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VUKO VUKČEVIĆ∗, HRVOJE JASAK∗,† AND ŠIME MALENICA‡
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Abstract. This paper presents a CFD decomposition model for free surface, viscous, in-
compressible flows related to marine hydrodynamics. The solution decomposition is based
on Spectral Wave Explicit Navier Stokes Equations (SWENSE), where the primitive vari-
ables are written as the combination of incident and diffracted fields. This allows efficient
coupling of the discretised Navier–Stokes free surface flow equations with arbitrary poten-
tial flow theories. The domain decomposition is achieved with implicit relaxation zones
in order to prevent undesirable wave reflection in unbounded domains. Interface captur-
ing is obtained with implicitly redistanced Level Set (LS) method derived from Phase
Field equation. This approach removes the need to redistance the LS field using conven-
tional redistancing procedures and reduces mass conservation issues fundamental to the
LS method. The numerical model is based on a polyhedral, second-order accurate, col-
located finite volume method (FVM). The coupling of primitive variables is obtained via
segregated solution algorithm based on SIMPLE and PISO. The model is implemented in
OpenFOAM. The verification of the model is performed by a number of two–dimensional
(2–D) test cases. The reflection analysis is carried out by changing the relaxation zone
length. Mass conservation and preservation of the signed distance LS function is demon-
strated with a simulation lasting 50 incident wave periods. A long domain simulation is
also carried out to show that the damping of the wave does not occur. Finally, a wave
steepness study has been carried out by changing wave height while the wave period was
kept fixed. Three–dimensional (3–D) test cases regarding higher order forces on circular
cylinder have also been carried out. However, the results will be presented in future work.
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1 INTRODUCTION

Recently, Stern et al. [14] presented an overview of the CFD capabilities related to naval
hydrodynamics. A large portion of transient naval hydrodynamic flows is due to ocean
waves and their interaction with ships and offshore structures. In this paper, a general
decomposition method that couples potential flow and Reynolds–averaged Navier–Stokes
(RaNS) model for incompressible, two–phase flow is presented.

Such flows are often modelled with continuity and Navier–Stokes equations. Two–
phase flow can be modelled with: Volume of Fluid (VOF) [17], Lagrangian tracking and
Level Set (LS) methods [13]. VOF is conservative, but bounded. The LS method based
on signed distance function is less mature, but is favourably unbounded. The signed dis-
tance character is often preserved by redistancing algorithms [16] or by direct calculation
of least distance to the interface in a narrow band [3]. In this paper, a novel method is
presented, where the LS equation derived from Phase Field (PF) equation [15] is used.
This equation has additional terms that implicitly preserve signed distance function dur-
ing the solution process. The LS method is suitable for a solution decomposition.

This decomposition is based on the SWENSE method [2], where the unknown fields
are decomposed into incident and diffracted components. The incident component is
readily available from potential flow theories, while the diffracted component is solved
using standard CFD techniques. This method has been successfully applied to both calm
water, regular and irregular waves [9], [8]. This proved to be an efficient way of modelling
incoming waves in the CFD simulation. In this work, wave reflection has been prevented
with relaxation zones first introduced by [5]. The method has been further extended to
implicit treatment by Jasak et al. [7].

Numerical discretisation is obtained with a second–order accurate, collocated, polyhe-
dral Finite Volume (FV) method implemented in OpenFOAM. [19]

The paper is organised as follows. In the next section, the mathematical model is
discussed. SWENSE decomposition is explained, followed by the description of implicit
relaxation zone technique. The numerical model is followed by a set of simulations il-
lustrating stability and accuracy of the wave propagation in an unbounded domain. A
conclusion and plans for future work are also given.

2 MATHEMATICAL MODEL

This section presents the mathematical model of incompressible two–phase flow. The
model is based on volumetric continuity and Navier–Stokes equations. Two–phase flow is
modelled with a LS interface capturing method based on signed distance function. The
governing equations are of mixture type, all fields are assumed continuous across the
interface.
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2.1 Governing equations

Density ρ and dynamic viscosity µ of the mixture are defined with respect to volume
fraction, α:

ρ = αρw + (1− α)ρa , (1)

µ = αµw + (1− α)µa , (2)

where subscript w represents water, and subscript a represents air. The relation between
LS signed distance function ψ, and volume fraction α will be given below.

