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Abstract. The extrapolation procedures currently used to scale propeller characteristics tested 
at model scale to their full scale performances are either based on a statistical [1], the Lerbs-
Meyne [2] or the recently developed strip method [3]. 

With the emergence of so-called unconventional propellers and different design strategies 
associated with them, it has been questioned whether the assumptions used in these scaling 
methods are still universally valid. E.g. with tip and root unloading employed, the circulation 
distribution deviates from the optimum, which is assumed by the Lerbs-Meyne method; more 
modern profiles show a different camber distribution and hence the drag coefficient must be 
aligned with the hydrodynamic inflow angle and not with the pitch to diameter ratio as assumed 
by the strip method (and implicitly by the ITTC 1978 method [4]). 

The work presented still uses the assumption of the equivalent profile and will explain a 
modified scaling procedure showing a way to calculate the hydrodynamic inflow angle solely 
from one open-water test conducted at a constant Reynolds number. Finally exemplary results 
comparing a propeller of conventional type with a recent propeller designs will also be shown. 

The new proposed method shows a superior performance when compared to other scaling 
methods. 

 
 
1 INTRODUCTION 

In recent years new propeller design philosophies have emerged into the market. The NPT-
, Kappel- and CLT-propellers are examples of these so-called unconventional designs. From 
the very beginning it was claimed by their designers that full scale predictions based on the 
existing scaling methods do not reflect the actual performances observed. Based on the data 
available to the author this holds true for at least one of the above mentioned propeller types: 
The trial results regularly show a performance above the speeds predicted by different model 
basins. Generally speaking this behaviour never posed a problem in the past. With everybody 
now looking for the most efficient configuration, more and more propellers are comparatively 
tested and the final design is decided on the outcome of the performance predictions. Some 
propeller manufactures even take the scaling procedure used at the model basin into their 
consideration when designing a propeller for a comparative test to gain a little advantage over 
competitors. These tests pose a complete new challenge to the model basins, since tiny 
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differences – often as small as 0.01 kn – determine who wins the contract. This shows clearly 
that a more accurate scaling procedure is in high demand. 

 

2 EXISTING SCALING PROCEDURES 
Currently four main scaling procedures are used in model basins to scale the measured open-

water data to full scale propeller performance: 
1. No scaling 
2. ITTC 1978 extrapolation method 
3. Lerbs-Meyne method 
4. Strip method 
Independently of the scaling method applied, there are some local preferences in the 

implementation of the open-water tests, mainly concerning the Reynolds number used. Some 
model basins adheres strictly to the ITTC recommendation that the Reynolds number “must not 
be lower than 2·105 at the open-water test” [4] (some of them just fulfilling the recommendation 
running the open-water test at a Reynolds number of 2·105); some model basins conduct two 
tests (one at the Reynolds number experienced during the self-propulsion test and one above 
2·105, using the lower to analyse the self-propulsion test, the other to scale to the full scale 
open-water curve); at least one model basin arranges for three open-water tests (one at the 
Reynolds number of the self-propulsion and two higher ones “to assess if the flow is fully 
turbulent”). If just one open-water test is conducted, it might or might not be scaled down to 
the Reynolds number experienced at the self-propulsion test.  

2.1 No scaling 
When predicting the full scale performance, the open-water test is not extrapolated to full 

scale, but a final correction factor is applied to the performance prediction.  

2.2 ITTC 1978 extrapolation method 
The ITTC 1978 extrapolation method assumes a linear correlation between the change in 

friction drag and change in thrust and torque coefficient [4]. But “it should be kept in mind that 
both the relation between thrust/torque and drag coefficient and the relation between drag 
coefficient and Reynolds number are based on statistics and the basis for the statistical values 
is very small” [1]. This very clear warning should always be kept in mind when judging the 
accuracy of any results using this extrapolation method. With the emergence of new profile 
types this warning becomes more and more vehemently – especially when comparing propellers 
using different profile types. 

The second problematic characteristics of this scaling method is the linear dependence of the 
change in the thrust coefficient on the pitch to diameter ratio 𝑃𝑃/𝐷𝐷. To explain the impact of this 
assumption, let us consider a propeller with a flat camber line and compare it to one, where all 
the lift is generated by camber alone. The first propeller will have a higher pitch because the 
lift is only generated by the angle of incidence. Even if this propeller will perform worse than 
the cambered one, it will be favoured by the extrapolation method and might show a scaled 
performance superior to the second, cambered propeller. 

