
 Master Thesis

MASTER'S DEGREE IN INDUSTRIAL ENGINEERING

A deep learning approach for the detection

of
intestinal lesions using endoscopic capsules

(ESAII)

 REPORT

 Author: Wilhelm Auffermann
 Director: Raúl Benítez
 Citation date: July 2020

ETSEIB
Barcelona School of Industrial Engineering

Page 2 Report

A deep learning approach for the detection of intestinal lesions using endoscopic capsules Page 3

Abstract

Today, to diagnose possible lesions in the intestinal tract, we may perform an endoscopy.

There is a less-invasive technique of endoscopy which consists of an ingestible camera that

records a video of all its path through the gastroenteric organs. Then, it may be reviewed by a

human and/or an automation detection method. The most common lesion is one called

Angiodysplasia (Referenced as AD from now on) [1] and it’s the target of our analysis. This

diagnosis process can be tedious when performed manually as we are talking about hours of

repetitive footage.

In this master thesis, we have developed a software capable of extracting the video images

from the camera, pre-processing them, and then using them as training for our deep-learning

architecture approaches. Our training setups have been trained whether to detect if an image

is healthy or has the lesion.

That is, only 69% of AD are detected by experts during the review of a video. Moreover, blood

indicator software presents a sensitivity of 41% and a specificity of 67% [2][3]. With our

technique, we have performed a sensitivity of 91% and a specificity of 94% on our validation

dataset.

These findings are of the upmost interest to the medical collective. With a graphic user

interface setup, we could adapt this effective model into an application with which medical staff

can detect lesions.

Page 4 Report

A deep learning approach for the detection of intestinal lesions using endoscopic capsules Page 5

Summary

SUMMARY ___ 5

 Tables ... 8

 Figures.. 9

2. GLOSSARY ___ 11

3. PREFACE ___ 13

 Origin of the project .. 13

 Motivation ... 13

 Prerequisites ... 14

3.3.1. Raw video data ... 14

3.3.2. Excel template .. 14

4. INTRODUCTION __ 15

 Project objective ... 15

 Project pipeline ... 16

 Project scope .. 17

 Hardware specifications ... 18

5. RAW DATA EXTRACTION _________________________________ 19

 Raw data structure ... 19

5.1.1. General structure .. 19

5.1.2. Raw video origin ... 21

5.1.2.1. Frames technical data .. 23

5.1.2.2. Audio source .. 23

5.1.2.3. Miscellaneous .. 24

5.1.3. Excel ... 25

5.1.3.1. Raw excel origin ... 25

5.1.3.2. Excel technical details .. 25

5.1.3.2.1 .. Tipo ___________________________________ 26

5.1.3.2.2 .. Tam ___________________________________ 28

5.1.3.2.3 LRConsens ________________________________ 29

5.1.3.2.4 .. Loc ___________________________________ 30

Page 6 Report

5.1.3.2.5 .. LocT __________________________________ 30

5.1.3.2.6 ... Sang __________________________________ 32

5.1.3.2.7 Potencial ________________________________ 33

5.1.3.2.8 ...Endos _________________________________ 33

5.1.3.2.9 FrameE _________________________________ 34

5.1.3.2.10 TiempoID ________________________________ 34

5.1.3.2.11 ... SBI __________________________________ 34

5.1.3.2.12 FrameSBI ________________________________ 35

5.1.3.2.13 NFPSBI _________________________________ 35

5.1.3.2.14 Observations _______________________________ 35

 Image extraction from video ... 36

5.2.1. Code for image extraction .. 36

5.2.1.1. Function Image_extraction ... 37

5.2.1.2. Function find_image ... 39

6. IMAGE PRE-PROCESSING _________________________________ 45

6.1.1. Update of General structure ... 45

6.1.2. Images technical data .. 46

6.1.3. Code for image pre-processing .. 47

7. DEEP LEARNING PROCESSING ____________________________ 50

 Introduction to the processing .. 50

7.1.1. Final data structure .. 50

7.1.2. Images technical data .. 50

7.1.3. Strategy ... 51

 MNIST model with training ... 52

7.2.1. Model structure .. 52

7.2.2. Training .. 53

7.2.3. Results ... 55

 VGG16 pre-trained with feature extraction and classifier 56

7.3.1. Model introduction .. 56

7.3.2. Training .. 61

7.3.3. Results ... 63

 VGG16 pre-trained with fully connected training ... 65

A deep learning approach for the detection of intestinal lesions using endoscopic capsules Page 7

7.4.1. Model structure ... 65

7.4.2. Results .. 68

 Interpretability ... 70

7.5.1. False positive LIME analysis ... 72

7.5.2. False negative LIME analysis.. 73

8. CONCLUSIONS __ 76

9. PLANNING AND RESOURCES ______________________________ 77

10. ECONOMICAL AND MATERIAL LIST _________________________ 78

11. ENVIRONMENT __ 79

12. REFERENCES ___ 80

13. ANNEX ___ 83

 Template for lesion classification (in Spanish) ... 83

 Function Image_extraction ... 85

 Function find_image ... 88

 Code of MNIST model applied to lesion detection 96

 Code of VGG16 pre-treained with feature extraction and classifier 99

 Code of VGG pre-trained with fully connected training 103

Page 8 Report

 Tables

Table 1 Glossary of statistical terms about result analysis [14] 12

Table 2 Hardware detailed specifications 18

Table 3 Codification of Tipo cell values 26

Table 4 Codification of Tam cell values 28

Table 5 Codification of LRConsens cell values 29

Table 6 Codification of Loc cell values 30

Table 7 Codification of Sang cell values 33

Table 8 Codification of LRConsens cell values 33

Table 9 Codification of SBI cell values 34

Table 10 Data split 54

Table 11 Data split 61

Table 12 Confusion matrix results and abbreviations 63

Table 13 Final results of the classification of validation data 64

Table 14 Confusion matrix results and abbreviations for VGG F.C. 68

Table 15 Final results of the classification of validation data for VGG F.C. 69

Table 16 Resources allocated for this project 78

A deep learning approach for the detection of intestinal lesions using endoscopic capsules Page 9

 Figures

Figure 1 Project scope representation .. 17

Figure 2 Data structure of the raw data .. 19

Figure 3 Snapshot of the folders defining each patient ... 20

Figure 4 Snapshot of a folder belonging to a patient .. 20

Figure 5 Illustration of an endoscopic capsule. [9] .. 21

Figure 6 Frame of a video taken by an endoscopic capsule, showing AD lesion 22

Figure 7 Properties of the video format .. 23

Figure 8 Audio properties ... 23

Figure 9 Miscellaneous technical properties of the video ... 24

Figure 10 Heather of the template tool to write down detections .. 25

Figure 11 Excel Tipo example .. 27

Figure 12 Excel LRConsens example .. 29

Figure 13 Frame of a video taken by an endoscopic capsule, showing AD lesion 31

Figure 14 Format for LocT (areas highlighted in yellow) ... 32

Figure 15 High level pipeline of the project ... 36

Figure 16 Frame of a video that could be the last frame of the video 40

Figure 17 First two lines of the code in Google Colab ... 41

Figure 18 Running Image_Extraction ... 44

Figure 19 Image from the output with a lesion .. 45

Figure 20 Data structure of the extracted data ... 46

Figure 21 Properties of the image .. 46

Figure 22 Properties of the File .. 47

Page 10 Report

Figure 23 Cropped image that still has some letters ... 48

Figure 24 Image of a lesion totally cropped and cleared of text .. 49

Figure 25 Data structure of the final pre-processed data .. 50

Figure 26 Properties of the image .. 51

Figure 27 Properties of the File .. 51

Figure 28 Model layers and tensor shapes... 53

Figure 29 Accuracy evolution through the epochs .. 55

Figure 30 Sample of ImageNet images [12] ... 56

Figure 31 Visualization of an example of kernel trick. [16] .. 57

Figure 32 Layers of VGG-16 (1 of 2) ... 59

Figure 33 Layers of VGG-16 (2 of 2) ... 60

Figure 34 Confusion matrix of the SVC classifier with the test features 63

Figure 35 Auxiliary model for LIME interpretability ... 66

Figure 36 Original image of a lesion (left) and LIME zones taken into account (right). 70

Figure 37 Lime analysis of a lesion (lesion highlighted in yellow) ... 71

Figure 38 False positive LIME representation (1 of 2) .. 72

Figure 39 False positive LIME representation (2 of 2) .. 73

Figure 40 False negative LIME representation (1 of 2) ... 73

Figure 41 False negative LIME representation (2 of 2) ... 74

Figure 42 False negative LIME representation ... 75

Figure 43 Gantt chart of the project .. 77

A deep learning approach for the detection of intestinal lesions using endoscopic capsules Page 11

2. Glossary
Angiodysplasia (AD) Small vascular malformation in the digestive tract

Scikit-learn (also known

as sklearn)

Machine learning library that supports various

classification, regression and clustering, in our

case, support vector machines.

Keras
 open-source neural-network library in Python that

is optimized to work with TensorFlow

TensorFlow

software

library for dataflow and differentiable programming

across a range of tasks, developed by Google.

Feature

The features are the elements of your input

vectors. If you were using a neural network to

classify people as either men or women, the

features would be things like height, weight, hair

length etc.

Neural network

Computational learning system that uses a

network of functions to understand and translate a

data input of one form into a desired output,

usually in another form. The concept of the

artificial neural network was inspired by human

biology and the way neurons of the human brain

function together to understand inputs from

human senses.

pattern recognition

The act of identifying patterns within previously

learned data. This can be carried out by a neural

network even in the presence of noise or when

some data is missing.

epoch
One complete presentation of the training set to

the network during training.

input layer
Neurons whose inputs are fed from the outside

world.

layer

A group of neurons that have a specific function

and are processed. The most common example is

in a feedforward network that has an input layer,

an output layer and one or more hidden layers.

neuron

A simple computational unit that performs a

weighted sum on incoming signals, adds a

threshold or bias term to this value to yield a net

input, and maps this last value through an

activation function to compute its own activation.

Some neurons, such as those found in feedback or

Hopfield networks, will retain a portion of their

previous activation.

output neuron
A neuron within a neural network whose outputs

are the result of the network.

training set

A neural network is trained using a training set. A

training set comprises information about the

problem to be solved as input stimuli. In some

computing systems the training set is called the

"facts" file.

https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Library_(computing)
https://en.wikipedia.org/wiki/Library_(computing)
https://en.wikipedia.org/wiki/Dataflow_programming
https://en.wikipedia.org/wiki/Differentiable_programming
https://deepai.org/machine-learning-glossary-and-terms/neuron

Page 12 Report

weight

In a neural network, the strength of a synapse (or

connection) between two neurons. Weights may be

positive (excitatory) or negative (inhibitory). The

thresholds of a neuron are also considered

weights, since they undergo adaptation by a

learning algorithm.

Timestamp
Localization in time of a lesion (For example,

03:22:21) (Hour, minutes, seconds)

[7]

Table 1 Glossary of statistical terms about result analysis [14]

A deep learning approach for the detection of intestinal lesions using endoscopic capsules Pàg. 13

3. Preface

 Origin of the project

A medical group of Hospital del Mar led by Dr. Marco Antonio Álvarez is currently manually

reviewing videos of the digestive tract. They are assisted with a simple color-detect software

to diagnose AD lesions. There is an urge to attempt to automate this process improving the

detection rate. A relevant part of the project is feasible today and not before due to advances

in machine learning, processing power, such as Google server’s public availability. The

theoretical basis of this project comes from the creation of convolutional networks for image

detection, miming the section in the visual cortex of the brain that is responsible for visual

processing [4].

A first project has already been realized about this topic, using classic machine leaning [5].

This project consisted in segmentation of the images, and then attribute extraction and

classification with a supervised classifier. In our case, we have used a novel strategy: deep

learning. [6]. One important topic about deep learning versus classical machine learning is that

depending on the architecture chosen and the training, it can be better or worse than the

traditional with segmentation and attribute extraction.

 Motivation

The motivation is to achieve an added value to the sanitary system to free resources and

speed-up processes, and therefore maybe save lives. A team of one senior medical doctor

and two interims have been creating the annotations that have made possible this project.

Pág. 14 Memoria

 Prerequisites

The main prerequisite of this project or a continuation of it consists in:

3.3.1. Raw video data

Raw video data from capsules going through the digestive tract. In our case we had 35GB of

this data, providing us with a limited amount of AD lesion pictures and a great amount of

“healthy” pictures.

3.3.2. Excel template

Excel template containing the parameters to be able to extract the lesions. The template can

be found in section 13.1.

A deep learning approach for the detection of intestinal lesions using endoscopic capsules Page 15

4. Introduction

Medicine has always embraced new technologies to deliver powerful results, such as Electro-

magnetic resonance to revolutionize traumatology diagnostics, ultrasound technologies to

eliminate specific cumulus in the organism, or also drug-delivery systems using nanoscale

materials to bring compounds where they are needed, just to name a few. [8] In this work we

present a small step forward on a specific topic.

 Project objective

The objective of this project is to parameterize a set of deep learning and classification

methods using python to be able to differentiate an AD lesion from healthy tissue, based on

the samples extracted from raw gastrointestinal videos for training and for testing.

Page 16 Report

 Project pipeline

We will be starting our project pipeline from a raw video of an endoscopic capsule and an excel

sheet with times of the lesion (time is also hardcore written in the video and the time of the

video is not continuous, which has increased the difficulty of the pre-processing.

The pipeline is described below:

Preprocess to gather useful data:

1- Invent a routine that looks for the lesions that experts have identified in the videos and

takes a picture of it. The complexity is high because aside from performing several

snapshots depending on the expert write-downs, it “looks” for written data on each

picture.

2- Invent another routine to gather pictures without lesion. This is done by searching

timestamps through normal distribution, considering possible conflicts with lesions, and

possible duplicates.

3- Then, a pre-process routine has been developed to delete the time written in the image

and take out some letters referring to parameters. This is deeply important to help the

AI to focus on the picture and for optimization purposes.

