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Abstract— We consider the economic dispatch problem for a
day-ahead, peer-to-peer (P2P) electricity market of prosumers
(i.e., energy consumers who can also produce electricity) in
a distribution network. In our model, each prosumer has the
capability of producing power through its dispatchable or non-
dispatchable generation units and/or has a storage energy unit.
Furthermore, we consider a hybrid main grid & P2P market
in which each prosumer can trade power both with the main
grid and with (some of) the other prosumers. First, we cast
the economic dispatch problem as a noncooperative game with
coupling constraints. Then, we design a fully-scalable algorithm
to steer the system to a generalized Nash equilibrium (GNE).
Finally, we show through numerical studies that the proposed
methodology has the potential to ensure safe and efficient
operation of the power grid.

I. INTRODUCTION

In recent years, environmental and sustainability concerns
urged the pursuit of a novel energy system and electric power
grid in which energy production, transmission, distribution,
and consumption are more efficient and largely based on
renewable sources, such as wind and solar power [1].

As a response to these challenges, the development of
smart, sustainable, and green solutions is becoming more
significant, including the sprouting of distributed energy re-
sources, such as micro-generators (e.g., solar panels), storage
units, and flexible loads, and the opening of energy mar-
kets. Simultaneously, the widespread deployment of sensing,
information, and communication technology provides the
means for efficiently manage the energy resources within
the electricity grid through the establishment of various
smart energy services, such as demand-side management and
economic dispatch [2], [3].

Energy management mechanisms are considered as an
increasingly essential element for implementing the smart
grid paradigm and balancing massive energy production
from renewable sources. In particular, a day-ahead economic
dispatch process allows energy prosumers to efficiently man-
age their electricity production and consumption as well as
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provides the main grid with an estimation of the amount
of energy to be delivered over the upcoming day. To model
and design energy management algorithms for the smart grid,
game theory has been recently, yet extensively, adopted [4],
[5]. Each prosumer (player, agent) in the day-ahead market
(game) aims to select an energy schedule (decision variable)
that minimizes its economic expense (cost function), which
also depends on an aggregate measure of the schedules of the
other prosumers. The latter is typically imposed to mitigate
peak demand loads. Since the prosumers are, in general, self-
interested parties, a usual market equilibrium is considered
to be the celebrated generalized Nash equilibrium (GNE).

In the control systems community, the problem of design-
ing solution methods for multi-agent equilibrium problems
in noncooperative networked games has recently gained high
research interest. A fast-growing literature has been in fact
developing decentralized algorithms for GNE seeking in non-
cooperative games with coupling constraints, e.g. [6]-[11].
In turn, these methodologies provide the means to design
more efficient and robust energy management mechanisms.

Although power systems are evolving towards a more
decentralized management, electricity markets still perform
resource allocation and pricing based on the conventional
hierarchical and top-down approach [12] of power system
management, which makes prosumers behave as passive
receivers [13]. Actively incorporating prosumers in the elec-
tricity market by enabling peer-to-peer (P2P) energy tradings
would instead allow for a bottom-up approach that empowers
prosumers. In [14], [15], market models that involve P2P
tradings are thought of as potential models due to the
increasing of prosumers in the network. Moreover, a couple
of P2P energy markets have existed in the Netherlands and
the United Kingdom [15]. However, the P2P paradigm poses
a significant challenge in terms of modeling the decision-
making process of the participants due to their conflicting
interests [1]. In the literature, P2P energy trading mecha-
nisms are proposed in various forms, e.g., matching contracts
[16], consensus-based optimization [17]. Nevertheless, a very
efficient algorithm to solve the resource allocation problem
in a P2P market of prosumers is yet to be found.

In this paper, we consider a hybrid main grid & P2P
electricity market formulation, in which each prosumer has
generation and/or storage capabilities and can trade electric-
ity both with the main grid and (some of) the other prosumers
in the network. We show that the resulting resource allocation
problem can be modeled as a noncooperative game with
coupling constraints, representing the reciprocity of the P2P



tradings and the limits of the aggregate load. Then, we
propose a scalable and distributed algorithm, with conver-
gence guarantee, to steer the decisions of the prosumers
towards a GNE. We show through numerical simulations that
the proposed methodology guarantees an efficient and safe
operation of the system since reduces the overall economic
expenses while ensuring the reciprocity of the tradings and
the fulfillment of the grid limits.

