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and

Rumen Dangovski
at

Massachusetts Institute of Technology



Abstract

The emergence of unsupervised word embeddings, pre-trained on very large monolingual text
corpora, is at the core of the ongoing neural revolution in Natural Language Processing (NLP).
Initially introduced for English, such pre-trained word embeddings quickly emerged for a number
of other languages. Subsequently, there have been a number of attempts to align the embedding
spaces across languages in a supervised, semi-supervised, or an unsupervised manner, which could
enable a number of cross-language NLP applications. In supervised approaches, the alignment
is typically done according to the rotation that minimizes the Frobenius norm in the Procrustes
problem, which has a closed-form solution, easily obtainable using singular value decomposition
(SVD). The unsupervised formulation of the problem is more challenging as it needs to optimize
the much harder Wasserstein-Procrustes objective, and thus, in practice, most approaches resort
to some modification of this objective. In the present work, we demonstrate how properties of
problems equivalent to Wasserstein-Procrustes can help in the unsupervised setup. We further
show that, both in the supervised and unsupervised setups, strong baselines can be improved by a
rather simple algorithm that optimizes the Wasserstein-Procrustes objective. Finally, a modifica-
tion of this algorithm using just a little supervision can yield satisfactory results. We believe that
our rethinking of the Wasserstein-Procrustes problem would enable further research and would
eventually help develop better algorithms for aligning word embeddings across languages.

Keywords Bilingual Lexicon Induction, Word Embeddings, Natural Language Processing, Trans-
lation

MSC2020 68T50
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I would like to thank Xavier Giró for being the tutor of this thesis at Universitat Politècnica
de Catalunya. I appreciate his support and that he has helped me to make this easier. This thesis
has been written using a template from Andrea Calafell. Thanks to Mart́ın Forsberg for his help
with the cover page. Finally, thanks to Rong Rong Hu for her esthetic correction of the layout.

2



Contents

1 Introduction 4

2 Properties of the Wasserstein-Procrustes Problem 8

3 Approach 11

4 Experiments 13

4.1 Benchmarks from Grave et al. (2019) . . . . . . . . . . . . . . . . . . . . . . . 13

4.2 The Iterative Hungarian as a Refinement Tool . . . . . . . . . . . . . . . . . . . 15

4.3 Adding supervision for language translation . . . . . . . . . . . . . . . . . . . . 17

5 Related Work 18

6 Conclusion and Future Work 19

3



Chapter 1

Introduction

Pre-trained word embeddings, which map words to dense vectors of low dimensionality, have
been the key enabler of the ongoing neural revolution, and today they serve as the basic building
blocks of the vast majority of the contemporary Natural Language Processing (NLP) models.
While initially introduced for English only (Chen et al. 2013, Pennington et al. 2014, Bojanowski
et al. 2017, Joulin et al. 2017), pre-trained embeddings quickly emerged for a number of other
languages, (Heinzerling & Strube 2018) and soon the idea of cross-language embedding spaces
was born. In a cross-language embedding space, two semantically similar (or dissimilar) words
would be close to (or far from) each other regardless of whether they are from the same or from
different languages. Using such a space is attractive, as for a number of NLP tasks, it enables the
application of an NLP model trained for one language to test input from another language. Ideally,
such spaces could be trained on parallel bilingual datasets, but as such resources are of limited
size (compared to large-scale monolingual resources typically used to pre-train monolingual word
embeddings), it has been more attractive to train monolingual word embeddings for different
languages independently, and then to try to align the corresponding embedding spaces in what
is commonly known as bilingual lexicon induction. This has been attempted in a supervised (Le
et al. 2013, Irvine & Callison-Burch 2013) semi-supervised (Artetxe et al. (2017) used as little
supervision as a 25 word dictionary or even an automatically generated list of numerals) or an
unsupervised (Lample et al. 2017) manner.

Initial attempts at aligning the spaces used a dictionary of cross-language word translation
pairs as anchors between the two spaces in order to infer the nature of the transformation that
relates the first language to the second one (Le et al. 2013). This is a supervised setup, where
the alignment is typically done according to a rotation that minimizes the Frobenius norm in the
Procrustes problem, which has a closed-form solution, easily obtainable via SVD.

Procrustes. Given two ordered clouds of points X, Y ∈ RN×d, each with N points of dimension
d, the orthogonal Procrustes problem finds the orthogonal matrix W ∈ Rd×d that minimizes the
following Frobenius norm:

arg min
W∈Rd×d

‖XW − Y ‖22 (1.1)

For the translation of word embeddings, W is taken to be an orthogonal matrix due to a self-
similarity argument (Smith et al. 2017): if W is the orthogonal transformation matrix, then its
transpose W T is the inverse map, and any word embedding x can be recovered by W TWx.
Besides, the cosine similarity between a source word x and a target word y would be independent
of the space where this similarity is measured: yTWx/‖Wx‖‖y‖ = xTW T y/‖x‖

∥∥W T y
∥∥. The

convenience of using an orthogonal matrix have also been supported empirically (Xing et al. 2015,
Zhang et al. 2016, Artetxe et al. 2016). The orthogonal Procrustes problem has a closed-form
solution W = UV T , where UΣV T is the singular value decomposition (SVD) of XTY as shown
by Schönemann (1966).