2.1.1 Continuity and the Navier–Stokes equations

Ubbink [17] has shown that a volumetric continuity equation can be derived from the
phase continuity equation if equation (1) is assumed:

∇•u = 0 , (3)

where u denotes mixture velocity field.
The Navier–Stokes equation of the mixture [18] reads:

∂(ρu)

∂t
+∇•(ρuu)−∇•(µ∇u) = −∇pd − g•x∇ρ+∇u•∇µ+ σκ∇α , (4)

where µ denotes dynamic viscosity, pd denotes dynamic pressure, g is the gravitational
acceleration vector and x is the position vector. Additional terms on the right hand side
of the equation (4) arise from the two–phase mixture model regarding varying dynamic
viscosity across the interface and additional force due to surface tension from Continuum
Surface Tension Force (CSF) model by Brackbill [1]. σ denotes surface tension and κ
denotes mean interface curvature. A detailed derivation of equation (4) is given by Ubbink
[17].

2.1.2 Interface capturing

Two–phase flow modelling is most often achieved with interface capturing methods that
use a colour function to capture the location of the interface. Colour function methods
often diffuse (smear) the interface over a few computational points to ensure numerical
stability. Although possible, reconstruction of the sharp interface from the colour function
is not a necessity if the smearing of the interface is confined to a small region. Interface
capturing methods can be divided into three major groups: Level Set (LS) methods [13],
Phase field (PF) methods [15] and Volume of fluid (VOF) methods, [17]. The most
common form of three methods is presented in Figure 1. Water (Ω1) and air (Ω2) are
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separated by the free surface (Γ). In present work, the LS method is chosen due to its
unboundedness and smoothness of the signed distance function defined as:

ψ(x) =





d , if x ∈ Ω1 ,

0 , if x ∈ Γ ,

−d , if x ∈ Ω2 ,

(5)

Figure 1: Comparison of interface capturing schemes. ψ is the signed distance function
for the Level Set field, φ is the Phase Field and α is the volume fraction in the Volume of
Fluid approach.

where d is the shortest distance to the interface and x is the position vector. The interface
is located at ψ(x) = 0.

The PF is bounded between −1 and 1 with a prescribed hyperbolic tangent profile
across the interface, which in turn depends on the signed distance function:

φ(ψ) = tanh

(
ψ

ε
√
2

)
, (6)

where width parameter ε controls the smearing of the interface.
Finally, the VOF method represents a fraction of the volume occupied by water inside
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an arbitrary control volume. It defines a sharp interface that can also be defined in terms
of LS field:

α(ψ) = 0.5 (sgn(ψ) + 1) , (7)

where sgn(ψ) denotes the signum function. However, the initially sharp interface often
gets smeared due to numerical discretisation of convection terms. In order to smoothly
calculate fluid properties from equation (1) and (2), a combination of equations (6) and
(7) is used:

α(ψ) = 0.5

(
tanh

(
ψ

ε
√
2

)
+ 1

)
. (8)

The width parameter ε is chosen to smear the interface across two or three cells. This
gives sufficient accuracy and numerical stability.

The solution of the usual advection equation for the LS field does not guarantee the
preservation of the signed distance function. Hence, redistancing algorithms are often nec-
essary [16]. Redistancing algorithms redistance the LS field after the solution of transport
equation, only in the region near the interface. Recently, Sun and Beckermann [15] de-
rived a transport equation for PF that preserves the hyperbolic tangent profile (equation
(6)):

∂φ

∂t
+ u•∇φ = b

(
∇• (∇φ) +

φ (1− φ2)

ε2
− |∇φ|∇•

(
∇φ

|∇φ|

))
. (9)

The terms on the left hand side (LHS) denote advection. The terms on the right hand
side (RHS) of the equation (9) force the PF to preserve hyperbolic tangent profile. Using
the relation between PF and LS given by equation (6), equation (9) can be rewritten in
terms of LS. The terms on the RHS of equation (9) are then transformed to preserve the
signed distance profile of the LS field:

∂ψ

∂t
+ u•∇ψ = b

(
∇• (∇ψ) +

√
2

ε

(
1− |∇ψ|2

)
tanh

(
ψ

ε
√
2

)
− |∇ψ|∇•

(
∇ψ

|∇ψ|

))
. (10)

The terms on the LHS are left unaltered. The first term on the right side (RHS) of
the equation (10) is a diffusion term that serves to smooth out possible singularities.
The second term on the RHS is the curvature–driven motion of the interface. The third
term counteracts the second term. Hence, b is a numerical parameter in the absence of
curvature driven motion. For detailed discussion on the equation (10), reader is referred
to Sun and Beckermann [15].