Basic notation: R denotes the set of real numbers, N
denotes the set of natural numbers, and O (1) denotes a
matrix/vector with all elements equal to 0 (1); to improve
clarity, we may add the dimension of these matrices/vectors
as subscript. A ® B denotes the Kronecker product between
the matrices A and B. For a square matrix A € R™*", its
transpose is AT, [A]; ; represents the element on the row
¢ and column j. A > 0 (= 0) stands for positive definite
(semidefinite) matrix. Given N vectors z1,...,xny € R"”,
x:=col(xy,...,xn) = [z],...,2}]".

Operator theoretic definitions: 1d(-) denotes the identity
operator. The mapping ts : R™ — {0, oo} denotes the
indicator function for the set S C R", ie., ts(z) = 0
if x € S, oo otherwise. For a closed set S C R"™, the
mapping projg : R™ — S denotes the projection onto
S, ie., projg(r) = argmin,cg ||y — x| The set-valued
mapping Ng : R” = R"™ denotes the normal cone operator
for the the set S C R", ie., Ng(z) = @ if z ¢ S,
{veR"|sup,cg v' (2 —x) <0} otherwise. A set-valued
mapping F : R” = R™ is (strictly) monotone if (u—v) T (x—
y) > (>)0forall z #y € R", u € F(z), v e F(y).

II. PROBLEM FORMULATION

In this section, the model of networked prosumers and the
economic dispatch problem of each prosumer are presented.

A. Peer-to-peer prosumer market model

We model a day-ahead peer-to-peer electricity market of
prosumers (agents) in a distribution network as an eco-
nomic dispatch problem. Each agent might have the capa-
bility of producing power through its dispatchable or non-
dispatchable generation units and might also have a storage
energy unit. Furthermore, we also consider that each agent
might trade power with the main grid and might also trade
power with some of the other agents, which are classified
as the neighbors. Note that the neighbors of an agent might
be defined based on geographical location of the agents or
based on bilateral contracts that the agent has with the other
agents [13]. The economic dispatch model is as follows.

Communication network: Let the set of agents be denoted
by N = {1,2,...,N}. The communication among the
agents is described by an undirected graph G = (N €),
where A is the set of vertices (agents) and £ C N x N
is the set of edges, with || = E. The unordered pair of
vertices (i, j) € £ if and only if agents j and ¢ can exchange
information. The set of neighbors of agent 7 is defined as
N; = {j| (4,7) € £}. Moreover, we consider Assumption 1.

Assumption 1: The graph G is connected. ]

Decision variables: For each agent ¢ € N, denote by
pﬂ » € R the difference between the aggregate load at time in-
stant i and the total power produced by the non-dispatchable
generation units owned by agent i. Note that positive pih
implies the aggregate load is larger than the power produced
by agent ¢. Furthermore, denote the set of decisions at time
h by w;p = col (P?,%w p?,th’ P?,];%a {Pg,j),h}jeNi) € R™,
where pii € R>o, pY, € R, ;% € R, and pgmj)’h € R are
the total power produced by dispatchable generation units
(dg), the power delivered by/to the storage unit (st), the
power traded with the main grid (mg), and the power traded
with neighbor j € N; (tr).

In this market, each agent aims at minimizing the cost
of power usage to meet the load while satisfying some
constraints imposed on the decision variables. The objec-
tive function and constraints associated with each decision
variable are defined as follows:

Local power balance: Each agent has a power balance
constraint as follows:

1) wip = p?,h- (1

Dispatchable generation units: One of the management
objectives is to minimize the total power production of the
dispatchable generation units, denoted by pf‘i A typical
class of cost functions for power production is of convex
quadratic nature [18], [19], which here is denoted by fid %
and defined as follows:

RO =g + @

where q?g > 0 and c?g are constants. Furthermore, the
decision p?_%l is constrained by