The ITTC 1978 extrapolation method insists to test the propeller model at a Reynolds 
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number “not […] lower than 2·105 at the open-water test” [4]. If you compared the performance 
extrapolated from open-water tests conducted at different Reynolds numbers you want to get 
the same values independently from the starting point. The left picture in figure 2 shows three 
full scale open-water curves of the same propeller but scaled up from different Reynolds 
numbers according to ITTC. Evidently the curve calculated from the lowest Reynolds number 
does not coincide with the other two curves despite the fact that the lowest Reynolds number 
of about 2.5·105 is well above the ITTC 1978 recommendation of 2·105. The propeller shown 
in the right picture in figure 2 exhibits an even worse behaviour: There is a big difference in the 
extrapolated performances depending on the starting point. The first propeller tested was of a 
Wageningen B type, the second was of the modern NPT type. Both propellers were tested at 
the same model basin. 

2.3 Lerbs-Meyne method 
The Lerbs-Meyne method was published in 1968 [2] and derives a propeller with optimum 

distribution of circulation and no friction, that is the ideal propeller, from the open-water test at 
one Reynolds number. With an assumed drag ratio 𝜀𝜀0.7 of the so called equivalent profile at 
radius 0.7𝑅𝑅, the measured values 𝜂𝜂 and 𝑐𝑐𝑇𝑇𝑇𝑇, the open-water efficiency and the thrust 
coefficient, respectively, can be converted to 𝜂𝜂𝑖𝑖 and 𝑐𝑐𝑇𝑇𝑇𝑇𝑖𝑖 of the ideal propeller. However there 
is only one valid combination of 𝜂𝜂𝑖𝑖 and 𝑐𝑐𝑇𝑇𝑇𝑇𝑖𝑖 which can be read of the Kramer diagram [5]. 
Most likely the calculated 𝜂𝜂𝑖𝑖(𝜀𝜀0.7) and 𝑐𝑐𝑇𝑇𝑇𝑇𝑖𝑖(𝜀𝜀0.7) do not coincide with the valid combination, 
so 𝜀𝜀0.7 has to be adjusted in an iterative process until the valid combination is met. The full 
scale values are calculated with a friction coefficient of 0.006. 

The Lerbs-Meyne method seems to be the perfect scaling method, since the profile drag is 
calculated from the actually measured open-water values and it is aligned with the inflow. There 
are only two drawbacks. Firstly, it is based on an equivalent profile which represents the whole 
propeller blade. Secondly, it assumes that the propeller blade was designed with an optimum 
circulation distribution. This poses a problem with modern propellers which are almost always 
wake adapted designs. The designer also often unloads the tip or root region or the diameter is 
restricted, so the assumption of optimum circulation distribution does not hold for all designs. 

The figure 3 shows the scaled open-water tests. 

2.4 Strip method 
The strip method was developed by H. Streckwall of the HSVA model basin and published 

in 2013 [3]. When analysing the open-water test, the vector sum of the contributions of each 
radial section (strip) towards the friction resistance is calculated to get the friction resistance of 
the whole blade. When doing so, it takes into account the actual Reynolds number and the 
position of the transition point at the respective radial strip. 

The strip method is certainly an advancement of the existing scale methods. The advantages 
are that it accounts for the actual turbulence in the inflow, e.g. in open-water and behind 
condition, by using two different friction lines. It also takes into account the actual distribution 
of chord length and pitch. The main problems are the alignment of the drag forces with the 
nose-tail pitch line instead of the actual inflow angle (see the respective note in section 2.2 
about the ITTC 1978 extrapolation procedure) and the determination of the friction coefficients. 
As pointed out by Streckwall the calculation of the friction coefficient uses the local friction 

1053



Dr. Stephan Helma 

 4 

coefficients for laminar and turbulent flow as stated by Hoerner [6] and the location of the 
transition point is derived from CFD calculations. These calculations were done for a set of 
propellers for two inflow conditions: One with low turbulence for the open-water curve, one 
with higher turbulence for the behind condition as expected during self-propulsion tests. Final 
curve fittings result in the two friction resistance curves for the open-water and the behind 
condition. These derived curves are used for all propellers disregarding of the actual profile 
used, whereas it is to be expected that the location of the transition point is strongly influenced 
by the section shape. 