Machine learning and classification:

4- After gathering and pre-processing the data, we have tried several machine learning

setups that will be detailed. We used a VGG16 network pretrained on ImageNet to use

its attributes to perform transfer learning into a support vector machine. We also

checked what the AI was “looking at” to take the decision.

A deep learning approach for the detection of intestinal lesions using endoscopic capsules Page 17

 Project scope

The limits of the project are simple and are defined in a pipelined shape, in Figure 1. Upstream

we have the raw data we have introduced and downstream the results and metrics from our

work. Details on formats, the structure of the data, and several subsequent details will be

defined later.

Figure 1 Project scope representation

RAW DATA:

62 patients with each:

· One Gastrointestinal .mpg
video

·One Excel template with
lesions (.xlsx)

PROJECT

PROJECT OUTPUTS:

·Several metrics

· Failed aproaches

·Proposal of next septs

Page 18 Report

 Hardware specifications

To develop this project, we have used Google Colab servers and environment [10]. The

operating system is Linux and the Colab instances are in Python 3.6. You will find the detailed

specifications in the Table 2 below.

 Environment in

TPU

Environment in

GPU

Environment

without GPU nor

TPU

RAM 35,5 GB DDR4 35,5 GB DDR4 35,5 GB DDR4

CPU Intel(R) Xeon(R)

CPU @ 2.20GHz

Intel(R) Xeon(R)

CPU @ 2.20GHz

Intel(R) Xeon(R)

CPU @ 2.20GHz

TPU
Variable upon need.

Up to
(64 GiB)

- -

GPU - NVIDIA Tesla P100-

PCIE-16GB

-

STORAGE
100GB 100GB 100GB

OS
Linux-x86_64 Colab Linux-x86_64 Colab Linux-x86_64 Colab

Table 2 Hardware detailed specifications

A deep learning approach for the detection of intestinal lesions using endoscopic capsules Page 19

5. Raw Data extraction

In this section, we will be technically detailing the original structure of the data and all steps

taken to pre-process it, for it to be ready for the Machine learning phase of the project.

 Raw data structure

5.1.1. General structure

The data is gathered in a directory named “Videosplantilla” which contains 32.6 GB

(35,012,957,629 bytes) of data. It could also be done with n folders with n from 1 to infinite,

given enough hardware support.

Figure 2 Data structure of the raw data

General folder:

/Videosplantilla

32.6GB

Folder name with Patient id:

/3424243

Video name with patient id:

3424243.mpg

aprox 600 MB per video

Excel name with patient id +
date as DDMMYYYY

342424306072018.xlsx

aprox 10 KB per excel

Folder name with Patient id:

/1929291

Video name with patient id:

1929291.mpg

aprox 600 MB per video

Excel name with patient id +
date as DDMMYYYY

192929106072018.xlsx

aprox 10 KB per excel

....62 more folders....

Video name with patient id

aprox 600 MB per video

Excel name with patient id +
date as DDMMYYYY

aprox 10 KB per excel

Page 20 Report

Figure 3 Snapshot of the folders defining each patient

Figure 4 Snapshot of a folder belonging to a patient

A deep learning approach for the detection of intestinal lesions using endoscopic capsules Page 21

5.1.2. Raw video origin

As synthetized, the raw video comes from an endoscopy capsule as shown below in Figure 5.

Figure 5 Illustration of an endoscopic capsule. [9]

This capsule has several subroutines that optimize the video recording with minimum

resources.

For example, the camera stops saving an image if the camera gets temporarily stuck and the

image is the same. This feature is interesting to save battery life. Nevertheless, this results in

the complication that the video time is not real-time, but rather just an arbitrary time resulting

from the addition of pictures that are not in a “stuck” situation. The real-time of a frame cannot

be deducted from the time of the video.

Page 22 Report

Due to the impossibility to deduce time from the video itself, the onboard software creates a

black frame from 512x512 up to 576x576 to write down the metadata.

 The example in Figure 6 below shows us an example of the metadata. We can see the date

(06 Feb 18), the camera model (on the bottom), the operating mode (LSR), and finally the

relative time from the beginning of the video (01:00:15) (the format is “HH:MM:SS”). This last

data will be the most important because we will have to compare it to the experts' information

provided in the excel.

Figure 6 Frame of a video taken by an endoscopic capsule, showing AD lesion

A deep learning approach for the detection of intestinal lesions using endoscopic capsules Page 23

5.1.2.1. Frames technical data

In Figure 7 below we can see detailed data. The most interesting info could be the length of

the video, shy more than 47 minutes. This is a good example to understand the economy

settings of the endoscopic capsule because we can see in Figure 6 above that the frame is at

a timestamp of 1 hour. That could be for example minute 30 in the actual video. In 5.2 Image

extraction, we will discuss this fact in depth.

Figure 7 Properties of the video format

5.1.2.2. Audio source

There is no audio source.

Figure 8 Audio properties

Page 24 Report

5.1.2.3. Miscellaneous

Finally, we can see the composition of the video in Figure 9.

Figure 9 Miscellaneous technical properties of the video

A deep learning approach for the detection of intestinal lesions using endoscopic capsules Page 25

5.1.3. Excel

As explained in section 5.1.1 General structure, each patient has one excel and one video.

The excel is a tool used to write down timestamps of anomalies seen by the endoscopist in

the video. Each anomaly is numbered from 1 to x from the top-left corner, as shown in Figure

10 below, and the heather contains the parameters written down by the medical team.

5.1.3.1. Raw excel origin

The filling of this file is done by the medical staff. The technician writes down any findings when

reviewing the video. This is a huge time expenditure.

5.1.3.2. Excel technical details

As introduced, we will define the parameters that can be written in the excel. It will be explained

after, but it is imperative for the functioning of the software, that the inputs are exactly as

defined. Any deviations will automatically cause the software to work unproperly (stay in blind

loop, copy images not as expected, return format errors, etc.) If the fields used by our software

are not filled in a specific row number (for example for N=3) , the program will understand that

there are no more lesions for this patient (it will stop iterating at N=2 and then jump to the next

patient).

Figure 10 Heather of the template tool to write down detections

As shown in Figure 10 above, we can see all the parameters that can be written down by the

endoscopist.

Page 26 Report

5.1.3.2.1 Tipo

“Tipo” refers to the kind of lesion we have discovered. The range of this cell value is from 1 to

9 (both included). This can be seen inTable 3 below.

Cell value coding Original meaning in template Translated meaning

1 Lesión roja del consenso “Consensus” red lesion

2 Úlcera Ulcer

3 Erosión Erosion

4 Afta Canker sores

5 (vacio) (emty)

6 Tumor Tumor

7 Pólipo Polyp

8 Sangre roja Red blood

9 Sangre oscura Dark blood

Table 3 Codification of Tipo cell values

We do not consider lesions different that 1 in our project. That is, the software will ignore the

line with Tipo different that one. Tipo must be only an excel integer.

A deep learning approach for the detection of intestinal lesions using endoscopic capsules Page 27

To understand the format needed, you can see the example shown in Figure 11 below, in with

“General” cell mode and typing “1” with the keyboard. If anything is changed, it will probably

not work as expected. For example, adding any decimal or a coma for thousands separation,

will not work. If this field is not completed for the row, the program will understand that there

are no more lesions for this patient.

Figure 11 Excel Tipo example

Page 28 Report

5.1.3.2.2 Tam

“Tam” field represents the size of the lesion found. The range of this value is shown in Table 4

below. We do not take it into account in the software.

Cell value coding Size [mm] Size association

D 1-3 Minuscule

P 3-5 Small

M 5-9 Medium

G >=10 Big

Table 4 Codification of Tam cell values

A deep learning approach for the detection of intestinal lesions using endoscopic capsules Page 29

5.1.3.2.3 LRConsens

“LRConsens” is filled only if the “Tipo” field is at value of 1 (That is, if we have “Lesión roja del

consenso”). As introduced in 4.3 Project scope, the scope of our project consists in analyzing

the “Tipo1” lesions of Angiodisplasia (AD).

Cell value coding Association

AD Angiodisplasia

EP Erithematous patch

RS Red spot

 PB Phlebectasia

Table 5 Codification of LRConsens cell values

Tipo must be only written text in excel. To understand the format needed, you can see the

example shown in Figure 12 below. . The cell is in “General” mode and we type “AD” (without

brackets) with the keyboard.

Figure 12 Excel LRConsens example

If anything is changed, it will probably not work as expected. For example, adding any sign or

equation, will not work. If this field is not completed for the row, the program will understand

that there are no more lesions for this patient and the code will not work properly.

Page 30 Report

5.1.3.2.4 Loc

“Loc” field represents the position of the lesion in the digestive tract. We do not take it into

account in the software.

Cell value coding Association

D Duodeno

Y Yeyuno

I Ileon

Table 6 Codification of Loc cell values

5.1.3.2.5 LocT

This field represents the localization in time shown in the video, referred to as a timestamp

from now on. The format of this cell is in excel DateTime and has been manually filled. This

parameter is key for the project and will be later processed into python DateTime. We can see

in Figure 13 below in yellow, what the operator sees. The operator is watching the video and

when he sees a lesion, he identifies the time in the “LocT” field.

A deep learning approach for the detection of intestinal lesions using endoscopic capsules Page 31

Figure 13 Frame of a video taken by an endoscopic capsule, showing AD

lesion

It is very important to write down time values that are between the beginning of the video and

the end of the video. If a time value is outside that range, the program will not work properly.

Moreover, “LocT” must be exactly written as described in Figure 14 below. If anything is

changed, it will not work as expected. For example, adding any decimal or a coma for thousand

separation or changing the cell type, will result in malfunctioning. If this field is not completed

for the row, the program will understand that there are no more lesions for this patient and will

even go to error if only some columns are filled and others not.

Page 32 Report

Figure 14 Format for LocT (areas highlighted in yellow)

5.1.3.2.6 Sang

This is a binary filed to define the presence or absence of blood as defined in Table 7 below.

We do not take it into account in the software.

Cell value coding Association

0 Abscense of blood

1 Presence of blood

A deep learning approach for the detection of intestinal lesions using endoscopic capsules Page 33

Table 7 Codification of Sang cell values

5.1.3.2.7 Potencial

This is a filed currently in revision. We do not take it into account in the software.

5.1.3.2.8 Endos

This cell defines wether the endoscopist has detected or not the lesion, as defined in Table 8

below.

Cell value coding Association

0 Not seen by endoscopist

1 Seen by endoscopist

Table 8 Codification of LRConsens cell values

Page 34 Report

5.1.3.2.9 FrameE

“FrameE” is the number of positive frames detected by the endoscopist. This parameter has

high importance in the pre-processing phase because the software will collect as many

different frames as the endoscopist has written down. This number is an integer.

5.1.3.2.10 TiempoID

This is the time of exploration in the small intestine. We do not take it into account in the

software.

5.1.3.2.11 SBI

This is a binary field whether the lesion has been detected by an existing commercial software

named SBI. We do not take it into account in the software.

Cell value coding Association

0 Not detected by SBI

1 Detected by SBI

Table 9 Codification of SBI cell values

A deep learning approach for the detection of intestinal lesions using endoscopic capsules Page 35

5.1.3.2.12 FrameSBI

The number of frames detected by the commercial software (It is named FrameSBI but can

contain frames from QV software). We do not take it into account in the software.

5.1.3.2.13 NFPSBI

The number of false positives of the SBI or QV software. We do not take it into account in the

software.

5.1.3.2.14 Observations

There are minor inconsistencies between the template and the filled data, but only referring to

existing software for detection that is out of the scope of the project. Accordingly, those minor

differences do not affect the relevancy and accuracy of the data provided.

Page 36 Report

 Image extraction from video

This section will technically define and guide the steps to perform the image extraction of the

relevant frames of the video. As you can see in Figure 15 below, we are in the first step of our

project.

Figure 15 High level pipeline of the project

5.2.1. Code for image extraction

Note: All the code is documented in GitHub and the annex. You can find it in 13 ANNEX

and for the following code, at:

https://github.com/raulbenitez/deep_endoscopy/blob/master/Code_for_image_extractionipyn

b.ipynb r

The objective of this code is to Create a .jpeg database of the frames responsible for the

health deficiency and a database of non-deficiencies from the same patient, taken randomly

and in a balanced number. The input is the folder path of the main folder defined in 5.1.1

General structure, and the output can be described as every relevant picture signaled by the

medical experts.

Hereunder we will define the two key functions that execute this task: Image_extraction and

find_image.

Image extraction

·extract lesions

·extract healthy frames

Image_preprocessing

cropping

·removing text

·Setting data structure

Machine Learning

·model selection

·interpretability

·results

https://github.com/raulbenitez/deep_endoscopy/blob/master/Code_for_image_extractionipynb.ipynb
https://github.com/raulbenitez/deep_endoscopy/blob/master/Code_for_image_extractionipynb.ipynb

A deep learning approach for the detection of intestinal lesions using endoscopic capsules Page 37

5.2.1.1. Function Image_extraction

The function is written in annex 13 ANNEX, specifically 13.2, with extensive comments.

Image_Extraction is the main function for the extraction, and it subsequently calls the secondary

function find_image. It has as sole input the main directory with all the patient folders as described

in 5.1.1 General structure. You can see the call below.

In [0]:

general_patients_folder='/content/sample_data/Videosplantilla'

Image_Extraction(general_patients_folder)

It first performs a walk of every patient folder.

For every folder, it walks through its files and checks whether the filename read is an excel.

When the software finds the excel from that patient, we are ready to extract the data that we

will be needing. It saves the excel data in a “pandas” instance into the RAM, to be able to work

with it easily. Pandas is a utility that can read excels and operate with the data in a matrix

shape, that supports indexing and high-level operations (like cell-wise multiplying).