Pl <pfs <P, ifie N, .
pii =0, otherwise,

where pi® > pfg > 0 denote the maximum and minimum
total power production of the dispatchable generation units,
and V98 C N\ denotes the set of agents that own dispatch-
able generation units.

a) Storage unit: Similarly to the dispatchable genera-
tion production, each agent might also minimize the usage
of its storage unit, for instance, in order to maintain its
longevity. The cost function is denoted by ffth and defined
as follows:

o5 = ¢ (05)? + &, 4)

where ¢&* > 0 and ¢ are constants. Moreover, the decision
p, is constrained by

_ t
Tiht1 = @GZih + 0D}y,

2 <@ippr <T,  ifieN )
h dh
pﬁfh =0, otherwise,

where z;; > 0 denotes the state of charge (SoC) of the
storage unit, a; € (0, 1] denotes the efficiency of the storage

and b; = — BL, where T and ecap ; denote the sampling
cop,i



time and the maximum capacity of the storage, respectively.
Moreover, z,,%; € [0,1] denote the minimum and the
maximum SoC of the storage of microgrid ¢, respectively
whereas plh > 0 and pdh > 0 denote the maximum charging
and discharging power of the storage. Additionally, A’ C A/

denotes the set of agents that own a storage unit.

Power traded with neighbors: Since agent ¢ can trade
electricity with its neighbors, the trading cost is indicated by
a linear function, denoted by i h, as follows:

h ({pg,j),h,}jéf\/l> = Z iy Plig)ho (6)
JEN;
where cEr 5 0 is the per-unit cost of electricity that is

agreed between agent ¢ and j. In practice, the parameters
cg ;) can be agreed through a bilateral contract [14] or model
taxes to encourage the development of certain technologies
[20]. The power traded at time h, pE%‘), 4> 18 constrained by

Vj €N, (7)
VjeN, )

—tr
—Plig) < Pljyn < Py
tr _
Piijyn + P(ayn =0,

where ﬁfi ;) denotes the maximum power can be traded with
neighbor j. Moreover, (8) is called the reciprocity constraints
[13], which couples the decisions of two neighboring agents.
Note that each pair of neighboring agent ¢ and j has the same
reciprocity constraint.

Constraints of power traded with the main grid: As in
[5], we assume that the electricity price depends on the total
consumption of the network of prosumers and is typically
defined as a quadratic function, i.e.,

ot (0y%) = 4, (5%)?,

where phg denotes the aggregate load on the main grid, i.e.,
= pir, )
1EN

and ¢;'® > 0 is a constant. Therefore, the objective function
of agent ¢ associated to the trading with the main grid,
denoted by f;%, is defined as

mg
mg A ~ p’,h
f (pl }%apl;:g) = Ch (pl;llg) Z ‘ mg
jen Pin
(10)
= a5 | Dok | vk

JEN

Moreover, we impose that the total power that can be traded
between all the agents and the main grid is also bounded, as
follows:

prES Y plE <P, (11)
ieN

where p™& > p™& > 0 denote the upper and lower bounds.

Note that the lower bound might be required to be positive in

order to ensure a continuous operation of the main generators

that supply the main grid.

B. Economic dispatch problem

Next, we introduce a compact notation for the decision
variables and some of the constraints. In particular, the local
constraints of agent ¢ that only involve its own decision
variables, i.e.,

Ui p € Ui p, (12)

where U;;, is a set such that (1), (3), (5), and (7) hold.
Additionally, we define for all 7 € N the stacked vector

u; = col({uin}tnew), where H ={1,2,...,H}

denotes the set of time slots with H being the maximum time
slot. Moreover, we introduce two matrices to manipulate the
selection of the different components of ;. For all i € N,
define

13)
(14)

Sire —IH®am3,

S?w) =Ip®a,

(i) VI €N,
where a,,, € R™ is a column vector of dimension n;
whose entries are all zero except for the /—th being 1, and
r(i,j) denotes the index of the variable pt(ri’j)} , in the vector
u; . Thus, S;.“ € selects the components of u; associated
with the trading with the main grid, while Szri,j) selects the
components associated with the trading with agent j, i.e.,

