
Probabilistic Learning on Manifolds:
an overview of the algorithm

Francisco Javier Gual Navarro
Tutor: Sanjay Govindjee

UPC supervisor: Joel Montoy Albareda

July 2020

Bachelor of Science in Civil Engineering
and

Bachelor of Science in Mathematics
at the

UNIVERSITAT POLITÈCNICA DE CATALUNYA

To my Father, who passed away on March 26th, 2020.

Thanks to my advisor, Professor Sanjay Govindjee, thanks for his patience and his
dedication throughout the semester.

Thanks to Roger Ghanem for his availability and his interest in our project.

Abstract

Many different algorithms to generate random data points following a partic-
ular probability distribution have been proposed.

The algorithm presented by C. Soize and R. Ghanem [1], known as Proba-
bilistic Learning on Manifolds (PLoM) can also be used with constraints over
the probability distribution.

Besides the initial data set given for performing more realizations of it, some
constraints are given, which may be attributed to previous experiments or of
physical restrictions. They can be a result of experience and knowledge of certain
events.

This algorithm may have many applications, from models that need data to
learn to Monte Carlo integration methods and many other numerical applications
that require data to compute some calculations and reach some conclusions.

Keywords:
Statistics, constraints, principal component analysis, diffusion maps, kernel density es-
timation, learning.

3

Abstract

Hay muchos algoritmos capaces de producir nuevos puntos aleatorios que
siguen cierta distribución de probabilidad aleatoria.

El algoritmo propuesto por C. Soize y R. Ghanem [1], llamado Aprendizaje
probabilistico en Variedades (PLoM) también se puede usar con restricciones
sobre la distribución de probabilidad.

Además del conjunto inicial de información, del cuál se tienen que calcular
nuevas realizaciones, también se conocen algunas restricciones, que pueden venir
de previos experimentos, o restricciones f́ısicas. Pueden ser el resultado de la
experiencia y del conocimiento de ciertos eventos.

Este algoritmo tiene muchas posibles aplicaciones, desde modelos que necesi-
tan información para el aprendizaje hasta métodos de integración del tipo ’Monte
Carlo’ y muchas otras aplicaciones numéricas que requieren muchos datos para
ciertos cálculos y llegar a determinadas conclusiones.

Palabras clave:
Estad́ıstica, restricciones, análisis de las componentes principales, mapa de difusión,
estimación por núcleos de densidad, aprendizaje.

4

Abstract

Hi ha molts algorismes capaços de generar nous punts aleatoris que segueixen
una certa distribució de probabilitat aleatòria.

L’algorisme proposat per C. Soize i R. Ghanem [1], anomenat Aprenentatge
prababiĺıstic en Varietats (PLoM) també es pot aplicar amb restriccions sobre la
distribució de probabilitat.

Ademés del conjunt d’informació inicial, del qual s’han de calcular noves real-
itzacions, també es coneixen algunes restriccions, que poden venir d’experiments
previs, o restriccions f́ısiques. Poden ser fruit de l’experiència i del coneixement
de certs esdeveniments.

Aquest algorisme té moltes possibles aplicacions, des de models que necessiten
dades per l’aprenentatge fins a mètodes d’integració del tipus ’Monte Carlo’ i
moltes altres aplicacions numèriques que requereixen moltes dades per a certs
càlculs i arribar a determinades conclusions.

Paraules clau:
Estad́ıstica, restriccions, anàlisi de les components principals, mapa de difusió, esti-
mació per nuclis de densitat, aprenentatge.

5

AMS Classification: 65C20

6

Contents

1 Introduction 8

2 Description of the problem 10

3 Methodology of the solution 12

4 Summary of the algorithm 14
4.1 PCA . 14
4.2 KDE . 14
4.3 Reformulation of the optimization problem 15
4.4 Optimization using Lagrange multipliers 16
4.5 Reformulation introducing a random vector Hλ and reconstruction of

the optimization problem . 16
4.6 Definition of a convex function for calculating λsol 17
4.7 Nonlinear ISDE for the generator of random variable Hλ 19
4.8 Diffusion-maps basis . 21
4.9 Computing the additional realizations of Hc 23

5 Major issues of the algorithm 25
5.1 Comment regarding the code . 25
5.2 Convergence of the algorithm and diffusion maps accuracy 27

5.2.1 Convergence of the MCMC generator of the ISDE 29
5.2.2 Diffusion maps . 30

6 Applications 34
6.1 Application 1 . 34
6.2 Example of the PLoM with constraints 39
6.3 Application 2 . 43

7 Results of the applications 47

8 Future works 48

9 Conclusion 49

Appendices 53

A Störmer-Verlet 53

7

1 Introduction

In this work there will be reviewed some parts of the algorithm Probabilistic Learning
on Manifolds (PLoM) with some specific applications.

The integrity of the algorithm has been read and understood. The proofs have
been checked and a few meetings have been carried out with one of the coauthors of
the PLoM algorithm, Roger Ghanem, from University of Southern California (USC),
to discuss some topics.

The code has been coded using both Python and C.
Some issues are presented and two applications have been computed, one without

constraints and the other with constraints, and also several aspects of the results are
presented.

This is a big algorithm that has to put together many mathematical aspects. And
in order to converge, these several components have to fit together, thing that not
always happens.

Figure 1: Monte Carlo integration and its importance of the number of realizations to
compute the integrals.

8

Some useful notations to better follow the text.

NOTATION

Real variables are expressed with lowercase letters such as η.

Vectors are expressed with lowercase letters in bold, like x.

Vector random variables are denoted with uppercase letters in bold, like X.

Letters between brackets such as [g] denote matrices

mc : number of constraints. → νc : number of independent constraints.

n : dimension (n = na + nb) of vectors x,X, and Xc. → ν : dimension of H and Hc.

xj,xc,` : realization of X,Xc.

M = nMC ×N : number of points in the generated data set Dg
M .

N : number of points in initial data set DN . → m : number of columns in the reduced ISDE.

DN : initial data set for X

Table 1: Useful notations for understanding better the paper.

9

2 Description of the problem

Given an initial data set of points in Rn and some constraints, the objective is to
generate more realizations of a probability distribution that fulfills the constraints and
is the closest to the probability distribution of the initial data set,{

xj, j = 1, . . . , N
}
, xj ∈ Rn (1)

The initial set can be seen as samples of a random vector whose components are
inputs and outputs of a certain mathematical model f : Rnb × Rnc → Rna .

A = f(B,C) (2)

In which B is a random variable in Rnb and it represents the components that
have certain importance to determine the output of the function. Whereas C is also a
random vector, but without statistical importance to control the model. A would be
the random vector of the quantities of interest (QoI).

Therefore, the random vector is composed by two other vectors of interest, X =
(A,B) ∈ Rn, and n = na + nb.