Although all the info from the excel is extracted, we will only use a few of the information. For

every info we gather, we will create a verbal-friendly variable that represents the important

value we are extracting. The delay on the code is acceptable given that we had only 80

patients. We then create the following variables from the important data of the patient:

Timestamps: It is a pandas column with the timestamps of the lesions

Timestamps_tipo: creates a panda’s column of Booleans that are "True" if we have Type 1

lesions, the scope of our project. Otherwise, the field is “False”. If the field isn’t filled, we will

probably have an execution error at this step.

Tipo_lesion: creates a pandas column of the type of the lesion, it is used for naming pictures

once we have extracted them.

frames_detected: This variable contains a pandas column with the number of frames to take

for every lesion. As sometimes this number is in the field FramesTotales and sometimes it is

in FramesE, we will have the code check both and take the one that is filled. If both are filled,

we will take the FramesTotales values.

Page 38 Report

Nevertheless, we are interested in having the “Tipo 1” lesions counted, not anything else.

Therefore, we execute the multiplication of Timestamps_tipo with frames_detected. We then

convert this result to a list to avoid errors.

Now that we have all we wanted from the excel file, we only need to find the video and then

retrieve the images we need.

We walk again the files of the patient, to find this time the .mpg video file. Once we have it, we

are ready to take as many pictures as the metadata in the excel tells us to. We will open a

while condition, in which we will check that we are still in the index of the lesions. Each cycle,

the i variable will be added 1, to symbolize the next lesion. Starting with i=1 (pandas has the

first index as 1, and lists have first index 0, therefore you will see in some cases a -1 subtraction

in the index). With i=1, we will be retrieving the images corresponding to the first lesion. We

will assume it is type 1, otherwise, the program would pass, because of the condition just under

the while (that compares the number of images to take, that would be 0 in case of a different

kind of lesion).

If we have, for example, a Type 1 lesion with FramesE=12 and Tipo_lesion= “AD”, we will need

to retrieve 12 frames of the lesion, and 12 random healthy frames from that same patient. We

will first save the 12 frames of the lesion, calling find_image. Once we are done, we will call

again find_image on “random” mode, to take the 12 random healthy frames. The technical

details of the operation of find_image will be explained in section 5.2.1.2 Function find_image

below.

We will now finish describing our primary Image_extraction function. Once find_image has

been executed for this lesion and again for the healthy pictures, we will simply add +1 to our

lesion index variable i, and then continue with the next lesion written down by the medical staff.

Once we are finished for this patient, all walk functions end their indexed steps, except the first

one that looks for patient folders. Then, the cycle is repeated.

For every folder, it first consults the excel file to retrieve how many pictures of which lesion

should we extract, and then calls our first function find_image every time it needs an image of a

lesion or an image of healthy tissue.

A deep learning approach for the detection of intestinal lesions using endoscopic capsules Page 39

5.2.1.2. Function find_image

Find_image is a function that seeks timestamps in a video. When it detects one, it saves the picture

matching the timestamp and the subsequent next frames to a new folder in the folder of the

patient.

A calling of this function could be the one below

def find_image(video_file, full_path, lesion_time, Tipo_lesion, frames_detected, random_frames,

k, rand_if_true)

written1=find_image(video_path, full_path, Timestamps,Tipo_lesion.tolist(),frames_detected.tol

ist()[i-1],0,i,False)#for debugging, Timestamps[i],Tipo_lesion[i], i)

video_file contains the name of the video file

full_path contains the full path of the mpg video

lesion_time is the time of a Timestamp. The main function has a pandas

column containing them, and each time the function is called it takes one of them using index

i-1

Tipo_lesion is the kind of lesion, from "Tipo" in the template

frames_detected is the number of frames detected by the endoscopist in case we are seeking

lesions

random_frames is only used when the function is in “finding randoms” mode, (see last variable

“rand_if_true”). This variable exists because we need to specify the number of random frames

the program must take in case it has to take random frames. We made it different from

frames_detected, to be able to take as many healthy images as we want because we have a

huge pool on which to take them.

K is the index i (which lesion are we analyzing in the excel of the patient)

rand_if_true is a Boolean to activate the finding of lesions(False) or finding of random healthy

images (True)

To recap our current situation and continue our example (a Type 1 lesion with FramesE=12 and

Tipo_lesion= “AD”,) we will now need to call this function twice. Once in lesion mode, to find the

lesion and save that image and the next 11 frames, and then call it again to find 12 random healthy

Page 40 Report

images that do not match any lesion of this patient, according to medical expert data in the excel.

The function starts with two auxiliary operations. We have a huge handicap related to the location

in the timeline of the video. Because this camera software stops video recording when not

advancing the digestive tract, we don’t know at which time the video will start or will finish, or what

will be the duration of it, in seconds of video neither in real hours. We will need to retrieve some of

this information, to use it in the following lines.

To tackle this issue, we will find which hour, minutes, and seconds define the beginning and the

end of the video. For this function to work, the raw excel data must make sense (for example, that

the lesion is inside the video!) If we input a lesion happening at 23:19:12 when the video starts at

00:21:12 and ends at 08:22:12, the code will not work.

To open the video file, we will create a video object instance, which comes from cv2, specifically

the VideoCapture library. The sole input is the video path. Additionally, we have found that 3 of the

videos are corrupted and cannot be opened by VideoCapture nor standard video software. In those

cases, the program will not run properly.

 Once we have it, we will set the video at the end to take the last picture, using the “set” attribute.

We will then read the image of the end and store it in the RAM with the variable “image”. Let’s say

our video has the last time at 01:00:15, then the picture we will have will be Figure 16 below, in a

NumPy array format and shape as (572,572,3).

Figure 16 Frame of a video that could be the last frame of the video

As we can see, we will need to write in RAM the time HH:MM:SS written in the yellow circle we

A deep learning approach for the detection of intestinal lesions using endoscopic capsules Page 41

have drawn to illustrate. We will be doing that by first cropping the image to take only the zone

emphasized in yellow. Then, we will run an optical character recognition software named

Pytesseract that we will have previously installed in our machine with the following commands (in

case of Colab):

In [1]:

!sudo apt install tesseract-ocr

!pip install pytesseract

Which gives us the following execution in Figure 17:

Figure 17 First two lines of the code in Google Colab

Finally, we get the following output:

Successfully installed pytesseract-0.3.4

Hereunder, we write down the libraries used for this process and a brief description of their

need or what they are used for.

In [0]:

import pytesseract#This is image recognition software that we will use to

"read" the time of a picture while we go through them all.

import shutil #This offers a number of high-level operations on files and

collections of files

import os #This offers a number of operations for file management

import random #This directory will be used to generate random data for au

xiliary purposes

from PIL import Image #This directory will be used to manage pictures an

d to visualize them.

import numpy as np #mathematical matrix utilities used for holding pictur

es in (576, 576,3) shape

import cv2 #Directory for file management

import pandas as pd #Directroy for extraction of excell data

import time # Directory to manage time data

import math #Directory to use mathematical functions

Page 42 Report

from pytesseract import image_to_string #This OCR function converts an im

age to a string of the OCR characters detected. It will be used to read t

he date of every picture

import datetime #Format to operate the data colected from excel sheet and

from the OCR recognition.

import matplotlib.pyplot as plt #Plotting library

i=0#initialization of counter

Once we have read the written numbers, the OCR software stores them in a text format, in this

case, a string like “HH:MM:SS”.

We then convert it to DateTime type with a function that converts a string to a DateTime object.

Now that we have the DateTime object of the last frame, we will do the same to take the first frame,

setting the video object to the beginning.

Once we have both ends, we are ready to start looking for lesions. We will start a while instance

that will help us to walk frame by frame the video and read with OCR code in real-time. Just under

the while, we have the key condition of the function. It states that if the read DateTime is equal or

greater than the lesion time written down by the medical staff, we will start to save that picture to

the DISK. Nevertheless, let’s ignore this while and come back to it later.

In the first instances of the while loop, the code is likely not going to enter this condition, because it

will be far from the lesion. Let’s say that our lesion is at 00:34:02 and we start at 00:12:01. We can

see that each while loop contains a read() instance of the video object. This read instance takes

the next frame and writes it in the variable image.

Then again, as we did before, we crop the image and we extract the DateTime with OCR software.

One additional safety we have here is that one out of tens of thousands reads, the OCR software

fails in a specific frame, in that case, the safety we added is to keep trying to read it for the next

frame, and it always has solved the issue.

In this loop, to safely accelerate the process, we have stated two while conditions that avoid using

OCR for some frames if we are safely far from the video. This is useful because OCR is very time

expensive. Once the OCR detects an image matching the lesion, the condition we introduced

before is filled, and we start to execute the following steps of the conditional instance. Now, just to

recap, we have found an image that is the same time that the operator wrote in the excel. What we

need to do is to save as many frames as he specified.

A deep learning approach for the detection of intestinal lesions using endoscopic capsules Page 43

We control how many different frames we will be taking using a simple index and a while with the

condition of having the index smaller than the frames needed. We then read images and compare

them with previous images to see if it is the same image. If it is a new genuine frame, it is written in

a folder. The name of the file contains the ID of the patient, the lesion time, and then the time in

seconds of the lesion, and finally an index of the frame number of that lesion.

Filename: patient_78721tipo1lesion_EPtime_in_secplus_frame_last2digits100144200.jpg

Code:

cv2.imwrite("patient_" + str(patient_folder) +'tipo'+'1'+'lesion_' +str(Tipo_lesion[k-

1])+'time_in_sec'+'plus_frame_last2digits'+ '%d.jpg' % (((lesion_time[k].hour * 60 + lesion_ti

me[k].minute) * 60 + lesion_time[k].second)*100 + j*100) , image_raw)#writes the image

Interpretation of the ending code of the filename:

The first digits are the number of the frame and the following ones are the lesion time in seconds.

It is easy to spot because the folder will have the same time in seconds. Thus, it is easy to

differentiate the number of the frame.

Once we copied to the disk all the frames of this lesion, we will continue to execute

Image_extraction and this time we will be calling find_image in random mode, to save to the disk

some random images.

To launch it, we specify rand_if_true=True and state the number of random images to take. We

also specify the number of frames in this lesion, to have a balanced set at the end. The function

then jumps to the random mode and first creates a directory to save all the frames. There is a very

small probability to take 2 times the same healthy frame, we assume this case and we foresee that

it will not be significative, given the number of pictures to take vs the number of frames available.

We start by finding the first and last times of the video, identically as in lesion mode. Once we have

them, we create a proposal of a normal randomized distribution returning as many timestamps as

needed. We will be analyzing if this proposal is indeed inside the video and also that is safely far

from any lesion. Once we have checked that, we have obtained a verified set of random timestamps

perfect to seek.

We walk the list of random timestamps and when we find each one we proceed to save the image

Page 44 Report

to the folder we created. The function finishes once we have walked all the proposed random

images. We also added safety in case of a rare false read by the OCR software and also added

speeding of the function if we are far from the timestamps (that is, avoiding using OCR for some

iterations).

As we discussed, the pipeline is that the Image_Extraction function calls find_image for each

lesion of each patient. Processing time could be several hours, for example between 6 and 50

hours depending on specifications.

The input we give is:

general_patients_folder='/content/sample_data/Videosplantilla'

Image_Extraction(general_patients_folder)

And then we can see an instance of the output while running in Figure 18 below.

Figure 18 Running Image_Extraction

A manual review of this output has been done to remove very few false pictures between good

ones. This is due to the imprecision that the medical staff sometimes do. The mistake consists

on creating only one timestamp where the preferent approach would have been to create more

timestamps with less duration. The typical example is the case where we have 10 frames in a

row, but the first 6 have lesion, the 7th has no lesion and the 8th, 9th and 10th have lesion. In this

case, the right way to annotate would be to create one first timestamp of 7 frames and another

of 3 frames. Instead, we see sometimes one only timestamp with10 frames.

A deep learning approach for the detection of intestinal lesions using endoscopic capsules Page 45

6. Image pre-processing

We now have extracted images such as the one shown below and we are going to tackle

Image pre-processing. It is key to have a good basis for our deep learning operations. The

following image visible in Figure 22 below has some serious training flaws that must be solved.

Figure 19 Image from the output with a lesion

The main flaws can be found if we think about what can distract the machine learning

algorithms. The first flaw would be to show the hours minutes and seconds to the artificial

intelligence, because it could easily associate this date with lesions, rather than the lesions

themselves. For example, imagine that ¾ of the lesions happen in the last 20 minutes of video,

due to biological reasons. Then the AI would take that into account, and we would have a hard

distortion.

A similar deduction can be inferred for the date, and the mode, in this case, “RMM”. Finally,

the name of the camera wouldn’t probably affect if they are all the same, but we will erase it in

case we share pictures with other cameras. Plus, reducing the size/shape of the image is an

useful optimization of resources.

6.1.1. Update of General structure

Once we have the healthy images and the ones with the lesion, we will need to re-organize

Page 46 Report

them to be pre-processed. First, we re-organize them as in Figure 20 below searching by the

image in the explorer and filtering by “lesion” for the ones with the lesion or “random” for healthy

ones.

Figure 20 Data structure of the extracted data

6.1.2. Images technical data

In Figure 21 and Figure 22 below we can see detailed data. We currently have a (576,576)

RGB image.

Figure 21 Properties of the image

General folder:

/CNN_data

82mb

Folder name with
Healthy class:

/Healthy

images that are
Healthy (572x572)

1329 images

Folder name with
Lesion class:

/Lesion

images that have a
lesion (572x572)

507 images

A deep learning approach for the detection of intestinal lesions using endoscopic capsules Page 47

Figure 22 Properties of the File

6.1.3. Code for image pre-processing

Once we have the data organized, we will manage to perform the pre-processing we discussed

in the beginning of the section.

