that this is true for all of
them.
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9. Consequences of the equality and conclusions
The equality obtained in the previous section gives a complete description of the prime coefficients of the
Fourier expansion of the modular form f . We have,

ap(f ) =
rQ0(p)− rQ1(p)

2
.

Recalling the relation
rQ0(p) + 2rQ1(p)

2
= 1 +

(
−23

p

)
,

we can deduce that if
(
−23
p

)
= −1, then p is not representable by a quadratic form of discriminant −23,

and we have rQ0(p) = rQ1(p) = 0, so ap(f ) = 0. Otherwise, p is representable either by Q0 or Q1. in the
first case, rQ1(p) = 0, which implies rQ0(p) = 4 and ap(f ) = 2, and in the second case, rQ0(p) = 0 and
ap(f ) = −1. Finally, since rQ0(23) = 2, we have that ap(f ) = 1.

We have the following relations,

ap(f ) =


1 if p = 23

0 if (p/23) = −1

2 if p is representable as x2 + xy + 6y2

−1 if p is representable as 2x2 + xy + 3y2

In Section 5.2, we have related the representations of primes by quadratic forms of negative discriminant
and the splitting of primes in imaginary quadratic fields.

The representations of primes by quadratic forms of discriminant −23 is related to the splitting of primes
in Q(

√
−23) in the following way ( p

23

)
= −1 ⇐⇒ p is inert

p splits in principal primes ⇐⇒ p is represented by x2 + xy + 6y2

p splits in nonprincipal primes ⇐⇒ p is represented by 2x2 + xy + 3y2

Morover, using class field Theory we proved that the splitting in K = Q(
√
−23) and the splitting in

F = Q(α), where α is a root of x3 − x − 1 are related in the following way,

p splits in non-principal primes in K ⇐⇒ p is inert in F .

p splits in principal primes in K ⇐⇒ p splits completely in F .

p is inert in K ⇐⇒ p splits in two primes in F .

Finally, the splitting of a prime p in F is directly related to the factorization of x3−x−1 (mod p). Therefore,
we have obtained a generating function which describes how x3 − x − 1 splits modulo any prime.
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Appendix: SageMath code

We include the SageMath code that was used to check the transformation property of the eta product of
Section 8.2.

Since the functional equations presented in Section 8.1 show the transformation property of the eta
function by the matrices S and T , and they generate the full group SL2(Z), we compute first the decom-
position of any matrix γ ∈ SL2(Z) as a product of matrices S and T . To write this as a recursive function,
it is easier to assume that the input is in fact γ−1.

T=SL2Z([1,1,0,1])
S=SL2Z([0,-1,1,0])

def inverse_matrix_as_S_T(mat):
product=[] #stores a list of matrices with prod(product)*mat = id
indices=[] #stores a list with k or 0 if the facor of the decomposition is T^k or S.

if mat.c()==0 and mat.a() == 1: # if mat == [[1,b],
product = [T^(-mat.b())] if mat.b() != 0 else [] # [0,1]]
indices = [-mat.b()] if mat.b() != 0 else []

elif (mat.c()==0 and mat.a() == -1) or abs(mat.a()) < abs(mat.c()) : # if mat == [[-1,*],
new_index, new_product= inverse_matrix_as_S_T(S*mat ) # [0,-1]]
product = new_product + [S]
indices = new_index + [0]

else: # if mat == [[ a+k*c, *],
frac=mat.a()/(mat.c()) # [ c, *]]
exp = floor(frac) if frac>0 else ceil(frac)
new_index, new_product = inverse_matrix_as_S_T(T^(-exp)*mat )
product = new_product +[T^(-exp)]
indices = new_index + [-exp]

assert(prod(product,SL2Z([1,0,0,1]))*mat==SL2Z([1,0,0,1])),"matrix product is not the identity"
product_form_indices = [(T^i if i!= 0 else S) for i in indices]
assert(product_form_indices==product), "error computing indices"
return (indices, product)

Let γ ∈ Γ0(Z) and z ∈ H. We want to compute the transformation property of f for γ at z . We use a
decomposition of γ with matrices S and T k , to compute the automorphy factor of the eta function, η(γz)

η(z) .
Since there is a square root, and we want to do the computations symbolically, we compute the square of
the automorphy factor.

def automorphy_factor_squared(mat,zz):
ind,product = inverse_matrix_as_S_T(mat^-1)
automorphy_sq=1

for k in range(len(ind)):
if ind[k] == 0:
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automorphy_sq *= -I*(prod(product[k+1:],SL2Z([1,0,0,1])).acton(zz))
else:

automorphy_sq *= (e^(2*I*pi*ind[k]/12))
return automorphy_sq

For every generator γ of Γ0, we compute the product of the automorphy factors for γ and γ̃,

z=var('z')
G=Gamma0(23)
for m in G.gens():

m_1=SL2Z([m.a(), 23*m.b(),m.c()/23,m.d()])
automorphy_sq = automorphy_factor_squared(m,z)
automorphy_sq_1 = automorphy_factor_squared(m_1,23*z)
show(m, (automorphy_sq*automorphy_sq_1/(m.c()*z+m.d())^2).full_simplify())

Using this code, we check that for each generator γ of Γ0(23) we have

(
f (γz)

f (z)(cz + d)

)2

=
η(γz)η(γ23z)

η(z)η(23z)(cz + d)2
= 1.

Since f (γz)
f (z)(cz+d) is continuous, for any γ ∈ Γ0(23), it is either 1 or −1.

Now we compute f (γz)
f (z)(cz+d) . We start with η(γz)

η(z) for any γ ∈ SL2(Z).

def sqrt_upper_half_plane(zz):
roots = zz.sqrt(all=true)
return roots[0] if roots[0].imag()>=0 else roots[0]

def automorphy_factor(mat,zz):
ind,product = inverse_matrix_as_S_T(mat^-1)
automorphy = 1
for k in range(len(ind)):

if ind[k] == 0:
automorphy*= sqrt_upper_half_plane(-QQbar(I)*(prod(product[k+1:],SL2Z([1,0,0,1])).acton(zz)))

else:
automorphy *= QQbar(e^(pi*(I)*ind[k]/12))

return automorphy

Using this, we finally compute f (γi)
f (i)(ci+d) ,

for m in G.gens():
automorphy = automorphy_factor(m,QQbar(I))
m_1=SL2Z([m.a(), 23*m.b(),m.c()/23,m.d()])
automorphy_1 = automorphy_factor(m_1,23*QQbar(I))
show(m, real(QQbar((cocyc*cocyc_1/(m.c()*QQbar(I)+m.d())))))

We obtain the following results, which coincide with
(

a
23

)
.
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γ f (γi)
f (i)(ci+d) γ f (γi)

f (i)(ci+d)(
1 1
0 1

)
1

(
19 −5
23 −6

)
1(

17 −3
23 −4

)
-1

(
18 −11
23 −14

)
1(

9 −2
23 −5

)
1

(
−1 0
0 −1

)
-1

Table 2: Values of f (γz)/f (z)(cz + d), that confirm the transformation property given in Section 8.2.
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