The incentive for this problem is that the mapping f usually has a very high com-
putational cost, thus the generation of new realizations require many calculations and
an amount of time that may be out of our possibilities.

The initial data set can also be seen as data collected throughout many years, for
example data collected from meteorological stations. The amount of times to gather
more information may represent years or even decades, and the need for more infor-
mation may not be able to wait for such a long period of time.

The need for more realizations is obvious. The more realizations of a process, the
more conclusions can be taken from it. In certain applications, data, knowledge or
facts and their statistics might be available, integrated from measurements, previous
experiments or numerical simulations. The objective is then to generate realizations
that fulfill this additional information. That is by fitting the new samples with math-
ematical constraints that express the available data. For example, statistics can refer
to means or other moments of certain components Ak of A.

Thus, it is not just enough generating more realizations of the initial data set using
the PLoM, that allows for generating additional realizations of a given probabilistic
density function, but it is also required that these realizations must be consistent with
the constraints.

The random vector to consider, X, may have different ranges of values for its differ-
ent components. This is why random vector X must be scaled so all the components
are in the range [0, 1].

The scaling is proceeded as follows:

1. Let’s consider the initial data set {xj, j = 1, . . . , N} , xj ∈ Rn.

2. Let xmax ∈ Rn and xmin ∈ Rn such that xmax[i] = max(xj[i]) and xmin[i] =
min(xj[i]), 1 ≤ j ≤ N, 1 ≤ i ≤ n.

3. Let [αX] ∈ Mn,n be a diagonal matrix in which [αX]i,i = (xmax[i] − xmin[i]) if
xmax[i] 6= xmin[i], and [αX]i,i = 1 if xmax[i] = xmin[i].

10

4. The scaling is such that:

X = [αX] X + xmin, X = [αX]−1 (X− xmin
)

(3)

and the scaled initial realizations are:

xj = [αX]−1 (xj − xmin
)
, j = 1, . . . , N (4)

11

3 Methodology of the solution

This problem is basically an optimization problem which objective is to minimize the
distance between the probability distribution PX(dx) = pX(x)dx of random vector X,
estimated with a Gaussian kernel-density estimation, and the probability distribution
PXc(dx) = pXc(x)dx of random vector Xc, the solution random vector that satisfies the
constraints. To find the closest pdf that satisfies the constraints, the Kullback-Leibler
minimum cross entropy principle is proposed by Soize and Ghanem [1].

DKL (p̂; pX) =

∫
Rn
p̂(x) log

p̂(x)

pX(x)
dx (5)

The Kullback-Leibler Divergence is a modification of the formula for entropy of a
probability distribution (Shannon, Equation (6)). Rather than just having one proba-
bility distribution p, the objective distribution is added.

H (p) = −
∫

Rn
p(x) log p(x)dx (6)

Essentially, what it is sought with the KL divergence is the expectation of the log
difference between the probability of data in the original distribution with the new
approximating distribution. Again, if it is seen in terms of log2 it can be interpreted as
”how many bits of information are expected to be lost from the original distribution
to the new distribution”.

The Kullback-Leibler cross entropy has some of the properties of a metric on the
space of probability distribution: it’s non-negative, with equality only when the two
distributions are equal.

Proof: Since log(a) ≤ a− 1 ∀ a > 0

−DKL (p̂; pX) = −
∫

Rn
p̂(x) log

p̂(x)

pX(x)
dx

=

∫
Rn
p̂(x) log

pX(x)

p̂(x)
dx ≤

∫
Rn
p̂(x)

(
pX(x)

p̂(x)
− 1

)
dx

=

∫
Rn
pX(x)dx−

∫
Rn
p̂(x)dx = 1− 1 = 0

(7)

Unfortunately, however, it is not symmetric, and it does not follow the triangular
inequality. Nevertheless, it’s enough similar to a metric that it can be used to construct
a sort of geometry on the space of probability distributions.

Thus, the main problem to solve is the solution to the following two equations,

pXc = arg min
p̂∈Cad,Xc

∫
Rn
p̂(x) log

p̂(x)

pX(x)
dx (8)

where the admissible set Cad,Xc is defined by,

Cad,Xc =

{
x 7→ p̂(x) : Rn → R+,

∫
Rn
p̂(x)dx = 1,

∫
Rn

gc(x)p̂(x)dx = βc
}

(9)

In this way, the new realizations subject to certain constraints will be realizations
of the random vector Xc.

12

The analytical solution to this problem may be very difficult to calculate or it may
not even be possible to compute the integrals. Even calculating the integrals with
numerical methods may bring some convergence problems.

This is why an iterative algorithm is proposed. The algorithm basically consists of
a Newton’s Method with a Markov chain for every iteration, and some reductions to
achieve a faster convergence.

The following sections talk about the algorithm, some issues that may arise and a
test of the algorithm and two other practical applications and their results.

13

4 Summary of the algorithm

We consider a non-Gaussian random vector X ∈ Rn whose unknown probability dis-
tribution has to satisfy some constraints, defined in (9). These constraints usually will
come from experience and knowledge.

It is important to state that there are many kinds of constraints, for instance, the
mean or other moments of some components of the vector, relations between compo-
nents are also valid constraints.

The algorithm is explained in more detail in the article of Soize and Ghanem [1],
they also may refer to other papers for some mathematical proofs. The steps of this
algorithm can be summarized as follows:

4.1 PCA

First, a principal component analysis (PCA) of X of dimension ν ≤ n using the initial
set {xj, j = 1, ..., N} is applied, which leads to the random vector H with values in
Rν centered. It is normalized and it has as covariance matrix [Iν], for which the N
independent samples are {ηj, j = 1, ..., N}:

H = [µ]−1/2[Φ]T (X− x̂) (10)

In which,

• H ∈ Rν , having 1 ≤ ν ≤ n,

• [µ] is the diagonal (ν× ν) matrix such that [µ]αβ = µαδαβ, µα are the eigenvalues
of the covariance matrix of X,

• [Φ] = [ϕ1, . . . ϕν] ∈ Mn,ν , where [ϕ1, . . . ϕν] are the orthonormal eigenvectors of
the covariance matrix of X.

• x̂ ∈ Rn mean vector of the initial data set.

Representations of H are such that ηj = [µ]−1/2[Φ]T (xj − x̂) ∈ Rv.

4.2 KDE

Following the PCA, a Gaussian KDE (kernel-density estimation) of the probability
density function pH of random vector H is calculated:

pH(η) = cνρ(η), cν =
1(√

2πŝν
)ν (11)

ρ(η) =
1

N

N∑
j=1

exp

{
− 1

2ŝ2
ν

∥∥∥∥ ŝνsν ηj − η
∥∥∥∥2
}

(12)

sν =

{
4

N(2 + ν)

}1/(ν+4)

, ŝν =
sν√

s2
ν + (N − 1)/N

(13)

These first reductions and approximations can be graphically seen in Figure 2.