The scaled open-water tests can be found in figure 4.  

3 ALTERNATIVE SCALING METHOD 
In the author's opinion a scaling method which is independent of the propeller geometry can 

only be realized if the drag coefficient is not parallel to the nose-tail pitch line but aligned with 
the hydrodynamic inflow as the theory of thin profiles suggests. We will see in the following 
chapters that it is possible to calculate the hydrodynamic inflow angle from just one open-water 
test. 

3.1 Equivalent profile 
Let us imagine that the propeller is built up of circumferential sections stacked on top of 

each other and each section experiences a lift and drag coefficient 𝑐𝑐𝑑𝑑 and 𝑐𝑐𝑙𝑙. The direction of 
action of these coefficients are aligned with the hydrodynamic inflow angle 𝛽𝛽𝑖𝑖. Geometric 
considerations lead to the formulae (1a+b) for the thrust and torque coefficients 𝐾𝐾𝑇𝑇 and 𝐾𝐾𝑄𝑄: 

𝐾𝐾𝑇𝑇 = 𝜋𝜋2𝑍𝑍
4 ∫ 𝑐𝑐𝑙𝑙(𝑥𝑥)cos𝛽𝛽𝑖𝑖(𝑥𝑥) − 𝑐𝑐𝑑𝑑(𝑥𝑥)sin𝛽𝛽𝑖𝑖(𝑥𝑥)

[ cos𝛽𝛽(𝑥𝑥)
cos(𝛽𝛽𝑖𝑖(𝑥𝑥) − 𝛽𝛽(𝑥𝑥))]

2
𝑐𝑐(𝑥𝑥)
𝐷𝐷 𝑥𝑥2d𝑥𝑥

1

𝑥𝑥ℎ
 

(1a) 

𝐾𝐾𝑄𝑄 = 𝜋𝜋2𝑍𝑍
8 ∫ 𝑐𝑐𝑙𝑙(𝑥𝑥)sin𝛽𝛽𝑖𝑖(𝑥𝑥) + 𝑐𝑐𝑑𝑑(𝑥𝑥)cos𝛽𝛽𝑖𝑖(𝑥𝑥)

[ cos𝛽𝛽(𝑥𝑥)
cos(𝛽𝛽𝑖𝑖(𝑥𝑥) − 𝛽𝛽(𝑥𝑥))]

2
𝑐𝑐(𝑥𝑥)
𝐷𝐷 𝑥𝑥3d𝑥𝑥

1

𝑥𝑥ℎ

(1b) 

where 
 𝑍𝑍 = the number of propeller blades, 
 𝑥𝑥 = the fractional radius 𝑟𝑟/𝑅𝑅, 
 𝑥𝑥ℎ = the fractional radius 𝑟𝑟ℎ/𝑅𝑅 of the propeller hub, 
 𝑐𝑐(𝑥𝑥) = the length of the section at fractional radius 𝑥𝑥, 
 𝛽𝛽(𝑥𝑥) = the advance angle at fractional radius 𝑥𝑥, 
 𝛽𝛽𝑖𝑖(𝑥𝑥) = the hydrodynamic inflow angle at fractional radius 𝑥𝑥 and 
 𝐷𝐷 = the propeller diameter. 
At this point we introduce the concept of the equivalent profile: We replace the whole 

propeller blade with one single section of length 𝑐𝑐̅ located at the fractional radius �̅�𝑥 such that 
this profile shows the same characteristics as the original blade. Using this equivalent profile 
we can replace the chord distribution and all hydrodynamic values in the integrand which 
depend on the fractional radius 𝑥𝑥 with constant values and extract these from the integral. We 
denote these values of the equivalent profile with the overbar ̅ : 
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𝐾𝐾𝑇𝑇 = 𝜋𝜋2𝑍𝑍
4

𝑐𝑐𝑙𝑙cos𝛽𝛽𝑖𝑖 − 𝑐𝑐𝑑𝑑sin𝛽𝛽𝑖𝑖

[ cos𝛽𝛽
cos(𝛽𝛽𝑖𝑖 − 𝛽𝛽)

