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Abstract

ENG — The aim of this thesis is to analyze and control a Lur’e system, i.e., a system with
a linear time-invariant forward path and a nonlinear static feedback with sector and slope
constraints on its nonlinearities. This description encompasses a broad class of systems that
commonly arise in a wide range of engineering disciplines. The approach of this work is based on
Lyapunov stability theory and uses linear matrix inequalities to propose criteria for the system’s
absolute stability and ¢2- and RMS-gains, and bilinear matrix inequalities to propose criteria
for state feedback control and state estimation. These types of conditions, in particular linear
matrix inequalities, are conveniently treated computationally, as the optimization problems
that they give rise to are convex. Numerical results are obtained for several examples, showing
a significant improvement with respect to previous conditions in the literature.

CAT — L’objectiu d’aquesta tesi és I’analisi i el control d'un sistema de Lur’e, és a dir, un sistema
amb un cami directe lineal i invariant en el temps i amb una realimentacioé no lineal estatica,
amb restriccions de sector i de pendent en les seves no-linealitats. Aquesta descripcié engloba
una amplia classe de sistemes que apareixen comunament en una amplia gamma de disciplines
d’enginyeria. L’enfocament d’aquest treball es basa en la teoria d’estabilitat de Lyapunov
i utilitza desigualtats de matrius lineals per proposar criteris per a l'estabilitat absoluta del
sistema i els guanys ¢2 i RMS, i desigualtats de matrius bilineals per proposar criteris per al seu
control per realimentacié d’estat i estimacié d’estat. Aquest tipus de condicions, en particular
les desigualtats de matrius lineals, son convenients de tractar computacionalment, ja que els
problemes d’optimitzacié a que donen lloc son convexos. S’obtenen resultats numeérics per a
diversos exemples, els quals mostren una millora significativa respecte a les condicions anteriors
de la literatura.

ESP — El objetivo de esta tesis es el analisis y el control de un sistema de Lur’e, es decir,
un sistema con un camino directo lineal e invariante en el tiempo y con una realimentaciéon
no lineal estatica, con restricciones de sector y de pendiente en sus no-linealidades. Esta de-
scripcion engloba una amplia clase de sistemas que aparecen comtinmente en una amplia gama
de disciplinas de ingenieria. El enfoque de este trabajo se basa en la teoria de estabilidad de
Lyapunov y utiliza desigualdades de matrices lineales para proponer criterios para la estabil-
idad absoluta del sistema y las ganancias 2 y RMS, y desigualdades de matrices bilineales
para proponer criterios para su control por realimentaciéon de estado y estimacion de estado.
Este tipo de condiciones, en particular las desigualdades de matrices lineales, son convenientes
tratar computacionalmente, ya que los problemas de optimizacion a que dan lugar son con-
vexos. Se obtienen resultados numéricos para varios ejemplos, los cuales muestran una mejora
significativa respecto a las condiciones anteriores de la literatura.

Keywords: Nonlinear control, Lyapunov stability, Lur’e systems, LMIs, BMIs.
Paraules clau: Control no lineal, estabilitat de Lyapunov, sistemes de Lur’e, LMIs, BMIs.
Palabras clave: Control no lineal, estabilidad de Lyapunov, sistemas de Lur’e, LMIs, BMIs.

Americal Mathematical Society (AMS) classification: 93C10
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1 Introduction

This thesis was conducted from February 2020 to July 2020 at the Massachusetts Institute of
Technology under the supervision of Prof. Richard D. Braatz, as part of the requirements for
graduation from CFIS, Universitat Politécnica de Catalunya — BarcelonaTech, with a double
Bachelor’s degree in Physics Engineering and in Mathematics.

The thesis studies a specific class of nonlinear systems known as Lur’e systems, essentially
a combination of a linear time-invariant forward path and a nonlinear static feedback. In par-
ticular, the thesis deals with a subclass of these systems, which have sector bounds and slope
restrictions on their nonlinearities.

Lur’e systems arise very commonly in a wide range of disciplines including chemical en-
gineering, mechanical engineering, and aerospace engineering, among others. The sector and
slope constraints on the nonlinearities do not largely reduce the applicability of the problem. A
Lur’e system with these constraints can describe broad classes of nonlinear feedback behaviors,
included systems described by dynamic neural networks. The neural network model of the non-
linearities will consist of functions such as hyperbolic tangents, which satisfy these constraints.

The aim of this thesis is to find conditions to ensure global asymptotic stability, compute
input-output gains, and design state feedback control and state estimation for Lur’e systems
with sector-bounded, slope-restricted nonlinearities. The approach in this thesis for the study
of these systems is based on linear and bilinear matrix inequalities.

1.1 Mathematical Preliminaries

1.1.1 Linear and Bilinear Matrix Inequalities

This section summarizes the most important aspects of linear and bilinear matrix inequalities
that are used in this thesis, and are obtained from the more detailed tutorial [1]. Another more
complete study is available in the book [2].

A linear matrix inequality (LMI) has the form

F(x) = Fy+ iszz =<0, (1)

i=1

where x € R™ and the matrices F; € R"*" ¢ = 0,1,...,m are symmetric and known. The
matrix F'(z) is an affine function of the elements of the variable z. The inequality (1) denotes
that F'(z) is a negative definite matrix, that is,

dF(x)z <0, V2#0, z€ R
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LMIs can be defined analogously for positive definite, negative semidefinite, and positive semidef-
inite matrices. The first two cases are called strict LMIs, while the last two are called nonstrict

LMIs.

Linear inequalities, convex quadratic inequalities, matrix norm inequalities, and various
constraints from control theory such as Lyapunov and Riccati inequalities can all be written
as LMIs. Thus, LMIs are a useful tool for solving a wide variety of optimization and control
problems.

The LMI (1) is said to be feasible if the set {z | F'(x) < 0} is nonempty, and the analogous
sets can be defined similarly for the rest of cases. An important property of LMIs is that the
set {x | F(x) < 0} is convex, i.e., (1) forms a convex constraint on x. To see this, let x,y be
two vectors such that F(x) < 0 and F(y) < 0, and let A € (0,1). Then,

PO+ (1= 05) = £y + 3 (i + (1= N

_AF0+(1—AF0+AZ:@F+ (1- Zyz i

=1

= AF(z)+ (1 =N F(y)
< 0.

The advantage of formulating control problems in terms of convex optimizations (when pos-
sible) is that wide classes of convex optimizations can be solved in polynomial time. Convex
optimizations often arise in engineering practice and many can be written as LMIs, which is the
strength of using LMI formulations: convex optimizations over LMIs are solvable in polynomial
time.

A bilinear matrix inequality (BMI) has the form

F(z Fg‘f‘leF —i—Zy]G —i—Zszyij =<0, (2)

=1 j=1
where F;,G; € RV, i =0,1,...,m, j = O, 1,...,1, are symmetric known matrices, H;; €
R §=0,1,...,m, j =0,1,...,1 are known matrices and z € R™, y € R are the variables.

As for LMIs, BMIs can be negative or positive definite and negative or positive definite,
and the same definitions of strict and nonstrict apply. BMI feasibility is defined analogously
to that of LMIs.

BMIs commonly arise when formulating control design procedures for those uncertain
and/or nonlinear systems in which an LMI formulation is not available. In fact, nearly ev-
ery problem of interest in control can be formulated in terms of optimizations over BMIs.



If x is fixed, a BMI is an LMI for y and, therefore, convex in y. Analogously, if y is fixed,
a BMI is an LMI for x and convex in x. However, BMIs are not jointly conver in x and y,
and control problems expressed as BMIs are not convex optimizations. BMI optimizations are
NP-hard and cannot be ensured to be solvable in polynomial time. In more practical terms, this
classification implies that algorithms for finding global solutions to optimizations over BMIs
are not efficient for large-scale problems.

1.1.2 The S-Procedure for Quadratic Forms

The S-procedure is useful for reformulating mathematical structures that commonly arise in
Lyapunov control as LMIs. Its statement and proof are extracted from [1] and shown below.

Lemma (S-Lemma or S-Procedure): Let f;(x), i = 0,...,p be quadratic forms with
respect to x € R™ f;(z) = 2TTjz, where T; are symmetric matrices. If there exist 7 >

0,...,7, > 0 such that
p

fo - ZTZfZ Z O, \V/l’? (3)

=1

or, equivalently,
p
Ty = 7T =0,
i=1

then
2ITyx >0 Vo such that 21T,z >0, i=1,...,p.

Proof: If there exist 77 > 0,...,7, > 0 such that (3) holds for all = then (3) also holds for all =
such that f;(x) > 0,Vi=1,...,p. Then, for all such z, it must hold that

p
fo(z) > ZTzfz(SU) >0

i=1
since the summation is over terms that are all nonnegative.

]

The S-procedure also holds, and is proved similarly, for the case where the main inequality
is strict. If there exist 4 > 0,...,7, > 0 such that

To_iTiTi =0,

i=1



then
2T Tox >0 Va #0such that 2" Tja >0, i=1,...,p.

1.1.3 The Schur Complement Lemma

Like the S-procedure, the Schur complement lemma is a useful method for formulating com-
monly arising control problems as LMIs. Its statement and proof are extracted from [1] and
shown below.

Lemma (Schur Complement): Let Q(x) = Q(x)", S(z) = S(z)” and R(z) = R(x)" be

functions of z € R™. Then

Q(z) = S(x)R(z)"'S(x)" = 0 Q(x) S(x)
R(z) >0 }(:)[S(x)T R(x =0
Proof: ( =) Assume that )
Qz)  S(x)
| S@" R@) |
and define ) .
u Q(z) S(x) u
rao =[] [ S0 20 V] .
Then,

First, consider © = 0. Then,
F(0,v) =v"R(x)v >0, Vo #0 = R(x) = 0.
Next, consider
v=—R(z)"'S(x)"u, with u # 0.

Then,
F(u,v) =u" (Q(z) — S(z)R(z)7'S(2)") u> 0,Vu #0

— Q(z) — S(z)R(z)'S(x)" = 0.

(<= ) Now assume
Q(z) — S(z)R(z)~'S(z)" =0, R(z) >0

with F'(u,v) defined as in (4). Fix u and optimize over v, i.e.,

Vo FT = 2R(x)v + 2S(x)"u = 0. (5)
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Since R(z) = 0, (5) gives a single extrema v* := —R(x)~1S(x)"u. Plugging this expression into
(4) gives F(u,v*) = u” (Q(z) — S(z)R(z)"'S(z)") u. Since Q(z) — S(z)R(z)"*S(z)" = 0 the
minimum of F'(u,v*) occurs for u = 0, which also implies that v* = 0. Thus, the minimum of
F(u,v) occurs at (0,0) and is equal to zero. Therefore, F'(u,v) is positive definite.

]

1.1.4 Initial Definitions and Notation

This thesis frequently refers to certain classes of static nonlinear functions, namely sector-
bounded and slope-restricted nonlinearities, whose definitions are

<I>£Ob’£] = {gzﬁ :R™ — R™ | ¢;(0) [fi_lgbi(a) — 0] <0,VoeR,i=1,... ,nq} ,

ol .= (¢ R — R™ | [¢i(0) — o] [¢s(0) — Bio] <O,Vo €R, i=1,...,n,},

ST S

O —0

PlOH ::{¢:Rq—>Rq|0§—§m, Vo#o6€e€Randfori=1,...,n,,

Pl0oel . — {(b:R”q%R”HOSM, VU#&ERandforizl,...,nq}.
-0

o

Other expressions appearing throughout the thesis are the integrals

/0 " (oo and /0 "l — 64(0)do (6)

The variable g ; can take any real value, including any value smaller than zero. Some properties
used in the thesis to account for ¢;,; < 0 are

[ o= | 6i(0)do
0

/oqk’i[&a — ¢i(0)]do = _/ ‘[fﬂ — ¢i(0)]do.

qk,i

10



1.2 Literature Review on the Lur’e Problem

In 1944, Lur’e and Postnikov formulated the Lur’e problem [3], which addressed the stability
of a class of nonlinear feedback systems, which today are called Lur’e systems. These systems
are described by a linear time-invariant (LTI) forward path together with a nonlinear feedback.
The nonlinearities present in the feedback are considered to be memoryless and static, and can
be either time-invariant or time-varying.

The forward path of a Lur’e system, being LTI, can be described by four matrices A, B, C,
D. The nonlinear feedback ¢ satisfies the sector-boundedness condition

0 < ¢i(0)o < &o?, Vo €R, (7)

for each of its components ¢;, or, equivalently, ¢ € @g%ﬂ.

Although Lur’e systems are defined in both continuous and discrete time, this work deals
with discrete-time Lur’e systems. For this reason, the rest of this thesis will consider this case
exclusively, which has the form

Tpy1 = Axy + Bpy
qx = Cxy, + Dpy, (8)
pr = —9(qx)
where x € R™ and p € R™ are the state and nonlinear output vectors, respectively, k is the
sampling instance, A € R"*" B € R"*" (' € R"*" D € R"*™ and ¢ € @8%’5]. Each compo-
nent ¢ of ¢ is assumed to act uniquely on component 7 of the vector ¢ and, thus, n, = n,.

The results of this thesis are also applicable to Lur’e systems with nonlinearities satisfying
the more general sector conditions:

a0 < ¢i(0)o < Bio?, Vo €R (9)

or, equivalently, ¢ € <I>£,ab”8 I'to transform into systems of the form (8) — with a sector condition of
the form (7) — through a loop transformation. Details on this transformation can be found in [2].

The Lur’e problem, also called the absolute stability problem, aims to find sufficient condi-
tions that ensure that the origin x = 0 is a globally asymptotically stable, or absolutely stable,
equilibrium of system (8). Since this analysis problem was first posed, several criteria for sta-
bility have been developed, the most notable of which are outlined in this section.

The Circle criterion was first developed by Sandberg in 1964 [4] and can be seen as a gen-
eralization of the well-known Nyquist stability criterion, which only applies to LTT systems. A
discrete-time formulation of the criterion can be found in [5], and is outlined below.

Circle Criterion (Discrete-Time Case): Let n(z),d(z) be two coprime polynomials

with deg(n(z)) < deg(d(z)) and let G(z) = Z((;) be the frequency-domain transfer function for

11



the system

(10)

Tht1 = AZEk + Buk
yr = Cay,

satisfying G (¢*) > 0 Vw € R or G(z) > 0 for |z| = 1. Then, for system (8) with D = 0 and
with a single nonlinearity, if d(z) has no zeros outside the unit circle, then

1. All solutions of the system are bounded if ¢ € @Lab’ﬂ Jand the Nyquist locus of G (e*) does
not encircle or intersect the open disk which is centered on the negative real axis of the
G (€?) plane and has as a diameter the segment of the negative real axis (—1/a, —1/0).

2. All solutions are bounded and approach zero at an exponential rate if there exists some
€ > 0 such that ¢ € @£%+6’6+6] and the Nyquist locus behaves as in 1.

The Circle criterion has been extended to the multivariable nonlinearity case, e.g., [6].

A similar criterion to the Circle criterion was developed in 1963 by Tsypkin for discrete-time
LTI-systems with a single nonlinear element |7| and is outlined below.

