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Abstract. In this paper, viscous flow calculation using a RANS method are presented
for two marine propellers in open-water conditions at model-scale. A verification study
from a range of geometrically similar grids with different grid densities is made. The
results show that the numerical uncertainties for the propeller forces are in the order of
0.4%-2.2%. The influence of the domain size and boundary conditions on the prediction
of the propeller forces is analysed. The numerical predictions are compared with the
experimental results. These differences (comparison error) are larger than the numerical
uncertainty, suggesting that the comparison error is dominated by the modelling error.

1 INTRODUCTION

The physical flow features around propellers operating behind a ship hull can vary
significantly depending on the geometry of the propeller and its loading. Capturing these
flow features using a viscous CFD (Computational Fluid Dynamics) method, for example
RANS (Reynolds-Averaged Navier-Stokes) method, requires detailed knowledge on the
influence of the grid topology, domain size, turbulence model, Reynolds number, etc.
However, some of these flow features may not be relevant if one is only interested in the
shaft forces and moments, while the fine grids that are required to capture all flow features
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will lead to very excessive CPU time. It is therefore necessary to have a good working
knowledge on how to analyse propellers with a CFD method in a cost-effective way for
both model-scale and full-scale conditions.

This knowledge can be improved by analysing a wide range of propeller geometries
in open-water condition using numerical uncertainty analysis [1] for a series of grids to
quantify the different sources of errors. A verification and validation study for different
marine propulsors can be found in [2].

In this paper, viscous flow calculations using a CFD method are presented for two
marine propellers in open-water conditions at model-scale. First, a numerical uncertainty
analysis from a range of geometrically similar grids with different grid densities is made.
The influence of the domain size and boundary conditions on the numerical predictions
is considered next. Finally, the force coefficients are compared with experimental data
available from open-water tests. The paper is organised as follows: a description of the
numerical tool is given in the next section; the verification and validation procedures are
presented in Section 3; in Section 4 the test-cases and the numerical set-up are considered;
the model-scale performance prediction of both propellers is treated in Section 5; the paper
ends with the conclusions of the present study.

2 RANS CODE REFRESCO

ReFRESCO is a MARIN in-house viscous flow CFD code [3]. It solves the multiphase
(unsteady) incompressible RANS equations, complemented with turbulence models, cavi-
tation models and volume fraction transport equations for different phases. The equations
are discretised using a finite-volume approach with cell-centred collocation variables. A
strong-conservation form and a pressure-correction equation based on the SIMPLE al-
gorithm is used to ensure mass conservation. The implementation is face-based, which
permits grids with elements consisting of an arbitrary number of faces (hexahedrals, tetra-
hedrals, prisms, pyramids, etc.), and h-refinement (hanging nodes). The code is paral-
lelised using MPI and sub-domain decomposition, and runs on Linux workstations and
HPC clusters. For turbulence modelling, RANS/URANS, SAS and DES approaches can
be used. ReFRESCO is currently being developed within a cooperation led by MARIN.

For a marine propeller in uniform inflow conditions the equations can be solved using
a so-called absolute formulation. This means that the velocity vector �V is defined in
the absolute or inertial earth-fixed reference frame, with the equations being solved in
the body-fixed reference frame which is rotating with velocity Ω. This allows to perform
steady simulations for open-water conditions. For all the calculations presented in this
paper, the κ − ω SST 2-equation eddy-viscosity model proposed by Menter [4] is used.
A second-order convection scheme (QUICK) is used for the momentum equations and a
first-order upwind scheme is used for the turbulence model.
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3 VERIFICATION AND VALIDATION PROCEDURES

The use of any numerical method calls for an analysis of the numerical errors involved.
For CFD methods there are three different contributions to the numerical error: round-off
error as a consequence of the finite precision of the computers, iterative error related to
the non-linearity of the transport equations, and discretisation error due to the discrete
representation (in space and time) of a (partial) differential equation. While round-
off errors can be considered to be low, the iterative and discretisation errors are more
difficult to control. The iterative errors are commonly monitored with the variation of
the residuals during the simulation and should be several orders of magnitude lower than
the discretisation error, in order to perform a correct verification study. The discretisation
error can only be determined for cases that have an exact solution, but for more complex
cases without exact solution an estimate can be obtained by performing a numerical
uncertainty analysis, commonly referred to as verification. The goal of verification is
to estimate the uncertainty of a given numerical prediction Unum, i.e. an interval that
contains the exact solution with 95% confidence,