14

X ∈ Rn H ∈ Rν pH(η)- -
PCA KDE

{xj} ∈ Rn {ηj} ∈ Rν- j = 1, . . . , N ;

1 ≤ ν ≤ n.

{xj} =

xj1
...

...

xjn

∈ Rn → {ηj} =

ηj1
...

ηjν

 ∈ Rν

Figure 2: Graphical scheme of the first reductions.

4.3 Reformulation of the optimization problem

After the PCA and the KDE, the next step is setting again the optimization problem
defined by Equations (8) and (9) for finding the probability density function pHc of Hc

in terms of probability density function pH of H and of the reformulated constraints
in terms of pHc :

The same procedure is applied to Xc,

Hc = [µ]−1/2[Φ]T (Xc − x̂) , (14)

which must be subject to the following restrictions,

h̃c(η) = gc
(
x̂ + [Φ][µ]1/2η

)
,

∫
Rv

h̃c(η)pHc(η)dη = βc. (15)

In order that the projected constraints be algebraically independent it is proposed
by Soize and Ghanem in [1], to carry out the definition of the Rmc random variable

h̃c(H) in a Rνc random variable hc(H).

hc(η) = [Ψ]T h̃c(η) = [Ψ]Tgc
(
x̂ + [Φ][µ]1/2η

)
∈ Rνc , 1 ≤ νc ≤ ν. (16)

Where [Ψ] is the matrix of eigenvectors of the covariance of h̃c(H). In this way the
problem stays as follows:

pHc = arg min
p̂∈Cad,Hc

∫
Rv
p̂(η) log

p̂(η)

pH(η)
dη (17)

with the following restrictions:∫
Rv

hc(η)pHc(η)dη = bc(= [Ψ]Tβc) (18)

15

4.4 Optimization using Lagrange multipliers

Continuing with the previous section, the optimization problem with constraints is
represented as an optimization problem using Lagrange multipliers (λ0, λ) where λ0 is
associated with the normalization constraint.

The new objective random variable Hc is the closest to H and at the same time
subject to the constraints in (18). And the function to minimize is the Lagrangian
associated to equations (17) and (18):

Lag (p̂;λ0, λ) =

∫
Rν
p̂(η) log

p̂(η)

pH(η)
dη

+ (λ0 − 1)

(∫
Rν
p̂(η)dη − 1

)
+

〈
λ,

∫
Rν

hc(η)p̂(η)dη − bc
〉 (19)

The solution of (19) results into,

pHc(η) = cν exp
{
−ψ(η)− λsol

0 − < λsol,hc(η) >
}

(20)

∫
Rν
cν exp {−ψ(η)− λ0− < λ,hc(η) >} dη = 1 (21)

∫
Rν
cνh

c(η) exp {−ψ(η)− λ0− < λ,hc(η) >} dη = bc (22)

in which λ is in the admissible open subset Cad,λ,

Cad,λ =

{
λ ∈ Rνc ,

∫
Rν
e−ψ(η)−〈λ,hc(η)〉dη < +∞

}
(23)

Where the pdf of random vector H is expressed as follows:

pH(η) = cve
−ψ(η), ψ(η) = − log ρ(η) (24)

4.5 Reformulation introducing a random vector Hλ and re-
construction of the optimization problem

Next, the problem is reformulated again by introducing a random vector Hλ and elim-
inating λ0.

The random vector Hλ is introduced,

pHλ(η) = c0(λ) exp {−ψ(η)− < λ,hc(η) >} (25)

having c0(λ) as the normalization constant. It can be quickly proved that c0(λ) =

cνexp{λ0} adn that c0(λ) =
(∫

Rν exp {−ψ(η)− < λ,hc(η) >}
)−1

, and, subsequently,
for all η ∈ Rν ,

16

pHc(η) = {pHλ(η)}λ=λsol , pH(η) = {pHλ(η)}λ=0 (26)

pHλ is no other thing that the solution to the Equation ∇Lag (p̂;λ0, λ) = 0.

4.6 Definition of a convex function for calculating λsol

The introduction of random variable Hλ as the solution to the Equation ∇Lag (p̂;λ0, λ) =
0 in Rν admits the construction of an algorithm that iterates over λ for computing the
optimal value λsol of the Lagrange multiplier λ.

To do so, p̂ has to be substituted for pHλ in Equation (19):

Lag (pHλ;λ0, λ) =

∫
Rν
pHλ(η) log

pHλ(η)

pH(η)
dη

+ (λ0 − 1)

(∫
Rν
pHλ(η)dη − 1

)
+

〈
λ,

∫
Rν

hc(η)pHλ(η)dη − bc
〉

=

∫
Rν
pHλ(η) log (c0(λ)× exp [− < λ,hc(η) >]) dη

+

〈
λ,

∫
Rν

hc(η)pHλ(η)dη − bc
〉

= log (c0(λ))− 〈λ,bc〉 = Γ(λ)

(27)

thus, the function to minimize and which minimum is achieved at λ = λsol is
expressed as:

Γ(λ) = − < λ,bc > + log c0(λ) (28)

with gradient,

∇Γ(λ) = −bc + E {hc (Hλ)} (29)

and hessian matrix,

[Γ′′(λ)] = − [cov {hc (Hλ)}] (30)

.
that can also calculated as,

[cov {hc (Hλ)}] = E
{

hc (Hλ) hc (Hλ)
T
}
− E {hc (Hλ)}E {hc (Hλ)}T (31)

Γ(λ) is, as seen before, the result of substituting p̂ for pHλ in Equation (19). And
the object of iterating over λ in Γ(λ) is basically optimizing the Lagrangian in this new
form, that is Γ(λ).

Because −Γ is convex, this optimization problem would be convex if the set of
admissible λ were convex and λsol would be the unique global minimum. However, it
cannot be proven that Cad,λ, defined in (23), is convex for arbitrary constraints hc.

17

The iterative method will be the Newton’s method applied to function ∇Γ(λ)
starting from an initial point λ1 = − [Γ′′ (0)]−1 ∇Γ (0) in Cad,λ. This method will find
λsol such that ∇Γ(λsol) = 0, and every iteration is calculated as,

λi+1 = λi −
[
Γ′′
(
λi
)]−1 ∇Γ

(
λi
)

(32)

λ1 can be calculated using the empirical estimators (see Equation (33)) of the
expectation vector and the covariance matrix of hc(H), and in every iteration, for a
given λi ∈ Cad,λ, the right hand side of equations (29) and (31) can be estimated by
computing realizations of Hλi using a Markov-Chain Monte-Carlo algorithm.

The empirical expectation of a given function f : Rν → Rνc is expressed as:∫
Rν
f(η)pHc(η)dη =

1

n

n∑
i=1

f (ηi) (33)

The error at every iteration i is controlled calculating,

err(i) =
‖bc − E {hc (Hλi)}‖

‖bc‖
=
‖∇Γ (λi) ‖
‖bc‖

(34)

18

X ∈ Rn H ∈ Rν pH(η)

?