Tsypkin Criterion: Let G(z) be the frequency-domain transfer function of the LTI part
of system (8) as defined in the Circle criterion. Then, system (8) with ¢ € @L%’ﬂ is absolutely
stable if

1
Re G(z) +E >0, for|z|]=1. (11)

Geometrically, the Tsypkin criterion ressembles the Circle criterion in that absolute stability
is ensured by the Nyquist locus of G(z) not intersecting a forbidden region, which is defined on
the negative real axis by the sector condition on the system’s nonlinearity.

Also in 1964, Jury and Lee [8] considered a single-input single-output system not only with
a sector condition ¢ = @g%’ﬂ on the nonlinearity but also a local slope restriction given by
¢ < ®L# This new consideration led to a less conservative absolute stability condition
1 pA

ReG(2)[1+ Az —1)] + £ 2 |(z—1)G(2)]> >0, for|z| =1 and for some A > 0. (12)

The condition (12) is equivalent to the Tsypkin criterion condition (11) for the case A = 0.
The result has been generalized to the multivariable case, e.g., [6].

The Circle, Tsypkin, and derived criteria are interpreted in the frequency domain and are
based on the important result obtained by Kalman and Yakubovich in the early 1960s known
as the Positive Real Lemma or the Kalman-Yakubovich Lemma. A simple statement of this

12



lemma can be found in [2]. The lemma consists of a criterion for the transfer function of a
system to be positive real and gives conditions for a quadratic Lyapunov function

V(xg) = xZP:vk,

where P > 0, to ensure the absolute stability of a Lur’e system.

More recent results focused on the time domain instead, and have used Lyapunov functions
that take properties of the nonlinearities into account. This consideration is relevant because
strictly quadratic Lyapunov functions are exact for linear systems but conservative for the
analysis of nonlinear systems. These time-domain approaches modify the Lyapunov function
to significantly reduce conservatism in the results. In some cases, the Lyapunov functions are
the sum of a traditional quadratic term and one or more terms containing the system’s non-
linearities, frequently in the form of integrals. These functions are known as Lur’e-Postnikov
Lyapunov functions or modified Lur’e-Postnikov Lyapunov functions.

An example of this approach for ¢ = (I)L%’f] N 2> includes a single integral term in the
Lyapunov function [9],

"a ki
V(Q?k+1) = j{Pi’k + 2 Z Q”/ (bl(O')dO',
i=1 0

where 7, := [xflﬂ}, P>=0,and Q; > 0Vi=1,...,n,
k

Another, less conservative, approach for this nonlinearity employs a Lyapunov function with
additional terms depending on the nonlinearities [10],

k- 7nq "q Qk,i
V(2pi1) = T} Poy + 2 Z Z o! (qr.i) {Qk,i — &g (ka)} +2 Z Qii /0 ¢i(o)do
=0 i—1 i1

i o i0 — ¢i(0))do,
+2;Q/0 (&0 — du(0))do

where T, := {IZH}, P>0,and Q; and Q; >0Vi=1,... Mg
k

In these approaches, among others in the literature, the quadratic term acts explicitly not
only on the state variables x;, but also on ¢ and /or the output of the nonlinearities, px. Another

approach using only this nonlinearity dependence in the Lyapunov function for ¢ € ®
used [11]

04] A pl0

V(Ik) = fgpii‘k,

where T, := Lb(x; )} and P > 0.
k

13



This latter study went beyond analyzing the stability of an uncontrolled Lur’e system, and
found sufficient conditions for its stability when a proportional controller is introduced. In
other words, sufficient conditions were found for the existence of a matrix K that stabilizes a
nominally unstable Lur’e system.

Asymptotic stability is then guaranteed by the Lyapunov stability criterion: using Lyapunov
functions that are, by construction, strictly positive for z;, # 0 (and null for z;, = 0) and radially
unbounded, and then finding LMIs that ensure that the Lyapunov function decreases at each
sampling instance k, i.e.,

AV (zy) = V(xger) — V(xg) <0, VE>0.

In the case of a Lyapunov function that includes integrals, finding that this condition is satisfied
involves also finding quadratic upper bounds on the integral terms.

1.3 Problem Statement and Methods

This thesis considers the Lur’e system

Tht1 = AZEk + Bpk
qr = Cxy + Dpy, (13)
Pe = —o(qx)

with all variables and matrices as defined in (8), but with ¢ € @L%’g] NoLH As such, this thesis
considers a subclass of the systems described by (8), since ¢ € @L%’ﬂ N ol (IDE%’S].

1.3.1 Analytical Approach

In order to reduce the conservativeness of quadratic Lyapunov functions when used for the
analysis of nonlinear systems, a modified Lur’e-Postnikov Lyapunov function is used, of the
form

V() = 7 Pre+2Y ) Qs / Y po)do+23 Ou / Vo —gio)do,  (14)
i=1 0 i=1 0

where
Lk Py Py P ~

Tro=|ps |, PT=P:= Pf’; Py Poy | =0, Py =0, and Q;; & Q;; >0, Vi=1,...,n,
gk P1T3 P2T3 Ps3

The dependence of the integral terms of the Lyapunov function (14) on the system’s nonlin-
earities reduces the conservatism in the conditions appearing in the stability and performance

14



analysis. The sign definiteness of these integral terms is implied by the sector-bounded property
of the nonlinearities. The Lyapunov function is radially unbounded with respect to Zj, zero for
x, = 0, and strictly positive for all nonzero x; € R".

Conservatism is reduced by considering the sector boundedness, which is a global condition
on the nonlinearities, and even more reduced by considering the slope restriction, which poses
a local condition to their behavior inside the bounded conical sector. These properties are
introduced by two means:

1. The local slope restriction is used to find the tightest possible quadratic upper bounds
for the integral terms in the Lyapunov function. These quadratic upper bounds lead to
LMI conditions ensuring that the Lyapunov function decreases for each k. The tighter
that the upper bounds are, the less conservative are the derived conditions.

2. The obtained LMIs need to be satisfied for all values of the state variables that satisfy the
sector-boundedness and slope-restriction conditions. This step is introduced through the
S-procedure, which is applied to the quadratic forms resulting from the LMI formulation
explained above.

1.3.2 Numerical Approach

The LMI problems to be solved numerically in this work are LMI feasibility problems, i.e.,
finding whether a given system of LMIs is feasible. These problems were solved using the LMI
Lab [12] which is incorporated into the Matlab Robust Control Toolbox [13, 14].

The commands from this toolbox used in this thesis are:

setlmis: Initializes description of LMI system
lmivar: Specifies matrix variables in LMI problem
newlmi: Attaches identifying tag to LMIs
lmiterm: Specifies term content of LMIs

getlmis: Calls internal description of LMI system

feasp: Computes solution to given system of LMIs
In particular, for a given LMI system 1misys, the function call is:
[tmin,xfeas] = feasp(lmisys,options,target)
The value of tmin indicates whether 1misys is feasible. If negative, lmisys is feasible.
If positive, the LMI is infeasible or, if sufficiently small, the system may be feasible but
not strictly feasible. For a feasible system, xfeas gives a set of solutions to the variables
lmivar that make the problem feasible.
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For a set of examples, Chapters 2 and 3 solve optimizations over LMIs. Specifically, the
maximum or minimum value of a parameter is found such that the given system of LMIs is
feasible. In particular, these correspond to the maximum lower bound on the stability margin
and the minimum upper bound on the ¢2- or RMS-gain of the examples of Lur’e systems
with sector-bounded, slope-restricted nonlinearities. These optimizations are solved by the
procedure:

1. Define the system of LMIs.
2. Define the example system.

3. Find a value of the parameter to optimize such that the LMI system is feasible for the
example system, and one for which the LMI system is infeasible, using feasp.

4. Use the bisection method to find the maximum or minimum value of the parameter for
which tmin is negative, with the previously found feasible and infeasible values as initial
search points.

The scripts for the described procedure can be found in Appendices A and B.

For a given example, Chapters 4 and 5 find whether a system of LMIs is feasible, which is
done through the simpler procedure:

1. Define the example system.
2. Define the system of LMIs.

3. Find whether the system of LMIs is feasible for the example system.

In these chapters, additionally, the example system is iterated to show its behavior. The scripts
for the above procedures and for plotting the system behavior are included in Appendices C
and D.

1.4 Thesis Outline

Chapter 2 contains the main enabling results by dealing with the stablity analysis of the studied
system. The properties of the system’s nonlinearities are used with the aim of finding the tight-
est possible quadratic upper bounds for the integrals in the Lyapunov function (14), which is the
most important contribution of this thesis. The approach was used in this thesis was published
in a past Master’s thesis [15]. The previously published bounds on the integrals are disproved
by counterexamples, with a simple example being ¢(0) = o and using g, gx+1 > 0. Through
the new, corrected quadratic upper bounds presented in this thesis, LMIs are derived as suf-
ficient conditions for the studied system (13) to be absolutely stable. The obtained LMIs are
also used to solve the optimization max ¢ such that the system is absolutely stable, which gives
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a lower bound on the stability /robustness margin of the system. This margin bound is found
for a series of numerical examples and compared with the most relevant results in the literature.

Chapter 3 considers performance analysis of the Lur’e system. The integral bounds are
used again to obtain LMIs for computing upper bounds on the system’s /5-gain and RMS-gain.
The tightness of the integral bounds is useful in this chapter as well, to reduce conservatism in
the result of this value. The upper bound on the gain is obtained for a few of the numerical
example systems analyzed in Chapter 2.

Chapter 4 considers the robust stabilization of the system. The bounds and LMIs ob-
tained in Chapter 2 are used to analyze the stability of a system with a proportional controller
ur, = Kxp. The addition of the new matrix variable K results in higher order matrix inequali-
ties, which are reduced to BMIs through the Schur complement lemma. A numerical example
is given to illustrate the results.

Chapter 5 studies the state estimation of the Lur’e system. The dynamics of the error
between the system variables and the estimated variables are analyzed. Because these dynamics
are found to have nonlinearities such that ¢ ¢ @&%’ﬂ N @L"r’“ I and ¢ € @L%’” ], new bounds are
found for the integrals in the Lyapunov function and, consequently, the Lyapunov function
used for the error dynamics system is modified. Further, the corresponding higher order matrix
inequalities are found, and again reduced to BMIs through the Schur complement lemma. A
numerical example is shown as well to illustrate the results.
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2 Stability Analysis

This chapter derives sufficient conditions for a system of the form (13) to be globally asymp-
totically stable. The stability or robustness margin is defined accordingly and is then found
numerically for a set of examples. The numerical results are compared to the results obtained
with the criteria presented in the literature review to quantify the improvement given by the
presented criterion.

2.1 Analytical LMI Derivation for Stability Analysis

The derivation of this stability criterion requires finding a quadratic upper bound to the vari-
ation between sampling instances of the Lyapunov function (14). An essential step for finding
this bound is given in Lemma 1 and is later used in the proof of Theorem 1.

Lemma 1: Let g, qx1 be any two consecutive sampling instances of ¢ and ¢ € fbg%’ﬂ DCI)L?!“ ]
as defined in system (13). Let ¢ = ¢(qx) and ¢ri1 = ¢(qry1). Then, for each i =1,...,n,,

1 2
2/% (¢k+l,i - ¢k,z)

< / " bi(o)do (15)

qk,i

Ori( Q1 — Qri) +

= (Qbk—i-l,i - ¢k,i)27

< Opr1,i (o1, — Qi) — 2
(3

provided that p; # 0. For p; = 0, the value of the integral is 0.

Proof: The case p; = 0 is trivial. The bounds also clearly hold for gx; = gqry1,. For the
nontrivial case, first consider the case where qr; < gr+1,. Then the local slope restriction
property of ¢ gives

0< %ﬁ@ < pi Vo #6 €R = ¢i(0) < min{dp; + pi(0 — i), drs1i}, (16)

Yo € [qris Qrr1,i)-
Let ok € gk, qr+1.4] be the value of o at which ¢y; + (0 — qr;) = Pr+14, then

Ort1,i — Pri

Ok = Qk,i +
4

and, from (16),
{ Gi(0) < bri + pil0 — qri), Yo € [qri, ok],
¢i(0) < Pry1, Vo € [0k, Qt1)-
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The integral in (15) can then be separated into two parts, satisfying:

/QHM ¢i(o)do = " ¢i(o)do + /qkﬂ’i ¢i(o)do

ki qk,i k
Ok qk+1,i
< / (O + pilo — qi;)) do +/ Opt1,do
qk,i o

1 2
2/~Lz <¢k+1,i - (bk,z) .

= ¢k+1,z’(Qk+1,i - Qk,i) -
The lower bound is obtained analogously using that

¢i(0) > max{pi, Or+1i + (0 — qer14)}, YO € [Qhis Gt i)

again implied by the slope restriction, leading to

1
(¢k+1,z’ - ¢k,z’)2-

k41,
/ ¢i(0)do > Gri(Qrs1i — i) + 201,

qk,i

The case for g;; > qx+1. consequently holds by using that
qk+1,i ki
/ ¢i(o)do = —/ ¢i(o)do
Qk,i Qk+1,i

and applying the bounds to integral on the right-hand side.

Theorem 1: Given the system (13), a sufficient condition for global asymptotic stability is
the existence of a positive semidefinite matrix P = PT g Rt tne)x(ntnptng) with a positive
definite submatrix Py; = P} € R™" and diagonal positive semidefinite matrices Q, Q,T,T, N €

R™*"a guch that
Gu G2 Gis
G := G{Q G22 G23 <0,
Gl; G3y Ga

where

G = AT(Pyy + CT Pl + PisC + OTPyyCYA — Py — CTPL — Pi3C — CT P3O+
+ ATcTQxcA - CcTQXxcC,

Gy = AT(Py + CTPL + Pi3sC + CT P3C)B — Py — CT' Py — PisD — CT Py3 D+
+ ATCTQXCB - CTQXD + (CA—-C)'Q — CTT + (CA - C)'N,
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Gis = ATPyy + ATCTPL + ATPisD 4+ ATCTPsD — (CA — C)T'Q + ATCTQXD — ATCTT—
—(CA-C)Y'N

Gy = BT (P + CTPL + Pi3C + CT P33sC)B — Pyy — DT Pjy — PysD — DT PysD — QM ™'+
+BTCTQXCB -~ D"QXD +Q(CB — D)+ (CB—D)TQ - QM —2TX~' — TD—
— DT —2NM™' + N(CB - D) +(CB— D)"N,

Gas = BT Py + B'CT P + BT PisD + BTCTPy3sD + M~'Q — (CB — D)'Q + BTCTQX D+
+QD+QM ' —BTCTT — (CB—-D)'N+2NM™' + ND,

Gss = Pyy + DT'PL + PpsD + D' PyyD — QD — DTQ — QM+ DTQXD — QM —
—2TX ' —TD—-D'"T —2NM~'—ND - DTN,
where M := diag{yt1, ..., fin, } and X := diag{&, ..., &, }-

Proof: Given the Lyapunov function (14), a sufficient condition for the global asymptotic sta-
bility of the system is for the inequality

AV (zy) < 0, Vk >0 (18)

to be satisfied. The variation between the two sampling instances k and k + 1 is expressed as
"a Qk+1,i
AV () = (L (ATPA, — E] PE)G: +2 ) Qi / ¢i(0)do
i=1

qk,i
+2 Z Qs /qk“l — ¢:(0)do

9k,i

(19)

where
Tk A B 0 I 0 0
Cp = pe |, Aa:=1| O O I |, E,.=]0 I O
Dk+1 CA CB D C D O

In order to find an LMI condition that implies the inequality (18), Lemma 1 is used to find
quadratic upper bounds on the two integral terms of AV (xy):

Qk+1z 1
QZQu/ o)do < QZ Qii {¢k+1 i(Qt1i — Qi) — o (Prg1, — ¢k,i)2} = (UG,

k,t
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where M := diag{ju1, ..., ptn,} = 0, and U; = U{ is defined as

0 0 —(CA-0O)'Q
U:=|x —QM* (M*'—(CB-D)HQ |,
* * —-QD —-DTQ - QM

and for the second integral term,

22 o R O 22 o {& Foi—dd- [ @«(a)da}

ki ki

1
24

= &
<2 Z Qii {5 (s — i) = Ori(@hrri — @) — 5—(Drrri — Gna)” p = G UnGr,
i=1

where X := diag{&,...,&,} = 0, and Uy = U7 is defined as

i - - ATCTQXCB — CTQX D+ ~ ]
T AT _ T “ T T
ATCTQXCA C’QXC’( TCA— Y ) ATCTQXD
e BTCTQXCB — D"QX D+ i i
2 % +Q(CB — D)+ BTCTQXD +QD +QM"|
+(CB—=D)TQ —QM™!
I % * DTQXD — QM!