A popular unsupervised formulation of the problem is known as the Wasserstein-Procrustes
(Hoshen & Wolf 2018, Alaux et al. 2019), which is more challenging as it needs to optimize a gen-
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eralization of the Procrustes objective. In practice, most approaches resort to some modification
of this objective.

Wasserstein-Procrustes. Given two clouds of points X, Y ∈ RN×d, each with N points of
dimension d, the Wasserstein-Procrustes problem finds the orthogonal matrix W ∈ Rd×d and the
permutation matrix P ∈ RN×N that minimize the Frobenius norm:

arg min
P∈π(N),W∈O(d)

‖XW − PY ‖22 (1.2)

where π(N) are the N -dimensional permutations matrices and O(d) are the d-dimensional or-
thogonal matrices.

This problem has recently gained considerable interest for two main reasons. First, a bilingual
dictionary is not always available, and even when available, it might not be good enough to obtain
high-quality mapping between the two spaces. Second, there are a number of semi-supervised and
even unsupervised approaches that claim better results than the supervised approaches (Lample
et al. 2018, Grave et al. 2019, Alvarez-Melis & Jaakkola 2018, Hoshen & Wolf 2018). Although
these methods are inspired by Wasserstein-Procrustes, they deviate from Objective 1.2 and solve
a modified problem, as described below.

• GANs optimisation was first introduced for bilingual lexicon induction by Barone & Valerio
(2016), but its cannonical implementation was done by Lample et al. (2018), which present
multilingual unsupervised and supervised embeddings (MUSE): an adversarial method in
which the transformation matrix W is considered as a generator, and thus is trained so
that the mapped word embeddings XW cannot be distinguished from the set Y via a
discriminator, by a generative adversarial net (Goodfellow et al. 2014).

However, we note that MUSE’s objective is not exactly that of Wasserstein-Procrustes, as
we describe in the sketch on Figure 1.1. Suppose that languages X and Y have only two
different two-dimensional words, where X consists of two words in an angle of 90 degrees,
whereas Y has two words separated by 180 degrees. Then the rotation that minimises
the Wasserstein-Procrustes objective function is not the same as the rotation that makes
it more difficult to predict whether an element belongs to XW or to Y , as illustrated in
Figure 1.1.

• Grave et al. (2019) suggest an iterative procedure whose initial condition minimizes the

convex relaxation
∥∥XTPY

∥∥2
2

instead of the original problem (which we will develop to
Equation 2.8 in Chapter 2). This relaxation is known as the Gold-Rangarajan relaxation
and can be solved using the Frank-Wolfe algorithm. The solution to this relaxation is then
used as the initial condition for a gradient-based iterative procedure that stochastically
samples different subsets of words for which there is not necessarily a direct translation.
This deviates strongly from Objective 1.2: not only the initial condition does not optimise
Wasserstein Procrustes, but also the iterative procedure does not optimise it as it translates
words that are not necessarily the optimal match.

• Alvarez-Melis & Jaakkola (2018) use the concept of Gromov-Wasserstein distance to pro-
vide an alternative to Wasserstein-Procrustes. This distance does not operate on points
but on pairs of points, turning the problem from a linear to a quadratic one. This new
loss function can be optimized efficiently with first-order methods, whereby each iteration
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Figure 1.1: GANs do not optimize Wasserstein-Procrustes. Given two languages (red tri-
angles, separated by 90 degrees, and blue circles, separated by 180 degrees) compound each of
them by two different words in a two-dimensional space, the left shows the transformation an
adversarial approach would find. Right shows the distribution that minimises the Frobenius norm
in the Wasserstein-Procrustes problem.

involves solving a traditional optimal transport problem. Artetxe et al. (2018) achieve bet-
ter results by combining this idea with a refinement method called stochastic dictionary
induction, i.e., randomly dropping out dimensions of the similarity matrix when extracting
a seed dictionary for the next iteration of Procrustes Analysis.

• Hoshen & Wolf (2018) are inspired in the Iterative Closest Point (ICP) method used in 3D
point cloud alignment. Although their transformation matrix is not necessarily orthogonal,
this property is enforced using a regularization. Their fundamental difference to Objec-
tive 1.2 is, however, that they minimise the norm L1 rather than the L2. This difference in
the norm might have relevant consequences: L2 norm tries to avoid higher values whereas
L1 is often used in feature selection in order to achieve a higher degree of sparsity. Hence,
the L1 norm tries to achieve a better map for certain words, whereas the L2 norm might
achieve a better overall map.