2.2 SWENSE decomposition

The original SWENSE method introduced by Ferrant [2] decomposes the fields into
incident and diffracted components. An arbitrary field (ξ) can be decomposed as:

ξ = ξI + ξD , (11)

5
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where index I stands for incident field and D is the diffracted field. Note that we take
incident and decomposed fields in a general manner. Incident fields are readily available
from potential flow theories.

In this approach, velocity and LS fields are decomposed in this manner, while the dy-
namic pressure is left undecomposed for purposes related to performance. The continuity
equation (3) reads:

∇•uD = −∇•uI . (12)

The decomposed Navier–Stokes equations (4) read:

∂(ρuD)

∂t
+∇•(ρuuD)−∇•(µ∇uD) =

− ∂(ρuI)

∂t
−∇•(ρuuI) +∇•(µ∇uI)−∇pd − g•x∇ρ+∇u•∇µ+ σκ∇α .

(13)

The transporting velocity field in the convection term is left unaltered since it is linearised
in the solution algorithm. Only the diffracted component is solved for, while the incident
components are known at each time step.

The LS equation (10) is first rewritten in the form suitable for FV discretisation.

∂ψ

∂t
+∇•(cψ)− ψ∇•c− b∇• (∇ψ) = b

√
2

ε
tanh

(
ψ

ε
√
2

)
, (14)

where:

c = u+ b

√
2

ε
tanh

(
ψ

ε
√
2

)
∇ψ + bκ

∇ψ

|∇ψ|
. (15)

SWENSE decomposition of the equation (14) gives:

∂ψD

∂t
+∇•(cψD)− ψD∇•c− b∇• (∇ψD) =

− ∂ψI

∂t
−∇•(cψI) + ψI∇•c+ b∇• (∇ψI) + b

√
2

ε
tanh

(
ψ

ε
√
2

)
,

(16)

where the last source term is not decomposed since it will not be treated implicitly due
to unfavourable effect on the diagonal dominance of the resulting matrix.

The SWENSE decomposition is an efficient model to introduce incoming waves in the
CFD simulation. This is done by prescribing uI and ψI at each time step. Hence, only
the diffracted component is solved for.

2.3 Wave reflection suppression

If diffracted components do not vanish near the boundaries, wave reflection will occur.
This in turn disrupts the computational results in the domain. Monroy et al. [9] used a
coarse computational mesh to damp the diffracted fields and prevent wave reflection. A
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general approach based on implicit relaxation zones as implemented by Jasak et al. [7] is
used in present work. The relaxation zone volumetrically combines governing equations
in order to force diffracted fields to vanish in the far field. Hence, only the incident wave
field is present near the boundaries, preventing wave reflection [7].

3 NUMERICAL MODEL

A second–order accurate, collocated FV method with support for arbitrary polyhedral
unstructured grids [6] is used in present work. The numerical model is implemented
in OpenFOAM. In the present work, all terms regarding diffracted fields are discretised
implicitly, leading to a linear system of equations. The discretisation details can be found
in [6]. The following discretisation schemes are used:

- Linear blend of Crank–Nicholson [17] and implicit Euler for time derivative;

- Second–order accurate Total Variation Diminishing (TVD) scheme with Van Leer’s
flux limiter and deferred correction for convective terms;

- Linear interpolation for diffusion terms.

These schemes provide second–order accuracy in space and a blend of first and second–
order accuracy in time. The segregated solution algorithm used in present work is a
combination of SIMPLE [10] and PISO [4] algorithms. Pressure–velocity coupling is
obtained within PISO loop, while the pressure–velocity–LS coupling is obtained in an
outer SIMPLE loop. This iterative process is repeated until convergence within each time
step.

4 NUMERICAL WAVE TANK

In order to assess the feasibility and drawbacks of presented model, regular wave prop-
agation in numerical wave tank is studied. First, simulation parameters and geometry
are presented for a benchmark test case. Next, a reflection study has been carried out
by changing relaxation zone length. A long simulation has been carried out in order to
assess the conservative properties of implicit relaxation zones and the LS method. A
simulation with longer domain has been done to quantify wave damping due to numerical
diffusion. Finally, a wave steepness study has been carried out. All results are compared
with stream function wave theory [12].