Thus, AV (zy) < (F(ATPA, — E'PE, + U, + Uy)C*, Vk > 0, which implies that
GHATPA, — ETPE, + U + U))(, < 0 = AV(x) < 0. (20)

Therefore, a sufficient condition for the global asymptotic stability of the system is for the
left-hand side of (20) to be satisfied for all ; that satisfy the sector-boundedness and slope-
restriction conditions on ¢. These conditions on (j are introduced via the S-procedure. First,
the LMI form of the conditions is found.

For the sector boundedness:
¢ € B9 = Gl G — ] O, i=1,...,n, Vk>0. (21)
A useful notation for using the S-procedure with condition (40) is
> 27ikal& i — aral = G518k <0,
i=1

where T := diag{7y,...,7,,} = 0 and S} = S is defined as

0 c'r 0
Si:=|x 2ITX'4+TD+DT'T 0
* * 0
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Similarly, for the next sampling instance,

227:1'¢k+1,i[5;1¢k+1,i — Q1] = (FSale <0,
i=1

where T := diag{7y, ... Tn,t 7 0, and Sy = S7 is defined as

0 0 ATCTT
So:=1| % 0 BTCOTT
x x 2TX 14+ TD+ DIT

For the slope restriction:

¢ e ol — ogwgm, i=1,...,n,
Qk+1, — Gk

= (Prrri — Pri) [ (Drari — Ori) — (Grri — qra)] <0

(22)

A useful notation for using the S-procedure with condition (22) is

ZQVi(¢k+1,i - ¢lm) [ﬂ;1<¢k+1,i - ¢lm) - (Qk—i—Li - ka)] = CgSSCk <0,

i=1

where N := diag{vi,...,v,} = 0, and S5 = S5 is defined as

0 —(CA—C)'N (CA—C)'N
Ss:=| * 2NM~' = N(CB—D)— (CB—D)'N (CB - D)'N — N(2M~' + D)
« « ONM~'+ ND+ DTN

Finally, applying the S-procedure gives that, if the LMI G := ATPA, — E'PE, +U, + Uy —
S1 — Sy — S3 < 0 is feasible, then AV () < 0 is satisfied Yk > 0, and the system is globally
asymptotically stable.

[]

The sufficient condition for the stability of system (13) given by Theorem 1 can be used to
find a lower bound for the stability /robustness margin for each nonlinear input p;, which is the
maximum value of &; such that the sufficient condition for stability is satisfied.

Since stability depends on the n, components of the nonlinear input vector p, a simplified
case for which to find the robustness margin is that in which all components &; of the vector ¢
are equal, thus finding the maximum sector boundedness restriction imposed on all nonlinear
input components such that the sufficient condition for stability is satisfied.
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Thus, the lower bound on the robustness margin is the value of ¢ that solves the optimiza-
tion:
max &
subject to G <0
Q,Q,T,T,N =0
P=P'=0, P,>0

with all matrices as defined in Theorem 1.

Because the condition in Theorem 1 is not a necessary condition, this margin bound can be
conservative with respect to the real robustness margin.

2.2 Numerical Results for Stability Analysis

The sufficient condition for global asymptotic stability imposed by Theorem 1 is used to find
lower bounds on the robustness margin of several examples of systems of the form (13). All
examples consider sector bounds and slope restrictions with & and p; are taken to be the same
for all nonlinearities ¢;. In addition, p is taken to be linearly dependent on &.

Theorem 1 deals with systems of the form (13) that can either have D = 0 or D # 0. All
examples in this section have D = 0 to allow comparison with results from other criteria in the
literature.

Example 1:
—0.52+0.1
G(z) = = 2¢.
(2) 22— 24089 (z+01) " §
Example 2:
0.2948 0 0 0 0 [ —1.1878 0.2341
0 04568 0 0 0 —2.2023  0.0215
A= 0 0  0.0226 0 0 ., B=1| 0.9863 —1.0039 |,
0 0 0  0.3801 0 —0.5186 —0.9471
0 0 0 0 —0.3270 | 03274 —0.3744
o —1.1859 1.4725 —1.2173 —1.1283 —0.2611 ] D—o ¢
~ | —1.0559 0.0557 —0.0412 —1.3493 0.9535 |’ = ¥ p=s
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Example 3:

0.0469 —0.3992 —0.0835 —0.5673 —0.2785
A=1|0.3902 —0.5363 —02744 |, B=| 0.1155 —0.0649
0.4378 —1.3576  0.4651 —2.1849 —0.5976
0.3587 —1.0802 —0.6802
C=| _13833 —1.0677 11497 | P =002 =&
Example 4:
0.4030 0 0 —0.2494
A= 0  —0.1502 0 ., B=| 0.2542 |,
0 0 —0.1502 —0.2036
C'=[09894 0.6649 04339 |, D=0, p=2¢
Example 5:
0.4783 0 0 0 —1.5174
Ao 0 07871 0 0 B 1.2181 |
0 0 07871 1 0.2496
0 0 0  0.7871 —0.5181
C=[08457 —2.0885 1.2190 0.1683 |, D =0, p=2¢.
Example 6:
[ 0.5359 0 0 0 0 0 0 0
0 09417 0 0 0 0 0 0
0 0 09802 0 0 0 0 0
0 0 0 05777 0 0 0 0
A= 0 0 0 0  —0.1227 0 0 0
0 0 0 0 0 —0.0034 0 0
0 0 0 0 0 0 —0.5721 0
0 0 0 0 0 0 0 0.2870
0 0 0 0 0 0 0 0
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1000
0100
88(1)(1] 110000000
001110000
B—(l)(l)gg’c000001100’DO4X4’“5‘
0010 0000000O0T1
0001
(100 0

For each example, the lower bound on the robustness margin is calculated as the upper
bound for £: the system will be globally asymptotically stable for any value of £ smaller than
the upper bound, provided that the system is nominally stable, i.e., that the system without
the nonlinearities is stable.

The results from the most relevant criteria in the literature are obtained from [15] and
shown in Table 1. For Theorem 1, LMI feasibility results are obtained using the LMI solver
tools in MATLAB’s Robust Control Toolbox, and the upper bound for £ is found by the bisec-
tion method, as explained in Section 1.3.2. These results are also shown in Table 1.

Table 1: Lower bounds on the robustness margin for £ obtained by different criteria. The first

comparison is with respect to the latest criterion for ¢ € @g%’ﬂ N @L%’“], while the second comparison is

with respect to the previous least conservative criterion.

Ex 1 Ex 2 Ex 3 Ex 4 Ex b Ex 6
Circle (¢ € CI)E%Q 1.0273 0.18358 0.21792 2.91387 0.03660 0.03716

Tsypkin (¢ € ®9%)  1.0273 0.18358 0.21792 2.91387 0.03660 0.03716

Haddad et al. (qae@i%ﬂm@!%” 1.0273  0.18358 0.21792 2.91387 0.03660 0.03716
Kapila et al. (¢ € 09 nal>1) 1.0273 0.18358 0.21792 2.91387 0.03660 0.03716
Park et al. (¢ € @09 N>} 17252 018358 0.21792 291387 0.03660 0.03716

Theorem 1 (qseq)ﬁ’f]m@[s?:” 2.4475 0.18362 0.46429 2.91387 0.03660 0.13088

Improvement of
Theorem 1 over Haddad et al.

Improvement of
Theorem 1 over Park et al.

138%  0.02% 113% 0% 0% 252%

42% 0.02% 113% 0% 0% 252%

Theorem 1 is less conservative with respect to previous literature results form some exam-
ples, and the same value for others. While the lower bound on the margin remains the same
in Examples 4 and 5 and practically unchanged for Example 2, the margin is significantly in-
creased for Examples 1, 3, and 6. Theorem 1 gives tighter lower bounds on the real robustness
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margin and is a clear and substantial improvement with respect to previously published stabil-
ity criteria.

The main consideration leading to an improved criterion is finding bounds on the variation of
the Lyapunov function that are based on the slope restriction instead of the sector boundedness
constraint. By being a local rather than a global condition, the slope restriction provides more
information about the behavior of the nonlinearities and thus leads to tighter bounds in Lemma
1.
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3 Gain Analysis

Gain analysis is also important for performance analysis of dynamical systems. Gain analysis
can quantify about how much an input noise signal is amplified at the output. This chapter
provides a method to determine an upper bound on the value of the gain, based on the bounds
for the variation of the Lyapunov function (14) obtained in the stability analysis. Thus, the
reduction in conservatism is equally present in this result.

3.1 Analytical LMI Derivation for Gain Analysis

For the gain analysis, the system (13) is expressed in the input-output formulation:

Tpy1 = Axy + Bypr + Buwy,
qr = Coqx + Doppre + Dguwy,
2k = Ozxk + szpk + Dzwwk
Pe = —P(q)

(23)

where w € R™ and z € R™ are the input and output vectors, respectively, B,, € R"*",
Dy, € R" <™ D, € R"*™ and the rest of variables and matrices are the same as defined
in (13).

The l5-gain of the system (23) is defined by

12112

wlla0 [[wll2”

where the fo-norm of the input w is defined by

and analogously for the output z.

Theorem 2: An upper bound on the ls-gain of system (23) can be obtained as the value
of v that solves the optimization:

min >
subject to H <0

Q7Q7T7T7N>FO
P=P' =0, P;>0
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where Q,Q,T,T,N € R™*" are diagonal matrices, P € Rtnptngtnu)x(ntnptngtnw) = ap(
H = H7 is defined by the entries

Hyy = AT(Piy + C Py + PisCy + Cf P3Cy)A — Piy — C] Py — Pi3C, — CT PysC,
+ATcrQxc,A—-croxc, +clc.,

Hyy = AT(P11 + C] Py + Pi3sCy + C P33Cy) B, — Py — C Py — Pi3Dg, — CJ P33 Dy,
+ATCTQXC,B, — CIQXDy, + (C,A— C)TQ + CI'D., — CIT + (C,A — C))"N,

Hyz3 = AT (P + CqTPng + Pi3Cy + CfPsng)Bw — Pi3Dyy, — CqTP:squw — Py — CqTP34
+ATC]QXCyB, — Cf QX Dy + CI D,

Hiy= ATPyy+ ATCI Pl + ATPi3Dgy + ATCL P33Dyy, — (CLA — C)TQ + ATCT QXD,,
— ATCTT — (C,A— C)TN,

Hy5 = A"P;3Dgy, + ATCI Py Dy + AT Pry + ATCE Py + ATCTQX Dy,

Hy = B (Piy + C Ply + Pi3Cy + C] P33Cy) B, — Poy — D} Pyy — Py3Dy, — D PssDy,
- QM_l + BZC:}FQXCqu - DZ;;QXqu + Q(Cqu - qu) + (Cqu - qu)TQ
~QM '+ DID,,—2TX™ —TD,, — DI T —2NM~" + N(C,B, — Dy,)

+ (Cqu - qu)TN’

Hys = B) (Puy + C] Ply+ P13Cy + C] P33Cy) By — PasDgyy — D, P33Dgyy — Pay — D] Py

+BI'CT'QXC B, — DEQX Dy + Q(CyBy — D) + DI D,y — TDy

+ N(CyBy — Dyw),

Hay = Bl Pio+ Bl Cl P+ Bl Pi3Dy, + Bl CI'P33Dy, + M~'Q — (CyB, — Dy,)" Q
+BICTQX Dy, + QD+ M™'Q — BICTT + 2M ' N — (CyB, — D) "N + N Dy,

Hys = B Pi3Dyy, + BECT Py3Dyyy + BE Py + BICI Py + BICTQX Dy + QDyuy + N Dy,

H33 = B,Z: (Pll + CqTPE-; + Plng —+ CqTP33Cq) Bw — Dgwpgquw - Pgﬂqu - Dng34 - P44
+ BLCTQXCyB, — D}, QX Dy + DI, D.., — 7°1,
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H3y = BL P+ BLCT Pl + BLPi3Dy, + BLCT Py Dy, — (CyBy — D)™ Q + BLCTQX D,
— BLCIT — (CyBy — Dgu)" N,

Hss = BLPi3Dyy + BLCT Pss Dy + BL Py + BLCT Py + BLCTQX Dy,

Hy = Py + DL P+ Py Dy, + DL PisDy, — QD — DY Q — QM ™' + DL QX D, — QM ™

—2TX ' ~TD, — DT —2NM~' — ND,, — DI'N,

H45 = P23qu + DZ;)PISSqu + P24 + DZ;;P?A - Qqu + DZ;DQXqu - Tqu - Nqua

Hss = DL, P33Dyy + Pi Dy + DL Py + Py + DL QX Dy,
and where M := diag{y1, ..., i, }, X = diag{&,..., &, }-

Proof: 1f there exists a Lyapunov function V'(zy) such that
AV (z) + 2t 2 — Ywiw, <0, VEk >0, (24)

then the f5-gain of the system is less than or equal to 7, which follows since the inequality (24)
implies

K
Z (AV(a:k) + 2 2, — Pwa,:fwk) <0 VK >0 <
k=0

K

— V(rgs) + Z (Z]{Zk — 72wgwk) <0 VK >0 =
k=0

K
— Z (21 26 — Ywiwg) <0 VK >0 (since V > 0) <
k=0

K K
T 2 T
<— E 2 2k < E wyw, VK >0 =
k=0 k=0

[12]]2
= |l2lz < *lwll; = —= <7 VYwll2 #0.