With the above consideration that current unsupervised methods do not optimize Wasserstein-
Procrustes anymore, they nevertheless provide good accuracy for synthetically generated dictio-
nary induction tasks. Therefore, here we ask the following questions: Can we find approximate
solutions to the original Wasserstein-Procrustes Objective 1.2 that not only minimize the ob-
jective in general, but also provide good accuracy on dictionary induction tasks? Can we take
existing methods and improve them further by using refinements that optimize Objective 1.2?
Can we find natural scenarios for which we find good solutions?

Here, we discuss properties of the Problem 1.2 and propose an iterative algorithm inspired by
them. We try this algorithm in different scenarios: (i) in an unsupervised map of data in the
same language, (ii) in the case where we already know an orthogonal transformation W for a
translation of two languages and want to refine it, and (iii) in the case where we can apply some
supervision.

Our contributions can be summarized as follows:

1. We derive different natural initialization W0 of the transformation matrix in the Wasserstein-
Procrustes problem.

2. We propose an iterative algorithm that attempts to solve the Wasserstein-Procrustes prob-
lem exactly. We study under what circumstances that algorithm converges to the optimal
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solution. We find that our algorithm can improve over strong baselines, when used as a
refinement tool.

3. We validate empirically that our approach works well in realistic scenarios, where small-size
supervision is present.

The rest of this thesis is organized as follows: In Chapter 2, we demonstrate key properties
of the Wasserstein-Procrustes problem, which is at the core of our approach. In Chapter 3, we
describe our algorithms. In Chapter 4, we discuss our experiments and results. In Chapter 5, we
discuss related work. In Chapter 6, we conclude and we point to promising directions for future
work.
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Chapter 2

Properties of the
Wasserstein-Procrustes Problem

We begin by simplifying Objective 1.2 to arrive at some essential properties.

Equivalent Formulation Problem 1.2 is equivalent to maximizing the trace norm on the per-
mutation matrix XTPY over P , as we demonstrate below. First, we convert the norm to a
Frobenius inner product 〈A,B〉F = Tr

(
ATB

)
, as follows:

arg min
P∈π(N),W∈O(d)

‖XW − PY ‖2F =

arg min
P∈π(N),W∈O(d)

〈XW − PY,XW − PY 〉F =

arg min
P∈π(N),W∈O(d)

〈XW,XW 〉F + 〈PY, PY 〉F

− 2〈XW,PY 〉F =

arg max
P∈π(N),W∈O(d)

〈XW,PY 〉F ,

where we used that ‖XW‖2 = ‖X‖2 and ‖PY ‖2 = ‖Y ‖2 since P and W are orthogonal. Since
these two norms are independent of P and W , we can ignore them for the optimization.

Now, we use the cyclic property of the trace,

Tr(ABC) = Tr(CAB) = Tr(BCA),

to obtain as follows:

arg max
P∈π(N),W∈O(d)

〈XW,PY 〉F = (2.1)

arg max
P∈π(N),W∈O(d)

Tr
(
W TXTPY

)
= (2.2)

arg max
P∈π(N),W∈O(d)

〈W,XTPY 〉F = (2.3)

arg max
P∈π(N),W∈O(d)

〈W,XTPY 〉F = (2.4)

arg max
P∈π(N),W∈O(d)

〈W,UΣV T 〉F = (2.5)

arg max
P∈π(N),W∈O(d)

〈S,Σ〉F (2.6)

where
U(P )ΣV (P )T = SVD(XTPY )
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and S = UTWV for U ≡ U(P ) and V ≡ V (P ). Note that S is orthogonal since it is the
product of orthogonal matrices, which implies it must be the identity Id in order to maximize the
Frobenius inner product. Therefore, we derive that

arg max
P∈π(N),W∈O(d)

〈S,Σ〉F = arg max
P∈π(N)

Tr(Σ) (2.7)

= arg max
P∈π(N)

∥∥XTPY
∥∥
∗ (2.8)

where ‖·‖∗ denotes the nuclear norm. The condition on W fulfills that UTWV = Id, where both
U(P ) and V (P ) are taken at the optimum value P ∗. Minimizing the nuclear norm is generally
expensive and Grave et al. (2019) suggested replacing it by the Frobenius norm. However, here
we continue to optimize the trace norm with the goal of not deviating from Objective 1.2.

Hungarian algorithm Given two clouds of points X, Y ∈ RN×d, each with N points of
dimension d, we find the permutation matrix P that gives the correspondence between the
different points according to the following problem:

arg min
P∈π(N)

‖X − PY ‖22 (2.9)

repeating the last proof for the case where we do not want to optimize W , which is taken as the
identity, we see that this problem is equivalent to the following linear program

arg min
P∈π(N)

Tr
(
XTPY

)
, (2.10)

which is the maximum weight matching problem. It can be solved through the Hungarian algo-
rithm, which has a complexity of O(n3) (Tomizawa 1971).