The code snippets that will be discussed are integrally hereunder and in Github at:

https://github.com/raulbenitez/deep_endoscopy/blob/master/Image_pre_processing.ipynb

We first import the utilities already seen and start with the Lesion folder (We will later-on change

the path to the healthy folder and execute again the process to those other pictures)

import os

import cv2

import random

path= r'/CNN_data/Lesion'

(Optional step) We rename the files for easy use:

for file in os.listdir(path):

 if file.endswith('jpg'):

 a=str(int(random.random()*10000))

 os.rename(path+ '/'+ file , path+ '/' + a + '.jpg')

https://github.com/raulbenitez/deep_endoscopy/blob/master/Image_pre_processing.ipynb

Page 48 Report

We then crop the image from (572,572) to (512,512). This will eliminate the date, time, and

brand:

for file in os.listdir(path):

 #%debug

 if file.endswith('jpg'):

 img=cv2.imread(path+ '/' + file)

 left2=32

 right2=544

 top2=32

 bottom2=544

 img=img[top2:bottom2,left2:right2,:]

 image=img.copy()

 cv2.imwrite(path+'/'+ file,image)

Now we have a good crop that we can visualize in Figure 23 below.

Figure 23 Cropped image that still has some letters

Nevertheless, some letters remain, thus the execution of the following steps. We put a black

A deep learning approach for the detection of intestinal lesions using endoscopic capsules Page 49

stripe on the letters leftover and also the small white pixel on the top-right corner:

for file in os.listdir(path):

 #%debug

 if file.endswith('jpg'):

 img=cv2.imread(path+ '/' + file)

 left2=32

 right2=544

 top2=32

 bottom2=544

 img[0:50,0:50,:]=np.full((50,50,3),0)

 img[0:57,455:512,:]=np.full((57,57,3),0)

 cv2.imwrite(path+'/'+ file,img)

After this, we finally have a clear picture of our neural network infeed. We can see this output

in Figure 24 below.

Figure 24 Image of a lesion totally cropped and cleared of text

Page 50 Report

7. Deep learning processing

Thanks to the medical staff for the confection of the video, and the first part of this project for

the extraction and pre-processing of the data, we are about to use it in machine learning.

 Introduction to the processing

7.1.1. Final data structure

Once we have the healthy images and the ones with lesion pre-processed, we have the final

organization is shown in Figure 20Figure 25 below.

Figure 25 Data structure of the final pre-processed data

7.1.2. Images technical data

In Figure 26 and Figure 27 below we can see the final data technical details. We currently

have a (512,512) RGB image. We see that the crop has also optimized the size and that will

beneficial to the learning algorithms.

General folder:

/CNN_data

76mb

Folder name with
Healthy class:

/Healthy

images that are
Healthy (512x512)

1329 images

Folder name with
Lesion class:

/Lesion

images that have a
lesion (512x512)

507 images

A deep learning approach for the detection of intestinal lesions using endoscopic capsules Page 51

Figure 26 Properties of the image

Figure 27 Properties of the File

7.1.3. Strategy

A very important aspect of this project is the strategy to approach the problem from wide angles

to compare the results. Because there is no assurance that one strategy will be better than

another, we have tried with few strategies that we thought could apply to our problem but there

could be others. In this chapter, we will present the machine learning models used, but also

transfer learning strategies and verification mechanisms used.

Page 52 Report

 MNIST model with training

We will try a model thought for classifying the MNIST database. The MNIST database contains

60,000 training images and 10,000 testing images from integer digits from 0 to 9. We will use

the model proposed to see if it can adapt to our pictures. This kind of model is not very “deep”

as the following models we will be discussing. All the code is available in ANNEX 13.4 ant at :

https://github.com/raulbenitez/deep_endoscopy/blob/master/Code_of_MNIST_model_with_tr

aining.ipynb

7.2.1. Model structure

The machine learning model, which you can see in Figure 28 below. It consists of 7 layers of

image-adapted machine learning. We are using a premade model which has been performing

the digit recognition. This model is well known and can be consulted anytime in the GitHub

link.

https://github.com/raulbenitez/deep_endoscopy/blob/master/Code_of_MNIST_model_with_training.ipynb
https://github.com/raulbenitez/deep_endoscopy/blob/master/Code_of_MNIST_model_with_training.ipynb

A deep learning approach for the detection of intestinal lesions using endoscopic capsules Page 53

Figure 28 Model layers and tensor shapes

7.2.2. Training

We use for training the images present in 7.1.1 Final data structure. We split all our samples

in 10% for verification and the rest for training, and we can see their values in the Table 1Table

Page 54 Report

10below.

 Lesion images Healthy images

Training 447 1334

Validation 50 148

Table 10 Data split

We are going to import the data through a data generator instance. Although this instance

would allow us to perform data augmentation, we are going to use it solely to load from the

directory of our pictures.

A deep learning approach for the detection of intestinal lesions using endoscopic capsules Page 55

7.2.3. Results

The results were not satisfactory. As we can see in Figure 29 below, the training overfitted with

training data (accuracy=1 at epoch 118), and the validation stabilized at 75% well before the

accuracy of the training data went up. That is, the training has been “useless” from epoch 20.

Figure 29 Accuracy evolution through the epochs

The main proposal for behavior is that the model is somewhat superficial and also looks for

big parts of the image. Our images are made of very small and subtle textures, which would

be both difficult to deduce with a model with few layers, and also for a model with such low

resolution.

We think that in some cases, very big lesions can be detected and rightfully categorized with

this network. Finally, this model has no use because 75% accuracy on a binary chance (50%)

of being right is not acceptable for the purposes we are looking for.

Page 56 Report

 VGG16 pre-trained with feature extraction and classifier

7.3.1. Model introduction

The VGG16 is a model conceived for large-scale image recognition. It has been trained with a

dataset of over 14 million images belonging to 1000 classes, from the ImageNet image

database. We show a sample of this dataset in Figure 30 below. VGG16 was trained for weeks

using NVIDIA Titan Black GPU’s, and the model achieves 92.7% top-5 test accuracy in

ImageNet. [11]

Figure 30 Sample of ImageNet images [12]

A deep learning approach for the detection of intestinal lesions using endoscopic capsules Page 57

In this case, we are attempting to perform Transfer Learning in our pipeline. Transfer learning

is the methodology that focuses on storing knowledge gained while solving one problem and

applying it to a different but related problem. [13].

In our case, the knowledge gained while learning to recognize those 1000 classes from

ImageNet could apply when trying to recognize lesions and healthy pictures.

Although cars and flowers have little in common with gastroenteric lesions from a logical point

of view, they share common textures, shadows, colors, and edges. It is additionally relevant to

use this technology in case we have a small set of data.

First, we will use this pre-trained image model to extract the features detected by the model

for the training and validation sets. Once we have the features, we will train a classifier to

classify the features between the healthy and the ones with a lesion.

The classifier will be in this case a support vector machine. The theory behind this software

consists in a technique to solve a problem when it is not separable, called “kernel trick”. When

a dataset is not separable in two planes (for example the left figure in

Figure 31 below), we may use a support vector machine to create an additional dimension to

make our problem separable (the right figure in

Figure 31 below).

Figure 31 Visualization of an example of kernel trick. [16]

Page 58 Report

Separable is defined as being able to separate two datasets in a n-dimensional plane. Once

we found the separability, we compute the result backwards to refer to the original data. The

variables of the SVM we will use are there to fine-tune some aspects while performing this

task. Such as ignoring one off value very far from the other values, and other statistical factors.

[16]

In our case healthy frames and lesions make it hard to imagine what the kernel trick will look

like. We have arrays of pictures and arrays of features, but the theory is the same. It is one of

the best strategies for classification.

After introducing the “kernel trick”, we will discuss the whole setup. The process pipeline will

begin with a VGG16 network pre-trained on images from ImageNet. The VGG-16 will have the

structure described in Figure 32 and Figure 33 below.

A deep learning approach for the detection of intestinal lesions using endoscopic capsules Page 59

Figure 32 Layers of VGG-16 (1 of 2)

Page 60 Report

Figure 33 Layers of VGG-16 (2 of 2)

A deep learning approach for the detection of intestinal lesions using endoscopic capsules Page 61

7.3.2. Training

In this section, we will go through the code creating this training. This code is available at:

https://github.com/raulbenitez/deep_endoscopy/blob/master/VGG_Pre_trained_on_imagenet

_with_SVC_classification.ipynb

We will avoid writing here the inputs, but they are available and commented in section 13.5 in

the annex and the GitHub link provided.

First, we are going to import the data through a data generator instance. Although this instance

would allow us to perform data augmentation, we are going to use it solely to load from the

directory of our pictures. The pictures are organized as shown in 7.1.1 Final data structure

above.

Thanks to this utility, we will have all the pictures and their classification in x and y NumPy

vectors respectively.

Then, we will use a split utility to split between train and test data. We choose for this application

a 40% of test data, to have:

 Lesion images Healthy images

Training 299 892

Validation 198 591

Table 11 Data split

After that, we will convert the class vectors to an array of integers, for example, shape (789,)

for the validation vector.

Then, we will load the standard VGG model without including the top, pre-trained on imagenet,

and, with an average pooling and the input shape defined as (512,512,3). The model can be

seen in Figure 32 and Figure 33 above.

The fact of setting the input shape as such is the creation of this first input layer, which can be

seen as input_6 in Figure 32 above.

Additionally, the setting of the average pooling creates an output of features (512 features per

image) which can be seen at the bottom of Figure 33 above.

https://github.com/raulbenitez/deep_endoscopy/blob/master/VGG_Pre_trained_on_imagenet_with_SVC_classification.ipynb
https://github.com/raulbenitez/deep_endoscopy/blob/master/VGG_Pre_trained_on_imagenet_with_SVC_classification.ipynb

Page 62 Report

Now comes the key part of transfer learning. We are going to take these 512 features per

image and feed them to a classifier, to optimize the sorting for lesions and healthy pictures.

We will now use a C-Support Vector Classification software. [15] This software will be trained

to classify the features extracted and associate them with lesions or healthy classes. At the

same time, we will optimize the value of algebraic parameters in this classifier with a utility

software named GridSearchCV. For illustrative purposes, one of these algebraic parameters

would be how far from a trend of features is one feature taken into account. Because we cannot

have any direct hint on the parameter settings, we will iterate through vast ranges to find the

best parameters. [16]

Once we have the best parameters for our classifier and we have the test features, we can

task the classifier for its purpose. We may then plot the confusion matrix to see the results, in

the next section.

A deep learning approach for the detection of intestinal lesions using endoscopic capsules Page 63

7.3.3. Results

After executing the code in approximatively 14 minutes in Colab servers in TPU mode, we

achieve the confusion matrix of the test features, in Figure 34 below.

Figure 34 Confusion matrix of the SVC classifier with the test features

In this section, we will discuss the statistical variables are defined in the Glossary page 11. We

are going to define the true positive, true negative, false positive, and false negative values.

Variable Abbreviation Value from the confusion matrix

True

Positives

TP 180

True

Negatives

TN 556

False

Positives

FP 34

False

Negatives

FN 18

Table 12 Confusion matrix results and abbreviations

Subsequently, we can see the several scoring values of our model in Table 13 below.

Page 64 Report

Variable Formula Value

Sensitivity, hit rate, recall, or true

positive rate

TP/(TP+FN)

(Ec. 7.1)
0.91

Specificity or true negative rate

TNR = TN/(TN+FP)

(Ec. 7.2) 0.94

Precision or positive predictive value

TP/(TP+FP)

(Ec. 7.3) 0.84

Negative predictive value

NPV = TN/(TN+FN)

(Ec. 7.4) 0.97

Fall out or false positive rate

FPR = FP/(FP+TN) (Ec. 7.5)

(Ec. 7.6)
0.05

False negative rate

FNR = FN/(TP+FN)

(Ec. 7.7) 0.09

False discovery rate

FDR = FP/(TP+FP)

(Ec. 7.8) 0.15

Overall accuracy

ACC = (TP+TN)/(TP+FP+FN+TN)

(Ec. 7.9) 0.93

Table 13 Final results of the classification of validation data

These results are analyzed as good results given the small data set for training (299 lesion

and 892 healthy images). Nevertheless, the validation set (198 lesions and 591 healthy) is

significant enough to deliver solid results on this data, with an accuracy of 93% and a false

negative rate of 9% (The probability of missing a lesion when the patient is ill). The false

discovery rate (The probability of stating that there is a lesion when there is none) is fairly high

(15%) but it could be assumed although it could undermine cost-effectiveness in the daily

medical operations.

A deep learning approach for the detection of intestinal lesions using endoscopic capsules Page 65

 VGG16 pre-trained with fully connected training

To develop further the analysis of the results, we will define this third model. The objective of

this model is not to create a classifier or the best classifier. The objective is rather to approach

a visual representation of what is the VGG pre-trained on imagenet “looking at”, when we

extracted the features from it. We will do that through software called LIME that began

developing 4 years ago, and now has several applications, one of which is explaining image

decisions. The simplified mechanics of LIME consist in distorting pixels of the image and

classifying them with our model. If we iterate several times with different distortions of the same

image, we can visually see the areas that artificial intelligence has taken into account the most

when making a decision. [18]. We will see this results in section 7.5 Interpretability, after we

have the results from the models.

7.4.1. Model structure

In this auxiliary model, we will use the previous VGG16 model but with a fully connected layer

at the end. The code is available in the ANNEX 13.6 and in the GitHub link below:

https://github.com/raulbenitez/deep_endoscopy/blob/master/Code_of_VGG_pre_trained_wit

h_fully_connected_training.ipynb

First, we will prepare our data as before, and split it in the same proportion as in our run-in

section 7.3 above.

Then, we will import the pre-trained model from ImageNet as we did before. We will not include

any top to have the same as before.

model_vgg16_conv = VGG16(include_top=False,

 weights='imagenet',

 input_tensor=input_layer.Input(shape=(512, 512, 3))

)

After this, we will add 5 layers instead of a classifier. This is due to the compatibility of LIME

with Transfer learning. Although we are changing the final phase of the process, the features

deducted from the VGG16 will remain the same. This fact allows us to compare the outputs of

this model with what parts of the image has the VGG16 detected and returned as features.