[wllz ~

The Lyapunov function used for the system (23) is again function (14). For the input-output
formulation, the z;, and P are expanded to

Tk Py Py Pis Pu
- Dk T P1T2 Py Poz Py
Ty = , PP =P:= =0,
g qr P1T3 PS;, P3Py
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and, once again,

The variation of the Lyapunov function is, again, defined as in (19), although with ¢, A,,
and F, now being defined as

Tk A B, B, 0 0 I 0 0 00
(L m o A0 0o o 1 0| . [0 T 000
b pkk » e | ¢,A CyB, CyBy Dyp Dy |7 7* | C; Dyp Dy 0 0
i 0 0 0o 0 I 0 0 I 00

Wr+1

Using, again, the bounds (15) for the integral fqi’“_“’i ¢i(0)do, the integral terms of the
Lyapunov function variation can be upper bounded by the linear matrix forms

2 Z Qi /qkﬂ,i ¢i(o)do < CkTL1Ck7

where L; = LT is defined as

0 0 0 —(C,A— C'q)TQ 0

x —QM~' 0 M'Q-(C,B,— qu)TQ 0
Li:=| % * 0 —(CyBw — Dy)TQ 0

* * x  —QD,, — D;Q — QM —QDy,

* * * * 0

and

22 Qn/ o (&0 — ¢i(0)] do < (F Ly,
i=1

dk,i

where Ly = LY is defined by the block entries

Ly = ATCTQXC,A - CTQXC,,

Lyo = ATCTQXC B, — CTQX Dy, + (C,A — C)TQ,

Loz = ATCTQXCyB, — CT QX Dy,

Loy = ATCTQX Dy,

Lyys = ATCTQX Dy,

Ly = BTCTQXC,B, — DL QX D,, + Q(C,B, — Dyy) + (CyB, — Dyp)"Q — QM ™,
Loy = BI'CTQXC,B, — DLQX Dy, + Q(CyB, — Dy,
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Looy = B;}FO;FQXqu + Qqu +MQ,
Lyss = BICTQX Dy + QDgu,

Lyss = BLCTQXC,yB, — DL,QX Dy,
Lyss = BLCTQXD,,,

Lyss = BLOTQX Dy,

Loy = DEQX Dy — QM ™,

L2,45 = DZ;QXqua

Lyss = D5L,QX Dyy.

The terms z{ z;, and w{wy, from the inequality (24) can also be expressed in matrix form as
2= (L ZG,  wpwy = W,

where Z = Z7 and W = W7 are defined as

cre, ¢rp,, CI'D,, 0 0 0 00O0O

* D,Z;,sz DZ;DM 0 0 *x 00 0 0

7 = * * DI D., 0 0| W:=|x% x 1 00
* * * 0 0 *x x x 00

* * * * 0 * *x x *x 0

Since
AV (zp) + 2 2 — Ywiwy, < F(ATPA, — ETPE, + Ly + Ly + Z — ¥*W)(,,  VE >0,

then
(F(ATPA, — E'PE, + Ly + Ly + Z —¥"W)(, <0, Vk>0 =

— AV(x) + 2} 2 — Y*wlw, <0, VE>0. (25)

Thus, the upper bound on the ¢5-gain of the system is found as the minimum value of v such
that the left-hand side of (25) holds, given that (j safisfies the sector-boundedness and slope-
restriction conditions on ¢. These conditions on (; will be introduced again via the S-procedure.
The matrix-form of the conditions is

e S1Cr < 0 and ¢ S2¢ <0
for the sector boundedness at the sampling instances k& and k + 1, respectively, and

(93¢ <0
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for the slope restriction. The matrices S; = ST, Sy = ST and S5 = ST are obtained analogously
to the proof of Theorem 1 and, for the input-output formulation system (23), are defined as

0 crr 0 00] (000 ATCIT 0
2T X '+ TD. 00 * 0 0 BZC’;{TN 0
g, - +T Dy, + DL T o o | ** 0 BgC’qTT 0
a . 0 00 f T 2T X+ #D
* * 00 +T Dy, + DET "
i * * % 0 R * 0
and
(0 —(C,A-C)'N 0 (C,A—C,)TN 0
2NM'— —2M~'N+
x| =N(CyBp — Dgp)— | —N(CyBuw — Dgu) | +(CqBp — Dgp)' N— | —=NDqy
S, = _<Cqu - qu)TN _Nqu
37 % * 0 (CyByw — Dy)'N 0
2NM~'+
* * * * 0

where, again, 7T T,N € R"*" are diagonal positive semidefinite matrices.

Finally, applying the S-procedure gives that an upper bound on the /;-gain of the system
is the minimum value of v such that the LMI H := AT PA, — E'PE, + Ly + Ly + Z — *W —

Sl - Sg — 53 < 0 holds.

The RMS-gain of the system (23) is defined by

HZ||RMS
sup T

lwl| rar57#0 ”wHRMS’

where the RMS-norm of the input w is defined by

K

lim sup

K—o 5—0

||| ras =

and analogously for the output z.
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The same optimization in Theorem 2 can be used to find the RMS-gain of the system, which
follows since inequality (24) also implies that

K

2 <2y wlw, YK >0 (since V > 0) <=

]~

k=0 0

1

K
1
<— T zgzk §72E2w,{wk VK >0 =
k=0

K
1
2t 2z, < 42 lim sup e Z wiwy, ==

k=0 K—00 k=0

1
— limsup —
K—o00 K

M= 107 ¢

2|l rass

|w| rars

Thus, the upper bound on the ¢3-gain and RMS-gain obtained through Theorem 2 are the
same.

= |zllims < Vllwlins = <7 Vlwl|rus # 0.

As with the robustness margin bound derived from Theorem 1, since condition (24) is suf-
ficient but not necessary for the f3-gain and the RMS-gain to be smaller or equal to v, the
results might also present conservatism with respect to the true value of the gain.

3.2 Numerical Results for Gain Analysis

The optimization in Theorem 2 is solved for an extended version of Example 2 from Section
2.2, 1.e.,

0.2948 0 0 0 0 —1.1878 0.2341 1
0 0.4568 0 0 0 —2.2023  0.0215 1
A= 0 0 0.0226 0 0 , Bp=1 09863 —1.0039 |, By,=| 1 |,
0 0 0 0.3801 0 —0.5186 —0.9471 1
0 0 0 0 —0.3270 0.3274 —0.3744 1

| 11859 14725 -—-1.2173 —1.1283 —0.2611 D —0 Do _ 0
| —1.0559 0.0557 —0.0412 —1.3493 0.9535 | @ " Taw | g p

Cz:[l 0 0 0 0}) sz:0> Dzw:17 :u:éa

by using the LMI solver tools from the MATLAB Robust Control Toolbox and by implement-
ing the bisection method to find the lowest value of v for which the LMI constraints are
feasible, as explained in Section 1.3.2. This procedure gives that the /5-gain, and equivalently
an RMS-gain, for the system is less than or equal to 2.42751 for £ = 0.01 and 2.50171 for £ = 0.1.

Cy
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The same method was applied to an extended version of Example 3 from Section 2.2, i.e.,

0.0469 —0.3992 —0.0835 —0.5673 —0.2785 0.0962 —0.5829
A= 03902 —-0.5363 —0.2744 |, B,=| 0.1155 —-0.0649 |, B,=| —0.0482 0.4739 |,
0.4378 —1.3576 0.4651 —2.1849 —0.5976 —1.1274 1.1238

o - 0.3587 —1.0802 —0.6802 Do —o p_ [ 01562 0.4342
97| —1.3833 —1.0677 1.1497 |0 T T 2B Faw T (5479 0.0356 |

o — 0.9792 0.1112 —-0.8091 D _ 0.0010 —0.7238 D _ 0.5474 0.0242
1 0.6970 1.3471 —0.0023 | ~* | 1.2356 0.2360 | Y | 0.2762 0.0486 |

p=2E.

The /5-gain, and RMS-gain, is obtained to be less than or equal to 4.76056 for ¢ = 0.01 and
5.41419 for £ = 0.1.
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4 State Feedback Controller Design

This chapter derives sufficient BMI conditions for a proportional state feedback controller to
globally asymptotically stabilize a nominally unstable system of the form (13). The conditions
are based on the bounds from the stability analysis and, thus, conservatism is correspondingly
reduced.

4.1 Analytical BMI Derivation for State Feedback Con-
troller Design

The system controlled by state feedback has the form

Tpy1 = Axp + Bpp + Byugp = (A+ B, K)xy + Bpg
qr = Cxy + Dpy
U = KCL‘k
P = —P(qk)

(26)

where u© € R™ is the input control variable, B, € R™*"™ K € R™*™ is the state feedback
controller matrix, and the rest of the variables and matrices are as defined for the system (13).

Theorem 3: A sufficient condition for the controller matrix K to globally asymptot-
ically stabilize the system (26) is the existence of a positive definite matrix P = PT €
R(Fmptna)x(ntnptn4) - with a positive definite submatrix Py; = P} € R™*", a diagonal positive
definite matrix Q € R™*", and diagonal positive semidefinite matrices Q,T,T, N € Rma*"q
that satisfy the bilinear matrix inequality

J| Ty | Js
J'=J:=|Jr|-P|0 |=<0, (27)
JEL o |y
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where

Py~ CTPT -
—P3C — QTP330—
-CTQXC

+ATCT PL+
+KTBICTPL
BTPy, + BICT P
Pl + DTPL

JQZ

ATP, + KTBT P+

—CT Py D+
+ATCTQXCB+
+KTBTCTQXCB—
—CTQXD + ATCTQ+
+KTBTCTQ - CTQ—
—CTT + ATCTN+
+KTBTCTN — CTN
—Py, — DTPL — PyyD—
—DTP33D — QMil—}—
+BTCTQXCB-

—DTQXD+ Q(CB — D)+

+(CB-D)'Q - QM-

—2TX' —TD — DTT—

—2NM~' + N(CB — D)+
+(CB - D)'N

AT Py + KTBT Ply+
+ATCT PL+
+KTBTCTPL
BT Py, + BTCTPL
Py + DTPQT3

ATCTQX + KTBTCTQX
= 0
0
Ji=—QX.

—ATCTQ — K"BICTQ+
+CTQ + ATCTQX D+
+K"BI'CTQXD—
—ATCTT — KTBICTT—
—ATCTN — KT"BTCTN+
+CTN

M~'Q — (CB — D)TQ+
+BTCTQX D+
+QD + QM — BTCTT—
—(CB—-D)'N+
+2NM-*+ ND

—QD - D"Q — QM '+
+DTQXD — QM —
—TX1—TD—DTT—
—O2NM-*—ND - DTN
ATPi3 + KTBT P+ \
+ATCT Pys+
+KTBTCT Py
BTPi; + BTCT Py
Py3 + DT Py

Proof- Let A := A+ B,K. Then the stability of system (26) is equivalent to the stability
of the system (13) by substituting the original matrix A by A. Thus, the controller matrix
K stabilizes the system if G := ATPA, — ETPE, + U, + Uy — S; — Sy — S3 < 0, where all

matrices are defined in Theorem 1, and tildes have been used to indicate matrices where matrix

A is present and therefore replaced by A. A first glance at this inequality shows that the term
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flaTPfla will give rise to the submatrix variables in P being pre- & post- multiplied by matrix
variable K. To address these higher order terms, the Schur complement lemma is applied as

~ T 7 T 4 _ Q AT
G%O} — |: EaPEa+U1+U2 Sl SQ Sg Aap ~0.

P=0 PA, —P

In order for the Schur complement lemma to hold, matrix P must be positive definite rather
than merely positive semidefinite. This matrix inequality is not yet bilinear, given that the

trilinear term ATCTQXC A is in the submatrix Us;. Let
ATCTQXCA 0 0
V.= 0 0 0
0 0 0

and let U, := Uy — V. The Schur complement lemma is then applied once more to give

_EgPEa+Ul+I?2—Sl—S‘2—§3 ATp _{—V 0}40
PA, —P 0 0 — J=<0.
QX =0

Note that here, again, using the Schur complement lemma imposes that @ and X be positive
definite. m

4.2 Illustrative Numerical Example of a State Feedback
Controller

The BMI obtained in Theorem 3 has the advantage that it is an LMI for fixed K. This property
is used for obtaining numerical results showing the stabilization of a system through a matrix
K. In particular, the numerical results illustate how Theorem 3 holds for an example for which
K is known, which is implemented in LMI software as explained in Section 1.3.2.

The system with the form (26) defined by the matrices

08 —025 0 1 0 1
1 0 0 0 0 0

A=, 0 0o 03l B B=1, , C,=[08 =05 0 1] (28
0 0 1 0 0 0

with K = [ 00 00 } and with £ = p = 2 is not globally asymptotically stable. Unstable
behavior of the system can be seen in Figure 1.
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4 x1 o Trajectory of state variables

X1 |
Xk2
05 B xk,3
X4
’ i
X 16 X122 X 385 \
Y 3047000 Y 9.382e+26 Y -6.774e+77
%5 -05+ .
1+ a
A5+
_2 L Il 1 L
0 100 200 300 400 500
k

Figure 1: First 500 iterations of the system (28) without control. The initial values of the four state
variables are set to random values between 0 and 10%. Some points are labeled to show that the
absolute values of the state variables are many (and increasing) orders of magnitude larger than their
initial values.

Theorem 3 holds for this example since the BMI (27) is infeasible for system (28) with
K=[000 0].

The BMI is feasible with the state feedback controller K = [ 00 —1 -1 ], implying
that the controlled system is globally asymptotically stable. This stable behavior is shown in
Figure 2, again as predicted by Theorem 3.
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Trajectory of state variables

6000 T
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X
4000 | k.2
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. .
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-6000 i
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k
(a)
’ 1074 Trajectory of state variables
)(k1 1
I xk,2
‘ %
I Hica
><x 0 | | \y&v
I
|
_1 L I ‘ 5 1 L
0 100 200 300 400 500
k
(b)

Figure 2: (a) First 500 iterations of the system (28) with the state feedback controller
]. The initial values of the four state variables are set to random values
between 0 and 10%. (b) Close-up of Figure (a), which confirms that the values of the state variables

K=[0 0 -1

—1

converge to zero.
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5 State Estimator Design

In many real systems for which the dynamics are known, their variables cannot be measured.
It can be useful in practice to be able to generate a state estimate Iy, and the output of a state
estimator can be fed to a state feedback controller to collectively produce an output feedback
controller.

Obtaining an estimator system that converges to the true values of the variables involves an-
alyzing the dynamics of the estimation error variables, to ensure that they absolutely converge
to zero. The nonlinearities in the error dynamics system do not have a local slope restriction
and, thus, the tight integral bounds obtained in the stability analysis are not applicable to this
chapter. New bounds for the Lyapunov function variation integrals are developed based on the
sector boundedness of the nonlinearities.

5.1 Analytical BMI Derivation for State Estimator Design

The design problem is to find an estimator matrix L € R"*™ to estimate the state of the
system
Tht1 = AZEk -+ Bppk + Buuk
qx = Cqr + Dgppr + Dguuy,

29
Yk = Cy$k + Dyuuk ( )
pe = —o(qr)
through the state estimator system
Tp1 = Ay + Bppr + Buuk + L(9r — yi)
Cjk = Cq-fjk + quﬁk: + unuk (3())

gk = Cyik + Dyuuk
Pe = —P(qr)
with estimation error dynamics
Tht1 — Thy1 = (A + LCy)(Zk — 1) + Bp(Pr — pi)
Gk — Q. = (xk — ) + qu(ﬁk - pk) (31>

U —yp = C (iﬁ'k—l‘k)
Pr— Pk = — (925(@4) — o(ar) = —f(@r — @’ ar)

where all variables and matrices in the system (29) are as defined in the system (23) with the
control variable u € R™ being analogous to the input vector w, and all variables with hats in
the system (30) are the estimates of the corresponding variables in the system (29).