φi − Unum ≤ φexact ≤ φi + Unum. (1)

In this study the numerical uncertainty is determined following the procedure described
in [1]. The numerical uncertainty is determined using

Unum = Fs|ε|, (2)

where Fs represents a safety factor and ε denotes an estimate of the discretisation error.
The discretisation error is estimated by

ε = φi − φ0 = αhp
i , (3)

in which φi stands for any integral or local flow quantity, φ0 is the estimate of the exact
solution, α a constant, p is the observed order of accuracy and hi is the typical cell size of
grid i, determined in our case from the total number of grid cellsNcells by hi = (1/Ncells)

1/3.
The estimation of ε requires the determination of φ0, α and p. The unknown coefficients
in Equation (3) are determined from a least-square fit of the numerical solutions on
geometrically similar grids with different densities. The error estimation is considered
reliable if the apparent order is within the expected order of discretisation. In this case,
a low safety factor of Fs = 1.25 is applied, otherwise Fs = 3. The complete procedure is
described in [1].

The goal of validation is to quantify the modelling uncertainty, i.e. to quantify how well
the mathematical model represents the physical world. The difference between the numer-
ical and experimental results, referred to as the comparison error E, can be subsequently
be compared to the total validation uncertainty Uval, which includes the experimental
uncertainty in addition to the numerical uncertainties. If the comparison error is within
the validation uncertainty and the validation uncertainty is sufficiently small, the results
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can be said to be validated within that uncertainty. If the comparison error is larger than
the validation uncertainty, the comparison error is probably dominated by the modelling
error, which indicates that the model must be improved.

4 MODEL GEOMETRY AND GRID GENERATION

Two propellers, designated S6368 and S6408, are considered in the present study. Their
particulars are listed in Table 1, where D is the propeller diameter, c0.7R the blade chord
length at 0.7 of the propeller radius R, Z the number of blades, P/D0.7R the pitch-diameter
ratio at 0.7R and AE/A0 the blade-area ratio. The propeller S6408 has a relatively simple
geometry with almost no skew and no rake. The propeller S6368 has a lower blade-area
ratio and a larger skew. A set of experiments for the two propellers have been carried out
in the depressurised towing tank of MARIN.

Table 1: Overview of propeller particulars.

S6368 S6408

D [m] 0.2714 0.3010
c0.7R [m] 0.0694 0.0794
Z 4 4
P/D0.7R 0.757 0.711
AE/A0 0.456 0.481

Table 2: Overview of the grid sizes and number of cell faces on a single blade. The corresponding
maximum y+ values are for the design condition at model scale.

S6368 S6408
Volume Blade y+ Volume Blade y+

G1 34.8M 39K 0.34 41.3M 51K 0.27
G2 17.8M 25K 0.42 23.7M 35K 0.37
G3 8.0M 15K 0.52 11.3M 21K 0.32
G4 4.3M 10K 0.62 6.9M 15K 0.40
G5 2.2M 6K 0.78 2.3M 7K 0.59
G6 1.0M 2K 0.95 1.0M 4K 0.63

For the two propeller geometries six geometrically similar structured grids have been
generated. The grids range from 1 to 35 million cells and from 1 to 41 million cells for
the propellers S6368 and S6408 respectively. In Table 2 the number of cells in the volume
and on a single blade are listed for each propeller. The near wall resolution is chosen
such that the boundary layer is fully resolved and no wall functions are required. A fine
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Figure 1: Overview of the grids around propeller and on propeller blades. Grids with 8 million cells for
the S6368 (left) and with 11 million cells for the S6408 (right).

boundary layer resolution is obtained, where the maximum y+ is lower than 1 for all grids.
An overview of the grids with 8 million cells for the S6368 and with 11 million cells for
the S6408 are presented in Figure 1. A higher density of cells is visible in the propeller
region. On the blade surface a higher level of refinement is seen near the propeller edges
due to the local curvature.