Equivalent problems One useful property of the trace norm is that ‖UA‖∗ = ‖AV ‖∗ = ‖A‖∗,
where U and V are orthogonal matrices. Knowing this, and calculating the SVD for both X and
Y , we obtain the following

arg max
P∈π(N)

∥∥XTPY
∥∥
∗ = arg max

P∈π(N)

∥∥VXΣXU
T
XPUY ΣY V

T
X

∥∥
∗

which yields
arg max
P∈π(N)

∥∥ΣXU
T
XPUY ΣY

∥∥
∗. (2.11)

Let us define X̃ = UXΣX and Ỹ = UY ΣY . Then, the optimal solution P would be the same for
translations involving all of the following pairs of word embeddings: (X, Y ), (X̃, Y ), (X, Ỹ )
and (X̃, Ỹ ). However, the optimal transformation matrix W ∗ will be different for each of these
problems. There is a different, yet interesting way of looking at this: if we follow the iterative
procedure that starts from an initial transformation matrix X0 = XW0, and then we want to
solve the problem (2.10), the equivalent problems will induce a set of natural initializations of
the transformation W , which we formalize below.
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Natural initialization: The iterative proce-
dure

X0 = XW0

Pn = arg min
P∈π(N)

Tr(XT
n PYn)

Yn+1 = PnYn

Wn = arg min
W∈RN×N

‖XnW − Yn+1‖22

that tries to minimise Wasserstein-
Procrustes aims for the same solution
P as the problems with initial conditions

X0 = XVXW0

X0 = XW0V
T
Y

X0 = XVXW0V
T
Y .

The significance of the natural initialization is that it gives us a starting point for a different
problems that have the same solution P. It must be noted that these transformations of X0 are
not the unique ones that will have the same original solution, as the trace norm is invariant by
any orthogonal transformation; however, they were useful in order to avoid bad local minima as
it will be showed in Chapter 4.

We now utilize the insights from this chapter to proceed with describing our approach.
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Chapter 3

Approach

In this chapter, we present a general iterative algorithm that attempts to solve the Wasserstein-
Procrustes problem.

Joint optimization on W and P For the Wasserstein-Procrustes problem from Equation 1.2,
a joint iterative procedure involving the Procrustes problem and the Hungarian algorithm has
been dismissed due to its computational cost and convergence to bad local minima. However,
as we will show below, there are a number of situations where such a simple approach can be
extremely beneficial at the cost of very few improvements based on the previous chapter.

Algorithm 2 is the most general iterative procedure that we consider here, and it serves as the
backbone for our experiments. In the next chapter we describe the utilization of our improvements
in detail.

Variants of the natural initialization. The first of the improvements is considering the dif-
ferent equivalent problems or the natural initialization transformations we have seen from the
previous chapter. We observe empirically that besides the four problems that share the same
optimal P it is possible to improve results by considering the opposite optimization problem:
instead of maximising the costs for the two clouds of points (X,Y ), sometimes minimising the
costs leads to a solution with a higher trace norm and eventually converges to a better solution.
Minimization of costs is achieved by simply considering the cloud −X instead of X.

Supervised translation. We also consider the event of supervised translation. There are many
different ways of doing this, but the procedure that converges the fastest is to force n couples when
calculating the Hungarian map, where typically n � N . We also consider similar approaches,

Algorithm 1 Cut Iterative Hungarian (CIH)

X ← XW0∥∥XT
NEWYNEW

∥∥
∗ =∞

while
∥∥XTPY

∥∥
∗ <

∥∥XT
NEWYNEW

∥∥
∗ do∥∥XTPY

∥∥
∗ ←

∥∥XT
NEWYNEW

∥∥
∗

X ← XNEW

Y ← YNEW
P ← Hungarian (X,Y )
W ← Procrustes (X,PY )
XNEW ← XW
YNEW ← PY

end while
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Algorithm 2 Iterative Hungarian (IH)

X ← XW0∥∥XT
NEWYNEW

∥∥
∗ =∞

while
∥∥XTPY

∥∥
∗ <

∥∥XT
NEWYNEW

∥∥
∗ do∥∥XTPY

∥∥
∗ ←

∥∥XT
NEWYNEW

∥∥
∗

X ← XNEW

Y ← YNEW
for x, y in EquivalentProblems (X,Y ) do
P ← Hungarian (x, y)

if
∥∥xTPy∥∥2∗ < ∥∥XT

NEWYNEW
∥∥
∗ then

W ← Procrustes (x, Py)
XNEW ← xW
YNEW ← Py∥∥XT

NEWYNEW
∥∥
∗ ←

∥∥xTPy∥∥2∗
end if

end for
end while

for instance deciding how to update Algorithm 2, taking into account the accuracy of the maps
in a small subset of the data. With these improvements we show similar results to the stronger
supervised ones at the cost of more iterations to converge. Choosing among these methods
could be motivated by how trustful the maps from the initial dictionary are. By trustful here we
consider how many of the corresponding cloud points are correctly matched.

We use a fast implementation of the Hungarian algorithm (https://github.com/cheind/py-
lapsolver) for dense matrices based on shortest path augmentation (Edmonds & Karp 1972).
Relaxations of the original problem can achieve higher speeds. Cuturi (2013) showed how smooth-
ing the classical optimal transportation problem with an entropic regularization term results in a
problem which can be computed through Sinkhorn-Knopp’s matrix scaling algorithm at a speed
that is several orders of magnitude faster than that of transportation solvers.