4.1 Benchmark test case

A deep water wave with mild steepness, ka ≈ 0.023 is simulated. Wave and simulation
parameters are given in Table 1.

The block–structured mesh spans from [0, 60] in x direction and [−6, 0.3] in y direction.
The mesh consists of three longitudinal and vertical blocks. The cells are strongly graded
towards the middle block which is 15 meters (≈ λ) long and 0.2 meters (≈ 2H) high, see
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Table 1: Wave and simulation parameters of the benchmark case.

Wave height H, m 0.1
Wave period T, s 3

Wave frequency ω, rad/s 2.0944
Wave length λ, m 13.934
Wave number k, m 0.450924

Depth d, m 6
Relaxation zone length λr, m 22.5

Maximum Courant-Friedrichs-Lewy number CFLmax 0.125
Smearing distance ε 0.004

Figure 2. In the middle block, approximately 15 cells per wave height and 100 cells per
wave length are used. The resulting mesh has 11 700 cells.

Figure 2: Block–structured, strongly graded mesh.

The relaxation zones are near the inlet and outlet (far field) boundaries. The length
of relaxation zones is 22.5 m, or λr ≈ 1.5λ. Hence, a full CFD solution is obtained in the
middle of the domain spanned by 15 meters in the longitudinal direction.

Wave gauges are positioned in the middle part where the full CFD solution is achieved.
The longitudinal coordinates are 25, 30 and 35 m for wave gauge 1, 2 and 3, respectively.
The simulation time is 30 s (10 periods). Wave elevation signals are processed in the
frequency domain. The simulation is initialised with the potential flow solution. Hence,
only last five periods are used for Fast Fourier Transform (FFT) in order to neglect any
possible transient behaviour at the beginning.

Table 2 to Table 4 present first two harmonics in Fourier series for both CFD solution
and stream function wave theory. Only two harmonics are presented while others can
be neglected due to the linear nature of this wave. Absolute value of the harmonic is
denoted with Hi, where index i stands for order. Real and imaginary parts of the signal
are also presented in order to discuss the phase shift. The relative error between solutions
is shown in percentages for clarity. Furthermore, normalised relative error is calculated
as follows:

Enr = Er
O(H2)

O(H1)
, (17)
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Table 2: Fourier representation of wave elevation signals at wave gauge 1.

ith CFD Stream Relative Normalised
harmonic solution function error, % rel. error, %

H1 4.9744 · 10−2 4.9962 · 10−2 0.44 0.44
H2 5.9138 · 10−4 5.8369 · 10−4 1.32 0.01

�(H1) 1.4242 · 10−2 1.3685 · 10−2 4.07 4.07
�(H1) 4.7662 · 10−2 4.8052 · 10−2 0.81 0.81
�(H2) −5.0331 · 10−4 −4.9623 · 10−4 1.42 0.01
�(H2) 3.1049 · 10−4 3.0734 · 10−4 1.02 0.01

Table 3: Fourier representation of wave elevation signals at wave gauge 2.

ith CFD Stream Relative Normalised
harmonic solution function error, % rel. error, %

H1 4.9695 · 10−2 4.9950 · 10−2 0.51 0.51
H2 5.6712 · 10−4 5.8299 · 10−4 2.72 0.03

�(H1) 2.7818 · 10−2 2.8595 · 10−2 2.72 2.72
�(H1) −4.1179 · 10−2 −4.0955 · 10−2 0.55 0.55
�(H2) −2.0164 · 10−4 −2.0098 · 10−4 0.33 0.00
�(H2) −5.3007 · 10−4 −5.4726 · 10−4 3.14 0.03

where O(H1) is the order of magnitude of the first harmonic and O(H2) is the order of
magnitude of the second harmonic. This gives an estimate of relative error’s influence on
the total solution.

The first harmonic makes up to 99% of the solution. Hence, the second harmonic is
smaller by two orders of magnitude. The first row of Table 2 to Table 4 shows that the
relative error of the first harmonic is less than approximately 0.5%. The relative error for
second harmonic is less than 3%. The phase shift problem is addressed by comparing real
and imaginary parts of harmonics. The normalised relative errors for real and imaginary
parts of the first harmonic are within 4% for all wave gauges. Generally, errors for real
and imaginary parts are greater than errors for the absolute value of certain harmonic.
This is expected behaviour when one uses second–order accurate convection schemes [3].
Relative errors of real and imaginary parts of the second harmonic follow the same trend.