For utility purposes, we then create a Flatten and 3 dense layers, which can be visualized in

Figure 35 below in yellow. That way, the output will be whether we detect the lesion or we have

https://github.com/raulbenitez/deep_endoscopy/blob/master/Code_of_VGG_pre_trained_with_fully_connected_training.ipynb
https://github.com/raulbenitez/deep_endoscopy/blob/master/Code_of_VGG_pre_trained_with_fully_connected_training.ipynb

Page 66 Report

a healthy picture.

Figure 35 Auxiliary model for LIME interpretability

A deep learning approach for the detection of intestinal lesions using endoscopic capsules Page 67

After this, we set the VGG16 as not trainable to preserve the original feature detection:

for model in model2.layers[:2]:

 model.trainable=False

And we finally compile and train the model:

model2.compile(optimizer='rmsprop',

 loss='categorical_crossentropy',

 metrics=['binary_accuracy'])

model2.fit(x_train, y_train,

 batch_size=100

 epochs=20,

 validation_data=(x_test, y_test))

After the training, we will use LIME:

explainer = lime_image.LimeImageExplainer()

explanation = explainer.explain_instance(image_for_lime, new_model.pr

edict, top_labels=50, hide_color=0, num_samples=1000)

We load to the explainer instance the image we want to analyze, our model with the predict

attribute, and we set to show us the top 50 labels taken into account. We also state to perform

1000 iterations, and not to hide the remaining image.

Page 68 Report

7.4.2. Results

The training of the model achieves a binary accuracy of 93,4%, very close to the pre-trained

with feature extraction.

In this section, we will again discuss the statistical variables are defined in the Glossary page

11, and output of our model. We are first going to define the true positive, true negative, false

positive, and false negative values.

Variable Abbreviation Value from the confusion matrix

True

Positives

TP 182

True

Negatives

TN 552

False

Positives

FP 32

False

Negatives

FN 22

Table 14 Confusion matrix results and abbreviations for VGG F.C.

Subsequently, we can see the several scoring values of our model in Table 15 below, all

specified in the Glossary page 11.

Variable Formula Value

Sensitivity, hit rate, recall, or true

positive rate

TP/(TP+FN)

(Ec. 7.10)
0.89

Specificity or true negative rate

TNR = TN/(TN+FP)

(Ec. 7.11) 0.94

Precision or positive predictive value

TP/(TP+FP)

(Ec. 7.12) 0.85

Negative predictive value

NPV = TN/(TN+FN)

(Ec. 7.13) 0.96

A deep learning approach for the detection of intestinal lesions using endoscopic capsules Page 69

Fall out or false positive rate

FPR = FP/(FP+TN) (Ec. 7.14)

(Ec. 7.15)
0.05

False negative rate

FNR = FN/(TP+FN)

(Ec. 7.16) 0.10

False discovery rate

FDR = FP/(TP+FP)

(Ec. 7.17) 0.15

Overall accuracy

ACC = (TP+TN)/(TP+FP+FN+TN)

(Ec. 7.18) 0.93

Table 15 Final results of the classification of validation data for VGG F.C.

These results are also analyzed as good results given the small data set for training (299 lesion

and 892 healthy images). Nevertheless, the validation set (198 lesions and 591 healthy) is

significant enough to deliver solid results on this data, with an accuracy of 93% and a false

negative rate of 10%. This behavior is very similar than the previous one. The reason can be

that they both share the same feature extraction. The reason for building this model remains

in being able to technically build some interpretability through LIME analysis.

Page 70 Report

 Interpretability

As introduced before, while analyzing the results from the model VGG with classifier, we

discussed about the opportunity to analyze what the AI would be “looking at” at a feature level.

Therefore, we thought about creating a fully connected layer of the VGG, in order to technically

be able to apply LIME.

After executing the code with an image with a lesion rightfully detected (True Positive), we can

see side by side the lesions that LIME has detected. We have associated zones with visible

lesions with yellow lines, in Figure 36 below.

Figure 36 Original image of a lesion (left) and LIME zones taken into account

(right).

Nonetheless, there are also some images with no evident explanation or complete explanation,

such as Figure 37 below, also rightfully detected as a lesion.

A deep learning approach for the detection of intestinal lesions using endoscopic capsules Page 71

Figure 37 Lime analysis of a lesion (lesion highlighted in yellow)

We can see that LIME has taken in this case the lesion as a part of the decision (in yellow),

but we also see that it has taken several parts of the picture that do not have any interest.

One possible explanation could be the weight of each of those zones in the decision. It is not

the same a zone with a weight of 1% that another of 50%. Yet, with this representation, we are

not able to classify the weight of the zones highlighted, they all appear in green.

Another possible explanation is LIME not being able to consider that you can have one big

lesion, or one small, or several small lesions, or one big and one small, in the same picture.

The model in those cases gives the right answer, but the LIME representation has no particular

analysis.

Furthermore, it could also be overfitting due to a small set of data for certain lesion shape or

shapes.

Page 72 Report

7.5.1. False positive LIME analysis

We have also analyzed false positive pictures (A picture that is healthy but is predicted as

having lesion). We can see eight of them in Figure 38 and Figure 39 below.

Figure 38 False positive LIME representation (1 of 2)

A deep learning approach for the detection of intestinal lesions using endoscopic capsules Page 73

Figure 39 False positive LIME representation (2 of 2)

As we can see, we can hardly explain with LIME the reason for these healthy pictures to be

classified as lesions. The artificial intelligence could seem “lost” by looking at the “beginnings”

of the NumPy arrays. Therefore, we can see no useful conclusion for this category.

7.5.2. False negative LIME analysis

We have subsequently analyzed false negatives pictures (A picture that has a lesion but is
predicted as being healthy).We can see eight of them in Figure 40 and Figure 41 below.

Figure 40 False negative LIME representation (1 of 2)

Page 74 Report

We can see that the lesions taken into a false negative decision have many things in common.

They all are really “hard” to spot. For example, they can have the lesion in the borders of the

picture (The third picture that has the lesion in the bottom, in Figure 41 below). These

phenomena can happen if we have a number of pictures of a lesion in a row appearing in the

video. The first frame or the last can have the lesion on the edge of the picture. We can deduce

it, but it is very hard to spot as we have “half” a lesion. Nevertheless, maybe data augmentation

could solve this problem (but maybe create other drawbacks).

We can also have the case of having the lesion very close to an air bubble, which makes it

look different, for example in the second picture of Figure 40 above.

Figure 41 False negative LIME representation (2 of 2)

A deep learning approach for the detection of intestinal lesions using endoscopic capsules Page 75

Finally, we can look at a final occurrence. We have a case (one in all the set) in Figure 42

below, where the AI has taken into account the lesion, but has probably found many other

parameters against classifying it as a picture with lesion. This case could probably be solved

with more training. It is also nonetheless another proof that the VGG16 can recognize the

texture of a lesion (which we saw in Figure 36 and Figure 37 above), despite having wrongly

decided.

Figure 42 False negative LIME representation

Page 76 Report

8. Conclusions

As conclusions for this master thesis, we can state that we have fulfilled “A deep learning

approach for the detection of intestinal lesions using endoscopic capsules”.

As milestones, we propose to define 2:

On one hand, we have created and tested a tool to extract the pictures from the videos and

prepare them for Artificial intelligence. This scalable tool eases the creation of wide datasets

of endoscopic capsule images with their classification by medical staff.

On the other hand, we have found that the pre-trained model (VGG-16) is very good at

detecting the attributes of a lesion, as it can rightfully classify with an accuracy of 93% the

validation data, and a negative rate of 9% (The probability of missing a lesion when the patient

is ill). We conclude that we can set it up with a fully connected network or a classifier because

we esteem both results are very similar at detecting the lesions, although we have opted for

the classifier.

On top of this, the LIME explanation software has shown us that our model looked at lesions,

but also showed us that we might have some overfitting or distortion, as we can also see parts

of the image taken that are not related to lesions. This might also be due to LIME not able to

consider several sizes and combinations of lesions, although extensive research could be

conducted to dive deep in the topic.

Nevertheless, it is very possible that this model struggles to detect specific types of lesion not

seen before (for example a small lesion and a big lesion in the same picture, or any strange

combination not present in the data). But hopefully, thanks to the first part of this project, we

have a scalable software that can catch any new endoscopy video and use it to continue the

training and “widen” its knowledge.

A deep learning approach for the detection of intestinal lesions using endoscopic capsules Page 77

9. Planning and resources

The Project planning has been consistent with the planning defined by the university

and the hours corresponding to ETCS (This project is a 12 ETCS subject). Therefore, we are

looking at a dedication of 25-35 hours per credit.

Figure 43 Gantt chart of the project

Page 78 Report

10. Economical and material list

Item Unit cost

€

Description Unit

dimension

Units Total

Software engineer

hours

210

Hour 369 77,490.00

IT tools 0 Provided by UPC N.A. 0 -

Laptop 1542 HP EliteBook

850 G4

unit 1 1,542.00

Colab servers 0 Used in free time hour 75 -

MS Office suit 150 Office suit for

report

unit 1 150.00

 Total (€): 79,182.00

Table 16 Resources allocated for this project

This Project cost would be in case of an external contractor. It has been realized with university
internal resources and public-available servers.

A deep learning approach for the detection of intestinal lesions using endoscopic capsules Page 79

11. Environment

The impact of this project on the environment is very narrow. Moreover, we have not bought

any external hardware, that is, our carbon footprint is solely the impact of the electrical

consumption, as asset depreciation is considered negligible for the duration of the project

versus the utility lifespan of the equipment.

As the electricity needed from this project has come from personal source and Google servers,

we do not have the data to know if the source of the electricity came from a renewable energy

source but it is minimal, as the microprocessors are at 24V infeed, which is a negligible

consumption at the scale of this project

Page 80 Report

12. References

[1] P Gregory Foutch, Douglas K Rex, and David A Lieberman. Prevalence and natural historyof colonic angiodysplasia among healthy

asymptomatic people.American Journal ofGastroenterology, 90(4), 1995.

[2] MICCAI 2017 Endoscopic Vision Challenge. MICCAI 2017 Endoscopic Vision Chal-lenge: Angiodysplasia Detection and Localization

[3] Alexey Shvets , Vladimir Iglovikov, Alexander Rakhlin, Alexandr A. Kalinin Angiodysplasia Detection and Localization Using Deep

Convolutional Neural Networks , 2018

[4] Lienhard, Dina A., "David H. Hubel and Torsten N. Wiesel’s Research on Optical Development in Kittens". Embryo Project Encyclopedia

(2017-10-11). ISSN: 1940-5030 http://embryo.asu.edu/handle/10776/12995

[5] F. Noya, M. A. Álvarez-González, R. Benítez Automated Angiodysplasia Detection from Wireless Capsule Endoscopy 2017

[6] F. Noya TFG UPC: Sistema automàtic de detecció de lesions en imatges endoscòpiques 2015

[7] Neural network glossary: https://envisat.esa.int/handbooks/meris/CNTR4-2-5.html

[8] Patiño T, Arqué X, Mestre R, Palacios L, Sánchez S. Fundamental Aspects of Enzyme-Powered Micro- and Nanoswimmers. Acc Chem

(2018)

[9] Endoscopic capsule example:

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwitxdTolJjpAhVbSEEAHSi6DfoQFjAAegQIAxA

B&url=https%3A%2F%2Fwww.mayoclinic.org%2Fes-es%2Ftests-procedures%2Fcapsule-endoscopy%2Fabout%2Fpac-

https://envisat.esa.int/handbooks/meris/CNTR4-2-5.html
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwitxdTolJjpAhVbSEEAHSi6DfoQFjAAegQIAxAB&url=https%3A%2F%2Fwww.mayoclinic.org%2Fes-es%2Ftests-procedures%2Fcapsule-endoscopy%2Fabout%2Fpac-20393366&usg=AOvVaw1LS8JGxYsdRiOCbAykmwAW
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwitxdTolJjpAhVbSEEAHSi6DfoQFjAAegQIAxAB&url=https%3A%2F%2Fwww.mayoclinic.org%2Fes-es%2Ftests-procedures%2Fcapsule-endoscopy%2Fabout%2Fpac-20393366&usg=AOvVaw1LS8JGxYsdRiOCbAykmwAW

A deep learning approach for the detection of intestinal lesions using endoscopic capsules Page 81

20393366&usg=AOvVaw1LS8JGxYsdRiOCbAykmwAW

[10] Virtual environment used for the project: https://colab.research.google.com/

[11] Simonyan, Karen & Zisserman, Andrew. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 1409.1556. .

(2014).

[12] https://www.researchgate.net/figure/Examples-in-the-ImageNet-dataset_fig7_314646236

[13] West, Jeremy; Ventura, Dan; Warnick, Sean "Spring Research Presentation: A Theoretical Foundation for Inductive Transfer".

Brigham Young University, College of Physical and Mathematical Sciences. 2007-08-05.

[14] Sensitivity and specificity: https://en.wikipedia.org/wiki/Sensitivity_and_specificity

[15] Support vector machine used : https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

[16] Kernel trick. https://towardsdatascience.com/understanding-the-kernel-trick-e0bc6112ef78

[17] GridSearchCV: http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html

[18] Lime library: https://github.com/marcotcr/lime

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwitxdTolJjpAhVbSEEAHSi6DfoQFjAAegQIAxAB&url=https%3A%2F%2Fwww.mayoclinic.org%2Fes-es%2Ftests-procedures%2Fcapsule-endoscopy%2Fabout%2Fpac-20393366&usg=AOvVaw1LS8JGxYsdRiOCbAykmwAW
https://colab.research.google.com/
https://www.researchgate.net/figure/Examples-in-the-ImageNet-dataset_fig7_314646236
https://en.wikipedia.org/wiki/Sensitivity_and_specificity
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://github.com/marcotcr/lime

Page 82 Report

A deep learning approach for the detection of intestinal lesions using endoscopic capsules Page 83

13. ANNEX

 Template for lesion classification (in Spanish)

Tipo de lesión: 1. Lesión roja del consenso; 2. Úlcera; 3. Erosión; 4. Afta; 5 (vacio); 6. Tumor; 7 Pólipo; 8 Sangre roja; 9. Sangre oscura

Tamaño: tamaño aproximado en mm. 1-3 diminuto (D); 3-5 mm pequpeñpo (P); 5-9 mm mediano (M); >=10 mm grande (G)

LR Consenso: AD angiodisplasia; EP Erithematous patch; RS Red spot; PB Phlebectasia

N Tipo Tam LRConsens Loc LocT Sang Potencial Endos FrameE TiempoID SBI FrameSBI NFPSBI QV FrameQV NFPQV

1

2

3

4

5

6

7

8

Page 84 Report

Localización (si se sabe por el informe): D (duodeno); Y (Yeyuno); I (ileon)

LocT (Localización en tiempo)

Sangrado Activo: 0 No; 1 Si

REVISAR Potencial de Sangrado: P2 al potencial (angiodisplasia P,M,G; Parche eritematoso o Punto rojo con sangre en ese tramo.) P0 Flebectasia y otras lesiones.