Unless stated otherwise a cylindrical domain is considered, where the inlet, the outlet
and the outer boundary are located 5 propeller diameters from the propeller reference
plane. The boundary conditions are the following: at the outer boundary a constant
pressure is set; at the inlet a uniform velocity and a low turbulence level are prescribed;
at the outlet an outflow condition of zero downstream gradient is used. On the propeller
blades and shaft a non-slip condition is used.

5 RESULTS

5.1 General

The viscous flow calculations are carried out in open-water conditions. The propeller
operation conditions are defined by the advance coefficient J = U/(nD), where U is the
propeller advance speed and n = Ω/(2π) the rotation rate. The open-water characteristics
are expressed in the thrust coefficient KT , the torque coefficient KQ and the open-water
efficiency η0, defined as follows:

KT =
T

ρn2D4
, KQ =

Q

ρn2D5
, η0 =

J

2π

KT

KQ

, (4)

where T is the propeller thrust, Q the propeller torque and ρ the fluid density.
The propeller S6368 is calculated for a range of advance coefficients between 0.1 and

0.8, corresponding to Reynolds numbers from 5.3×105 to 5.6×105. The propeller S6408
is calculated for a range of advance coefficients between 0.1 and 0.75, corresponding to
Reynolds numbers from 7.0×105 to 7.4×105. The Reynolds number is defined based on
the propeller blade chord length at 0.7R and the resulting onset velocity at that radius:
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Re =
c0.7R

√
U2 + (nπ0.7D)2

ν
, (5)

where ν is the fluid kinematic viscosity.
For the S6368 propeller, the initial and inflow turbulence quantities are set to 2% tur-

bulence intensity and an eddy viscosity ratio of 5. For the S6408 propeller, the turbulent
intensity and the eddy viscosity ratio are set to 1% and 1, respectively.

5.2 Numerical errors

In this section an analysis of the iterative error and the discretisation error of the
computations is performed. In this study, the iterative error is analysed from the infinity
norm L∞ and L2 norm of the normalised residuals

L∞(φ) = max |res(φi)|, 1 ≤ i ≤ Ncells,

L2(φ) =

√√√√Ncells∑
i=1

res2(φi)

/
Ncells

(6)

Results are presented for grid G3. The iterative convergence of the L∞ and L2 norms for
the Cartesian components of the flow velocity Vx,y,z, pressure p and turbulent quantities
κ and ω is plotted in Figure 2 for both propellers at a high loading condition. Figure
2 also presents the variation of the thrust and torque coefficients with the number of
iterations. Iterative convergence of the flow quantities is difficult to obtain. Convergence
of the infinity norm for the velocity residuals is seen between 10−2 and 10−3. For the
pressure iterative convergence of the L∞ is achieved to at least one order lower, and for
the turbulent quantities the maximum residuals are lower than 10−5. For both propellers
the maximum velocity residuals are obtained near the blade tip, where flow separation
is seen from the limiting streamlines on the suction side of the blades (see [5]). For
the S6368 propeller, trailing edge separation is observed on the suction side at the inner
radii [5]. Despite the fact that large residuals are obtained locally for the flow velocity
components, iterative convergence of the L2 norm is obtained to 10−5. For the propeller
forces convergence is achieved after 1500 iterations, when the L∞ and L2 norms of the
flow quantities are not yet converged. From these results, a small effect of the iterative
error is expected on the propeller force coefficients.

To estimate the discretisation error six geometrically similar structured grids have
been generated. The variation of the thrust, torque and open-water efficiency for each
grid compared to the finest grid is listed in Table 3 for both propellers at a highly loading
condition and near design condition. A reduction in the variation of the open-water
quantities with the increase of the number of cells is obtained. Differences lower than 1%
are achieved for grid G3. The results of the numerical uncertainty analysis are plotted in
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Figure 2: L∞ (left) and L2 (middle) iterative convergence and variation of forces (right) for propeller
S6368 at J = 0.3 (top) and for propeller S6408 at J = 0.2 (bottom).