]
2

𝑐𝑐
𝐷𝐷∫ 𝑥𝑥2d𝑥𝑥

1

𝑥𝑥ℎ
 

(2a) 

𝐾𝐾𝑄𝑄 = 𝜋𝜋2𝑍𝑍
8

𝑐𝑐𝑙𝑙cos𝛽𝛽𝑖𝑖 + 𝑐𝑐𝑑𝑑sin𝛽𝛽𝑖𝑖

[ cos𝛽𝛽
cos(𝛽𝛽𝑖𝑖 − 𝛽𝛽)

]
2

𝑐𝑐
𝐷𝐷∫ 𝑥𝑥3d𝑥𝑥

1

𝑥𝑥ℎ
 

(2b) 

(For an alternative formulation of the equivalent profile, which takes the distribution of the 
chord length and pitch into account, see [7].) 

Note that for the equivalent profile the thrust and torque coefficients must remain the same 
as for the whole propeller blade, hence the overbar ̅  can be omitted. 

After integration the equations (2a+b) become: 

𝐾𝐾𝑇𝑇 = 𝜋𝜋2𝑍𝑍
4

𝑐𝑐𝑙𝑙cos𝛽𝛽𝑖𝑖 − 𝑐𝑐𝑑𝑑sin𝛽𝛽𝑖𝑖

[ cos𝛽𝛽
cos(𝛽𝛽𝑖𝑖 − 𝛽𝛽)

]
2

𝑐𝑐
𝐷𝐷
1 − 𝑥𝑥ℎ3

3  
(3a) 

𝐾𝐾𝑄𝑄 = 𝜋𝜋2𝑍𝑍
8

𝑐𝑐�̅�𝑙sin𝛽𝛽𝑖𝑖 + 𝑐𝑐𝑑𝑑cos𝛽𝛽𝑖𝑖

[ cos𝛽𝛽
cos(𝛽𝛽𝑖𝑖 − 𝛽𝛽)

]
2

𝑐𝑐
𝐷𝐷
1 − 𝑥𝑥ℎ4

4  
(3b) 

and finally 

𝐾𝐾𝑇𝑇 = 𝜘𝜘𝑇𝑇𝛣𝛣2(𝑐𝑐𝑙𝑙cos𝛽𝛽𝑖𝑖 − 𝑐𝑐𝑑𝑑sin𝛽𝛽𝑖𝑖) (4a) 

𝐾𝐾𝑄𝑄 = 𝜘𝜘𝑄𝑄𝛣𝛣2(𝑐𝑐𝑙𝑙sin𝛽𝛽𝑖𝑖 + 𝑐𝑐𝑑𝑑cos𝛽𝛽𝑖𝑖) (4b) 

using the following abbreviations for convenience: 

𝜘𝜘𝑇𝑇 =
𝜋𝜋2𝑍𝑍
4

𝑐𝑐
𝐷𝐷
1 − 𝑥𝑥ℎ3

3  
(4c) 

𝜘𝜘𝑄𝑄 = 𝜋𝜋2𝑍𝑍
8

𝑐𝑐
𝐷𝐷
1 − 𝑥𝑥ℎ4

4  
(4d) 

𝜘𝜘 = 𝜘𝜘𝑄𝑄
𝜘𝜘𝑇𝑇

= 3
8
1 − 𝑥𝑥ℎ4
1 − 𝑥𝑥ℎ3

 
(4e) 

𝛣𝛣 =
cos(𝛽𝛽𝑖𝑖 − 𝛽𝛽)

cos𝛽𝛽
 

(4f) 

Furthermore the advance angle �̅�𝛽 is known for a given advance coefficient 𝐽𝐽: 

tan𝛽𝛽 = 𝑣𝑣0
𝜔𝜔𝑟𝑟 =

𝐽𝐽
𝜋𝜋𝑥𝑥 

(4g) 

The theory of aerofoils states that the lift coefficient 𝑐𝑐�̅�𝑙 does not change with the Reynolds 
number [8]. We can (reasonably) assume that if the lift does not change, the induced velocities 
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will not change either, hence the hydrodynamic inflow angle �̅�𝛽𝑖𝑖 does not change with the 
Reynolds number for any given value of 𝐽𝐽, hence the coefficient 𝛣𝛣 and the lift coefficient 𝑐𝑐�̅�𝑙 
stay constant for a fixed 𝐽𝐽-value. This assumption will certainly hold true as long as no flow 
separation occurs: 