Mapping. Although our method provides a permutation matrix P , this has certain limitations:
this is not necessarily the best possible map as languages translations are not a one-to-one map.
Nearest neighbors has been typically used but it suffers from the so-called hubness problem: in
high-dimensional vector spaces certain vectors are universal nearest neighbors (Radovanovic et al.
2010) and this is a common problem for word-embedding-based bilingual lexicon induction (Dinu
& Baroni 2014). Lample et al. (2018) presented cross-domain similarity local scaling (CSLS),
which is a method intended to reduce the influence of hubs by expand high-density areas and
condense low-density ones. Given one source vector x, the mean similarity of its transformation
Wx to its k nearest neighbors is defined as µkS(Wx) = 1

k

∑k
i=1 cos (x, fi), being cos the cosine

similarity and fi the i-th nearest target neighbor of Wx. Then µkT (fi) is defined analogously
for every i, and CSLS(x, fi) is calculated as 2 cos (x, fi) − µkS(Wx) − µkT (fi). Intuitively, this
mapping increases the similarity associated with isolated word vectors. Conversely it decreases
the ones of vectors lying in dense areas. For the following experiments, we use the map induced
by the nearest neighbor according to CSLS with k = 10.
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Chapter 4

Experiments

In our first set of experiments we recreate the benchmarks that have been studied in Grave
et al. (2019). These experiments correspond to mapping of word embeddings in English to
another set of word embeddings trained in a similar fashion and in the same language. In the
second set of experiments we propose a way in which our algorithm could be used for refinement
purposes. Finally, we evaluate our algorithm in the framework of machine translation with little
supervision.

4.1 Benchmarks from Grave et al. (2019)

The first set of experiments justify that the simple iterative procedure displayed in Algorithm 2
works and explain under what circumstances it can be relaxed or needs some help in the form of
either supervision or a natural initialization matrix W0. For the following controlled experiments
the initialization matrix has been set to be the identity. We design the following four approaches:

• Hungarian. Running the Hungarian algorithm for only one iteration, and then taking the
permutation matrix P as the map.

• Cut Iterative Hungarian (CIH). Running the Hungarian algorithm with the Algorithm 2
updates X ← XW and Y ← PY (see Algorithm 1).

• Iterative Hungarian (IH). Running the previous iterative procedure but considering the
different natural initializations (see Algorithm 2).

• Supervised Iterative Hungarian (SIH). We learn 5% of the total mapped words coming from
the supervision, and then we perform IH for the rest of the words.

The experiments from this section recreate the ones in Grave et al. (2019). We use FastText
(Bojanowski et al. 2017, Joulin et al. 2017) to train word embeddings on 100M English tokens
from the 2007 News Crawl corpus.1 The different experiments in this section consist of changing
the different training conditions and correctly mapping the results. Models are trained using
Skipgram (Sutskever et al. 2013) unless stated otherwise, and using the standard parameters of
FastText.2 The experiments are described as follows:

• Seed. We only change the seed used to generate the word embeddings in our fastText runs.
The source and the target are both word embeddings trained using the same parameters

• Data. We separate the dataset in two equal parts. We train corresponding word em-
beddings from the two separate parts. The source and the target correspond to word
embeddings trained with the same parameters but trained on different data.

1http://statmt.org/wmt14/translation-task.html
2https://github.com/facebookresearch/fastText
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• Window. We train the models with window sizes of 2 and 10 respectively. The source and
the target correspond to word embeddings trained on the same data but with a different
window size.

• Algorithm. We train the first algorithm with Skipgram and the second one with CBOW
(Sutskever et al. 2013). The source and the target correspond to word embeddings trained
on the same data but with a different method.

Seed Window Algorithm Data

Hungarian 99% 7% 7% 1%
CIH 100% 100% 100% 0%
IH 100% 100% 100% 0%

SIH 100% 100% 100% 100%

Table 4.1: Results for the first set of experiments.

We run the above algorithms on the 10,000 most frequent words. Table 4.1 shows the results
for the different algorithms. The method used for doing the final map is the nearest neighbor for
CSLS with k = 10. The percentage is taken over all the words from the model. We comment
on the method and results below.

• The supervised approach seems to work well with very little supervision, but all other
attempts fail when facing the problem of mapping data from different datasets. An inter-
pretation of this is that by adding some supervision we are improving the initial W0 and
therefore this method starts from a better initial condition than others. This effect may be
similar (although having less impact) than the help introduced in the IH with the equivalent
problems or the natural initial transformations.

• The first three experiments converged in three or less iterations. SIH took around twenty
iterations to converge for the data experiment.

• The Hungarian algorithm, which is not designed for the Wasserstein-Procrustes method,
correctly finds the map for the seed experiment, whereas some other reported iterative
experiments fail at achieving good results with this experiment (Grave et al. 2019).