Endos: 0 No detectada por endoscopista; 1 Detectada

FrameE: Número de frames positivos para el endoscopista

Tiempo ID: Tiempo de exploración del intestino delgado

SBI: Lesión detectada por el sistema SBI (0/1)

Frame SBI o QV: Número de frames que detecta el sistema SBI o el QV (FrameQV)

NFPSBI: Número de falsos po(sitivos del SBI o el QV (NF

A deep learning approach for the detection of intestinal lesions using endoscopic capsules Page 85

 Function Image_extraction

def Image_Extraction(general_patients_folder): #Main that needs the directory of all the vid

eos

 for patient_folder in os.listdir(general_patients_folder): #lists all the patient director

ies and walks through them

 full_path = os.path.join(general_patients_folder, patient_folder) #enters every patient'

s directory

 for root, dirs, files in os.walk(full_path):

 for filename in files:#seeks the excel file and takes from him the parameters needed

 if (filename.endswith('.xlsx')) & ~(filename.startswith('~')) & ~(filename.start

swith('.')): #Checks that is an excel file

 excel_path = os.path.join(full_path, filename) #Joins the path for convinien

ce

 pandas_excel = pd.read_excel(excel_path, index_col=0,header=0)#Creates a pan

das instance in memory of the excel file

 Timestamps=pandas_excel['LocT']# Takes from pandas the timestamps of the les

ions (where to look with the OCR)

 Timestamps_tipo= pandas_excel['Tipo']==1 #creates a list of booleans that ar

e "True" if we have Type 1 lesions, the scope of our project

 Tipo_lesion=pandas_excel['Lrconsenso']#creates a list of the type of the les

ion, it is for saving it with the lesion type

 for filenamempg in files: #finds the video file and for every lesion runs find_image

 to extract the images with lesion. Also runs find_image in random mode, to extract healthy

pictures from each patient

 i=1 #Counter for the index of lesions

 if ((filenamempg.endswith('.mpg')) & (not(filenamempg.startswith('~'))) & (not(f

ilenamempg.startswith('.')))) :

 video_path = os.path.join(full_path, filenamempg) #Joins the video path

 try:#We use this in case the operator has written the FramesE field

 frames_detected=pandas_excel['FramesE']

 except:

 pass

 try:#We use this in case the operator has written the FramesTotales field

 frames_detected=pandas_excel['FramesTotales']

 except:

 pass

Page 86 Report

 n_images_to_take=(Timestamps_tipo*frames_detected).values.tolist()#We calcul

ate the number of images to take for each lesion (the multiplication is index-wise)

 while Timestamps.size >= i and len(n_images_to_take) >=i : #While to o thro

ugh the lesions

 written1=None #Variable to know if find_image was sucessful

 if not(math.isnan(n_images_to_take[i-1])):

 if Timestamps_tipo.tolist()[i-1] & (int(n_images_to_take[i-

1])!=0): #Condition on weteher we have images to take and wether we are in range

 pass

 written1=find_image(video_path, full_path, Timestamps,Tipo_lesio

n.tolist(),frames_detected.tolist()[i-

1],0,i,False)#for debugging, Timestamps[i],Tipo_lesion[i], i)

 os.chdir(os.path.join(full_path))

 i=i+1#Index update

 i=1#Inded reboot for the lesions

 while Timestamps.size >= i and len(n_images_to_take) >=i:

 written2=None#Variable to know if find_image was sucessful

 if not(math.isnan(n_images_to_take[i-1])):

 if Timestamps_tipo.tolist()[i-1] & (int(n_images_to_take[i-

1])!=0):#Condition on weteher we have images to take and wether we are in range

 pass

 try:

 written2=find_image(video_path, full_path, Timestamps,Tipo_les

ion.tolist(),frames_detected.tolist()[i-1],n_images_to_take.tolist()[i-

1], i, True)#for debugging, Timestamps[i],Tipo_lesion[i])

 except:

 try:

 written2=find_image(video_path, full_path, Timestamps,Tipo

_lesion,frames_detected[i-1],n_images_to_take[i-

1], i, True)#for debugging, Timestamps[i],Tipo_lesion[i])

A deep learning approach for the detection of intestinal lesions using endoscopic capsules Page 87

 except:

 pass

 i=i+1

Page 88 Report

 Function find_image

def find_image(video_file, #Name of the video file

 full_path, # Full path of the mpg video

 lesion_time, #lesion_time is the time of a Timestamp. The main func-

tion has a numpy array of them, and each time the function is called it talkes one of them

 Tipo_lesion, #Kind of lesion, from "Tipo" in the template

 frames_detected,#Number of frames detected by the endoscopis

 random_frames,#when random_frames is not 0, the funcion is in mode ran-

dom frame collection, when random_frames is 0, it collects lesions

 k,#index in the timestamps of the patient (for example if he has 3 le-

sions and k=2, that is we are in the last lesion)

 rand_if_true #Boolean to activate finding of lesions(False) or find-

ing of randoms (True)

):

 left, right, top, bottom=0,133,0,33#Pixels index to perform the OCR on

 time_read_in_picture=datetime.datetime.strp-

time('00:00:00', '%H:%M:%S') #We set to 0 the OCR re-

turn that will guide us through the video

 if rand_if_true==False:#Enters the mode of seeking lesions (and not seeking healthy pic-

tures)

 #We seek the time of the last frame

 vidObj = cv2.VideoCapture(video_path) #This opens a videocaptura ob-

ject, to read the video

 vidObj.set(2, 1)#This sets the video at the end

 success, image = vidObj.read() #Success is a boolean to see if the read-

ing was good. image is a numpy array (572,572,3)

 height, width, channel=image.shape#As said, the fomrat is channel-last

 image=image[top:bottom,left:right,:] #We perform a selection of the upper-left cor-

ner (where the time is)

 text =image_to_string(image,config ='--psm 6')#We execute the OCR software

 time_of_last_frame=datetime.datetime .strptime(text, '%H:%M:%S')# We con-

vert it to datetime format

 #Finds the first time of the video

 vidObj = cv2.VideoCapture(video_path) #We reset the object

 vidObj.set(1, 1) #We set it at the beggining

 success, image = vidObj.read() #Success is a boolean to see if the read-

ing was good. image is a numpy array (572,572,3)

 height, width, channel=image.shape#As said, the fomrat is channel-last

 image=image[top:bottom,left:right,:]#We perform a selection of the upper-left cor-

ner (where the time is)

 text =image_to_string(image,config ='--psm 6')#We execute the OCR software

 time_of_first_frame=datetime.datetime.strptime(text, '%H:%M:%S')# We con-

vert it to datetime format

 vidObj.release()#We release the video

A deep learning approach for the detection of intestinal lesions using endoscopic capsules Page 89

 while ((lesion_time[k] < time_of_last_frame.time())) (success):#if success was fals

e, that would mean of a compromised video file or the end of the video

 #This while could be the key part of the function, it looks for a lesion time in

 OCR that matches the one that the expert has written.

 if (time_read_in_picture.time()>= lesion_time[k]):# When there is a True value,

 we have found the beggining of a series of positive images.

 try:#We make a directory for every lesion detected

 os.mkdir(full_path + '\\frames of lesion_time[k]_in_seconds%d'% ((lesio

n_time[k].hour * 60 + lesion_time[k].minute) * 60 + lesion_time[k].second))

 os.chdir(full_path + '\\frames of lesion_time[k]_in_seconds%d'% ((lesio

n_time[k].hour * 60 + lesion_time[k].minute) * 60 + lesion_time[k].second))

 except:#If the directory is already made, only enters it and then copies the

re the remaining picutres

 os.chdir(full_path + '\\frames of lesion_time[k]_in_seconds%d'% ((lesio

n_time[k].hour * 60 + lesion_time[k].minute) * 60 + lesion_time[k].second))

 j=0#counter initiation for frames detected by the endoscopist

 text_register=[]#This register writes down every new datetime, for example "

01:11:12". This is to avoid repeating frames in the same second, because they are identical.

 while (j <frames_detected): #takes as much frames as the endoscopist has se

en

 success, image = vidObj.read() #Success is a boolean to see if the readi

ng was good. image is a numpy array (572,572,3)

 image_raw=image.copy()# We will use this variable to store a copy of the

 image if we may want to save it later.

 image=image[top:bottom,left:right,:]#We perform a selection of the upper

-left corner (where the time is)

 text =image_to_string(image,config ='--

psm 6')#We execute the OCR software

 if not((text in text_register)):#We verify that it is indeed a new image

 (that the time has passed)

 try:#We try in case we already have it from an aborted execution

 cv2.imwrite("patient_" + str(patient_folder) +'tipo'+'1'+'lesion

_' +str(Tipo_lesion[k-

1])+'time_in_sec'+'plus_frame_last2digits'+ '%d.jpg' % (((lesion_time[k].hour * 60 + lesion_

time[k].minute) * 60 + lesion_time[k].second)*100 + j*100) , image_raw)#writes the image

 print('Writing....' + text + ' frame: '+ str(j) +' of '

 + str(int(frames_detected))+ ' and lesion type ' + str(Tipo_lesion[k-1]))

 except:

 print('Not copied bcs of imwrite, maybe already there...' + text

)

 pass

 text_register.append(text)#Appends the newly seen image

Page 90 Report

 j=j+1#Updates the count because we have one image less to find

 vidObj.release()#Releases the video object

 return True #Returns True as output

 good_read=False#This boolean is used to be sure that we have succesfully read an

 image

 while not(good_read):#waits for a good read. We have a bad read aproximately 1 o

n 10.000 times, but we perform a lot of reads, hence this variable is useful

 success, image = vidObj.read() #Success is a boolean to see if the reading

was good. image is a numpy array (572,572,3)

 image_raw = image.copy()# We will use this variable to store a copy of the i

mage if we may want to save it later.

 text=image_to_string(image[top:bottom,left:right,:],config ='--

psm 6')#We execute the OCR software

 good_read=False#This boolean is used to be sure that we have succesfully rea

d an image

 try: # We have a bad read aproximately 1 on 10.000 times,

 time_read_in_picture=datetime.datetime.strptime(text, '%H:%M:%S')

 good_read=True#This boolean is used to be sure that we have succesfully

read an image

 except:

 good_read=False#This boolean is used to be sure that we have succesfully

 read an image

 print('Seeking....' + text + ' to lesion time: '+ str((lesion_time[k])) + '

 the ' +str(k)+ ' item of ' +str(len(lesion_time)))#Verbosity

 if (time_read_in_picture.time().hour*3600+time_read_in_picture.time().minute*60+

time_read_in_picture.time().second) < ((lesion_time[k].hour * 3600 + lesion_time[k].minute *

 60 + lesion_time[k].second) *0.90):

 #This function accelerates the reading by bypassing the OCR step, in order to s

peed up far from the lesion_time

 m=0

 while m <800:

 success, image = vidObj.read() #Success is a boolean to see if the read

ing was good. image is a numpy array (572,572,3)

 m=m+1

 if (time_read_in_picture.time().hour*3600+time_read_in_picture.time().minute*60+

time_read_in_picture.time().second) < ((lesion_time[k].hour * 3600 + lesion_time[k].minute *

 60 + lesion_time[k].second) *0.97):

 #This function accelerates the reading by bypassing the OCR step, in order to sp

eed up far from the timestamp, and is the one that remains when we aproach the lesion_time

 m=0

 while m <80:

A deep learning approach for the detection of intestinal lesions using endoscopic capsules Page 91

 success, image = vidObj.read() #Success is a boolean to see if the re

ading was good. image is a numpy array (572,572,3)

 m=m+1

 elif rand_if_true==True:#Enters the mode of seeking healthy pictures

 try:#We make a directory for every healthy set needed

 os.mkdir(full_path + '\\random_frames_lesions_excluded %d' % int(((lesion_time[k

].hour * 60 + lesion_time[k].minute) * 60 + lesion_time[k].second)))

 os.chdir(full_path + '\\random_frames_lesions_excluded %d' % int(((lesion_time[k

].hour * 60 + lesion_time[k].minute) * 60 + lesion_time[k].second)))

 except:

 try:# or use the existent if already there

 os.chdir(full_path + '\\random_frames_lesions_excluded %d' % int(((lesion_ti

me[k].hour * 60 + lesion_time[k].minute) * 60 + lesion_time[k].second)))

 except:

 pass

 #We seek the time of the last frame

 vidObj = cv2.VideoCapture(video_path) #This opens a videocaptura object, to read the

 video

 vidObj.set(2, 1)#This sets the video at the end

 success, image = vidObj.read() #Success is a boolean to see if the reading was good.

 image is a numpy array (572,572,3)

 height, width, channel=image.shape#As said, the fomrat is channel-last

 image=image[top:bottom,left:right,:] #We perform a selection of the upper-

left corner (where the time is)

 text =image_to_string(image,config ='--psm 6')#We execute the OCR software

 time_of_last_frame=datetime.datetime .strptime(text, '%H:%M:%S')# We convert it to d

atetime format

 #Finds the first time of the video

 vidObj = cv2.VideoCapture(video_path) #We reset the object

 vidObj.set(1, 1) #We set it at the beggining

 success, image = vidObj.read() #Success is a boolean to see if the reading was good.