Let us recapitulate the dependencies on the advance coefficient 𝐽𝐽, the fractional radius �̅�𝑥 and 
the Reynolds number Rn̅̅̅̅  of the equivalent profile of each variable: 

 𝑐𝑐̅ = 𝑐𝑐̅(�̅�𝑥) 
 𝐾𝐾𝑇𝑇 = 𝐾𝐾𝑇𝑇(𝐽𝐽, Rn̅̅̅̅ ) 
 𝐾𝐾𝑄𝑄 = 𝐾𝐾𝑄𝑄(𝐽𝐽, Rn̅̅̅̅ ) 
 𝑐𝑐�̅�𝑑 = 𝑐𝑐𝑑𝑑(𝐽𝐽, Rn̅̅̅̅ , �̅�𝑥) 
 𝑐𝑐�̅�𝑙 = 𝑐𝑐𝑙𝑙(𝐽𝐽, �̅�𝑥) 
 �̅�𝛽 = �̅�𝛽(𝐽𝐽, �̅�𝑥) 
 �̅�𝛽𝑖𝑖 = �̅�𝛽𝑖𝑖(𝐽𝐽, �̅�𝑥) 
 𝜘𝜘𝑇𝑇 = 𝜘𝜘𝑇𝑇(�̅�𝑥) 
 𝜘𝜘𝑄𝑄 = 𝜘𝜘𝑄𝑄(�̅�𝑥) 
 𝜘𝜘 = const 
 𝛣𝛣 = 𝛣𝛣(𝐽𝐽, �̅�𝑥) 

3.2 Determination of the hydrodynamic inflow angle �̅�𝜷𝒊𝒊 from just one open-water test 

The thrust and torque coefficients 𝐾𝐾𝑇𝑇 and 𝐾𝐾𝑄𝑄 depend on the advance coefficient 𝐽𝐽 and the 
Reynolds number Rn̅̅̅̅ : 

𝐾𝐾𝑇𝑇 = 𝐾𝐾𝑇𝑇(𝐽𝐽, Rn̅̅̅̅ ) (5a) 

𝐾𝐾𝑄𝑄 = 𝐾𝐾𝑄𝑄(𝐽𝐽, Rn̅̅̅̅ ) (5b) 

Traditionally these equations are looked at with the Reynolds number Rn̅̅̅̅  fixed resulting in 
the well-known open-water curves 𝐾𝐾𝑇𝑇(𝐽𝐽)|Rn̅̅̅̅ , 𝐾𝐾𝑄𝑄(𝐽𝐽)|Rn̅̅̅̅ . If the same propeller were tested at 
different Reynolds numbers, the three-dimensional surfaces 𝐾𝐾𝑇𝑇(𝐽𝐽, Rn̅̅̅̅ ) and 𝐾𝐾𝑄𝑄(𝐽𝐽, Rn̅̅̅̅ ) can be 
constructed. Cutting these surfaces at constant 𝐽𝐽-values result in the open-water curves 
𝐾𝐾𝑇𝑇(Rn̅̅̅̅ )|𝐽𝐽 and 𝐾𝐾𝑄𝑄(Rn̅̅̅̅ )|𝐽𝐽 depending only on the Reynolds number. Omitting |𝐽𝐽, which indicates 
that the 𝐽𝐽-value is fixed, for clarity, equations (4a+b) are written for fixed values of 𝐽𝐽 as 

𝐾𝐾𝑇𝑇(Rn̅̅̅̅ ) = 𝜘𝜘𝑇𝑇𝛣𝛣2[𝑐𝑐𝑙𝑙cos𝛽𝛽𝑖𝑖 − 𝑐𝑐𝑑𝑑(Rn̅̅̅̅ )sin𝛽𝛽𝑖𝑖] (6a) 

𝐾𝐾𝑄𝑄(Rn̅̅̅̅ ) = 𝜘𝜘𝑄𝑄𝛣𝛣2[𝑐𝑐𝑙𝑙sin𝛽𝛽𝑖𝑖 + 𝑐𝑐𝑑𝑑(Rn̅̅̅̅ )cos𝛽𝛽𝑖𝑖] (6b) 