6

- -
PCA KDE

{xj} ∈ Rn {ηj} ∈ Rν- j = 1, . . . , N ;
1 ≤ ν ≤ n.

{xj} =

xj1
...

...

xjn

∈ Rn → {ηj} =

ηj1
...

ηjν

 ∈ Rν

Lagrangian Hλ ∈ Rν- - Γ(λ) -ISDE

iterations

Lag (p̂;λ0, λ)

Xc ∈ Rn, subject to: Hc ∈ Rν , subject to:-�
PCA

∫
Rn gc(x)pXc(x)dx = βc

∫
Rν hc(η)pHc(η)dη = bc-�

-� pHc(η) = {pHλ(η)}λ=λsol

Figure 3: Big picture of the method proposed.

4.7 Nonlinear ISDE for the generator of random variable Hλ

The construction of a nonlinear Ito Stochastic Differential Equation (ISDE) to generate
realizations of random variable Hλ allows us to compute the empirical gradient and
covariance.

The ISDE presented in page 122 of the work of Soize and Ghanem [1], is written in
the following way:

d [Uλ(t)] = [Vλ(t)] dt (35)

d [Vλ(t)] = [Lλ ([Uλ(t)])] dt−
1

2
f0 [Vλ(t)] dt+

√
f0d
[
Wwien

λ (t)
]

(36)

where U and V ∈ Mν,N and with the initial condition at t = 0,

[Uλ(0)] =
[
ηinit

]
, [Vλ(0)] =

[
ν init

]
(37)

in which {([Uλ(t)] , [Vλ(t)]) , t ∈ R+} is a stochastic process with values in Mν,N ×
Mν,N , which is composed of the independent stochastic processes

{(
U`
λ(t),V

`
λ(t)
)
, t ∈ R+

}
19

such that [Uλ(t)] =
[
U1
λ(t) . . .U

N
λ (t)

]
and [Vλ(t)] =

[
V1
λ(t) . . .V

N
λ (t)

]
and where:

1. ”f0 > 0 is a free parameter (damping parameter) allowing the dissipation to be
controlled in the stochastic dynamical system. This parameter is chosen such that
f0 < 4. The value, 4, corresponds to the critical damping rate of the linearized
ISDE associated with Equations (35) and (36).

2.
{[

Wwien
λ (t)

]
, t ∈ R+

}
is the stochastic process, defined on (Θ, T ,P), indexed by

R+, with values in Mν,N , for which the columns of
[
Wwien

λ (t)
]

are N indepen-
dent copies of the Rν -valued normalized Wiener process whose matrix-valued
autocorrelation function is min (t, t′) [Iν] . When coded, this random matrices are
generated such that all the components are Gaussian, centered with standard
deviation equal to ∆t. The relation with λ is such that, if λ and λ′ are two
distinct values in Cad,λ, then the two stochastic processes

{[
Wwien

λ (t)
]
, t ∈ R+

}
and

{[
Wwicn

λ′ (t)
]
, t ∈ R+

}
are independent.

3. [u] 7→ [Lλ([u])] is a nonlinear mapping from Mν,N into Mν,N , expressed in the
following form as negative of the gradient of the potential Vλ

[Lλ([u])]α` = − ∂

∂u`α
Vλ
(
u`
)
, α = 1, . . . , ν, ` = 1, . . . , N (38)

in which [u] =
[
u1 . . .uN

]
∈ Mν,N with u` =

(
u`1, . . . u

`
ν

)
∈ Rν . For ` fixed in

{1, . . . , N}, the Hamiltonian of the associated conservative homogeneous dynam-
ical system related to stochastic process

{(
U`(t),V`(t)

)
, t ∈ R+

}
is thus written

as Hλ

(
u`,v`

)
= 1

2

∥∥v`∥∥2
+ Vλ

(
u`
)
.

4.
[
ηinit

]
and

[
ν init

]
are the matrices in Mν,N defined as

[
ηinit, 1

]
=
[
η1 . . .ηN

]
∈

Mν,N , and
[
ν init, 1

]
is shuch that its N columns are independent realizations

of Gaussian, centered, random variable in Rν for which its covariance matrix
is [Iν]. For the following iterations, these matrices are defined as

[
ηinit ,i

]
=[

ηnMC

λi−1

]
,
[
ν init ,i

]
=

[
νnMC

λi−1

]
”[1].

The presented ISDE admits a unique invariant measure, proved in the work of Soize
[2],

⊗N`=1 {pHλ (u′) pG (v′) du′dv′} . (39)

The Hamiltonian of the associated dynamical system
{(

U`(t),V`(t)
)
, t ∈ R+

}
re-

lated to stochastic process is, Hλ

(
u`,v`

)
= 1

2

∥∥v`∥∥2
+ Vλ

(
u`
)
, where

pHλ(η) = c0(λ)ρλ(η) (40)

and,

ρλ(η) = exp {−Vλ(η)} , Vλ(η) = ψ(η) + 〈λ,hc(η) > (41)

.
In this way, the realizations of [Hλ] are obtained as written,

[Hλ] =
[
Ust
λ (tst)

]
= lim

t→+∞
[Uλ(t)] (42)

20

4.8 Diffusion-maps basis

This step in the algorithm consists in projecting the nonlinear ISDE defined by Equa-
tions (35), (36) and (37) on the diffusion-maps basis. It permits conserving the dis-
persion of the probability distribution pHλi(η)dη and to prevent the dispersion of the
realizations obtained with the Markov Chain Monte Carlo generator.

”The PLoM methodology has been developed for small values of N (few initial
data points) for which the probability measure pH(η)dη is not necessarily converged.
Therefore additional realizations that would be generated with this measure would
not provide good realizations preserving the concentration. This is the reason why,
the measure pH(η)dη is improved by introducing the transported probability measure
pZ(η)dz of random matrix [Zλi].”[3]

The diffusion maps is a technique to reduce the dimension of the ambient space, in
this case Rν . An approach of the process of the diffusion maps reduction is exposed in
the work of Lindenbaum et Al. [4]. The diffusion maps basis is a technique to reduce
the dimension of the data space, RN .

The diffusion maps basis, presented in page 125 of the work of Soize and Ghanem
[1], is independent on λi, it only depends on the initial set of points {η1, ...,ηN} and
it is expressed by the matrix

[g] =
[
g1 . . .gm

]
∈ MN,m with 1 < m ≤ N (43)

Let [K] be the symmetric (N×N) real matrix in which [K]ij = exp
(
−1

4εdiff
‖ηi − ηj‖2

)
that determined by the parameter εdiff > 0, to regularize the kernel function. Let [P]
be the transition matrix in MN of a Markov chain such that [P] = [b]−1[K],in which [b]
is the matrix expressed by [b]ij = δij

∑N
j′=1[K]jj′ . It is positive-definite and diagonal.