 image is a numpy array (572,572,3)

 height, width, channel=image.shape#As said, the fomrat is channel-last

 image=image[top:bottom,left:right,:]#We perform a selection of the upper-

left corner (where the time is)

 text =image_to_string(image,config ='--psm 6')#We execute the OCR software

 time_of_first_frame=datetime.datetime.strptime(text, '%H:%M:%S')# We convert it to d

atetime format

 vidObj.release()#We release the video

Page 92 Report

 image_raw=[] # We will use this variable to store a copy of the image if we may want

 to save it later.

 max_video_time= (time_of_last_frame.time().hour*3600+time_of_last_frame.time().minut

e*60+time_of_last_frame.time().second) #We define the max video time in integrer

 min_video_time=(time_of_first_frame.time().hour*3600+time_of_first_frame.time().minu

te*60+time_of_first_frame.time().second)#We define the min video time in integrer

 mu, sigma = (max_video_time-min_video_time)/2 , (max_video_time-

min_video_time)/4 # we create normal parameters for randomizing

 random_times=np.random.normal(mu, sigma, int(random_frames))#we create a random set,

 but we have to test that it is inside the video and also not in lesions. We do this whole f

unction for every lesion index.

 random_times=random_times.tolist()#We change the format to list

 is_in_range=False #This boolean controls that the set of random data is inside the t

imes of the video and not in lesions

 while not(is_in_range): #Looks for a normal distribution that fits the real timestam

ps of the video and not lesions

 is_good_random=[]#This will be a list of booleans, each boolean will be True if

the generated time is OK with all the conditions.

 for random_time in random_times: #Walks through the random times to analyse if t

hey are OK

 is_good_random.append(random_time>min_video_time) #Checks that the times cre

ated randomly are not before the beggining of the video

 for random_time in random_times:#Walks through the random times to analyse if th

ey are OK

 is_good_random.append(random_time<max_video_time)#Checks that the times crea

ted randomly are not after the end of the video

 if all(is_good_random) :#If nothing is outside this first filter of being inside

 the video, it continues with this set

 for random_time_0 in random_times:#It reads all the random times

 random_time=datetime.datetime.strptime((str(datetime.timedelta(seconds=i

nt(random_time_0)))),'%H:%M:%S')#Changes the random time to proper format for comparison wit

h the OCR software

 random_time_to_sec= random_time.time().hour*3600+random_time.time().minu

te*60+random_time.time().second #Changes the random time to proper format for comparison wit

h the OCR software

 for lesion_to_avoid in lesion_time: #Now walks through all the lesions

 min_lesion_margin= int(lesion_to_avoid.hour * 3600 + lesion_to_avoid

.minute * 60 + lesion_to_avoid.second *0.98)#Creates a safety margin of 2% from the lesion t

imestamp

A deep learning approach for the detection of intestinal lesions using endoscopic capsules Page 93

 random_time_to_sec=random_time.time().hour*3600+random_time.time().m

inute*60+random_time.time().second #Changes the random time to proper format for comparison

with the OCR software

 max_lesion_margin=lesion_to_avoid.hour * 3600 + lesion_to_avoid.minu

te * 60 + lesion_to_avoid.second +frames_detected*20 #This is done to avoid taking images th

at are not in the initial timestamp of the lesion but closely after, it depends on the numbe

r of images detected by the endoscopist

 is_good_random.append((random_time_to_sec < min_lesion_margin) or (r

andom_time_to_sec >max_lesion_margin))#Saves the boolean condition in our veryfier list of b

ooleans

 if all(is_good_random) :#If our random set of data has passed all the condit

ions

 is_in_range=True #We have an optimal set of data

 else: #In case we failed along the way, we just give it another chance reset

ing it all

 is_good_random=[]#This will be a list of booleans, each boolean will be

True if the generated time is OK with all the conditions.

 random_times=np.random.normal(mu, sigma,int(random_frames))#We reset an

d generate a new issuing of random data

 random_times=random_times.tolist() #We change the format to list

 else: #In case we failed along the way, we just give it another chance reseting

it all

 is_good_random=[]#This will be a list of booleans, each boolean will be True

 if the generated time is OK with all the conditions.

 random_times=np.random.normal(mu, sigma, int(random_frames))#We reset and ge

nerate a new issuing of random data

 random_times=random_times.tolist() #We change the format to list

 u=0 #counts the number of frames

 for random_time_0 in random_times: #walks through the good randomized times we have

 u=u+1#counts the number of frames

 is_found=False#reset the life bit that looks for a match

 time_read_in_picture=datetime.datetime.strptime('00:00:00', '%H:%M:%S')#resets t

he OCR reading

 random_time=datetime.datetime.strptime((str(datetime.timedelta(seconds=int(rando

m_time_0)))),'%H:%M:%S')#modifies random time to proper format

 vidObj.release() #Releases the video

 vidObj = cv2.VideoCapture(video_path) #Creates again the video object

 while (not(is_found)):#We walk the video until we find the random time we have c

reated, in the video (i.e. Finding the image)

Page 94 Report

 if time_read_in_picture >= random_time: #True when we arrive at the image t

hat we were looking for

 try:#We write to the drive the image found

 cv2.imwrite(patient_folder +str(int(random_time))+ '.jpg' , image_ra

w)#writes the image

 print('Writing....' + text + ' frame: '+ str(u) +' in ' +

 str(int(len(random_times))))

 except:#Or we verbalize that there is probably already an image there

 print('Not printed because probably already there')

 is_found=True #We change this variable to stop the while and trigger the

 next random time we need

 good_read=False #We reset the good read before the next read

 while not(good_read):#waits for a good read on the OCR software, happens 1 o

n 10.000 times that we don't have a good read

 success, image = vidObj.read() #Success is a boolean to see if the readi

ng was good. image is a numpy array (572,572,3)

 image_raw = image.copy() #We save a copy for preserving the original pic

ture

 text=image_to_string(image[top:bottom,left:right,:],config ='--

psm 6') ##We execute the OCR software and perform a selection of the upper-

left corner (where the time is)

 good_read=False#We reset the good read before the next read

 try:

 time_read_in_picture=datetime.datetime.strptime(text, '%H:%M:%S')#We

 convert it to datetime for useful comparison

 good_read=True#We state that we did a good read

 except:

 good_read=False#If the read failed

 print(str(patient_folder) +'Seeking time....'+ text +' to ' +str(random

_time.time())+ ' lesion_is:' +str(lesion_time[k]))#Verbosity

 text_register.append(text) #Registers the date read (string text)

 if (time_read_in_picture.time().hour*3600+time_read_in_picture.time().minute

*60+time_read_in_picture.time().second) < ((random_time.hour * 3600 + random_time.minute * 6

0 + random_time.second) *0.96):

A deep learning approach for the detection of intestinal lesions using endoscopic capsules Page 95

 #This function accelerates the reading by bypassing the OCR step, in order

to speed up far from the random_time

 m=0

 while m <800:

 success, image = vidObj.read() #Success is a boolean to see if the

reading was good. image is a numpy array (572,572,3)

 m=m+1

 continue

 if (time_read_in_picture.time().hour*3600+time_read_in_picture.time().minute

*60+time_read_in_picture.time().second) <((random_time.hour * 3600 + random_time.minute * 60

 + random_time.second) *0.99):

 #This function accelerates the reading by bypassing the OCR step, in order

to speed up far from the lesion_time

 m=0

 while m <40:

 success, image = vidObj.read() #Success is a boolean to see if the

reading was good. image is a numpy array (572,572,3)

 m=m+1

 return

Page 96 Report

 Code of MNIST model applied to lesion detection

import keras

from keras.models import Sequential

from tensorflow.python.keras.callbacks import TensorBoard

from keras.preprocessing.image import ImageDataGenerator

from keras.models import Sequential

import numpy

import datetime # in order to save logs with date

%load_ext tensorboard

from sklearn.model_selection import train_test_split # to split the da

ta between train and valdiation

from PIL import Image # in order to reshape images

from keras.models import Sequential#imported in order to build the mod

el

from keras.layers import Dense#imported in order to build the model

from keras.layers import Dropout#imported in order to build the model

from keras.layers import Flatten#imported in order to build the model

from keras.layers.convolutional import Conv2D#imported in order to bui

ld the model

from keras.layers.convolutional import MaxPooling2D#imported in order

to build the model

from keras.utils import np_utils#imported in order to build the model

from keras import backend as K#imported in order to build the model

from tensorboard import notebook#imported in order to analyse the mode

l

from keras.layers import Dense#imported in order to build the model

from keras.utils.vis_utils import plot_model #imported in order to plo

t the model

create generator, which we are not going to use for anything but fet

ch the data from the directory

datagen = ImageDataGenerator()

prepare the iterator for gathering all the data in one fetch with al

l the data

data = datagen.flow_from_directory('/content/drive/My Drive/CNN_data_M

AY_ with extra false_close', class_mode='binary',target_size=(512, 512

), batch_size=1968)

we create x and y as each a numpy array of lesions and of healthy

x, y = data.next()#This two operatons will create our data apropriatel

y for the model. We split train and validation with 10% of data for te

sting

x_train, x_test, y_train, y_test = train_test_split(

 x, y, test_size=0.1) # This is the percentage of test pictures we

want

A deep learning approach for the detection of intestinal lesions using endoscopic capsules Page 97

new_shape=(28,28,3) #This is the final input shape me need

x_train_new = numpy.empty(shape=(x_train.shape[0],)+new_shape) #we use

 this variable to copy there the new resized variable

for idx in range(x_train.shape[0]): #We walk through all the pictures

in the tensor

 x_train_new[idx] = numpy.array(Image.fromarray(x_train[idx],'RGB')

.resize((28,28))) #we resize it

x_test_new = numpy.empty(shape=(x_test.shape[0],)+new_shape)#we use th

is variable to copy there the new resized variable

for idx in range(x_test.shape[0]):#We walk through all the pictures in

 the tensor

 x_test_new[idx] = numpy.array(Image.fromarray(x_test[idx],'RGB').r

esize((28,28))) #we resize it

del x_train #we delete variables to save RAM memory

del x_test #we delete variables to save RAM memory

del x #we delete variables to save RAM memory

del y #we delete variables to save RAM memory

x_train=x_train_new

x_test=x_test_new

num_classes = 2 # We have 2 classes: with lesion or healthy

#We code the labels of class in binary categorical format with 2 posit

ions:

y_train2 = keras.utils.to_categorical(y_train, num_classes)

y_test2 = keras.utils.to_categorical(y_test, num_classes)

K.set_image_data_format('channels_last') # We set as channels last the

 image data format(batch, height, width, channels)

model = Sequential() #We start the model

Function in which we define the model:

def baseline_model():

Entry layer:

 model = Sequential()

 model.add(Conv2D(32, (5, 5), input_shape=(28, 28, 3), activation=

'relu'))

 model.add(MaxPooling2D(pool_size=(2, 2)))

 model.add(Dropout(0.2))

Page 98 Report

 model.add(Flatten())

 model.add(Dense(128, activation='relu'))

Output layer(softmax):

 model.add(Dense(2, activation='softmax'))

Compilation of the model:

 model.compile(loss='categorical_crossentropy', optimizer='adam', m

etrics=['accuracy'])

 return model

Call to the model:

model = baseline_model()

#log_dir = "/content/drive/My Drive/Tensorflow_logs/logs" + datetime.d

atetime.now().strftime("%Y%m%d-

%H%M%S") # Uncomment if we are interested in differentiating log runs

log_dir = "/content/drive/My Drive/Tensorflow_logs/logs"

tensorboard_callback = keras.callbacks.TensorBoard(log_dir=log_dir, hi

stogram_freq=1,update_freq='batch',profile_batch=0)

logs=log_dir

#We now fit the model with our training data:

model.fit(x_train, y_train2, validation_data=(x_test, y_test2), epochs

=200, batch_size=180, verbose=2,callbacks=[tensorboard_callback])

#We evaluate with the test data:

scores = model.evaluate(x_test, y_test2, verbose=1)

print("Exactitud del modelo: %.2f%%" % (100*scores[1]))

plot_model(model, to_file='model_plot.png', show_shapes=True, show_lay

er_names=True)

%tensorboard --logdir '/content/drive/My Drive/Tensorflow_logs/logs'

A deep learning approach for the detection of intestinal lesions using endoscopic capsules Page 99

 Code of VGG16 pre-treained with feature extraction and

classifier

import keras#imported in order to build the model

from keras.preprocessing.image import ImageDataGenerator#imported in o

rder to build the data in RAM

from keras.models import Sequential#imported in order to build the mod

el

from keras.layers import Dense, Dropout, Activation, Flatten#imported

in order to build the model

from keras.layers import Conv2D, MaxPooling2D#imported in order to bui

ld the model

from keras import optimizers

import os # for saving pictures

from sklearn.model_selection import train_test_split# to split the dat

a between train and valdiation

from sklearn import datasets

from sklearn import svm

from keras.applications.vgg16 import VGG16

from keras.preprocessing import image

from keras.applications.vgg16 import preprocess_input

from keras.engine import input_layer

from tensorflow.python.keras.callbacks import TensorBoard

from keras.preprocessing.image import ImageDataGenerator

import numpy #For picture and tensor operation

import datetime # in order to save logs with date

%load_ext tensorboard

from PIL import Image # in order to reshape images if needed

from keras.utils import np_utils#imported in order to build the model

from keras import backend as K#imported in order to build the model

from tensorboard import notebook#imported in order to analyse the mode

l

from keras.utils.vis_utils import plot_model #imported in order to plo

t the model

from sklearn.model_selection import GridSearchCV #library to seach the

best parameters of the classifier

from keras.models import clone_model

from keras.utils.vis_utils import plot_model#imported in order to view

results

from sklearn.externals import joblib# to save the model

from sklearn.metrics import classification_report #imported in order t

o view results

from sklearn.metrics import confusion_matrix #imported in order to vie

w results

from sklearn.metrics import plot_confusion_matrix#imported in order to

view results

import matplotlib.pyplot as plt#imported in order to view results

Page 100 Report

#We create a generator

datagen = ImageDataGenerator()

prepare an iterators for each dataset

data = datagen.flow_from_directory('/content/drive/My Drive/CNN_data_M

AY_ with extra false_close', class_mode='binary',target_size=(512, 512

), batch_size=1987)