The proposed iterative procedures converge, but a good minimum is achieved depending on the
initial conditions and the help of supervision or equivalent problems. This suggests that the
Algorithm 1 could work well as long as we start from an initial transformation matrix W0 close
enough to the true solution.

The importance of the initial condition can be showed by the natural initial conditions. The
solution of the four different equivalent problems induce different optimal transformation matrices
W ∗. In the first iteration of IH, a branch among these four is chosen. Table 4.2 shows the
Euclidean distance between each of the four natural initialization (assuming W0 = I) and their
respective optimal solution W ∗ for the four experiments. These distances are different for the
four branches, and being able to choose the best one (the one that minimises this distance) is
key for the convergence of the algorithm.

Distances that are too big do not converge into a good solution. For the experiment of the
seed, such a small distance justifies that a single iteration of the Hungarian algorithm was enough

14



Seed Window Algorithm Data

I 9.49 12.59 12.45 14.11
VX 14.13 14.14 14.18 14.19
V T
Y 14.15 14.18 14.18 14.14

VXV
T
Y 13.95 14.10 14.09 14.16

Table 4.2: Distances between each of the four natural initialization and their respective optimal
solution for the four experiments

for an impressive result. The window and the algorithm experiment do not converge when running
on a branch different from the first one—also the one that has the smallest distance—and when
is running on the first converges in a few iterations. Hence, being able to provide a good initial
transformation matrix W0 and to correctly discriminate what are the best branches is vital for
this approach.

These initial experiments show two different scenarios where these approaches are useful:
either when the initial W0 is good enough, or when there is some sort of supervision. The
following experiments address these two cases.

4.2 The Iterative Hungarian as a Refinement Tool

Since a good initial transformation matrix W0 is required in order to produce good results, it
can be inferred that this iterative procedure could be used as a refinement tool. The experiments
in this section perform the Iterative Hungarian starting with the initial condition W0 produced
from the following methods:

• The adversarial approach from Lample et al. (2017). This comprises the adversarial training
described in Chapter 1 and a refinement step which consists of creating a dictionary from
the best matches and then doing the supervised Procrustes.

• The supervised Procrustes approach.

• The Iterative Closest Point (ICP) method from Hoshen & Wolf (2018).

The experimental setup is exactly the same as in Lample et al. (2018): the code used
for the adversarial part, the refinements, the dataset and the evaluation.3 From that imple-
mentation we have also used the Procrustes method. The code for the ICP can be found
in https://github.com/facebookresearch/Non-adversarialTranslation. In the three cases, the
methodology has been the same: W0 was obtained from each method, then we ran IH. We
observed that the refinement step from Lample et al. (2017) improved results and we decided to
use it as part of the method. CSLS with k=10 has been used for doing all the mappings and the
accuracy reported corresponds to MUSE’s evaluation (Lample et al. 2017).

3https://github.com/facebookresearch/MUSE
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en-es es-en en-fr fr-en en-it it-en en-de de-en en-ru ru-en mean
MUSE (1) 82.6 83.7 82.5 82 76.8 77.6 75.1 72.5 42.5 60.1 73.54

MUSE (1) + us 82.5 84.1 82.7 82.4 78.3 77.9 74.9 73.3 44.5 60.7 74.13
MUSE (2) 81.9 83.2 82.1 82.4 77.5 77.5 74.7 72.9 37 61.9 73.11

MUSE (2) + us 82.5 84.1 82.7 82.4 77.3 78.1 74.7 73.3 42.3 62.5 73.99
MUSE (3) 82.1 84 82.1 82.3 77.9 77.7 74.8 69.9 37.1 60.1 72.8

MUSE (3) + us 82.3 83.9 82.6 82.4 77.8 77.8 75.1 72.9 38.9 62.1 73.58

Table 4.3: Accuracy for the unsupervised translation of different languages. IH run having as
initialization matrix the transformation matrix W from MUSE over different seeds, and was then
refined.

en-es es-en en-fr fr-en en-it it-en en-de de-en en-ru ru-en mean
Procrustes 81.7 83.3 82.1 81.9 77.3 77.0 73.7 72.7 49.9 60.8 74.04

Procrustes + us 82.5 84.2 82.2 82.6 78.1 78.0 75.0 73.5 47.9 63.9 74.79

Table 4.4: Accuracy for the unsupervised translation of different languages. IH run having as
initialization matrix the transformation matrix W from the supervised Procrustes, and was then
refined.

en-es es-en en-fr fr-en en-it it-en en-de de-en en-ru ru-en mean
ICP (1) 81.9 82.7 81.9 81.5 76.0 75.5 72.3 72.3 46.4 56.6 72.71

ICP (1) + us 82.5 84.1 82.1 82.7 78.1 78.0 76.6 72.7 46.2 63.2 74.62
ICP (2) 80.8 82.5 81.3 80.4 76.3 76.3 72.3 72.4 46.5 57.5 72.63

ICP (2) + us 82.2 84.1 82.4 82.3 78.2 77.9 76.4 73.3 46.6 63.1 74.65
ICP (3) 82.0 82.6 82.0 81.8 75.7 76.6 73.1 72.6 45.1 56.2 72.77

ICP (3) + us 82.5 84.2 82.0 82.4 77.7 77.7 76.9 73.5 45.2 63.1 74.52

Table 4.5: Accuracy for the unsupervised translation of different languages. IH run having as
initialization matrix the transformation matrix W from ICP over different seeds, and was then
refined.