Considering the dynamics of the error (31) in place of the dynamics of the original system
(13) leads to another Lur’e problem where now the nonlinearity f ¢ (ID[O TrolH m fact,
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NS @Q’“ I — f(-35q) € @S%’” ]7 the sector-boundedness restriction applying to the variable
G — q. This relationship follows from

¢ edlH — o< —¢i(0?_¢i(g) <p = 0< filvio) <y =
o—0 v
— fi(v;0)[u; " fi(v;o) —v] <0, Yo#G6€ER, v=6—0, i=1,...,n,

Lemma 2: Let ¢y — qi, Gr+1 — qx+1 be any two consecutive sampling instances of ¢ — ¢ and
f(-3q) € CIDS(Z))’M as defined in system (31). Then, for each i =1,...,n,,

i, . 9 Qk+1,i—Qk+1, Qk,i—qk,i i . )
5 (Gr,i — Qi) S/ fi(o; Qk+1)d0—/ filo; qp)do < E(Qk—l—l,z‘_Qk-i-l,i) - (32)
0 0

Proof:
.. (0,4] 0< fl(o-’ q) < ;o Vo > Oa
fia)e®,™ <= { pio < fi(o;q) <0, Vo <0,

which directly implies that, for the two sampling instances k,k + 1, for ¢x; — ¢z > 0 and
Qkt1,i — Qr+1 = 0,

Qk,i—qk,i Wi . )
0 S/ filo;qp)do < 5 (Gei — Qi)™ s
0

Qk+1,i— k41,3 i 9
0 S/ fi(0; qryr)do < 5 (Gkt1, — Qrs1,0)” -
0

These bounds are directly implied as well for ¢;; — ¢ ; < 0 and for ¢x41; — qr+1,; < 0, by using
that

Ak ,i—qk,i 0
/ fi(os qu)do = — / Fi(0s q0)dos,
0 q

k,i—dk,i

Qk+1,i—Qk+1,3 0
/ [i(0; Qg1 )do = —/ [i(0; Qyr)do.
0 q

k+1,i—qk+1,i

Thus,
i . ) Gk,i—qk,i
Y (Gri — Qi) < — / filo;qi)do
0
Qr+1,i—Qk+1, Qk,i—qk,i
S/ fi(U;QkH)dU—/ filosqr)do
0 0

Qr41,i—Qk+1,3 Wi . )
S/ [i(o; @r1)do < — (Grt1i — Qrr14)” -
0

[\]
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The Lyapunov function (14) for system (31) with the nonlinearity in @L%’“ ! yields

" dk,i—qk,i e dk,i—Ak,i
V(2 — x) Ijgpi'k‘i‘QZQii/ fi(o; Qk)d0+22Qii/ [wio — fi(o; q)ldo,

i=1
(33)
where
Ty — T Py P P
= pr—pr |, PP=P:=| PL Pn Py |0, Py >=0
Qx — Gk Pl Pj; Ps3

and Q“ZO, Q”ZO, ‘v’izl,...,nq.

The variation in the Lyapunov function (33) between the two sampling instances k, k + 1 is
expressed as

AV (2, — a1) = ¢ (ATPA, — EFPE,) ¢

" Qk+1,i—Tk+1,i ki =Gk, i

+ QZQii (/ filo; qrr1)do —/ fi(o; Qk)da)
Mg Qke+1,i— Q41 Gkt1,i—Qk+1,i Qr,i—qk,i

+2) Qa / piodo — (/ fi(o; qri1)do — / fi(o; qk)d0> ,
j— Gk,i— Gk, i 0 0

=1
(34)
where
i’k — Tk A + LCy Bp 0 1 0 0
Ck = ﬁk — Pk s Aa = 0 0 I s Ea = 0 I 0
Dr+1 = P41 Cy(A+ LCy) CyB, Dy Cy Dgp O

In order to find an LMI-form condition that implies condition (38), Lemma 2 is used to find
quadratic upper bounds on the two integral terms of AV () — zx) by

Qr+1,i— k41, Qk,i—qk,i
2 E Qii (/ fi(U;(JkH)dO'—/ fi(U;Qk)dU>
p 0 0
- Hi o 2 T
<2 E u‘<— i — i ) = G, £k,
= - Q 9 (Clk+1, Qk+1,) Ck 1Ck

where M := diag{ju, ..., pn,} = 0, and Ey = EY is defined as

(A+ LC'y)TC';‘FQMC'q(A +LC,) (A+ LCy)TCgQMCqu (A+ LCy)TC';FQMqu
Ey = * BpTCqTQMCqu BpTC'qTQMqu
* * Dg;)QMqu
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and, for the second integral term,

"a Qre+1,i—qk+1, Qrt-1,i—Qh+1,i Qke,i =k,
2> Qi / piodo — (/ fi(os qpy1)do — / fi(o; qk)da)
i= Qi —k,i 0 0

i=1
o [ i
<2 Z Qu{?l ((@kzﬂ,i - Qk+1,i)2 — (Gri — Qk,i)2) + 5@ (Gri — Qk,z’)Z}
i=1

Ng
~ (i
=2 E Qn’(;(%ﬂ,i - Qk+1,i)2)-
i=1

It can be easily seen that the upper bound of the second integral term is equivalent to that of
the first integral term. Because the problem to be solved will be a feasibility problem and the
existence of a diagonal matrix @ > 0 that solves it is equivalent to the existence of diagonal
(Q + Q) »= 0 that solves it, the second nonlinear term can be omitted. Thus, the Lyapunov
function to be used for the error dynamics system (31) is

"q Qk,i—qk,i
V(T —ax) = :ZfP:Ek +2 E Qn’/ fi(o; qi)do, (35)
i=1 0

with Zy, P, Q;; as in (33), and with variation between the consecutive sampling instances k, k+1,

AV (&, — ) = (L (ATPA, — EFPE,) ¢

g Qk+1,i—Qk+1, Gr,i—Gk,i
+2 Z Qi (/ fi(o; @) do — / fi(o; Qk)d‘7> (36)
i=1 0 0
< (AL PA, — EI'PE, + Ey)(,
with (i, Aqa, B, as in (34).
Theorem 4: A sufficient condition for system (31) to be globally asymptotically stable
is the existence of a positive definite matrix P = PT € R tmetndx(ntnptna) - with a positive

definite submatrix P;; = P € R™" a_diagonal positive definite matrix ¢ € R"*" and
diagonal positive semidefinite matrices T, T" € R™*" that satisfy the bilinear matrix inequality,

Ry | Ry | Rs
R'=R:=| RY|-P| 0 | <0, (37)
RY| 0 | Ry
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where

Rli

RQI

(

—Py, — CT P~ >
—PyCy — CT PyC,

ATPy + C;‘FLTP11+
+ATCl P+
+Cy L CI Py

B P+ Bl C{ Pl

Pl + Di Pl

R32

—Pp - CTPL—
—Pi3Dygy — CT Psg Dyt
+ATCTQMC, By +

T7rTAT T
+CTL"CTQMC,B, — CI'T
— Py, — DT P~
—Py3Dyy — DL Pyg Dyt
+BICTQMC,B,—
—2TM~' —TD,, — DI'T

*

ATPp + OyTLTPu—i‘
+ATCT Pyy+
+CJLTCl Py

Bl Py + B C] P
Py, + D] Py

ATCTQM + CTLTCTQM
0
0
R4 = —QM

ATCTQM D+
+CILTCTQMDyy—
_ATCTT — CTLTCTT

(BICTQMD,, — BpchTT)

DILQMD,, — 2TM '~
~TDg— DIT

AT P + CZTLTPB—F
+ATC§RB+
+Cy LT CJ Pss

Bl P13+ B CJ Ps3
Pa3 + D] P

Proof: Given the Lyapunov function (35), a sufficient condition for the global asymptotic sta-
bility of the system is for the condition

AV (i — x1) < 0, Yk >0 (38)
to be satisfied. Given the upper bound for AV (& — xx) in (36),
GH(ATPA, — ETPE, + F))(, <0 = AV(i —x3) < 0. (39)

Therefore, a sufficient condition for the global asymptotic stability of the system is for the
left-hand side of (39) to be satisfied for all (j that satisfy the sector-boundedness condition on
f(-;5q). This condition on (} will be introduced via the S-procedure. First, the LMI-form of
the condition is found. Let fr = f(qx — qx; qx) and frr1 = f(Gr+1 — Qrt1; @rr1). Then

f( . 7Q) € q)‘E;Ob#] < fk,z[:uz_lfk,z - (qu,z - qk,z)] S Oa { 1a ey N, Vk. (40)
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A useful notation for using the S-procedure with condition (40) is
g
ZQTifk,i[/Lflfk,i — (Gri — qri)] = G S1G <0,
i=1

where T := diag{7i,...,7,,} = 0, and S; = ST is defined as

0 CqTT 0
Syi=| % 2T'M~' + TDgy, + DZ;T 0
* * 0

Similarly, for the next sampling instance,

Tq
Z27~—ifk+1,i[ﬂi_lfk+1,i — (Grtri = Qryra)] = ¢ G2k <0,
i=1

where T := diag{7y, ...  Tngt 7 0, and Sy = 57 is defined as

00 (A+LC)’CIT
Soi=1] % 0 BpTCqTT
x x 2TM™ 1+ TDgy, + DS;T

Finally, applying the S-procedure gives that, if F:= ATPA, — E'PE, + E; —S; — S5 < 0
is feasible, then AV (Zy — x) < 0 is satisfied Vk > 0, and the system is globally asymptotically
stable.

At first glance, this inequality for F' shows that the term AT PA, will give rise to the
submatrix variables in P being pre- and post- multiplied by matrix variable L. To address
these higher order terms, the Schur complement lemma is applied as

F=<0 — —EgPEa—f-El—Sl—SQ AZ;P
P>=0 PA, -P

As in the case of the state feedback controller design, in order for the Schur complement lemma
to hold, matrix P must be positive definite rather than positive semidefinite.

This matrix inequality is not yet bilinear, given that the term (A—i—LC’y)TC'qTQM Cy(A+LCy)
is in the submatrix F; ;;. Let

(A4 LC,)TCTQMCy(A+ LC,) 0 0
W= 0 0 0
0 00
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and let Ey := E; — W. The Schur complement lemma is then applied once more, yielding

—El'PE,+ By — S — S Agp]_l—w o]<0
PA, —pP 0 0 ~— R~<0.
QM =0

Again, using the Schur complement lemma imposes that ) and M be positive definite.

5.2 Illustrative Numerical Example of a State Estimator

Analogously to Theorem 3, the BMI obtained in Theorem 4 has the advantage that it is an LMI
for fixed L. This property is used for obtaining numerical results showing the stabilization of
an error dynamics system through a matrix L. In particular, the numerical results illustate how
Theorem 4 holds for an example for which L is known, which is implemented in LMI software
as explained in Section 1.3.2.

The system (31) defined by the matrices

08 —025 0 1 0
10 0 0 0

A=l 0 0 o2 03l Be=| | CG=[08 <050 1] C=[0011]
0o 0 1 0 0

(41)
with L = [ 0000 ]T and p = 2 is not globally asymptotically stable. The unstable be-
havior of the system can be seen in Figure 3.
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g 20 0% Trajectory of error state variables, L = [0 0 0 0]'
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k
Figure 3: First 500 iterations of the error dynamics system (41) with zero estimator matrix L. The
initial values of the four state variables are set to random values between 0 and 10%. Some points are
labeled to show that the absolute values of the state variables are many (and increasing) orders of
magnitude higher than their initial values.

Theorem 4 holds for this example since the BMI (37) is infeasible for system (41) with
L=[00 0 0]".

The BMI is found to be feasible for the estimator matrix L = [ -1 0 0 0 }T, implying
that the error dynamics system is globally asymptotically stable. This stable behavior is shown
in Figure 4, again as predicted by Theorem 4.
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Trajectory of error state variables, L = [-1 00 0]'
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Figure 4: (a) First 500 iterations of the system (41) with the estimator matrix L= -1 0 0 0 ]T.
The initial values of the four error state variables are set to random values between 0 and 10%. (b)
Close-up of (a), which confirms that the values of the error state variables converge to zero.
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6 Conclusions

6.1 Contributions

The main contributions of this thesis are:

e Rigorous mathematical formulations are developed for new criteria for the absolute sta-
bility, ¢>- and RMS-gain, state feedback controller design, and state estimator design of
a discrete-time Lur’e system with sector-bounded, slope-restricted nonlinearities.

e Tight bounds are found for the variation in the integrals in the used modified Lur’e-
Postnikov Lyapunov function, based on the local slope restriction on the system’s nonlin-
earities. These bounds lead to a significant decrease in the conservatism of the conditions
for Lyapunov stability of the system. The reduced conservatism is illustrated by obtaining
the results for the lower bound on the robustness margin of six numerical examples and
comparing them to the most relevant criteria in the literature.

e The same bounds are applied in the /5- and RMS-gain analysis and for state feedback
controller design, and therefore conservatism is significantly decreased for those problems
as well. The upper bound on the gain is obtained for illustrative numerical examples and
the behavior of a nominally unstable system stabilized by state feedback is shown.

e The state estimator error dynamics are analyzed and the resulting nonlinearities are
characterized, leading to a modification of the previously used Lyapunov function. Bounds
on the variation of the integrals in the Lyapunov function are derived based on the sector
boundedness of the nonlinearities. A sufficient condition for the stability of the error
dynamics system is provided and illustrated through a numerical example.

e The criteria provided for the Lyapunov stability and gain of the system are based on LMIs
and therefore lead to convex optimizations that are highly computationally efficient. The
criteria provided for the state feedback controller design and state estimator design are
based on BMIs, which can be solved with software that is readily available. Although
BMIs are not as efficient for problems of large dimensions, the resulting problems are
LMIs for fixed K or for fixed L.

e A software implementation in MATLAB is provided for the set of numerical examples of
the four LMI criteria developed in the thesis. The provided scripts can be easily adapted
to any other example of a Lur’e system with sector-bounded, slope-restricted nonlinear-
ities. The bisection method scripts used to solve the feasibility optimization problems
in the absolute stability and gain analysis can also be easily adapted to different desired
accuracies in the results.
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6.2 Further work

Natural continuations of this work might include:

e Studying the state feedback controller design for the case with D, # 0, and attempting
to reduce the resulting matrix inequalities to BMIs. Although the addition of this term
makes the reduction more complicated, the term appears in some systems including for
some types of dynamic neural networks.

e Designing an estimator-based output feedback controller for the studied system. This
approach would enable the control of systems with unmeasured variables.

e Implementing the optimizations for the design of a state feedback controller and a state
estimator using a BMI solver and applying to several examples.

e Exploring how close iteratively solving the LMI optimizations of each of the variables in
the BMI formulations converges to the global optimum, for a range of numerical examples.
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Appendices

A  MATLAB Scripts for Chapter 2

To use these scripts, for each example i, run the code findmargin_examplei.m, which calls the

scripts 1lmis_stability.m and bisection.m.