Table 3: Variation of the force coefficients with grid density compared to the finest grid for propellers
S6368 and S6408.

S6368 S6408
J 0.30 0.65 0.2 0.5

Grid ∆KT ∆KQ ∆η0 ∆KT ∆KQ ∆η0 ∆KT ∆KQ ∆η0 ∆KT ∆KQ ∆η0

G6 1.5% 3.1% -1.5% 3.9% 5.8% -1.8% 0.6% 2.0% -1.4% 2.8% 3.9% -1.0%
G5 1.0% 1.6% -0.5% 2.0% 2.6% -0.6% 0.6% 1.1% -0.7% 1.8% 2.2% -0.3%
G4 0.5% 0.8% -0.2% 1.0% 1.4% -0.5% 0.4% 0.4% -0.4% 0.9% 0.9% 0.0%
G3 0.3% 0.4% 0.0% 0.5% 0.7% -0.3% 0.2% 0.3% -0.4% 0.6% 0.7% 0.0%
G2 0.0% 0.0% 0.0% 0.0% 0.1% -0.2% 0.0% 0.1% -0.4% 0.1% 0.2% 0.0%
G1 – – – – – – – – – – – –
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Figure 3: Convergence of the thrust (left) and torque (right) coefficients with the grid refinement ratio
hi/h1 for propeller S6368 at J = 0.3 (top) and for propeller S6408 at J = 0.2 (bottom).

Figure 3, where the variation of the thrust and torque coefficients are presented for dif-
ferent grid sizes. Near second-order convergence is obtained for the propeller forces and
the numerical uncertainties are in the order of 0.5-1.2%.

Figure 4 presents the limiting streamlines on the suction side for propeller S6408 at
J = 0.2 calculated with grid G6 and grid G1. From the comparison, different regions of
separated flow are obtained near the blade tip. This result shows the importance of the
grid density on the calculation of the local flow details. In contrast, the prediction of the
propeller forces is less sensitive to the grid density.
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Figure 4: Limiting streamlines on the suction side for propeller S6408 at J = 0.2. Comparison between
grids G6 (left) and G1 (right).

Table 4: Influence of the domain size for propeller S6408 at J = 0.2 and 0.5.

Domain J = 0.2 J = 0.5
Size KT 10KQ η0 KT 10KQ η0

3D 0.2544 0.2915 0.278 0.1284 0.1748 0.585
5D 0.2528 0.2902 0.277 0.1278 0.1745 0.583
10D 0.2523 0.2889 0.278 0.1276 0.1736 0.585

5.3 Influence of domain size and boundary conditions

First, the influence of the domain size on the performance predictions is presented for
propeller S6408. In the previous calculations, the boundaries are placed at 5D of the
centre of propeller. In this study, the results are compared with domain sizes of 3D and
10D. Grid sizes of 10 million cells and 12.4 million cells were generated for the domain
sizes of 3D and 10D, respectively. A fine boundary layer resolution was also applied to
obtain y+ lower than 1. The open-water quantities are compared with the domain size of
5D for the 11.3 million grid cells in Table 4. A small effect of the domain size on the force
coefficients is seen in the results, since the differences are lower than 1% for all quantities.

Second, the influence of the boundary conditions on the performance predictions is pre-
sented. A schematic overview of the computational domain with the boundary definitions
is shown in Figure 5. The previous results were obtained, as described previously, assum-
ing a pressure boundary condition for the farfield and a zero normal derivative for the
outflow boundary. In this study, a slip-wall is considered for the farfield and a constant
pressure at the outflow. An additional case is considered, where an outflow boundary
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Figure 5: Schematic overview of the domain for the boundary conditions study.

condition is assumed in the centre part of the outflow boundary with a radius of 1.3R.
No changes in the boundary conditions are applied in the inflow boundary and in the
propeller and shaft surfaces. The boundary conditions used in this study are listed in Ta-
ble 5. Table 6 presents the computed force coefficients and open-water efficiency, where
a negligible effect of the boundary conditions on the results is seen.