Siu; = col({p}} fhen) =: Pi%,

Szri,j)ui = COI({pl(ri,j),h}hEH) =: pt(ri,j), Vi e N;.
Overall, the goal of each agent is to find a strategy u}
that minimizes its local objective function subject to all the

constraints for all time slots, i.e.,

argmm J; (ul, Z Smguj) (15a)
JEN
st w €Uy =[] Ui, (15b)
u; € heH

S{ syui + S ayu; =0, Vi €N, (15¢)

pELy <Y STRu; <MLy,
JEN

(15d)

where J; is the cumulative local objective function defined
as the summation of (2), (4), (6), and (10) over the horizon
H,ie.,

Ji (s, %) = 7 (FE W) + £ 5

heH
5B atiens) + 0 (i 57%)) . (16)

with p™& = col(p\®,...,py), and p,° as in (9), and
(15¢)—(15d) represent, in a more compact form, the reci-
procity (8) and grid constraints (11), respectively.



III. A DISTRIBUTED ALGORITHM FOR EQUILIBRIUM
SEEKING IN P2P ENERGY MARKETS

Each local minimization problem in (15) is coupled with
the decisions of the other prosumers both in the cost func-
tion (15a) and the constraints (15¢)—(15d). Specifically, the
coupling enters in the cost associated to the trading with the
main grid (10) (in aggregative form), in the reciprocity (8)
and in grid constraints (11).

From a game-theoretic perspective, the N inter-dependent
optimization problems in (15) define a generalized aggrega-
tive game and a set of decisions (or strategies) uj, ..., Uy
that simultaneously satisfy (15), for all ¢+ € N, corresponds
to a generalized Nash equilibrium (GNE) [8, Def. 1]. In
other words, a set of strategies uj,...,uj is a GNE if
no prosumer (or agent) ¢ can improve its objective function
Ji() St + ZJ# Sie *) by unilaterally changing its
strategy u; to another fea51ble one. Since the cost func-
tions (15a) are continuous and the constraints (15b)—(15d)
are convex and compact, the existence of a GNE follows
from Brouwer’s fixed-point theorem [21, Prop. 12.7], while
uniqueness does not hold in general.

*
79

u

A. A distributed algorithm for GNE seeking

Several algorithms are available in the literature to find
a solution of the aggregative game in (15), e.g. [7]-[10].
Among these methods, the algorithm proposed in [9] for
the special class of generalized games with linearly coupled
cost functions is shown to be particularly efficient in terms of
convergence speed. Here, we propose an upgraded version
of [9, Algorithm 1] for the dispatch problem described in
(15) capable of treating the coupling (equality) reciprocity
constraints in a fully-scalable fashion.

Prior to presenting the proposed distributed algorithm,
first, we introduce g ;) € R, for all j € N; and
i € N, which denote the dual variable associated with
the reciprocity constraints (8), w; € R*H and \; € R,
for all + € N, which denote an auxiliary and the dual
variables, respectively, associated with the grid constraints
(11). Furthermore, let us also introduce the step sizes used
in the proposed algorithm and formalize their choices.

Assumption 2 (Step size selection): For all i € N, set

a; = blkdiag (a1, . .., @i g), (17)

where a;, = dlag( agg, A, aly, {a” h}geNL)»
Vh e H, w1thalh7 il >0 and off ;) > [N, Vj € N
Jé; ﬁ< ,VieN; ~v=v< L 5 < L
(,5) = J i Vi =7 5% i N+ 1
]

The proposed method is summarized in Algorithm 1. At
each stage k € N, Algorithm 1 works as follows:

1) Strategy update: For all ¢ € N, prosumer 7 updates the
local decision to u;(k + 1) by solving a strongly convex,
quadratic programming with linear constraints, for which
efficient solvers are available.