For m fixed in {1, ..., N}, let g1, ...,gm be the column eigenvectors in RN of matrix
[P] correspondent to eigenvalues sorted such that 1 = Λ1 > Λ2 > ... > Λm. These
eigenvectors are normalized [g]T [b][g] = [Im].

This composition depends on two factors: the dimension m ≤ N , and the ”smooth-
ing parameter” εdiff > 0. Most of the time,m and εdiff can be chosen as presented in
[1].

The new representation of the points {ηj, j = 1, ..., N} is defined representing each
{ηj} by the j-th row of [P]t[g] = [g][Λ]t, where t > 0 ∈ Z namely:

Ψt

(
ηj
)

: ηj 7→
[
Λt

1g
1
j , . . . ,Λ

t
mgmj

]T ∈ Rm, j ∈ [1, N] (44)

where gki denotes the i-th element of the vector gk.
In this way, [Λ][g]T columns would correspond to the reduced representation of the

initial points.
The principal idea behind this representation is that the distance between two data

points in the lower new representation maintains the distance of the data points in
their original representation.

The diffusion maps basis [g] characterizes the local geometry of {ηj, j = 1, ..., N}:

[Hλi] = [Zλi] [g]T (45)

and consequently having,

[Zλi] = [Hλi] [a] (46)

21

with,

[a] = [g]
(
[g]T [g]

)−1 ∈ MN,m (47)

In the same way, we have,

[Uλi(t)] = [Zλi(t)] [g]T , [Vλi(t)] = [Yλi(t)] [g]T (48)

Therefore, [Zλi], in which [Λ] is ”hidden”, can be interpreted as a linear map from
Rm to Rν . The idea of the diffusion maps is that points from Rν are projected to Rm in
a non-linear mapping (the diffusion maps) to [g]T , and this basis is assumed constant.
And from this same points it is assumed that to undo the diffusion maps projection a
linear map is proposed ([Zλi]), and the ISDE is solved over generating new linear maps
from Rm to Rν .

As the diffusion maps is not a bijective projection, the inverse function can not
be computed. In this way this linear map as the inverse function is proposed, and
the parameters ε and m are such that they reduce the mean-square error when the
projection is performed and undone:

ered(m) =
‖[covred(m)]− [cov]‖F

‖[cov]‖F
(49)

where,

[cov] =
1

N − 1

N∑
`=1

(
η`
) (
η`
)T

(50)

[covred(m)] =
1

N − 1

N∑
`=1

(
η`red

) (
η`red

)T
(51)

[ηred(m)] = [zinitial] [g]T , [zinitial] = [ηinitial] [a] (52)

The resulting reduced ISDE concentrates the results on a manifold of RN (the ”data
space”) and it is expressed as:

d [Zλi(t)] = [Yλi(t)] dt (53)

d [Yλi(t)] = [Lλi ([Zλi(t)])] dt−
1

2
f0 [Yλi(t)] dt+

√
f0d
[
Wwien

λi (t)
]

(54)

with the projected initial conditions at t = 0

[Zλi(0)] =
[
nnMC

λi−1

]
[a], [Yλi(0)] =

[
νnMC

λi−1

]
[a], a.s. (55)

in which random matrices [Lλi ([Zλi(t)])] and
[
Wwien

λi (t)
]

[Lλi ([Zλi(t)])] =
[
Lλi
(
[Zλi(t)] [g]T

)]
[a] (56)

[
Wwien

λi (t)
]

=
[
Wwien

λi (t)
]

[a] (57)

The realizations (M = nMC ×N) of [Hλi] are then obtained using Equation (48):

22

[
η`λi
]

=
[
z`λi
]

[g]T ∈ Mν,N , ` = 1, . . . , nMC (58)

To solve this ISDE, a discretization of it is proposed. In this case the Störmer-
Verlet algorithm, described in Appendix A, is used for finding the solution of the
reduced-order ISDE defined by Equations (53) to (57). The Störmer-Verlet algorithm
is explained in the work of Soize and Ghanem [1].

In the following Figure it can be seen that the reduction made by the diffusion
maps basis projection is from N to m, and not a dimension reduction as the diffusion
maps itself is supposed to be, explained in the work of Coifman et al. [5], but in the
data space.

ISDE Reduced ISDE-
Difussion-maps [g]

U,V ∈ Mν,N Z,Y ∈ Mν,m
-

[U] =

U1

1 UN
1

...
. . .

...
...

U1
ν UN

ν

 ∈ Mν,N → [Z] =

Zj1 ... Zm1
...

. . .
...

Zjν ... Zmν

 ∈ Mν,m

Figure 4: ISDE reduction.

4.9 Computing the additional realizations of Hc

If the conditions of the problem are so, the constrains are physically and mathematically
coherent with the initial data set, and all the steps have been computed the Newton
method will iterate over λ towards the optimal point.

Once an error smaller than a given tolerance is achieved, the next step is computing
the additional samples of Hc solving the ISDE and then concluding with additional
realizations of Xc.

At that given iteration, as the tolerance is small enough, we have, Hλ = Hc, and
then, we undo the PCA described at Equation (10),

Xc = x̂ + [Φ][µ]1/2Hc (59)

The M = nMC × N realizations {xc,`′ , `′ = 1, ...,M} of random vector Xc are
computed using the previous equation, having:

xc,`
′
= x̂ + [Φ][µ]1/2ηc,`

′
, `′ = 1, . . . ,M (60)

where ηc,`
′

is the `′-th column of the concatenated nMC new (matrix) realizations
of [Hc].

M usually is as big as needed. As mentioned before, computing new realizations
without the PLoM algorithm may require a high computational cost and a high amount

23

of time. Usually the whole of the algorithm may last just a few hours, or a few days
to calculate the M realizations, in comparison to the cost of the original model that
can be days, weeks or even years if for example we are collecting data from weather
conditions.

Finally, these new realizations can be used for estimating statistics of Xc, adjusting
mathematical models, training neural networks or other machine learning algorithms.

This method combines many parts, and several tools. Its convergence depends in
how they come together and how consistent they are with the initial conditions.

24

5 Major issues of the algorithm

In this section the major issues of the algorithm will be presented. These are the
issues faced when coding the program and analyzing its results. The PLoM with
constraints has to bring together many conditions in order to converge. For example,
if the constraints are incongruous with the initial data set the problem may not have
solution and thus, it will not converge. Note that the set Cad,λ, presented in Equation
(23), may not be convex or that the solution may not be in this set.

The first issue faced when running the program was the computational cost. For
quite small dimensions (n) and an affordable number of initial point (N ≈ 300) the
code lasted several hours before finishing, and not getting quite the desired precision.

The second issue is related to the convergence of the algorithm, and mostly due to
the diffusion maps basis [g].