#test = datagen.flow_from_directory('/content/drive/My Drive/paracnn/T

est', class_mode='binary',target_size=(512, 512))

confirm the iterator works

x, y = data.next()

x_train, x_test, y_train, y_test = train_test_split(

 x, y, test_size=0.4)

num_classes = 2

num_predictions = 20

save_dir = os.path.join(os.getcwd(), 'saved_models')

model_name = 'keras_cifar10_trained_model.h5'

print('x_train shape:', x_train.shape)

print('x_test shape:', x_test.shape)

Convert class vectors to binary class matrices.

y_train = keras.utils.to_categorical(y_train, num_classes)

y_test = keras.utils.to_categorical(y_test, num_classes)

Have it as an array of integers:

y_test1 = numpy.argmax(y_test,axis=1)

y_train1 = numpy.argmax(y_train,axis=1)

model2 = VGG16(include_top=False, weights='imagenet', input_tensor=inp

ut_layer.Input(shape=(512, 512, 3)),pooling='avg')

plot_model(model2, to_file='model_plot.png', show_shapes=True, show_la

yer_names=True)

feat1_test = model2.predict(x_test)

feat1_train = model2.predict(x_train)

A deep learning approach for the detection of intestinal lesions using endoscopic capsules Page 101

parameters = {'kernel':('linear', 'rbf','poly','sigmoid'), 'C':numpy.l

inspace(0.1, 10000000000,50).tolist(),'class_weight':['balanced'],'gam

ma':['scale','auto']}

svc = svm.SVC(probability=True)

clf_search=GridSearchCV(svc,

 parameters,

 scoring='balanced_accuracy',

 n_jobs=-1,

 refit=True,

 cv=None, #None, to use the default 5-fold cross validatio

n,

 verbose=10,

 pre_dispatch='2*n_jobs',

 return_train_score=True,

)

clf_search = clf_search.fit(feat1_train, y_train1)

sorted(clf_search.cv_results_.keys())

print(clf_search.best_estimator_)

Page 102 Report

joblib.dump(clf_search, '/content/drive/My Drive/best_tfidf.pkl')

Load

clf_search = joblib.load('/content/drive/My Drive/best_tfidf.pkl')

clf2=clf_search

feat1_test = np.squeeze(feat1_test)

y_pred2 = clf2.predict(feat1_test)

a=plot_confusion_matrix(clf2,feat1_test, y_test1,display_labels=data.c

lass_indices,

 cmap=plt.cm.Blues,

 normalize=None,

 values_format="10g"

)

print(classification_report(y_test1, y_pred2, target_names=data.class_

indices))

print(confusion_matrix(y_test1, y_pred2),)

i=0

import cv2

path_negative=r'/content/drive/My Drive/False_negative'

path_positive=r'/content/drive/My Drive/False_positive'

for image in x_test:

 if y_test[i]==1 and y_pred2=0:

 cv2.imwrite(path_negative+'/'+ str(i) + '.jpg',x_test[i])

 i=i+1

i=0

for image in x_test:

 if y_test[i]==0 and y_pred2=1:

 cv2.imwrite(path_positive+'/'+ str(i) + '.jpg',x_test[i])

A deep learning approach for the detection of intestinal lesions using endoscopic capsules Page 103

 Code of VGG pre-trained with fully connected training

from __future__ import print_function

import keras

from keras.datasets import cifar10

from keras.preprocessing.image import ImageDataGenerator

from keras.models import Sequential

from keras.layers import Dense, Dropout, Activation, Flatten

from keras.layers import Conv2D, MaxPooling2D

from keras import optimizers

import numpy as np

import os

import numpy as np from sklearn.model_selection import

train_test_split from sklearn import datasets from sklearn import svm

example of progressively loading images from file from

keras.preprocessing.image import ImageDataGenerato

Page 104 Report

create generator

datagen = ImageDataGenerator()

prepare an iterators for each dataset

#data = datagen.flow_from_directory('/content/drive/My Drive/CNN_data_

28_april_500vs1300', class_mode='binary',target_size=(512, 512), batch

_size=1825) THIS ONE IS GOOD

data = datagen.flow_from_directory('/content/drive/My Drive/CNN_data_M

AY_ with extra false_close', class_mode='binary',target_size=(512, 512

), batch_size=1968)

#test = datagen.flow_from_directory('/content/drive/My Drive/paracnn/T

est', class_mode='binary',target_size=(512, 512))

confirm the iterator works

x, y = data.next()

x_train, x_test, y_train, y_test = train_test_split(

 x, y, test_size=0.4)

num_classes = 2

num_predictions = 20

Convert class vectors to binary class matrices.

y_train = keras.utils.to_categorical(y_train, num_classes)

y_test = keras.utils.to_categorical(y_test, num_classes)

#y_validate=keras.utils.to_categorical(y_validate, num_classes)

Have it as an array of integers:

y_test1 = np.argmax(y_test,axis=1)

y_train1 = np.argmax(y_train,axis=1)

#y_validate1=np.argmax(y_validate,axis=1)

from keras.applications.vgg16 import VGG16

from keras.preprocessing import image

from keras.applications.vgg16 import preprocess_input

import numpy as np

from keras.engine import input_layer

import keras

A deep learning approach for the detection of intestinal lesions using endoscopic capsules Page 105

for model in model2.layers[:2]:

 model.trainable=False

model2.summary()

odel2.compile(optimizer='rmsprop',

 loss='categorical_crossentropy',

 metrics=['binary_accuracy'])

model2.fit(x_train, y_train,

 batch_size=100,#109 y 10 epochs

 epochs=20,

 # We pass some validation for

 # monitoring validation loss and metrics

 # at the end of each epoch

 validation_data=(x_test, y_test))

from keras.models import Sequential from keras.models import

clone_model from keras.layers import Dense from keras.utils.vis_utils

import plot_model plot_model(model2, to_file='model_plot.png',

show_shapes=True, show_layer_names=True)

model2.save('/content/drive/My
Drive/vgg16_fully_connected_for_lime.h5')

import tensorflow as tf new_model =
tf.keras.models.load_model('/content/drive/My

Drive/vgg16_fully_connected_for_lime.h5')

new_model=model2

!pip install lime

import keras

import lime

from lime import lime_image

image_number=2

#image_for_lime=x_train[image_number]

#class_output=y_train1[image_number]

image_for_lime=x_test[image_number]

class_output=y_test1[image_number]

explainer = lime_image.LimeImageExplainer()

explanation = explainer.explain_instance(image_for_lime, new_model.pre

dict, top_labels=50, hide_color=0, num_samples=1000)

Page 106 Report

from keras.models import Sequential

from keras.layers import Dense, Activation

#Get back the convolutional part of a VGG network trained on ImageNet

model_vgg16_conv = VGG16(include_top=False,

 weights='imagenet',

 input_tensor=input_layer.Input(shape=(512, 512, 3))

 #pooling='max'

)

as first layer in a Sequential model

from keras.applications.vgg16 import VGG16

from keras.preprocessing import image

from keras.applications.vgg16 import preprocess_input

from keras.layers import Input, Flatten, Dense

from keras.models import Model

import numpy as np

#Create the input format

input = Input(shape=(512, 512, 3),name = 'image_input')

#Use the generated model

output_vgg16_conv = model_vgg16_conv(input)

#Add the fully-connected layers

u = Flatten(name='flatten')(output_vgg16_conv)

u = Dense(4096, activation='relu', name='fc1')(u)

u = Dense(4096, activation='relu', name='fc2')(u)

u = Dense(2, activation='softmax', name='predictions')(u)

#Create your own model

model2 = Model(input=input, output=u)

#In the summary, weights and layers from VGG part will be hidden, but

they will be fit during the training

model2.summary()

#Then training with your data !

A deep learning approach for the detection of intestinal lesions using endoscopic capsules Page 107

for model in model2.layers[:2]:

 model.trainable=False

model2.summary()

model2.compile(optimizer='rmsprop',

 loss='categorical_crossentropy',

 metrics=['binary_accuracy'])

model2.fit(x_train, y_train,

 batch_size=100,#109 y 10 epochs

 epochs=20,

 # We pass some validation for

 # monitoring validation loss and metrics

 # at the end of each epoch

 validation_data=(x_test, y_test))

from keras.models import Sequential from keras.models import

clone_model from keras.layers import Dense from keras.utils.vis_utils

import plot_model plot_model(model2, to_file='model_plot.png',

show_shapes=True, show_layer_names=True)

model2.save('/content/drive/My Drive/vgg16_fully_connected_for_lime.h5

')

import tensorflow as tf

new_model = tf.keras.models.load_model('/content/drive/My Drive/vgg16_

fully_connected_for_lime.h5')

Check its architecture

new_model.summary()

new_model=model2

!pip install lime

import keras

import lime

from lime import lime_image

image_number=2

#image_for_lime=x_train[image_number]

#class_output=y_train1[image_number]

image_for_lime=x_test[image_number]

class_output=y_test1[image_number]

explainer = lime_image.LimeImageExplainer()

explanation = explainer.explain_instance(image_for_lime, new_model.pre

dict, top_labels=50, hide_color=0, num_samples=1000)

Page 108 Report

from skimage.segmentation import mark_boundaries

import matplotlib.pyplot as plt

temp, mask = explanation.get_image_and_mask(class_output, positive_onl

y=True, num_features=2000, hide_rest=False)

plt.imshow(mark_boundaries(temp / 2 + 0.5, mask)/255)

temp, mask = explanation.get_image_and_mask(class_output,

positive_only=False, num_features=60, hide_rest=False)#feature 60 is

OK at v3! #touching the number of features is the key

plt.imshow(mark_boundaries(temp / 2 + 0.5, mask)/255)

path= r'/content/drive/My Drive/Lime_results/v3'

import os

import cv2

import random

from skimage.segmentation import mark_boundaries

i=0

seed=random.randint(1,10000)

for indexed in y_test1:

 print(indexed)

 if indexed ==1:

 image_for_lime=x_test[i]

 class_output=y_test1[i]

 explainer = lime.lime_image.LimeImageExplainer()

 explanation = explainer.explain_instance(image_for_lime, new_model

.predict, top_labels=50, hide_color=0, num_samples=1000)

 #temp, mask = explanation.get_image_and_mask(class_output, positiv

e_only=False, num_features=2000, hide_rest=False,min_weight=0.1)

 temp, mask = explanation.get_image_and_mask(class_output, positive

_only=False, num_features=60, hide_rest=False)#feature 60 is OK at v3!

#touching the number of features is the key

 saved_image=mark_boundaries(temp/2 +0.5,mask)

 saved_image = cv2.cvtColor(saved_image, cv2.COLOR_BGR2RGB)

 image_for_lime = cv2.cvtColor(image_for_lime, cv2.COLOR_BGR2RGB)

 cv2.imwrite(path+'/'+str(seed) + '_number__' +str(i)+ '.jpg', save

d_image)

 cv2.imwrite(path+'/'+ str(seed) + 'onumber__' +str(i) + '.jpg', i

mage_for_lime)

 i=i+1

	Summary
	1.1. Tables
	1.2. Figures

	2. Glossary
	3. Preface
	3.1. Origin of the project
	3.2. Motivation
	3.3. Prerequisites
	3.3.1. Raw video data
	3.3.2. Excel template

	4. Introduction
	4.1. Project objective
	4.2. Project pipeline
	4.3. Project scope
	4.4. Hardware specifications

	5. Raw Data extraction
	5.1. Raw data structure
	5.1.1. General structure
	5.1.2. Raw video origin
	5.1.2.1. Frames technical data
	5.1.2.2. Audio source
	5.1.2.3. Miscellaneous

	5.1.3. Excel
	5.1.3.1. Raw excel origin
	5.1.3.2. Excel technical details
	5.1.3.2.1 Tipo
	5.1.3.2.2 Tam
	5.1.3.2.3 LRConsens
	5.1.3.2.4 Loc
	5.1.3.2.5 LocT
	5.1.3.2.6 Sang
	5.1.3.2.7 Potencial
	5.1.3.2.8 Endos
	5.1.3.2.9 FrameE
	5.1.3.2.10 TiempoID
	5.1.3.2.11 SBI
	5.1.3.2.12 FrameSBI
	5.1.3.2.13 NFPSBI
	5.1.3.2.14 Observations

	5.2. Image extraction from video
	5.2.1. Code for image extraction
	5.2.1.1. Function Image_extraction
	5.2.1.2. Function find_image

	6. Image pre-processing
	6.1.1. Update of General structure
	6.1.2. Images technical data
	6.1.3. Code for image pre-processing

	7. Deep learning processing
	7.1. Introduction to the processing
	7.1.1. Final data structure
	7.1.2. Images technical data
	7.1.3. Strategy

	7.2. MNIST model with training
	7.2.1. Model structure
	7.2.2. Training
	7.2.3. Results

	7.3. VGG16 pre-trained with feature extraction and classifier
	7.3.1. Model introduction
	7.3.2. Training
	7.3.3. Results

	7.4. VGG16 pre-trained with fully connected training
	7.4.1. Model structure
	7.4.2. Results

	7.5. Interpretability
	7.5.1. False positive LIME analysis
	7.5.2. False negative LIME analysis

	8. Conclusions
	9. Planning and resources
	10. Economical and material list
	11. Environment
	12. References
	13. ANNEX
	13.1. Template for lesion classification (in Spanish)
	13.2. Function Image_extraction
	13.3. Function find_image
	13.4. Code of MNIST model applied to lesion detection
	13.5. Code of VGG16 pre-treained with feature extraction and classifier
	13.6. Code of VGG pre-trained with fully connected training