findmargin_examplel.m

$ G(z) = (-0.5z + 0.1) / (z"3 — z"2 + 0.89z + 0.1z"2 —
3 = (=0.5z + 0.1) / (z"3 — 0.9z"2 + 0.79z + 0.089)
$ ==> b0 =0, bl =0, b2 = —0.5, b3 = 0.1
% (a0 = 1), al = —=0.9, a2 = 0.79, a3 = 0.089
% Using the Observable Canonical Form
clear variables
% Previous results for bisection:
% x1 = 2 feasible, xi1 = 3 infeasible
xi_a = 2; xi_b = 3;
% Definition of example
global A B C D n nq
A =10.9 1 0;
-0.79 0 1;
-0.089 0 0 1;
B=[0 ;
-0.5;
0.1 1;
c = [1 0 0];
D = 0;
% Dimensions of the system
n = 3;
nq = 1;
mu_ct 2; % Linear dependence of mu on Xi
nqg_vec = [1 0]; % Parameter for matrix variables
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‘margin_examplel = bisection(@lmis_stability, xi_a, xi_b, mu_ct, ng_vec)
findmargin_example2.m
clear variables
% Previous results for bisection:
% xi = 0.1 feasible, xi = 0.5 infeasible
xi_a = 0.1; xi_b = 0.5;
% Definition of example
global A B C D n nq
A = diag([0.2948 0.4568 0.0226 0.3801 -0.3270]1);
B = [-1.1878 0.2341;
-2.2023 0.0215;
0.9863 -1.0039;
-0.5186 -0.9471;
0.3274 -0.3744 1;
C = [-1.1859 1.4725 -1.2173 -1.1283 -0.2611;
-1.0559 0.0557 -0.0412 -1.3493 0.9535 1;
D = zeros(2);
% Dimensions of the system
n = 5;
nq = 2;
mu_ct = 1; % Linear dependence of mu on xi
ngq_vec = [1 0; 1 0]; % Parameter for matrix variables
margin_example2 = bisection(@lmis_stability, xi_a, xi_b, mu_ct, ng_vec)

findmargin_example3.m

$clear variables

Previous results for bisection:
xi = 0.1 feasible, xi = 0.5 infeasible
i_a = 0.1; xi_b = 1;

oo oo

™

o

% Definition of example
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global A B C D n ngq

A =1 0.0469 -0.3992 -0.0835;
0.3902 -0.5363 -0.2744;
0.4378 -1.3576 0.4651 1];

B = [-0.5673 -0.2785;

0.1155 -0.0649;

-2.1849 -0.5976 1;
C = [ 0.3587 -1.0802 -0.6802;
-1.3833 -1.0677 1.1497 1;
zeros (2);

]
I

% Dimensions of the system

n = 3;

nq = 2;

mu_ct = 1; % Linear dependence of mu on x1i
nq_vec = [1 0; 1 0]; % Parameter for matrix variables

margin_example3 = bisection(@lmis_stability, xi_a, xi_b,

mu_ct,

nq_vec)

findmargin_example4.m

clear variables

Previous results for bisection:

oo oo

xi = 1 feasible, xi = 3 infeasible
i_a = 1; xi_b = 3;

el

o

% Definition of example
global A B C D n nq

A = diag([0.4030 -0.1502 -0.1502]);
B = [-0.2494;
0.2542;
-0.2036 1;
C = [0.9894 0.6649 0.4339];
D = 0;
% Dimensions of the system
n = 3;
nq = 1;
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Linear dependence of mu on xiI
Parameter for matrix variables

margin_exampled = bisection(@lmis_stability, xi_a, xi_b, mu_ct, nq_vec)
findmargin_exampleb.m
clear variables
% Previous results for bisection:
% xi = 0.01 feasible, xi = 0.1 infeasible
xi_a = 0.01; xi_b = 0.1;
% Definition of example
global A B C D n nq
A = diag([0.4783 0.7871 0.7871 0.7871]); A(3,4) = 1;
B = [-1.5174;
1.2181;
0.2496;
-0.5181 1;
C = [0.8457 -2.0885 1.2190 0.1683];
D = 0;
% Dimensions of the system
n = 4;
nq = 1;
mu_ct 2; % Linear dependence of mu on xi
nq_vec = [1 0]; $ Parameter for matrix variables
margin_example5 = bisection(@lmis_stability, xi_a, xi_b, mu_ct, nq_vec)

findmargin_example6.m

clear variables

Previous results for bisection:

oo o\

xi = 0.1 feasible, xi = 1 infeasible
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xi_a = 0.1; xi_b = 1;

)

% Definition of example
global A B C D n ngq

A

diag ([0.5359 0.9417 0.9802 0.5777 -0.1227 -0.0034 -0.5721 O.
-0.3599]1);
B=1[100 0;

01 0 0;
0 0 1 0;
000 1;
1 0 0 0;
01 0 0;
0 0 1 0;
00 0 1;
1000 1;
C=101 1000000 0;
00111000 0;
00 O0O0O0O11O0 0;
000O0O0OO0OT1IT1T1;
D = zeros (4);

% Dimensions of the system

n = 9;
nq = 4;
mu_ct = 1; Linear dependence of mu on X1

oo oo

nq_vec = [1 0; 1 0; 1 0; 1 0];

margin_example6 = bisection(@lmis_stability, xi_a, xi_b, mu_ct,

2870

Parameter for matrix variables

nq_vec)

Imis_stability.m

function tmin = lmis_stability(xi, mu_ct, nq_vec)

Numerical zero for nonstrict LMIs
For positive semidefinite LMIs

poszero = le-12;
negzero = -pPOSZEro;

|
oo oo

global A B C D n nq

% Definition of M and X: change xi according to example
mu = mu_ct * xi;
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24

X = xi *x eye(nq);
M = mu * eye(nq);
Xi = inv(X);
Mi = inv(M);

o\o
o\e

setlmis ([1);

P11 lmivar (1,
P12 lmivar (2,
P13 lmivar (2,
P22 = 1lmivar (1,
P23 lmivar (2,
P33 lmivar (1,

Imivar (1,
lmivar (1,

Imivar (1,
lmivar (1,

lmivar (1,

Q =
tQ =
T =
tT =
N =

G = newlmi;
lmiterm ([G
Imiterm ([G
lmiterm ([G
lmiterm ([G
lmiterm ([G
lmiterm ([G
Ilmiterm ([G
Ilmiterm ([G

e = = S S
e e

lmiterm ([G
Ilmiterm ([G
lmiterm ([G
Imiterm ([G
lmiterm ([G
lmiterm ([G
lmiterm ([G
lmiterm ([G
lmiterm ([G
Ilmiterm ([G
Ilmiterm ([G
lmiterm ([G
Ilmiterm ([G

N T e e e = T = T = SR ST
N NDNDNDNDDNDDNDDNDDNDDNDNDNDNDDN

[n 11);

[n nql);
[n nql);
[ng 11);
[ng nql);
[ng 11);

nq_vec);

nq_vec);

nq_vec);

nq_vec);

nq_vec);

P11],
P13],
P33],
P11],
P13],
P33],
tQl,

tQl,

A, A);

A’>, Cx*A,
A>xC?>, CxA);
-1, 1);
-1, C,
-C’, C);
A>xC?, X*Cx*xA);
-C?, Xx*C);

)

)

P11],
-P13],
P13],
P33],
P12],
-pP23],
P13],
P33],
tQl,
tQl,
tQl,
T],
N],

A, B);
A’xC?, B);

A’, CxB);

A>xC’>, CxB);
-1, 1);

-C’, 1);

-1, D);

-C’, D);
A>xC?>, X*Cx*xB);
-C’, XxD);
(CxA - C) 7,

-Cc’, 1);

(CxA - C) 7,

1);

1);
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64

65

66

83

84

85

86

87

88

89

90

91

92

93

94

96

97

98

99

100

101

102

Ilmiterm ([G
lmiterm ([G
lmiterm ([G
lmiterm ([G
lmiterm ([G
Ilmiterm ([G
lmiterm ([G
lmiterm ([G

Ilmiterm ([G
lmiterm ([G
Imiterm ([G
lmiterm ([G
Imiterm ([G
lmiterm ([G
lmiterm ([G
lmiterm ([G
lmiterm ([G
lmiterm ([G
Ilmiterm ([G
Ilmiterm ([G
lmiterm ([G
Imiterm ([G
lmiterm ([G

lmiterm ([G
lmiterm ([G
lmiterm ([G
lmiterm ([G
Ilmiterm ([G
Ilmiterm ([G
Ilmiterm ([G
lmiterm ([G
Ilmiterm ([G
lmiterm ([G

lmiterm ([G
lmiterm ([G
lmiterm ([G
lmiterm ([G
lmiterm ([G
Ilmiterm ([G
Ilmiterm ([G
lmiterm ([G
Ilmiterm ([G
lmiterm ([G

NN DNDNDDNDDNDDNDDNDDNDDN NN DNDNDDNDDNDDNDDNDDNDDNDNDNDNDNDNNDN i i

W W Wwwwwwwww

NN DNDNDDNDDNDDNDDNDNDDNDNDNDNDNNDNN W W wwwwww

W W Wwwwwwwww

W W Wwwwwwwww

P12], A’, 1);
-P23], A’%C’,
P13], A’, D);
P33], A’xC’, D);
Ql, -(CxA - C)’,
tQ], A’*C’, X*D);
tT], -A’xC’, 1);
N], -(CxA - C)7,

1);

1)

1);

P11],
P13],
P33],
P22],

B’, B);

B’, CxB, )
B’*C’>, CxB);

-1, 1);

P23], -1, D, )
P33], -D’, D);

Ql, -1, Mi);

tQ], B’*C’, X*Cx*B);
tQ], -D’, X*D);

tQ], 1, C*B - D, )
tQl, -1, Mi);

T], -2, Xi);

Tl, -1, D, );

N1, -2, Mi);
Nl, 1, (C*B - D), );
P12],
-P23],

B, 1);
B’xC?,
P13], B’, D);
P33], B’*C’, D);

Ql, (Mi - (CxB - D))’,
tQ], B’*C’>, Xx*D);
tQl, 1, D + Mi);

tT], -B’*C’, 1);

N], -(CxB - D)7,

N], 1, 2%*Mi + D);

1);

1);

1);

P22],
P23]1, 1,
P33], D’,
Ql, -1,
Ql, -1,
tQl, D’,
tQl, -1,
tT], -2,
tT], -1,
N], -2,

1, 1);

D, )
D);
Mi);

D,
XxD) ;
Mi);
Xi);
D, );
Mi);

)

59




103

104

105

106

108

109

110

111

112
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116
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119

121

122
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127

128

129

130

131

132

133

134

136

137

138

139

140

141

142

143

144

145

146

147

148

Ilmiterm([G 3 3

P111 = newlmi;
Imiterm([-P111

Pl = newlmi;
lmiterm ([-P1
lmiterm ([-P1
lmiterm ([-P1
lmiterm ([-P1
lmiterm ([-P1
Ilmiterm ([-P1

o

W NN F- ==

11 P11], 1, 1);

1 P111, 1, 1);
2 P12], 1, 1);
3 P131, 1, 1);
2 P22], 1, 1);
3 P23]1, 1, 1);
3 P33], 1, 1);

% semidefiniteness

lmiterm ([P1 1 1 0], negzero);
lmiterm ([P1 2 2 0], negzero);
lmiterm ([P1 3 3 0], negzero);

Q1 = newlmi;
lmiterm([-Q1 1

o

1Ql, 1, 1);

% semidefiniteness

Imiterm([Ql 1 1 0], negzero);

tQl = newlmi;

Imiterm([-tQ1 1 1 tQ], 1, 1);

Q

Imiterm ([tQl 1
Tl = newlmi;
Imiterm([-T1 1

)

% semidefiniteness

1 0], negzero);

1 Tl, 1, 1);

% semidefiniteness

lmiterm ([Tl 1 1 0], negzero);

tTl = newlmi;

Imiterm([-tT1 1 1 tT], 1, 1);

)

Imiterm ([tT1 1
N1 = newlmi;
Imiterm([-N1 1

)

% semidefiniteness

1 0], negzero);

1 NI, 1, 1);

% semidefiniteness

lmiterm([N1 1 1 0], negzero);

Imisys = getlmis;

oo
oo

target = []; options=zeros(1,5);

options (2) = 300;

options (3) = 1;

[tmin,xfeas] =
end

feasp(lmisys, options,

target);
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bisection.m

function p = bisection(f, a, b, mu_ct, nqg_vec)

max_it’); end

dif_p < dif_tol’);

dif_tol = 1le-7; % tolerance for iteration difference
max_it = 200; % max number of iterations
if f(a, mu_ct, nq_vec)*f(b, mu_ct, nq_vec) > 0
disp(’Wrong choice’)
else
it = 1;
dif_p = 1;
p = (a + b)/2;
fp = £(p, mu_ct, nqg_vec);
while (it < max_it && dif_p >= dif_tol)
it = it + 1;
if f(a, mu_ct, nq_vec)*fp < O
b = p;
else
a = p;
end
p-old = p;
p = (a + b)/2;
p_-new = p;
dif _p = abs(p_new - p_old);
fp = f(p, mu_ct, nq_vec);
if it == 100;
disp(’Stopped because bisection it =
if dif_p < dif_tol;
disp(’Stopped because bisection
end
if fp < 0; p = b; end
% Note: this gives an infeasible bound
end
end

end
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B MATLAB Scripts for Chapter 3

To use these scripts, for each example ¢, run the code findgain_example:.m, which calls the

scripts Imis_gain.m and bisection_semidef .m.

findgain_example2.m

clear

Previous results for bisection:
gamma = 0.1 infeasible, gamma = 100 feasible
gamma_a = 0.1; gamma_b = 100;

oo oo

)

% Definition of example
global A Bp Bw Cq Cz Dgp Dqw Dzp Dzw n nq nw

A = diag([0.2948 0.4568 0.0226 0.3801 -0.32701);

Bp = [-1.1878 0.2341;
-2.2023 0.0215;
0.9863 -1.0039;
-0.5186 -0.9471;
0.3274 -0.3744 17,
Bw = [ 1;
1;
1
1;
11;
Cq = [-1.1859 1.4725 -1.2173 -1.1283 -0.2611;
-1.0559 0.0557 -0.0412 -1.3493 0.9535 1;
Dgw = zeros(2,1);
Dgp = zeros (2);
Cz = [100 0 0];
Dzp = O0;
Dzw = 1,;

% Dimensions of the system

n = 5;
nq = 2;
nw = 1;
mu_ct = 1; Linear dependence of mu on xi

oo oo

Parameter for matrix variables
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gain_example2 = bisection_semidef (@lmis_gain,
mu_ct, nqg_vec)

gamma_a,

gamma_b ,

findgain_example3.m

clear

Previous results for bisection:

oo oo

0.1 infeasible, 100 feasible

0.1; gamma_b =

gamma =
gamma_a =

gamma =
100;

% Definition of example

global A Bp Bw Cq Cz Dgp Dqw Dzp Dzw n nq nw

A = [ 0.0469 -0.3992 -0.0835;
0.3902 -0.5363 -0.2744;
0.4378 -1.3576 0.4651 1;