The transformation matrix obtained from Lample et al. (2018) was trained on 200,000 words.
Then we ran IH on a subsample of 45,000 words. Finally, the new transformation matrix was
refined following the procedure in Lample et al. (2018). Also inspired by their work, the maps
were calculated through Cross-Domain Similarity Local Scaling (CSLS) with 10 nearest neighbors.

We ran IH after a normalization of the word embeddings, which was found to achieve faster
solutions. It must be noted that, since the adversarial part does not normalize word embed-
dings, the W0 does not exactly correspond and not normalizing should provide better results at a
higher computational cost. Hartmann et al. (2019) showed that unit length normalization makes
GAN-based methods to become more unstable and deteriorates its performance, but supervised
alignments or Procrustes refinement are not affected by it.

Results can be seen in Table 4.3 (MUSE), Table 4.4 (Procrustes) and Table 4.5 (ICP). It can
be seen that indeed, this method improves the accuracy when used as a refinement tool. This is
coherent with the fact that the other methods do not directly try to optimise the Wasserstein-
Procrustes objective, although they achieve very good translations without relying on it.
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Algorithm 3 Iterative Hungarian with a dictionary

Given a dictionary X0, Y0
W0 ← Procrustes (X0, Y0)
X ←W0∥∥XT

NEWYNEW
∥∥
∗ =∞

while
∥∥XTPY

∥∥
∗ <

∥∥XT
NEWYNEW

∥∥
∗ do∥∥XTPY

∥∥
∗ ←

∥∥XT
NEWYNEW

∥∥
∗

X ← XNEW

Y ← YNEW
for x, y in EquivalentProblems (X,Y ) do
P ← Hungarian (x, y)

if
∥∥xTPy∥∥2∗ < ∥∥XT

NEWYNEW
∥∥
∗ then

W ← Procrustes (x, Py)
XNEW ← xW
YNEW ← Py∥∥XT

NEWYNEW
∥∥
∗ ←

∥∥xTPy∥∥2∗
end if

end for
end while

4.3 Adding supervision for language translation

Judging by the results in Table 4.1 we suggest that IH could be used for supervised translation.
We repeated the same setup as in Section 4.1 but increasing the number of words (n = 20, 000
and n = 30, 000). In both cases it achieved a correct accuracy (100%) with 10% supervision.

We used a variant of IH for translation of English to Spanish using the same datasets and
validation scores as in Lample et al. (2018). Our algorithm presents here a variant: in the first
iteration W0 is taken from the known dictionary as in the Procrustes problem. Then, for each
iteration, the map between the words in the dictionary is not modified by the Hungarian algo-
rithm. Finally, the new transformation matrix Wn+1 is calculated solving the Procrustes problem
on all the words (see Algorithm 3). However, there is another basic difference with respect to the
experiments in Section 4.1: the solution of these problems is a permutation matrix (as they were
English data trained in different ways), whereas the most accurate map from English to Spanish
has not a one-to-one correspondence.

We ran tests of this setup on 10,000 words with different sizes for dictionaries. We qualita-
tively observed that, when the size of the dictionary is big (more than 10% of the data) and it
induces a good initialization W0 then the algorithm was not able to improve these results by a
wide margin. When the size of the dictionary is small and it induces a bad accuracy score for
W0 (30%) then the final performance of the algorithm can either maintain that accuracy or go
down. Finally, there is an intermediate region where this setup can improve the final accuracy. In
particular, we observed that with that particular setup and a dictionary of only 5% of the words
it was possible to achieve an accuracy of 68%, which could be refined up to 81% after doing the
same refinements as in Lample et al. (2018).
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Chapter 5

Related Work

Although there has been extensive work on bilingual lexicon induction (Hartmann et al. 2019),
there have not been many approaches framing the problem as an optimal transport problem.
Haghighi et al. (2008) proposed a self-learning method for bilingual lexicon induction, represent-
ing words with orthographic and context features and using the Hungarian algorithm to find an
optimal 1:1 matching.

With the appearance of word embeddings, words were interpreted as vectors in high-dimensional
spaces and concepts such as distance between words started to gain attention. Ruder et al. (2018)
presented Viterbi EM: an approach where words were mapped following a one-to-one map and the
isometries were induced by an orthogonal matrix. They deviated from the Wasserstein-Procrustes
objective including a penalization term for unmatched words. Furthermore, they did not consider
all possible matching -restricting to the k nearest neighbors- when running the Jonker Volgenant
algorithm for the optimal transport problem.