We can isolate the lift and drag coefficients 𝑐𝑐�̅�𝑙 and 𝑐𝑐�̅�𝑑(Rn̅̅̅̅ ): 

𝛣𝛣2 𝑐𝑐𝑙𝑙 = 𝐾𝐾𝑄𝑄(Rn̅̅̅̅ )
sin𝛽𝛽𝑖𝑖

𝜘𝜘𝑄𝑄
+ 𝐾𝐾𝑇𝑇(Rn̅̅̅̅ )

cos𝛽𝛽𝑖𝑖
𝜘𝜘𝑇𝑇

 
(7a) 

𝛣𝛣2 𝑐𝑐𝑑𝑑(Rn̅̅̅̅ ) = 𝐾𝐾𝑄𝑄(Rn̅̅̅̅ )
cos𝛽𝛽𝑖𝑖

𝜘𝜘𝑄𝑄
− 𝐾𝐾𝑇𝑇(Rn̅̅̅̅ )

sin𝛽𝛽𝑖𝑖
𝜘𝜘𝑇𝑇

 
(7b) 

We differentiate the first equation (7a) with respect to the Reynolds number Rn̅̅̅̅  
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0 = d𝐾𝐾𝑄𝑄

dRn
sin𝛽𝛽𝑖𝑖
𝜘𝜘𝑄𝑄

+ d𝐾𝐾𝑇𝑇

dRn
cos𝛽𝛽𝑖𝑖
𝜘𝜘𝑇𝑇

 
(8) 

and multiply by dRn̅̅̅̅  

0 = d𝐾𝐾𝑄𝑄
sin𝛽𝛽𝑖𝑖
𝜘𝜘𝑄𝑄

+ d𝐾𝐾𝑇𝑇
cos𝛽𝛽𝑖𝑖
𝜘𝜘𝑇𝑇

 
(9) 

Now we can isolate the hydrodynamic inflow angle �̅�𝛽𝑖𝑖: 

tan 𝛽𝛽𝑖𝑖 = −𝜘𝜘𝑄𝑄
𝜘𝜘𝑇𝑇

d𝐾𝐾𝑇𝑇
𝑑𝑑𝐾𝐾𝑄𝑄

= −𝜘𝜘 d𝐾𝐾𝑇𝑇
𝑑𝑑𝐾𝐾𝑄𝑄

 
(10a) 

or when using absolute thrust and torque figures: 

tan 𝛽𝛽𝑖𝑖 = −𝜘𝜘𝐷𝐷d𝑇𝑇d𝑄𝑄  
(10b) 

Any of these two last equations determine the hydrodynamic inflow angle �̅�𝛽𝑖𝑖 over the whole 
range of the advance coefficient 𝐽𝐽 just from the slope of the 𝐾𝐾𝑇𝑇(𝐾𝐾𝑄𝑄)-curve. This relationship is 
strictly speaking only valid if the thrust and torque were measured at a constant Reynolds 
number (see [7] how this can be achieved). Now the equation (10a) can be rewritten as 

tan 𝛽𝛽𝑖𝑖 = −𝜘𝜘
𝜕𝜕𝐾𝐾𝑇𝑇
𝜕𝜕𝜕𝜕
𝜕𝜕𝐾𝐾𝑄𝑄
𝜕𝜕𝜕𝜕

 
(10c) 

which facilitates the calculation, if the 𝐾𝐾𝑇𝑇 and 𝐾𝐾𝑄𝑄 curves are given in their polynomial form. 
With �̅�𝛽𝑖𝑖 known, the lift and drag coefficients can be calculated by evaluating equations (7a) 

and (7b). It is worth noting, that these three values do not depend on the location �̅�𝑥 of the 
equivalent profile. 

4 FULL SCALE EXTRAPOLATION 

The analysis presented above yields the values of the lift and drag coefficients 𝑐𝑐�̅�𝑙 and 𝑐𝑐�̅�𝑑 and 
the hydrodynamic inflow angle �̅�𝛽𝑖𝑖 for a particular open-water test (equations (7a), (7b), and 
(10a, b or c)). These values can be scaled separately using the theory of aerofoil sections and 
the corresponding experimental results. 