Bp = [-0.5673 -0.2785;

0.1155 -0.0649;
-2.1849 -0.5976 1;

Bw = [ 0.0962 -0.5829;
-0.0482 0.4739;
-1.1274 1.1238 1;

Cqg = [ 0.3587 -1.0802 -0.6802;
-1.3833 -1.0677 1.1497 1;

Dgw = [ 0.1562 0.4342;

0.5472 0.0356 1;
Dgp = zeros (2);
Cz = [ 0.9792 0.1112 -0.8091;
0.6970 1.3471 -0.0023 1;
Dzp = [ 0.0010 -0.7238;
1.2356 0.2360 1;

Dzw = [ 0.5474 0.0242;

0.2762 0.0486 1;

% Dimensions of the system

n = 3;

nq = 2;

nw = 2;

mu_ct = 1; % Linear dependence of mu on xi
nq_vec = [1 0; 1 0]; % Parameter for matrix variables
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gain_exampleld =
mu_ct, nq_vec)

bisection_semidef (@lmis_gain,

gamma_a, gamma_b,

lmis_gain.m

function tmin = 1lmis
poszero = le-12;
negzero = -POSZEro;

global A Bp Bw Cq Cz

% Definition of M and X:

xi = 0.01;

¢ xi = 0.1;

mu = mu_ct * xi;
X = xi * eye(nq);
M = mu * eye(nq);
Xi = inv(X);

Mi = inv(M);

oo
oo

setlmis ([]);

_gain(gamma, mu_ct, nq_vec)

Numerical zero for nonstrict LMIs

3
o3
°

For positive semidefinite LMIs
Dgp Dqw Dzp Dzw n nq nw

change xi according to example

P11 = 1lmivar(1, [n 1]);
P12 = 1lmivar(2, [n nql);
P13 = lmivar(2, [n nql);
P14 = 1mivar(2, [n nw]);
P22 = lmivar (1, [nq 1]);
P23 = 1lmivar (2, [nq nql);
P24 = lmivar(2, [nq nwl);
P33 = 1lmivar(1l, [nq 11);
P34 lmivar (2, [nq nw]l);
P44 = 1lmivar (1, [nw 1]);
Q = Ilmivar (1, nq_vec);

tQ = lmivar(l, nq_vec);

T = lmivar(l, nq_vec);

tT = lmivar(l, nq_vec);

N = lmivar(l, nq_vec);

H = newlmi;
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P11],
P13],
P33],
P11],

A, A);

A’, Cqgx*A, )
A>xCq’, CgxA);
-1, 1);

P13], -1, Cq, )
P33], -Cq’, Cq);

tQl, A’*Cq’, X*CgxA);
tQl, -Cq’, X*Cq);

0], Cz’*Cz);

P11], A’,
P13], A,
-P13],
P33],
P12],
-P23],

Bp);
Cq*Bp);
A’>xCq’, Bp);
A’>xCq’, Cqx*Bp);
-1, 1);

-Cq’, 1);
P13], -1, Dgp);
P33], -Cq’, Dqp);
tQ], A’*Cq’, X*Cq*Bp);
tQ], Cq’, X*Dgp);
tQl, (Cq*A - Cq)’,
0], Cz’x*Dzp);
Tl, -Cq’, 1);
N]l, (CqxA - Cq)’,

1);

1)

P11],
P13],
-P13],
P33],
P13],
P33],

A, Bw);

A’, Cq*Bw);
A>xCq’, Bw);
A>%Cq’, Cq*Bw);

-1, Dqw);

-Cq’, Dqw);
P14], -1, 1);

P34]1, -Cq’, 1);

tQ], A’*Cq’, X*Cqg*Bw);
tQl, -Cq’, Xx*xDqw);

0], Cz’*Dzw);

P12],
-P23],
P13],

A, 1)
A’*Cq’,
A’, Dqp);

P33], A’xCq’, Dgp);
Ql, -(CqxA - Cq)’, 1);
tQl, A’*Cq’, X*Dqw);
tT], -A’%Cq’, 1);
N], -(Cgq*A - Cq)’,

1);

1);
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P13],
P33],

A>, Dqw);
A>xCq’, Dqw);
P14], A’, 1);

P34], A’%Cq’, 1);
tQ], A’*Cq’, X*Dqw);

P11],
P13],
P33],
P22],
P23],

Bp);
Cq*Bp, )
Cq*Bp);

Bp’,
Bp’,
Bp’*Cq’,
-1, 1);
-1, Dqgp, )

P33], -Dgp’, Dqgp);

Ql, -1, Mi);

tQ], Bp’*Cq’, X*Cq*Bp);
tQ], -Dqp’, X*Dgp);

tQ), 1, Cq*Bp - Dap, )
tQ], -1, Mi);

0], Dzp’*Dzp);

T], -2, Xi);

T], -1, Dqp, )

N1, -2, Mi);

N] 1) 1’ Cq*Bp - qu, )’

P11],
-P13],
P13],
P33],
P23],
P33],
P24],
P34],
tQl,

tQl,

tQl,

Bp’, Bw);
Bp’*Cq’, Bw);

Bp’, Cq*Bw);

Bp’*Cq’, Cqg*Bw);
-1, Dqw);

-Dgp’, Dqw);

-1, 1);

-Dgp’, 1);

Bp’*Cq’, X*Cq*Bw);
-Dgqp’, X*Dqw);

1, Cq*Bw - Dqw);
0], Dzp’*Dzw);

T], -1, Dqw);

Nl, 1, Cq*Bw - Dqw);

P12],
-p237],
P13],
P33],
Ql,
Ql,

Bp’, 1);
Bp’*Cq’,
Bp’, Dqp);
Bp’xCq’, Dgp);

Mi, 1);
-(Cq*Bp - Dgp)’,

1);

1);
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tQ],
tQl,
tQ]J,
tT],
N],
N],
N],

1, Dqp);
Mi, 1);
—Bp’*Cq’ ,
2xMi, 1);
1, Dap);
P13],
P33],
P14],
P34],
tQl,

tQ] 3
N] 3

Bp’, Dqw)
Bp’*Cq7,
Bp’, 1);
Bp’*Cq7,
Bp)*Cq)’
1, Dqw);

1, Dqw);

P11],
P13],
P33],
P33],
P34],
P44],

Bw’, Bw);
Bw’,
Bw’*Cq’,
-Dqw’,
-Dqw’,
-1, 1)

1,

-(Cq*Bp - Dqgp)’,

Cq*Bw,

Bp’*Cq’, Xx*Dqp);

1);

1);

b

Dqw) ;

1);

X*Dqw) ;

)

Cq*Bw) ;
Dqw) ;

)

tQ], Bw’*Cq’, X*Cqg*Bw);

tQl1,
o1,
O]’

-Dqw’,
Dzw ’*Dzw) ;
-gamma ~2) ;

P12],
-pP231],
P13],
P33],
Ql,
tQl,
tT],
N],

Bw’, 1);
Bw’*Cq’,

Bw’, Dgp)

Bw’*Cq’,

Bw’*Cq’,
-Bw’*Cq’,

P13],
P33],
P14],
P34],

Bw’, Dqw)
Bw’*Cq’,
Bw’, 1);
Bw’*Cq’,

-(Cqg*Bw - Dqw)’,

X*Dqw) ;

1);

H

Dgp) ;
-(Cq*Bw - Dqw)’,
X*Dqp);

1);

1);
1)

B

Dqw) ;

1);

tQ], Bw’*Cq’, X*Dqw);

P22], 1, 1);

P23], 1, Dqp, )
P33], Dgp’, Dgp);
Ql, -1, Dgp, );
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201

202
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Imiterm ([H
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lmiterm ([H
Ilmiterm ([H
Ilmiterm ([H
Ilmiterm ([H
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o

lmiterm ([-H
Imiterm ([-H
lmiterm ([-H
lmiterm ([-H
Ilmiterm ([-H

P111

1

g W N

g o1 oo o oo On

[S2 G2 ¢ B ]

newlmi;

Imiterm([-P111

P1 newlmi ;
lmiterm ([-P1
Ilmiterm ([-P1
lmiterm ([-P1
lmiterm ([-P1
lmiterm ([-P1
lmiterm ([-P1
lmiterm ([-P1
lmiterm ([-P1
lmiterm ([-P1
lmiterm ([-P1

o

W W NDNNNEFE ===

o

1

g W N

Ql, -1, Mi);

tQ], Dgp’, X*Dgp);
tQ], -1, Mi);

tT], -1, Xi);

tT], -1, Dqgp, )
N1, -2, Mi);

N], -1, Dqp, );
P23], 1, Dqw);
P33], Dgp’, Dqw);
P24], 1, 1);

P34], Dqgp’, 1);

Ql, -1, Dqw);

tQ], Dgp’, X*Dqw);
tT], -1, Dqw);

N]l, -1, Dqw);

P33], Dqw’, Dqw);
P34], Dqw’, 1, );
P4471, 1, 1);

tQl, Dqw’, X*Dqw);

$ semidefiniteness

0], poszero);
0], poszero);
0], poszero);
0], poszero);
0], poszero);
11 P11], 1, 1);
1 P11]1, 1, 1);
2 P12], 1, 1);
3 P13]1, 1, 1);
4 P14], 1, 1);
2 P22], 1, 1);
3 P23]1, 1, 1);
4 P24], 1, 1);
3 P331, 1, 1);
4 P34]1, 1, 1);
4 P44]1, 1, 1);

$ semidefiniteness
lmiterm ([P1 1 1 0],

negzero);
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229
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231
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234
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237

238

240

241

242

243

244

245

246

lmiterm ([Pl 2 2 0], negzero);
lmiterm ([Pl 3 3 0], negzero);
lmiterm ([P1 4 4 0], negzero);

Q1 = newlmi;

Imiterm([-Ql 1 1 Q], 1, 1);

% semidefiniteness

lmiterm([Ql 1 1 0], negzero);
tQl = newlmi,;

Imiterm([-tQ1 1 1 tQ], 1, 1);
% semidefiniteness
lmiterm([tQ1 1 1 0], negzero);
Tl = newlmi;

lmiterm([-T1 1 1 T], 1, 1);

% semidefiniteness

lmiterm ([Tl 1 1 0], negzero);
tTl = newlmi;

Imiterm([-tT1 1 1 tT], 1, 1);
% semidefiniteness
Ilmiterm([tT1 1 1 0], negzero);
N1 = newlmi;

lmiterm([-N1 1 1 N], 1, 1);

% semidefiniteness
lmiterm ([N1 1 1 0], negzero);

Imisys = getlmis;

target = []; options=zeros(1,5);

options (2) = 300;

options (3) = 10;

[tmin,xfeas] = feasp(lmisys, options, target);
end

bisection _semidef.m

function p = bisection_semidef(f, a, b, mu_ct,

The goal is not to find a zero for tmin,
but a value at which it is smaller than TOL.
TOL = 1e-10;

oo o\

oo oo

but not strictly feasible".

nq_vec)

The result of feasp then yields "may be feasible

dif_tol = le-6; % tolerance for iteration difference
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43

max_

fa
fb

if (

else

end
end

it = 100; % max number of iterations

f(a, mu_ct, nq_vec);
f(b, mu_ct, nq_vec);

fa >= TOL && fb >= TOL) || (fa < TOL && fb < TOL)
disp(’Wrong choice’)

it = 1;

dif_p = 1;

p = (a + Db)/2;

fp = f(p, mu_ct, ng_vec);

while (it < max_it && dif_p >= dif_tol)
it = it + 1;

fa = f(a, mu_ct, nq_vec);
if (fa < TOL && fp >= TOL) || (fa >= TOL && fp < TOL)
b = p;
else
a = p;
end
p-old = p;
p = (a + b)/2;
p_new = p;
dif_p = abs(p_new - p_old);
fp = f(p, mu_ct, nq_vec);
if it == max_it;
disp(’Stopped because bisection it = max_it’); end

if dif_p < dif_tol;
disp(’Stopped because bisection dif_p < dif_tol’);
end
if fp > TOL; p = b; end
% Note: this gives a feasible bound

end
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C MATLAB Scripts for Chapter 4

The code controller_feasibility.m solves the feasibility problem for the given example.
The code controller_simulation.m plots the behavior of the example. The controller matrix

K has to be changed within the definition of the example in both scripts.

controller_feasibility.m

clear variables

Numerical zero for

le-12;
-poszero;

poszero =
negzero =

o3
°
o3

°

% Dimensions of the system
n =4

nonstrict LMIs

For positive semidefinite LMIs

nq
nu

oo

1;
1;

Definition of example

A = [0.8 -0.25 O
1 0 0
0 0 0.2
0 0 1
B = [0;
03
1;
0 1;
Bu = [1;
03
03
01;
c = [0.8 -0.5 0 1];
D 0;
K = zeros (1, n);
$ K= [0 0 -1 —1];
mu_ct 1;
nq_vec = [1 0];

1;

0;
0.3;
0 1;

% Select K for example

Linear dependence of mu on Xxi

oo oo

Parameter for matrix variables

% Definition of M and X: change xi1 according to example

X1
mu

X
M

=2;
mu_ct * xi;

= xi * eye(nq);
mu * eye(nq);
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69

79

80

81

82

83

Xi

inv (X);
inv (M) ;

=
-
]

o\
o\

setlmis ([]);

P11 = 1lmivar (1, [n 1]);
P12 = lmivar(2, [n nql);
P13 = lmivar(2, [n nql);

P22 = lmivar (1, [nq 1]);
P23 = lmivar (2, [nq nql);

P33 = 1lmivar (1, [nq 11);

Q = lmivar(l, nqg_vec);

tQ = 1lmivar (1, nq_vec);

T = 1lmivar(l, nq_vec);

tT = 1lmivar (1, nq_vec);

N = 1lmivar(l, nq_vec);

J = newlmi;

lmiterm([J 1 1 P11], -1, 1);
lmiterm([J 1 1 P13], -1, C, )
lmiterm([J 1 1 P33], -C’, C);
Imiterm([J 1 1 tQ], -C’, X*C);
Imiterm([J 1 2 P12], -1, 1);
lmiterm([J 1 2 -P23], -C’, 1);
Imiterm([J 1 2 P13], -1, D);
lmiterm([J 1 2 P33], -C’, D);
Imiterm([J 1 2 tQ], A’*C’, X*Cx*B);
Imiterm([J 1 2 tQ], K’*Bu’*C?’, Xx*xCx*xB);
lmiterm([J 1 2 tQ], -C’, XxD);
Imiterm([J 1 2 tQ], A’xC’, 1);
Imiterm([J 1 2 tQ], K’*Bu’*C’, 1);
Imiterm([J 1 2 tQ], -C’, 1);
lmiterm([J 1 2 T], -C’, 1);
Imiterm([J 1 2 N], A’*C’, 1);
Imiterm([J 1 2 N], K’*xBu’*C’, 1);
lmiterm([J 1 2 N], -C’, 1);
lmiterm([J 1 3 Q], -A’*C?’, 1);
Imiterm([J 1 3 Q], -K’*Bu’xC’, 1);
lmiterm([J 1 3 Q], C’, 1);
Imiterm([J 1 3 tQ], A’*C’, Xx*xD);
Imiterm([J 1 3 tQ], K’*Bu’>*C’, X%*D);
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=
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tT],
tT],
N],
N],
N],