5.1 Comment regarding the code

The algorithm has been programmed in Python due to the numerous matrix operations,
and its advantage to work with indexes, slices,...

As Python is an interpreted language and the code is considerably slow to run,
especially in big samples, and in order to boost the whole process, some functions have
been coded in C. The major computational cost of the algorithm is calculating, at every
step of the Markov Chain, matrix [Lλ([u])]α`. This matrix, expressed in Equation (38)
is basically the gradient of the potential Hλ

(
u`,v`

)
.

This matrix involves the calculation of ∇ ln ρ(η) which requires the calculation of
∇ρ(η) and ρ(η), described at Equation (12). This two functions are a kernel density
estimation of a data set of N points and they are basically a sum of N exponential
functions and that has quite a high computational cost.

As [Lλ([u])]α` is the concatenation of N column vectors in Rν that basically are
∇ ln ρλ(η), the two KDE functions have to be calculated N times per MCMC step.
That makes a cost of the order of O(N2).

Modules written in C are commonly used to extend the capabilities of a Python
interpreter as well as to enable access to low-level operating system capabilities. Be-
cause Python is an interpreted language, certain pieces of code can be written in C
for higher performance.

The methodology used is the following:

1. Code functions ∇ρ(η) and ρ(η) in C. All the variables used are double, int
and pointers, as it is C and not C++.

2. Create a shared library from the C file from Ubuntu terminal. That is creating
a ”.so” file that can only be read from Ubuntu.

3. Import module ctypes in Python. It is a foreign function library for Python.
It provides C compatible data types, and allows calling functions in shared li-
braries. It can be used to wrap these libraries in pure Python.

4. This module allows us to import the shared C library into Python, and have
them as any other Python functions that we may have in any Python library.
The functions in this shared library can be run seamlessly from Python.

25

5. Last, define what kind of inputs and outputs do the functions in the shared
library take. As a compiled language, C requires to define the variables, and
ctypes allows to define the types of variables both as inputs and as results of the
functions in the shared library.

There are other ways of linking C and Python in Windows, like the module
cython. Some of them, however, require other packages or the installation of other
programs, such as Visual Studio or similar.

Just with this two functions in C, the algorithm is boosted around 100x faster in a
regular size of N (100 ≤ N ≤ 500) and a small size of ν (ν = 10). In Figure 5 it can
be seen how faster is the module for calculating ∇ρ(η) in C than the module only in
Python.

Something similar happens for N (100 ≤ N ≤ 500) and a bigger size of ν (ν = 100),
in this case the algorithm is boosted 50 times for small N , as seen in Figure 6.

Figure 5: ×Times faster C respect to Python in these two functions for ν = 10.

The calculation of [Lλ([u])]α` represents 99% of the time spent in every step in
the Markov Chain Monte Carlo, which means that a substantial improvement of their
performance is a direct boost for the whole of the algorithm.

Tests that lasted days in running the code, this way they finish in a few hours or
even minutes.

Moreover, it could also happen, specially when the function ∇ ln ρλ(η) is evaluated
far from the initial data {ηj, j = 1, ..., N}, that some computational errors may arise.
Mainly because the information storage is finite and the lowest positive real number
that can be stored in a Python variable is 2.2250738585072014e− 308 and there may
be some cases where the function ρ(η) may take smaller values than that.

In these situations what it is proposed to do is a simplification of the gradient
∇ ln ρ(η):

26

∇ ln ρ(η) =

(
ŝν
sν
ηj
∗ − η

)
ŝ2
ν

(61)

where, ∣∣∣∣∣∣∣∣ ŝνsν ηj∗ − η
∣∣∣∣∣∣∣∣ = min

1≤j≤N

∣∣∣∣∣∣∣∣ ŝνsν ηj − u`
∣∣∣∣∣∣∣∣ (62)

This approximation of ∇ ln ρ(η) is nothing else than the limit when it is evaluated
far from the initial data set. This procedure may add more computational cost to the
algorithm because there is a search at every calculation of ∇ ln ρ(η), but fortunately
this scenario only happens in cases where ρ(η) is very close to zero, usually far from
the initial set. So if the constraints are consistent with the initial data set, a priori, it
should not be a problem.

Figure 6: ×Times faster C respect to Python in these two functions for ν = 100.

5.2 Convergence of the algorithm and diffusion maps accuracy

The convergence of the algorithm depends on many things, due to the fact that the
whole of the algorithm puts together many different approximations and methods to
solve every step.

The diffusion maps presented in section 4.8 has importance both for preserving the
new realizations close and to reduce the number of needed realizations M in order to
achieve more accuracy in the MCMC steps.

To analyze the convergence of the algorithm a test has been performed where the
analytical solution is known. An application in Section 6 has been also computed to
see the practical convergence of the Newton method. The case consists of an initial
data set of realizations of a Gaussian random vector in R2 centered and covariance the
identity and the constrains given by:

27

∫
Rn

x1

x2
1

 p̂(x)dx =

0.5

1.5

 (63)

The test has been implemented without PCA and without diffusion maps, both
analytically and empirically. The KDE step has been substituted by the already known
probability density function, Equation (64), for the initial data set, a bivariate Gaussian
centered (µ = 0) and with covariance matrix (Σ) the identity (2×2).

f(x) =
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(2π)

√
|Σ|

(64)

The test involving the calculation of the gradient and the Hessian of gamma ana-
lytically converged quadratically to the solution, as shown in Figure 7.

On the other hand, the precision of the Hessian and the gradient when solving the
ISDE with an MCMC at every iteration reaches the third decimal when used N = 400
and nMC = 1000.

As seen in Figure 8, the error at the beginning decreases quadratically and then it
stops decreasing when reaches the third decimal precision.

Figure 7: Convergence of the algorithm knowing the analytical solution of every itera-
tion.

For the test where the gradient and the Hessian are calculated analytically some
noise has been introduced in the analytical calculations of the gradient and the Hessian
of gamma. In Figure 9 you can see first the graph of errors with added noise with the
form:

• gradient×(1.0+1.0e−1×uniform[−1, 1]) andH×(1.0+1.0e−1×uniform[−1, 1]),

and right below it can be seen a noise of the form:

28

Figure 8: Convergence of the algorithm solving the ISDE with the MCMC at every
iteration.

• H + (1e− 5× uniform[−1.e− 6, 1e− 6]) and,
gradient+ (1e− 5× uniform[−1.e− 6, 1e− 6]).

From these graphs it can be inferred that a relative error in the i-th decimal does
not affect the final convergence, but the velocity of the convergence, while an absolute
error of in the i-th decimal prevents the algorithm from reaching the solution in that
same precision.

Figure 8 is closer to the case where there’s absolute noise, in this way, the maximum
accuracy reachable is the one given by the number of new realizations M . And to
increase the precision 1 order of magnitude, M has to be increased a hundred times as
the convergence is quadratic.