4.1 Scaling the lift coefficient �̅�𝒄𝒍𝒍 
Using results from the profile theory, it can be assumed that the lift coefficient 𝑐𝑐�̅�𝑙 remains 

constant when the Reynolds number changes. 
Sometimes it is claimed that this assumption does not generally hold for all cases. There is 

no reason why the lift coefficient cannot be scaled with any appropriate method already existing 
or becoming available in the future. 

4.2 Scaling the hydrodynamic inflow angle �̅�𝜷𝒊𝒊 
If the lift coefficient and hence the lift do not change, the induced velocities will not change 

either. That is equivalent to the statement that the hydrodynamic inflow angle �̅�𝛽𝑖𝑖 does not 
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change with changes in the Reynolds number. If the lift coefficient 𝑐𝑐�̅�𝑙 were to be scaled, it is to 
be assumed that the influence on �̅�𝛽𝑖𝑖 is negligibly small and hence can be neglected. 

That leaves us with the drag coefficient 𝑐𝑐�̅�𝑑 to be scaled. 

4.3 Scaling the drag coefficient �̅�𝒄𝒅𝒅 
The drag coefficient of a section can be split into a contribution of the friction and the section 

form drag, 𝑐𝑐�̅�𝑓 and 𝑐𝑐�̅�𝑑,2𝑑𝑑, respectively [1][4][8]: 
𝑐𝑐𝑑𝑑 = 2𝑐𝑐𝑓𝑓 ⋅ 𝑐𝑐𝑑𝑑,2𝑑𝑑 (11) 

Abbott and von Doenhoff [8] give the section form drag as 

𝑐𝑐𝑑𝑑,2𝑑𝑑 = 1 + 2 𝑡𝑡
𝑐𝑐 + 60 (𝑡𝑡

𝑐𝑐)
4

 
(12) 

(Often the term 60(𝑡𝑡̅/𝑐𝑐̅)4 is not taken into account, because its contribution is very small.) The 
ITTC [4] recommends the following friction line: 

𝑐𝑐𝑓𝑓 = 0.04

Rn
1 6⁄

− 5

Rn
2 3⁄

 
(13) 

Analyzing the data available to the author using these two empirical formulae show that the 
drag coefficients calculated with equations (7b) and (11) differ substantially. Kuiper mentions 
in his book [1] that van Oossanens introduces a drag coefficient 𝑐𝑐�̅�𝑑3 to account for “three-
dimensional effects”, which is added to the profile drag: 

𝑐𝑐𝑑𝑑 = 2𝑐𝑐𝑓𝑓 ⋅ 𝑐𝑐𝑑𝑑,2𝑑𝑑 +  𝑐𝑐�̅�𝑑3 (14) 

According to these authors this three-dimensional added drag coefficient 𝑐𝑐�̅�𝑑3 does not 
change with the Reynolds number. 

In the author's opinion a proportional factor 𝑐𝑐�̅�𝑑,3𝑑𝑑 is more suitable and would fit into the 
concept of the (two-dimensional) section form drag 𝑐𝑐�̅�𝑑,2𝑑𝑑: 

𝑐𝑐𝑑𝑑 = 2𝑐𝑐𝑓𝑓 ⋅ 𝑐𝑐𝑑𝑑,2𝑑𝑑 ⋅  𝑐𝑐�̅�𝑑,3𝑑𝑑 (15a) 

If no flow separation occurs, the section form drag 𝑐𝑐�̅�𝑑,2𝑑𝑑 only depends on geometrical 
features but neither on the Reynolds number nor on the advance coefficient, hence it is constant. 
The factor 𝑐𝑐�̅�𝑑,3𝑑𝑑 accounts for the three-dimensional effects of the flow around the propeller and 
hence depends only on the advance coefficient. (Strictly speaking there will be an influence of 
the Reynolds number as well, since the thickness of the boundary layer changes and hence the 
three-dimensional flow around the propeller. For the moment we deliberately disregard this 
small effect.) The friction drag coefficient 𝑐𝑐�̅�𝑓 depends strongly on the Reynolds number: 

𝑐𝑐𝑑𝑑(𝐽𝐽, Rn) = 2𝑐𝑐𝑓𝑓(Rn) ⋅ 𝑐𝑐𝑑𝑑,2𝑑𝑑 ⋅ 𝑐𝑐�̅�𝑑,3𝑑𝑑(𝐽𝐽) (15b) 