9
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Table 4: Fourier representation of wave elevation signals at wave gauge 3.

ith CFD Stream Relative Normalised
harmonic solution function error, % rel. error, %

H1 4.9881 · 10−2 4.9963 · 10−2 0.16 0.16
H2 5.7767 · 10−4 5.8388 · 10−4 1.06 0.01

�(H1) −4.9657 · 10−2 −4.9825 · 10−2 0.34 0.34
�(H1) 4.7145 · 10−3 3.7095 · 10−3 27.09 2.71
�(H2) 5.6879 · 10−4 5.7743 · 10−4 1.50 0.02
�(H2) −1.0090 · 10−4 −0.8653 · 10−4 16.61 0.17

4.2 Reflection study

The reflection study has been carried out in order to determine the length of relaxation
zones needed to prevent wave reflection. The relaxation zones are positioned at the inlet
and outlet boundaries. In the relaxation zones, the diffracted components are damped
to zero, leaving a full potential flow solution. The relaxation zone length, λr was varied
from 0.5λ to 1.5λ. The evolution of wave elevation for different wave gauges shows similar
behaviour. Hence, only wave gauge 2 is analysed in the frequency domain.

The first harmonics are presented in Table 5. If other uncertainties and numerical errors
are neglected, the relative error of first order harmonics is an estimate for the amplitude
of the reflected wave. The phase speed of the wave is approximately 4.64 m/s, making
the simulation time of 30 s enough for reflected wave to travel through the domain more
than two times. The relative error of the magnitude of first order harmonics converges to
zero by increasing relaxation zone length. The relative error for the first order harmonic
rapidly decreases from approximately 5% with λr = 0.5λ to less than 2% with λr = 0.75λ.
Relaxation zone lengths greater than λ give an estimate for the reflected wave below 1%.
At this point, it cannot be clear if the reflection occurs, because the numerical error
presented in previous study persist. Apart from the magnitude, the relative errors for
real and imaginary parts are calculated in order to address the phase shift related to wave
reflection. As can be seen from Table 5, the phase shift problem decreases with increasing
relaxation zone length, since the real and imaginary parts of the first order harmonic show
monotone convergence.

4.3 Long simulation stability assessment

Stability, mass conservation and accuracy of the presented algorithm is assessed with a
very long solution of the benchmark case defined in Table 1. The simulation time was 150
seconds, which corresponds to 50 wave periods. For all wave gauges, the Fourier analysis
over last 45 periods gave results that are almost identical to ones presented in Table 2

10
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Table 5: First harmonic for different relaxation zone lengths, λr at wave gauge 2.

λr H1 · 102 �(H1) · 102 �(H1) · 102 Er(H1) Er(�) Er(�)
0.5λ 4.7512 2.2031 -4.2096 4.88 22.96 2.78
0.75λ 4.9023 2.2565 -4.3521 1.86 21.09 6.27
1λ 4.9493 2.6044 -4.2087 1.21 8.92 2.76

1.25λ 4.9344 2.6598 -4.1562 0.91 6.98 1.48
1.5λ 4.9635 2.7582 -4.1266 0.63 3.54 0.76

Stream 4.9950 2.8595 -4.0955 0.00 0.00 0.00
function

to Table 4. The difference was in the fourth significant digit for both real and imaginary
parts of first harmonics, that is ≈ 0.1%. Mean water level rise is approximately 0.00001%,
which is considered negligible.

In the LS method, the preservation of the signed distance function is of crucial im-
portance for both mass conservation and correct interface reconstruction. This is demon-
strated in Figure 3 which presents the LS field in the middle part of the domain bounded
by x ∈ [29, 30] and y ∈ [−0.4, 0.4] m. The interface is denoted with white line. Ten black
lines denote iso–contours of the LS field equally spaced between -0.2 and 0.2. The signed
distance character of the LS field is very well preserved, both near the interface and far
away.

The duration of the simulation was 3 hours and 25 minutes on an Intel Core i7-4820K
CPU at 3.70GHz for 50 wave periods, or approximately 4 minutes per period.

Figure 3: Preservation of the signed distance function: last period, t = 150 s.

11
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Figure 4: Relative errors for first harmonic compared to stream function wave theory,
given for wave gauges at different multiples of λ.