Table 5: Definition of the boundary conditions used for the present calculations.

Boundary Boundaries:
Conditions Inflow Farfield Outflow Tunnel Outflow Propeller

BC1 uniform vel. const. pressure zero normal derivative zero normal derivative no-slip wall
BC2 uniform vel. slip-wall const. pressure const. pressure no-slip wall
BC3 uniform vel. slip-wall const. pressure zero normal derivative no-slip wall

Table 6: Influence of the boundary conditions on the S6408 propeller forces at J = 0.2 and 0.5.

Boundary J = 0.2 J = 0.5
Conditions KT 10KQ η0 KT 10KQ η0

BC1 0.2528 0.2902 0.277 0.1278 0.1745 0.583
BC2 0.2533 0.2907 0.277 0.1280 0.1747 0.583
BC3 0.2530 0.2902 0.278 0.1277 0.1743 0.583

5.4 Comparison with experimental results

In this section the prediction of the open-water diagram is presented for the two pro-
pellers. For the current calculations the grid G3 is used, which reduces significantly the
computational effort in comparison with the finest grid. We note that the variation in
the force coefficients is lower than 1% between the two grids (Table 3).
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Figure 6: Open-water diagrams for propeller S6368 (left) and propeller S6408 (right).

The comparison between the numerical results and the experimental data available
from open-water tests is presented in Figure 6 for both propellers. A large deviation for
the high advance coefficients is seen for the S6368 propeller. In this case, the thrust error
increases from 3% for J = 0.1 to 19% for J = 0.65. For the S6408 propeller, smaller
differences are found, where the thrust error increases from 4% for low advance ratios to
more than 10% for high advance ratios. For both cases, the differences in the propeller
torque are in the order of 1% to 3% for advance coefficients up to J = 0.5.

Although there is no information about the experimental uncertainties, the relative
differences between the numerical and the experimental results (comparison error E)
and the numerical uncertainties obtained from the verification study are presented in
Table 7. For all cases, the comparison error is larger than the numerical uncertainty,
suggesting that the comparison error is dominated by the modelling error. Since the
open-water predictions are made in the critical Reynolds number range, different flow
regimes, laminar and turbulent may occur simultaneously on the propeller blades. In the
calculations the modelling of the laminar-turbulent flow transition is taken care implicitly
by the turbulence model.

6 CONCLUSIONS

In this paper, viscous flow calculations using RANS code ReFRESCO are presented
for two marine propellers in open-water conditions at model-scale. The influence of the
iterative errors, discretisation errors, domain size and boundary conditions on the pro-
peller force predictions has been made. Although large normalised residuals are obtained
for the flow quantities, its influence on the forces predictions is assumed to be small due
to the fast convergence of the thrust and torque coefficients. The discretisation error has
been estimated from a verification study from a range of geometrically similar grids with
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Table 7: Comparison between the numerical and the experimental results (comparison error E).

KT KQ η0
J E Unum E Unum E Unum

S6368

0.30 -5.19% 0.43% -2.36% 1.17% -2.9% 0.68%
0.65 -18.63% 1.50% -7.92% 2.17% -11.7% 0.63%

S6408

0.20 -3.70% 2.00% 0.55% 0.31% -4.5% 0.46%
0.50 -6.44% 1.77% 2.35% 0.73% -8.6% 0.43%

different densities, where numerical uncertainties in the order of 0.4%-2.2% are obtained
for the propeller forces. The influence of the domain size and boundary conditions on the
propeller force predictions is found to be smaller than 1%. From the comparison between
the numerical and the experimental results, large differences are found suggesting that the
comparison error is dominated by the modelling error. It is believed that with the current
turbulent model the boundary layer flow at model-scale Reynolds numbers is not cor-
rectly captured when both large laminar and turbulent regions are present on the blade.
Accordingly, the influence of the turbulence model on the prediction of the open-water
diagram at model scale should be considered for future work in order to understand its
contribution to the modelling error.
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