5.2.1 Convergence of the MCMC generator of the ISDE

As mentioned before, the method used to solve the discretization of the Ito Stochastic
Differential Equation, expressed in (53) and the following equation, is the Störmer-
Verlet, exposed in Appendix A. This method allows reaching stability in several orders
of magnitude fewer than other algorithms such as the Metropolis-Hastings algorithm,
as seen in the book of Soize [6].

The convergence of the Störmer-Verlet method in the previous case it is achieved
very quickly. To see graphical results of it, in Figure 10, both the first and the second
moment of the first component of Hλ are computed with new N realizations of Hλ

computed with the Störmer-Verlet for the discretized ISDE: {zi ∈ R2, i = 1, . . . , N}.
For this it is necessary calculating for every N the following equations:

m(K) =
1

K

K∑
i=1

zi1 (65)

29

Figure 9: Comparison between relative and absolute noise.

m2(K) =
1

K

K∑
i=1

z2
i 1 (66)

In Figure 10 it is shown the graphs of Equations K → m(N) in the top left and
K → m2(N) in the top right, and right below, their autocovariances. The convergence
is achieved with K = 1500 realizations.

The parameters used are the ones used for solving the empirical test mentioned in
the section before, ∆t = 0.015s, f0 = 1.5 and without the diffusion maps.

5.2.2 Diffusion maps

The introduction of the diffusion maps basis, presented in section 4.8, has several effects
on the convergence of the algorithm.

First of all, it has a direct effect on the calculation of the empirical gradient and
Hessian of gamma, in the case where the constraints include some of the moments of
some components. For example the first and second moment of a few of its components.

The diffusion maps basis concentrates the new realizations in a subset Sν of RN ,
which implies that the variance of the new realizations is different if the subset Sν is
not well identified. It is assumed that in this subset Sν is where the probability density
functions pHλ are concentrated.

30

Figure 10: Graphs of Equations (65) top left and (66) top right and their autocovari-
ances. The x-axis denotes the number of steps.

This is directly reflected in the calculation of the gradient and the Hessian matrix
of gamma, defined in Equations (29) and (31). If the subset Sν is not well identified,
it can mean that it concentrates the new realizations in a more concentrated subset.
Having less variance due to the reduction of the diffusion maps basis implies different
values of both the gradient and the Hessian.

Thus, the next step in the Newton method, Equation (32), is totally different from
the one it would be if the diffusion maps basis reduction had not been applied.

To well identify the subset Sν , different criteria is proposed in different works of
Soize and Ghanem to identify the two parameters that determine the diffusion maps
basis, m and ε.

The diffusion maps allows to achieve better accuracy with the same number of time
steps for the ISDE. The manifold reduction always done by the diffusion maps basis
reduces in the ‘data’ space (of dimension N) and not the ambient space (of dimension
n). The PCA is meant to reduce the ambient space Rn into Rν .

[Zλi], definded in Equation (45), are the Galerkin projection parameters. The
Galerkin method a basis for the unknown is defined. Then, the residual of the governing
equation is such that is orthogonal to that same basis. This latter requirement then
generates the equations for the parameters.

If the dimension ν is small, there may appear some issues when trying to charac-
terize the subset Sν .

31

In a similar example to the previous Gaussian example, however, in this case the
constraints imposed are composed by the first moment for the two components (ν = 2).

The plot of the sorted eigenvalues of matrix [P] in ν = 2 descends to zero very
quickly:

Figure 11: Plot of the sorted eigenvalues of matrix [P] in ν = 2.

In bigger dimensions of ν the spectrum of the diffusion maps basis seems to have
not a such strongly decreasing tendency and at some point it stays mostly flat. A good
point to set the value of m.

In this case, where the diffusion maps does not well identify the subset Sν , the
algorithm diverges, if applied with the diffusion maps and the procedure to choose ε
and m are applied (ε = 4, m = 6).

In Figure 12 it is seen the histogram after the first Newton iteration. In this case the
diffusion maps is not able to identify Sν and concentrates too much the distribution.

Figure 12: Histogram of the first of the two components after the first iteration of
problem in R2 without diffusion maps.

32

If the algorithm is applied without diffusion maps, the final histogram is plotted as
shown in Figure 13. The concentration of the new realizations (Xc) is smaller than in
the case with the diffusion maps reduction.

Figure 13: Final histogram of the first component of problem in R2 without diffusion
maps.

The diffusion maps has a big computational importance due to the fact that it may
reduce 10 or 100 times the number of steps taken in the MCMC to achieve a better
convergence of the MCMC itself and consequently of the Newton method.

The analogy between the relation of m and the number of steps needed in the
MCMC, and between N and the bandwidth for the KDE is that the smaller the di-
mension ν, the fewer N number of points are needed to have a smooth representation of
the probability distribution. And something similar happens with m and the number
of steps in the MCMC needed to achieve convergence. The smaller is m, the faster the
convergence is achieved. But on the other hand, the smaller is m, the fewer informa-
tion about the data set it is worked with, and such a small m can bring a huge loss of
information.

The diffusion maps reduction works much better in higher dimensions, some exam-
ples at higher dimensions will be presented in Section 6.

33

6 Applications

Two applications have been tested in order to get more realizations and enable to do
the computations they require. Also an abstract example has been performed to see
the behavior of the algorithm.

The first application is an example of the algorithm without constraints. It is
basically running the Newton method just in the very first iteration.

The example is a designed problem with some random distributions in R20 and some
constraints that the original data points should be consistent with.

The second application also involves the integrity of the presented algorithm, in
which initial data and initial constraints are given.

6.1 Application 1

This first application is a practical case in which some integrals have to be calculated
using Monte Carlo methods. These methods require a large amount of realizations to
have an accurate result of the integrals.

The issue is that calculating new realizations requires an unaffordable amount of
time and a large computational cost.

The integrals to be computed are part of a variance based sensitivity analysis,
presented in the work of Andrea Saltelli et al. [7], of a model of Lithium Ion Batteries.

From a finite element method model, that models a Li-Ion battery, we seek to
understand the impact of the input model parameters.

For every input, the output of this model has to be computed, requiring a large
amount of time. In this way the PLoM without constraints comes into a role, where
it will generate more pairs of the form (input, output). Having much more pairs the
Monte Carlo integrals will be much more precise than with few representations of this
inputs.

This variance based sensitivity analysis, presented in the work of Andrea S. [7],
aims to study how the variation of the inputs affect the outputs in this finite element
model and seek to understand the impact of the input model parameters.

Say we have an output function y = f (x) with d input parameters x = (x1, x2, . . . , xd).
f : Rd → R. It is defined:

1. Local sensitivity:

Si =
δf

δxi
(67)

2. Global sensitivity (Variance based):

Si =
Vxi
(
Ex−i (y|xi)

)
V (y)

(68)

STi =
Ex−1 (Vxi (y|x−i))

V (y))
= 1−

Vx−1 (Exi (y|x−i))
V (y)

(69)

where x−i denotes the vector of all factors but xi

The sensitivity test carried out requires the generation of samples inputs and the
calculation of some integrals in the following way:

34

• Generate an N ×2d sample matrix, where N is the number of Monte Carlo trials
and d is the input parameter range.