Algorithm 1 GNE seeking for P2P Energy Markets

Initialization: For all i € NV, set locally:

(a) Initial conditions: u;(0) € U;, fu(;,5)(0) = O for all j €
(b) Step-sizes: &, {Bi;}jen;,: and 0; as in Assumption 2.
Iterate until convergence:

For all i € NV:

(1) Strategy update:

u;(k+1) = arg IIEI%/III {JZ- (z,ﬁmg(k) + S;ngui(k:))
T Sp®
+ )\z(k) [_ég,g} zZ+ ZjGNi (/14(17]) (/ﬂ)TSErZJ)Z>
+4lz — wilk)2,}
(2) Communication with neighboring agents:

(a) Ai(k)
(b)Y yuilk+1)

— N,

(3) Dual variables (reciprocity constraints) update, Vj € N;:

i) (k+1) = ,u(i,j)(k) — Bij (S?@ Hui(k) + S0 5w (k)
b uilk 1) = 288 sk + 1)) .

(4) Auxiliary variable update:
wi(k+ 1) = wilk) + 7 (INAR) = S, Mi(R))

(5) Dual variable (grid constraints) update:
Xik +1) = projgan (Ai(k) + 4 (2 [_SS] wilk +1)

mg

- [_SS} wi(k) — { pmglfH] — 2wk +1) + wi(k)>) :

2) Communication: For all ¢ € N, prosumer 7 sends

a) the most recent value of its local copy of the dual variable,
Ai(k), to all its neighbors;

b) the most recent value of its trading strategy, S(Z j)ul(k)
to the corresponding trading partner j € N;.

3) Dual variable (reciprocity constraints) update: For all 7,
prosumer ¢ updates the local copy of the dual variable p(; ;)
exploiting the most recent value of its own trading strategy,
SEYU) u;(k), and that of the trading partner, ng)uj(k‘).

4) Auxiliary variable update: For all ¢ € N, prosumer 4
updates the auxiliary variable w; according to a discrete-time
integration dynamics driven by the disagreement on the local
dual variables associated with the grid constraints.

5) Dual variable (grid constraints) update: For all i € N,
prosumer ¢ updates the local copy of the dual variable \;
according to a projected-gradient ascent combined with a
discrete integral dynamics driven by the disagreement on the
dual variables.



Remark 1 (Algorithm 1):

(i) The choice of the step sizes (Assumption 2) of each
prosumer is based on local information only. In partic-
ular, there is no need for the prosumers to know the
global properties of the P2P market.

(i) We assume that each prosumer has a perfect knowledge
of the aggregate load on the grid p™¢(k), at each itera-
tion k of the algorithm. In practice, the value of p™¢ can
be broadcast to the prosumers by a central coordinator,
thus preserving the scalability of the algorithm.

(iii) In step (1), the second argument of .J; reads as p™8(k)+
S, (k), where S;"®u;(k) is a correction term due to
the contribution of agent ¢ to the aggregate load p™¢.
When the correction term is not considered, Algorithm

1 converges to a generalized aggregative (or Wardrop)
equilibrium (GAE) [8, Def. 2]. O
In the next statement, we prove global convergence of

Algorithm 1 to a (variational) GNE of the game in (15).

Proposition 1 (Convergence): The sequence of collective
strategies ((u1(k),...,un(k)),cy generated by Algorithm
1 converges to a (variational) GNE of the game in (15). O

Proof (sketch): Due to space limitations, we provide only
a sketch of the two main steps of the proof:

S.1 The iterations in Algorithm 1 are obtained by applying
the distributed method in [9, Algorithm 1] on the eco-
nomic dispatch problem presented in Section II-B.

S.1 The game in (15) satisfies all the technical assumptions
in [9, Theorem 1], that proves global convergence of [9,
Algorithm 1] to a (variational) GNE. [ |

IV. NUMERICAL RESULTS

This section presents simulation-based tests of the consid-
ered hybrid P2P market. In order to perform a simulation,
first, a test case is synthesized and then the game in (15),
which is based on the test case and where K = 24, for
each i € N, is solved by Algorithm 1. The stopping
criteria in the simulations use the primal and dual resid-
vals associated with the reciprocity constraints [17], i.e.,
HCOI({SE;J)ul(k) + Sa,i)uj(k)}jeM,ieNﬂb S 0.01 and
[l col({u;(k + 1) — ui(k) biear)|l2 < 0.1, respectively.