P11]
P11]

-P131],
-P13],

P12]
P12]

-P23],
-P23],

P13]
P13]
P33]
P33]

tQl1,
tQ] b

P22]
P23]
P33]
Ql,
tQl,
tQ],
tQl,
tQ],
T1,
T],
N1,
N],

Ql,
Ql,
tQl,
tQl,
tQl,
tT],
N],
N],
N],

“A%C?, 1);

-K?*Bu’*C~’,
-AxC?, 1);
-K?*Bu’*C’,
c’, 1);

1)

1)

, A2, 1),
, K’*Bu’, 1);
A’xC?, 1);
K’*Bu’*C’, 1);
, A, 1)y
, K’*Bu’, 1);
A’xC?, 1);
K>*Bu’*C’, 1);
, A, 1)
, K’*Bu’, 1);
, A’xC?, 1);
, K’*Bu’*C’, 1);
A’xC’, X);
K’>*Bu’*C?’, X);
, -1, 1);
, -1, D,

, -D’, D);
-1, Mi);
B’*C’, X*xCx*B);
-D’, XxD);

1, C¥xB - D,
-1, Mi);
-2, Xi);
-1, D,
-2, Mi);
1, CxB -

)

)

)

D, )

Mi, 1);

-(C*B - D),
B’*C?, X*D);
1, D);

1, Mi);
-B’*xC?, 1);

-(CxB - D),

2, Mi);

1, D);

1)

1)
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164

168

169

170

171

172

N

Imiterm([J 2
Imiterm([J 2 4

Ilmiterm([J 2 5
Imiterm([J 2 5

N

Imiterm([J 2
Imiterm ([J

N
(e}

lmiterm ([J
Imiterm ([J
lmiterm ([J
Imiterm ([J
lmiterm ([J
lmiterm ([J
Imiterm ([J
lmiterm ([J

W W wWwwwwww
W wWwwwwwww

w
IS

Imiterm ([J
Imiterm([J 3

S

lmiterm([J 3 5
Imiterm([J 3 5

lmiterm([J 3 6
Ilmiterm([J 3 6

Imiterm([J 4 4

lmiterm([J 4 5

Imiterm([J 4 6

Imiterm([J 5 5

Imiterm([J 5 6

Imiterm([J 6 6

Imiterm([J 7 7

P111 = newlmi;
Imiterm([-P111

P11],
-P13],

P12],
-P23],

P13],
P33],

Ql,
tQl,
tQl,
tT],
tT],
N],
NT,

-P12],
-P13],

P227,
-P23],

P23],
P33]1,

P117,
P12],
P13],
P22],
P23],
P33],

tQl,

-1,
Ql, -1,
D,
-1,
-2,
-1,
-2,
-1,

-1,

B’, 1);
B’*C’,

B’, 1);
B *C?,

B>, 1);
B’*xC?,

D,
Mi);
X*D)
Mi);
Xi);
D,
Mi);
D,

1, 1);
D>, 1)

1, 1);
D’, 1)

1, 1);
D’, 1);

-1, 1);
-1,
-1,
-1,
-1,
-1,

1);

X);

11 P11], 1,

1);

1)

1);

)

3

)

)

>

>

1)
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178
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188
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191

192

193

194

196

197

198

199

200

201

202

203

204

205

206

207

208

209

Pl = newlmi;

Imiterm([-P1 1 1 P111, 1, 1);
lmiterm([-P1 1 2 P12], 1, 1);
lmiterm([-P1 1 3 P13], 1, 1);
Imiterm([-P1 2 2 P22], 1, 1);
lmiterm([-P1 2 3 P23], 1, 1);
lmiterm([-P1 3 3 P33], 1, 1);

Ql = newlmi;

Imiterm([-Ql 1 1 Q], 1, 1);

% semidefiniteness
Imiterm([Ql 1 1 0], negzero);
tQl = newlmi;

Imiterm([-tQ1 1 1 tQ], 1, 1);
Tl = newlmi;

Imiterm([-T1 1 1 TJ1, 1, 1);

% semidefiniteness

lmiterm ([Tl 1 1 0], negzero);
tTl = newlmi;

Imiterm([-tT1 1 1 tT]1, 1, 1);
% semidefiniteness
Ilmiterm([tT1 1 1 0], negzero);
N1 = newlmi;

Imiterm([-N1 1 1 NJ], 1, 1);

% semidefiniteness
lmiterm ([N1 1 1 0], negzero);

Imisys = getlmis;

oo
oo

target = []; options=zeros(1,5);
options (2) = 300;

options (3) 10;

feasp(lmisys, options, target)

controller_simulation.m

clear

% Dimensions of the system
n = 4;
1;
nu = 1;
1 .

B

=]
<
Il

1)




18

19

20

21

22

23

24

26

27

28

29

30

31

35

36

37

39

40

41

42

43

44

45

46

47

)

% Assign value of xi
constant = 2;

% Initial values of state variables
x = led*rand(n,1);

% Number of simulation iterations
n_it = 499;

% Definition of example
A = [0.8 -0.25 0 1;

1 0 0 0;
0 0 0.2 0.3;
0 0 1 0 1;
B = [0;
03
1;
01;
Bu = [1;
03
03
01;
c = [0.8 -0.5 0 1];
D = 0;
K = zeros (1, n);
$ K= [0 0—-1 —1]; % Select K for example
q = Cx*x;
p = - constant * q;
for i = 1:n_it
x_next = (A + BuxK)#*x(:, end) + Bx*p(:, end);
q_next = C*xx_next;
p_next = -constant*q_next;
x = [x X_next];
q = [q gq_next];
p = [p p_next];
end
figure (1);

plot(x(1,:)); hold on;
plot(x(2,:)); plot(x(3,:)); plot(x(4,:)); hold off;
set(gca,’fontsize’, 14);
legend (’x_{k,1}’, ’x_{k,2}’, ’x_{k,3}’, ’x_{k,4}’);
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56

57

58

59

60

61

62

63

64

65

title(’Trajectory of state variables’);
xlabel(’k’); ylabel(’x_k’);

figure (2);
plot(x(1,:)); hold on;

plot(x(2,:)); plot(x(3,:)); plot(x(4,:)); hold off;

set(gca,’fontsize’, 14);

legend (’x_{k,1}’, ’x_{k,2}’, ’x_{k,3}’,
ylim([-1 11);

title(’Trajectory of state variables’);
xlabel(’k’); ylabel(’x_k’);

'x_{k,4});

7




20

21

22

23

24

26

27

28

29

30

D MATLAB Scripts for Chapter 5

The code estimator_feasibility.m solves the feasibility problem for the given example. The
code estimator_simulation.m plots the behavior of the example. The estimator matrix L has
to be changed within the definition of the example in both scripts.

estimator_feasibility.m

clear variables

Numerical zero for nonstrict LMIs
For positive semidefinite LMIs

poszero = le-12;

o3
°
o3

°

negzero = -posSzero,;

% Dimensions of the system
n = 4;
nq = 1;
ny = 1;

% Definition of example
A = [0.8 -0.25 0 1;

1 0 0 0;

0 0 0.2 0.3;

0 0 1 0 1;
Bp = [0;

0;

1;

0 1;
Cy = [0 01 1];

Cq = [0.8 -0.5 0 11;
Dgp = zeros (1);

L = zeros(1l, n)’;
$ L =1[-1000]";

oo

Select L for example

mu_ct = 1;
nqg_vec = [1 0];

Linear dependence of mu on x1
Parameter for matrix variables

oo oo

% Definition of M and X: change according to example

Xxi = 2;
mu = mu_ct * xi;
X = xi * eye(nq);

=
I

mu * eye(nq);
Xi = inv(X);
Mi = inv(M);

78




69

79

80

81

82

83

oo
oo

setlmis ([1);

P11 = 1lmivar (1,
P12 = 1mivar (2,
P13 = 1lmivar (2,
P22 = 1mivar (1,
P23 = 1lmivar (2,
P33 = 1mivar (1,
Q = lmivar (1,

T = 1lmivar (1,
tT = 1mivar (1,
R = newlmi;
Ilmiterm ([R 1
Imiterm ([R 1
Imiterm([R 1 1
lmiterm([R 1 2
lmiterm([R 1 2
Imiterm([R 1 2
lmiterm([R 1 2
Imiterm([R 1 2
lmiterm([R 1 2
Ilmiterm([R 1 2
Ilmiterm([R 1 3
lmiterm([R 1 3
lmiterm([R 1 3
Imiterm([R 1 3
Imiterm([R 1 4
lmiterm([R 1 4
Imiterm([R 1 4
lmiterm([R 1 4
lmiterm([R 1 5
Ilmiterm([R 1 5
lmiterm([R 1 5
lmiterm([R 1 5
lmiterm([R 1 6
Imiterm ([R 6

Imiterm([R 1 6

[n 1]);
[n nql);
[n nql);
[nq 11);
[nq nql);
[nq 11);

nqg_vec);
nq_vec);

nq_vec);

P11],
P13],
P33],

_11 1);
-1, Cq,
-Cq’, Cq);

)

P12],
-pP237],

-1, 1);

-Cq’, 1);

P13], -1, Dgp);

P33], -Cq’, Dgp);

Ql, A’*Cq’, M*Cq*Bp);

Ql, Cy’*L’*Cq’, MxCq#*Bp);
Tl, -Cq’, 1);

Ql,
Ql,
tT],
tT],

A’>xCq’, M*Dqgp);
Cy’*L’*Cq’, MxDqp);
“A%Cq’, 1);
-Cy’*L’*Cq’, 1);
P11], A’,
P11],
-P13],
-P131],

1);
Cy’*L’, 1);
A>xCq’, 1);
Cy’*L’*Cq’, 1);
P12],
P12],
-P23],
-p23],

A, 1);

Cy L, 1);
A’xCq’, 1);
Cy’*L’*Cq’, 1);

P13],

P13],

P33],

A, 1);
Cy’*L’,
A’%Cq’,

1);
1)
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88

89

90

91

92

93

94

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

lmiterm ([R

lmiterm ([R
Imiterm ([R

Ilmiterm ([R
lmiterm ([R
Ilmiterm ([R
Ilmiterm ([R
Ilmiterm ([R
lmiterm ([R

Imiterm ([R
lmiterm ([R

Imiterm ([R
Imiterm ([R

Imiterm ([R
lmiterm ([R

Imiterm ([R
lmiterm ([R

lmiterm ([R
Imiterm ([R

Imiterm ([R

Ilmiterm ([R
Imiterm ([R

Imiterm ([R
Imiterm ([R

Imiterm ([R
lmiterm ([R

Imiterm ([R

Ilmiterm ([R

Imiterm ([R

Imiterm ([R

Imiterm ([R

=

NN DNDNDDNDDN

NN

~

NN DNDNDDNDDN

w w

P33], Cy’*L’*Cq’, 1);
Ql,

Ql,

A’>xCq’, M);
Cy’*L’*Cq’, M);
P22],
pP23],
P33],
Ql,
T]1,
T1,

-1, 1);

-1, Dqp,
-Cq’, Dgp);
Bp’*Cq’, M*xCq*Bp);
-2, Mi);
-1, qu,

)

)

Ql,
tT],

Bp’*Cq’, Mx*Dqp);
-Bp’*Cq’, 1);

P11],
-P13],

Bp’, 1);
Bp’*Cq’, 1);

P12],
-P231],

Bp’, 1);
Bp’*Cq’, 1);
P131],

P33],

Bp’, 1);

Bp’*Cq’, 1);

Ql, Dgp’, Mx*Dqp);

tT], -2, Mi);
tT]’ _1’ qu: )’
-P12], 1, 1);
-P13], Dgp’, 1);
P22], 1, 1);
-P23]1, Dgp’, 1);
P231, 1, 1);
P33], Dgp’, 1);
P11], -1, 1);
P12], -1, 1);
P131, -1, 1);
P22]1, -1, 1);
P23], -1, 1);
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130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

146

160

161

162

163

164

lmiterm([R 6 6 P33], -1, 1);

lmiterm([R 7 7 Q], -1, M);

P111 = newlmi;
Imiterm([-P111 1 1 P11], 1, 1);

Pl = newlmi;

lmiterm([-P1 1 1 P11]1, 1, 1);
lmiterm([-P1 1 2 P12], 1, 1);
Imiterm([-P1 1 3 P13], 1, 1);
lmiterm([-P1 2 2 P22], 1, 1);
lmiterm([-P1 2 3 P23], 1, 1);
Ilmiterm([-P1 3 3 P33], 1, 1);
Q1 = newlmi;

Imiterm([-Q1l 1 1 Q], 1, 1);
Tl = newlmi;

Imiterm([-T1 1 1 T], 1, 1);

% semidefiniteness

lmiterm ([Tl 1 1 0], negzero);
tTl = newlmi;

Imiterm([-tT1 1 1 tT], 1, 1);

% semidefiniteness
lmiterm ([tT1 1 1 0], negzero);

lmisys = getlmis;

oo
oo

target = []; options=zeros(1,5);
options (2) = 300;

options (3) 10;

feasp(lmisys, options, target)

estimator_simulation.m

clear

)

% Dimensions of the system
n =4

[=}
Q
Il

1;
nu = 1;
1

=t
<
]

3
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25

26

27

28

29

30

31

32

38

39

40

41

42

43

44

45

46

o

% Assign value of xi
constant = 2;

% Initial values of state variables
x = ledxrand(n,l);

% Number of simulation iterations
n_it = 499;

% Definition of example
A = [0.8 -0.25 0 1;

1 0 0 0;
0 0 0.2 0.3;
0 0 1 0 1;
Bp = [0;
0;
1;
0 1;

Cy = [0 0 1 11;
[0.8 -0.5 0 1];
Dgp = zeros (1);

Q
Q
Il

L = zeros(1l, n)’;
$ L =[-100 0]’;, % Select L for example
q = Cg*x;
p = - constant * q;
for i = 1:n_it
x_next = (A + L*Cy)*x(:, end) + Bp*p(:, end);
q_next = Cq*x_next;
p_next = -constant*q_next;
x = [x x_next];
q = [q gq_next];
p = [p p_next];
end
figure(1);

plot(x(1,:)); hold on;
plot(x(2,:)); plot(x(3,:)); plot(x(4,:)); hold off;

set (gca,’fontsize’, 14);
legend (’ x _A{k,1} - x_{k,1}+’, >x _{k,2} - x_{k,2}7,
>x _A4{k,3} - x_4{k,3}’, ’x _Ak,4} - x_4{k,4}’);

title(’Trajectory of error state variables’);
xlabel(’k’); ylabel(’x _k - x_k’);
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56
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58

59

60

61

62

63

figure (2);

plot(x(1,:)); hold on;

plot(x(2,:)); plot(x(3,:)); plot(x(4,:)); hold off;

set (gca,’fontsize’, 14);

legend (’ x _{k,1} - x_{k,1}’, *x _{k,2} - x_{k,2}’,
*x _{k,3} - x_{k,3}’, >x _{k,4} - x_{k,4}’);

ylim([-1e-4 1e-4]1);

title(’Trajectory of error state variables’);

xlabel(’k’); ylabel(’x _k - x_k’);
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