If the friction coefficient 𝑐𝑐�̅�𝑓 were known, the three-dimensional drag 𝑐𝑐�̅�𝑑,3𝑑𝑑 can be calculated 
from the model test. Finally the drag coefficient 𝑐𝑐�̅�𝑑 for any scale can be reassembled with the 
friction coefficient 𝑐𝑐�̅�𝑓 for the selected Reynolds number, e.g. full scale propeller or self-
propulsion test. 
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4.4 Scaling the friction drag coefficient �̅�𝒄𝒇𝒇 

The scaling of the friction drag with the Reynolds number is a matter of ongoing discussion. 
In the scope of this paper only some observations or suggestions should be made. 

The difficulty of scaling propellers stems from the fact that the Reynolds numbers reached 
during open-water tests fall into the transitional region where the flow over the blades is not 
fully turbulent yet and the laminar region spreads over a substantial part of the propeller blade. 

The traditional way to scale the friction drag coefficient 𝑐𝑐�̅�𝑓 is to use friction lines derived 
from experiments. One line which is universally used in the field of naval architecture is the 
ITTC 1978 friction line, equation (13). The note made in section 2.2 should always be kept in 
mind. 

For alternative approaches see [7]. 

5 EXAMPLARY RESULTS 
A NPT propeller designed by Stone Marine Propulsion and a conventional propeller of the 

Wageningen B type were tested at three different Reynolds numbers at the model basin of SSPA 
in Gothenburg (table 1 and figure 1). All six open-water curves were scaled according to the 
ITTC 1978 (figure 2), the Lerbs-Meyne (figure 3), the strip method (figure 4) and the proposed 
alternative method (figure 5). The new method uses the ITTC 1978 friction line to calculate 𝑐𝑐�̅�𝑓. 

 

Table 1: Main particulars of the propellers analyzed. 

 Conventional NPT  
𝑫𝑫 7.3 6.8 m 

𝑷𝑷/𝑫𝑫 0.673 0.902 – 
�̅�𝒄𝟎𝟎.𝟕𝟕 1.9563 1.799 m 

𝑨𝑨𝒆𝒆/𝑨𝑨𝟎𝟎 0.53 0.460 – 
𝒁𝒁 4 4 – 
𝝀𝝀 33.1818 27.143 – 

Type Wageningen B New Profile Technology  
 
It is noticeable that the lowest Reynolds numbers of 2.5·105 and 3.5·105 is too low for all 

methods. The first three methods work reasonably well for the conventional propeller, whereas 
the scaled values for the NPT propeller shows a noticeable gap between the efficiencies 
extrapolated from the different Reynolds numbers. 

Applying the new method to the conventional propeller moves the efficiency curves scaled 
from the two higher Reynolds numbers on top of each other. For the NPT propeller the 
difference between these efficiency curves decreases noticeably. 

6 CONCLUSIONS 
An alternative method to extrapolate open-water performance data was presented. It makes 

use of the concept of the equivalent profile. It is entirely independent of the propeller geometry 
or the blade loading and works for all propellers which do not experience flow separation. By 
calculating the hydrodynamic inflow angle from just one set of open-water curves, it is able to 
align the drag and friction forces to the actual inflow as the theory of wings suggests. 
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This alternative method has the potential to replace the existing methods as shown in the 
exemplary results. 

This new method should be applied to as many performance predictions as possible and 
compared with the respective trials data to validate its suitability. This can only be done by a 
model basin which has the extensive data base to make this comparison reliable. 

It was also shown that the ITTC 1978 recommendation for a minimum Reynolds number of 
2·105 might be too low and it should be considered to be raised. 
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Conventional Propeller NPT Propeller 

Figure 1: Open-water characteristics, measured values. 

Conventional Propeller NPT Propeller 

Figure 2: Open-water characteristics scaled according to the ITTC 1978 method. 
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Conventional Propeller NPT Propeller 

Figure 3: Open-water characteristics scaled with the Lerbs-Meyne method. (Courtesy of H. Streckwall.) 

Conventional Propeller NPT Propeller 

Figure 4: Open-water characteristics scaled with the strip method. (Courtesy of H. Streckwall.) 
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Conventional Propeller NPT Propeller 

Figure 5: Open-water characteristics of the conventional propeller, scaled with the new method. 

 

1063