In each test case, we consider a heterogeneous network,
which consists of three types of prosumers (agents), i.e.,
small-scale residential, large-scale residential, and industrial.
The differences among these three types are their loads,
particularly, their maximum values and their daily profiles,
and the scale of their dispatchable generators and storage
units, if available. Furthermore, the per-unit costs of the
power production from the dispatchable generators differ
based on the type of prosumer, where industrial prosumers
have the smallest per-unit cost and small-scale residential
prosumers have the largest one. We also set ¢, ¢ = N —1, for
all h € H. Moreover, ¢* = ¢§* = 0, for all i € N, and

2

cg’j) =1, forall j € N; and i € NV.

A. Power generation profile

The first aspect that we evaluate is the advantage of
having storage units, which influence the power generation

Scenario a: No storage units
— 400 T T

Scenario b: Four agents with storage units

400 T

o—a

Power kW]

Power kW]

time step [hour]

Fig. 1. Total power generation from dispatchable generation units and
importing from the main grid vs. total loads in a 10-agent network.

Scenario a: No storage units
T T

Power kW]

Power kW]

Scenario c: All agents with storage units
T : . .

Power kW]

time step [hour]

Fig. 2. Total power generation from dispatchable generation units and
importing from the main grid vs. total loads in a 20-agent network.

profile of the network. Therefore, two networks, one with 10
agents and the other with 20 agents, are randomly generated.
Each agent has a dispatchable generation unit. Moreover, we
consider three scenarios, as follows: a. all agents do not have
storage units, b. some of the agents have storage units, and
c. all agents have storage units.

The simulation results are shown in Figures 1-2, which
depict the total load and total generation profiles of each
network and Table I. As can be seen, when the storage units
are introduced to the network, the total power generation
profile is different from that of the load. We can observe
that in scenario c, the generation profile is relatively flat. By
having storage units, the agents can produce and buy energy
from the main grid during the off-peak hours (e.g., at the
15t-4™ hours) and use it during the peak hours (e.g., at the
15"-20" hours), resulting in a significant cost reduction (see
Table I). Note that, in each simulation, the aggregate load to
the main grid, ;ﬁg‘g, for each h € H, satisfies (11).



TABLE 1
TOTAL COST IN SECTION IV-A (PROPORTIONAL)

Scenario a b c
10-agent network ~ 100%  -11.7%  -27.6%
20-agent network  100%  -14.5%  -33.7%

a. 10-agent network

400

Number of iterations

Number of iterations

o . . . . .
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Graph connectivity

Fig. 3. Graph connectivity vs. number of iterations. Blue dash-dotted lines
indicate the simulation data and red circles indicate the mean values.

B. Sparsity effect

In the second simulation study, the effect of network
sparsity on the number of iterations performed is evaluated.
Hence, a network of 10 agents and that of 20 agents are
randomly generated with different levels of graph connectiv-
ity. Note that the connectivity level ranges from 0 (£ = )
to 1 (a complete graph). For the simulations of the 10-
agent network, the graph connectivity level varies from 0.2
to 1, with 0.1 step, whereas for the simulations of the
20-agent network, it varies from 0.1 to 1, with 0.1 step.
At each connectivity level, 10 Monte Carlo simulations,
where the links are generated randomly, are carried out.
The results of these simulations are presented in Figure 3.
It can be observed that the number of iterations required
increases as the network connectivity increases. This result is
expected since the number of coupling constraints that must
be satisfied grows with the addition of links in the network.

V. CONCLUSION

In a hybrid peer-to-peer energy market model, where
prosumers can trade among themselves and with the main
grid, the economic dispatch problem can be modeled as a
noncooperative game with coupling constraints. We propose
a fully-scalable and distributed algorithm to steer the system
to a generalized Nash equilibrium. Numerical studies, con-
ducted in scenarios with real data, show that the proposed
energy management approach has the potential to ensure
a safe and efficient operation of the electrical power grid,
namely, by reducing the individual economic expenses, while
respecting the reciprocity of the tradings and the limits on
the aggregate load.
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