Zhang et al. (2017) proposed two different methods: WGAN (an adversarial network that op-
timised Wasserstein distance) and EMDOT -an iterative procedure that used both Procrustes
and solving a linear transport problem-. However, they considered the Earth Mover’s Distance
(EMD), which defines a distance between probability distributions, and applied to frequencies
of words. They found that, although EMDOT could converge to bad local minima, it improved
results when placed after WGAN, being the precursor for a refinement tool.

One-to-one maps have been considered (Ruder et al. 2018) and the orthogonal matrix has been
used in many works, despite Søgaard et al. (2018) demonstrated that monolingual embedding
spaces are not approximately isomorphic and that there is a complex relationship between word
form and meaning. Grave et al. (2019) used Wasserstein-Procrustes as the objective function.
They suggest an iterative procedure whose initial condition minimizes the convex Gold-Rangarajan
relaxation with the Frank-Wolfe algorithm. The solution to this relaxation is then used as the ini-
tial condition for a gradient-based iterative procedure that stochastically samples different subsets
of words for which there is not necessarily a direct translation, deviating from the Wasserstein-
Procrustes objective.

Alaux et al. (2019) exploit the concept of Wasserstein-Procrustes objective for aligning mul-
tiple languages to a common space. They use, however, a different approach from ours: they
minimise a loss function based on the CSLS matric from Lample et al. (2018). In a similar fash-
ion, the entropic regularization of the Gromov-Wasserstein problem (Mémoli 2011) has been used
for bilingual lexicon induction. Alvarez-Melis & Jaakkola (2018) focus on solving the problem
through a Gromov-Wasserstein perspective.
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Chapter 6

Conclusion and Future Work

We have presented work in rethinking the Wasserstein-Procrustes problem formulation for
the task of aligning word embeddings across languages. In particular, we have demonstrated
how properties of problems equivalent to Wasserstein-Procrustes can help in the unsupervised
setup. We further showed that, in the semi-supervised setup, using just a little supervision can
yield good results, especially if the datasets are similar or in the same language. We believe
that our rethinking of the Wasserstein-Procrustes problem would enable further research and
would eventually help develop better algorithms for aligning word embeddings across languages,
especially if it is taken into account that most of the unsupervised approaches try to minimise
loss functions different than Objective 1.2.

Some modifications of our approach induce interesting ideas for future work: In the same way
Equation 2.11 is only dependent on the permutation matrix P , it is possible to develop a similar
expression that involves W . Using the exact same properties, we obtain the following:

arg max
P∈π(N),W∈O(d)

〈P,XWY T 〉F = (6.1)

arg max
P∈π(N),W∈O(d)

〈P,UΣV T 〉F = (6.2)

arg max
P∈π(N),W∈O(d)

〈S,Σ〉F = (6.3)

arg max
W∈O(d)

∥∥XWY T
∥∥
∗ (6.4)

but in this case, we assume that UTPV = I, which is generally false. Nevertheless, we can
use the orthogonal matrix P̃ = UV T and project it to the space of permutation matrices. This
formulation of the problem has the advantage that the orthogonal matrix W generally has a lower
dimensionality than the permutation matrix P , and thus it could be reduced through principal
component analysis. We plan to explore this direction in future work.

A completely different approach would consider Objective 1.2 in the alternative form (2.7)
and do an iterative procedure on the trace norm. From the property of the trace norm

‖A‖∗ = sup
‖B‖≤1

| Tr(BA) | (6.5)

Hence, it is possible to design an iterative algorithm that optimizes B and A = XTPY jointly.
Given a particular Bn, Tr

(
BnX

TPY
)

is maximised through the Hungarian algorithm. Given one
particular Pn, B can be calculated in a similar way and then be refined using Sinkhorn’s theorem:
given one matrix A with strictly positive elements, then there exist diagonal matrices D1 and
D2 with strictly positive diagonal elements such that D1AD2 is doubly stochastic. The matrices
D1 and D2 are unique modulo multiplying the first matrix by a positive number and dividing the
second one by the same number (Sinkhorn 1964). A very simple application of this theorem is
that, given one matrix A with stricly positive elements, the algorithm that alternatively rescales
all rows and all columns of A to sum to 1 converges into a doubly stochastic matrix (Sinkhorn
& Knopp 1967).
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In conclusion, some methods achieve good results in the unsupervised translation of word
embeddings without directly considering Problem 1.2 in the loss function (Lample et al. 2018,
Grave et al. 2019, Alvarez-Melis & Jaakkola 2018, Hoshen & Wolf 2018). We have showed that
there are a lot of approaches tackling Problem 1.2 and its interesting alternative formulations.

We have developed some mathematical properties of the Problem 1.2 and have used the
concept of the different natural initialization transformations in an iterative algorithm. We have
showed that this method achieves good results in the mapping of word embeddings from similar
corpora. This method also has applications in word translation across different languages. In
particular, we showed that it is possible to use this algorithm as a refinement tool and showed
an improvement of results after using as the initialization matrix W0 the transformation obtained
by Lample et al. (2018). Finally, we showed how in our approach we can benefit from having a
dictionary in a supervised approach.
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