4.4 Long domain simulation

A long domain simulation has been carried out in order to assess numerical diffusion
related to wave propagation. The wave parameters are the same as in the original bench-
mark case presented in Table 1. The only difference is the domain which now spans from
0 to 120 m in the longitudinal direction. The relaxation zone length is left unaltered at
22.5 m. The middle part of the domain where 100% of CFD solution is present contains
approximately 5.5 wave lengths. In this region, 100 cells per wave length and 15 cells
per wave height are used which is the same as in the mesh used in the benchmark case
(Figure 2). 6 wave gauges are used to measure wave elevation at different multiples of
λ: from 2λ to 7λ. The relative error for first order harmonic is presented in Figure 4 for
different wave gauge positions given in multiples of λ. The figure shows that the relative
error decreases further away from the inlet. This decrease is quite small (≈ 0.3%) while
the relative error stays within ≈ 0.6%, demonstrating insensitivity to simulation with
longer domain.

4.5 Wave steepness study

Wave steepness can be represented by dimensionless number, ka where k is the wave
number in rad/s and a is the amplitude of the wave in m. The non–linearity of wave
increases with increasing steepness. In this work, wave height is gradually increased while
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the wave period, T is fixed to 3 s. The wave height is varied from 0.2 to 1.6 m, giving a
steepness range from 0.045 to 0.325 according to stream function wave theory. For each
case, the total cell count in the mesh remained constant (11 700). However, blocks were
changed such that there are always 15 cells per wave height and 100 cells per wave length
in the middle of the domain. This way, the mesh is similar to the one used in previous
studies.

Table 6: Wave parameters for steepness study.

Index Wave amplitude Wave length Wave number Steepness
i a, m λ, m k, rad/s ka
1 0.1 13.9546 0.4503 0.04503
2 0.2 14.0360 0.4477 0.08953
3 0.3 14.1688 0.4435 0.13304
4 0.4 14.3488 0.4379 0.17516
5 0.5 14.5714 0.4312 0.21560
6 0.6 14.8314 0.4236 0.25418
7 0.7 15.1236 0.4155 0.29082
8 0.8 15.4427 0.4069 0.32550

Both the stream function wave theory and the present model capture higher order
effects with increasing steepness. Relative errors of first and second order harmonics are
presented in Figure 5. The relative error for first order harmonics gradually increases with
steepness. However, the relative error is always below 7%. The relative error for second
order harmonics oscillates within narrow band (less than 3%) for waves up to ka = 0.25.
For very steep waves, the error is about 4%. Third order errors show the similar trend to
first order ones.

Wave steepness is varied by changing the wave height. This leads to very large velocities
below the crest of the wave for steepest waves. These velocities in turn cause parasitic
air velocities because the interface jump conditions as explained in [3] or [11] are not yet
implemented. Nevertheless, the implementation of interface jump conditions will be the
topic for future work. Authors believe that this could explain larger relative errors for
very steep waves.

5 CONCLUSION

A decomposition model for wave–like flows for naval hydrodynamics is described. The
interface capturing is achieved with the implicitly redistanced Level Set method. The
solution is decomposed using a variant of the SWENSE method, where the field is re-
garded as the sum of incident and diffracted fields. The incident wave field is obtained
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Figure 5: Relative errors for first and second order harmonics compared to stream function
wave theory.

with low–cost potential flow wave theory, while the diffracted component is solved. The
domain is decomposed using implicit relaxation zones that damp the diffracted fields to
zero near the boundaries. This prevents wave reflection. The solution algorithm is based
on second–order accurate, polyhedral FV method with segregated approach, implemented
in OpenFOAM.

As a preliminary study, 2–D wave propagation is assessed and compared to stream
function wave theory in the frequency domain. The magnitudes of the first harmonics
were within 1%, and within 3% for real and imaginary parts. This indicates a minor
phase shift difference as often encountered in CFD. The reflection study has been carried
out with varying relaxation zone length. The relaxation zone that is one wave length
long gave reflection estimate of 1%. A very long simulation that lasted 50 wave peri-
ods demonstrated good conservative properties of the LS method and implicit relaxation
zones, as well as the preservation of the signed distance function. The dissipation of the
propagating wave did not occur in an 8 wave lengths long domain. The wave steepness
study demonstrated good results for wide range of steepness parameters. However, it
indicated problems for very steep waves (ka > 0.25) that could be related to parasitic air
velocities. These velocities could be resolved by consistent implementation of interface
jump conditions, which will be considered in future study.

Results of higher order forces on circular cylinder will be presented in future work.
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