• Construct 3 matrices from this: the first set of d columns for A, the second set
of d columns for B, and Ai

B. Where Ai
B is the matrix A but having replaced the

i-th column of A with the i-th column of B.

• This will yield the FEM model outputs of f (A), f (B). and f (Ai
B):

f0 =
1

N

N∑
k=1

f(A)k (70)

V (y) =
1

N

N∑
k=1

f(A)2
k − f 2

0 (71)

Vxi
(
Ex−i (y|xi)

)
=

1

N

N∑
k=1

f(B)k
(
f
(
Ai
B

)
k
− f(A)k

)
(72)

Ex−i (Vxi (y|x−i)) =
1

2N

N∑
k=1

(
f(A)k − f

(
Ai
B

)
k

)2
(73)

Where f(A)k denotes the output of f when evaluated with the k-th row of matrix
A: f(Ak).

As a result, the points we want to reproduce will have an structure as follows,
Function f has a high computational cost, and just N realizations have been com-

puted with the FEM model. The algorithm without constraints allows to generate M
new realizations of X, that follows the unknown distribution of the columns of the
structure in Table 2.

In this application d = 4 and N = 875. In Figure 15 the rows corresponding to
f(A) and to f(B) are plotted.

The inputs to the function f (x1, . . . , xd) are material constants in the battery model.
x1 and x2 are the reaction rate constants for the anode and cathode, and x3 and x4 are
the diffusion coefficients for the cathode and anode, respectively. They have a similar
importance as the Young’s modulus / Poisson ratio in solid mechanics, as they are
pretty important in the battery’s performance.

The reaction rate will relate how fast the lithium ions transfer from the electrolyte
to the electrode or vice versa during charge/discharge. The diffusion coefficient is
directly proportional to the flux of lithium ions within the electrode itself.

Figure 14 is an sketch of the finite element mesh of the battery.
The output is the ”battery capacity” of the full cell, as seen in Equation (74). When

a battery is being discharged, there is an electric current that is outputted which can
then be used to power devices like phones, laptops, etc. For a certain time interval it is
being extracted the electric flux value from the finite element model (FEM), and then
doing a Riemann sum over time intervals with the flux value to determine the capacity.

So if the electric flux is called ”iflux” and dt is called the length of the time interval,
the Riemann sum is just extended over how long it is running the simulation and then
multiplying iflux×dt and summing over.

35

AT (d rows × N columns)

BT (d rows × N columns)

f(A)1 . . . f(A)k . . . f(A)N

f(B)1 . . . f(B)k . . . f(B)N

f (A1
B)1 . . . f (A1

B)k . . . f (A1
B)N

...
...

...

f (Ai
B)1 . . . f (Ai

B)k . . . f (Ai
B)N

...
...

...

(1 ≤ i ≤ d)

(1 ≤ k ≤ N)

f
(
Ad
B

)
1

. . . f
(
Ad
B

)
k
. . . f

(
Ad
B

)
N

Table 2: Structure of the N initial points in R3d+2

Figure 14: Sketch of the battery with anode (red), cathode (light blue), electrolyte
separator (dark blue), surrounding electrolyte (green and yellow).

f(x1, . . . , xd) = Q =

∫ t2

t1

I(t, x1, . . . , xd)dt (74)

After compting the PCA with a tolerance of 1e− 3, the new dimension is ν = 10.
The parameters that define the diffusion maps basis are:

• ε = 30.

• m = 12

• Kernel function: the same function defined in section 4.8.

And finally, to solve the reduced ISDE, with the Störmer-Verlet algorithm, the
parameters considered are:

36

Figure 15: Plot of the components f(A) and f(B) of the initial data set.

Figure 16: Sorted plot in log-scale of the eigenvalues of matrix [P].

M0 10

∆t 0.1627

f0 1.5

nMC 200

Table 3: Parameters of the MCMC.

37

M0 denotes the number of steps between picking two points of the Markov Chain.
As a result of parameters defined previously, the new number of realizations M =

N × nMC = 875 × 200 = 175000. This number is more than enough to calculate the
integrals using Monte Carlo methods, as depicted in Equations (70) to (73).

Next, the following histograms of several components show the coherence of the
new realizations when compared with the original data set.

Figure 17: Histogram of the component f(A), both the initial data set and the new
realizations.

Figure 18: Histogram of the component f(A1
B), both the initial data set and the new

realizations.

38

The first and second moment of the initial data set and the new realizations are
the same for all the 14 components of the points.

At first, with just 875 points the results of the equations (70) to (73) led to illogical
results. With the new 175,000 realizations, the results are understandable. The 875
points where not a representative realization of the space to be integrated.

The limitations of the Finite Elements Method model are evident, to generate 875
samples more than two days have been necessary to finish the calculations. On the
other hand, the 175,000 realizations have peen computed in less than 10 minutes, and
obtaining better results.

6.2 Example of the PLoM with constraints

In this section a theoretical example for the PLoM with constraints will be presented.
It will be shown the results and the convergence of the algorithm, specially the con-
vergence of the Newton method.

We are considering the following problem:

• X ∈ R20

• The initial data set is composed by 300 initial points, in which the first 5 com-
ponents follow specific random distributions expressed below. The components
from 6 to 20 are variations of the 4th component:
N = 300
x = np.zeros((20,N))
np.random.seed(6)
r = np.random.weibull(3, N)+10*np.ones((1,N))
angle = np.random.uniform(0, 2*pi, N)
x[0] = r*np.sin(angle)+ 10*np.ones((1,N))
x[1] = r*np.cos(angle)
x[2] = r*r*np.cos(angle*angle)
x[3] = np.random.rayleigh(0.5, N)
x[4] = -2*x[3] + np.random.uniform(-0.1, 0.1, N)
for i in range(5,20):

x[i] = ((−1)2)*i*x[3]+ np.random.uniform(-0.1, 0.1, N)

• Then, variable X is scaled, as expressed in equation (5) of the paper of Soize
and Ghanem [1]. This step is important because it gives to every component the
same importance when computing the PCA:

X = [αx] X + xmin, X = [αx]
−1 (X− xmin

)
(75)

• The data for the problem is: X, and the following constraints for X:

∫
Rn

 x1

x11

 p̂(X)(x)dx =

10

6

 (76)

39

• The tolerance for the PCA is 1e-5. After computing the PCA and the diffusion
maps, we get using the steps mentioned in the previous sections: ν = 8 and
m = 10; i.e. 20 7→ 8 and 300 7→ 10

Figure 19: Plot of x[0] and x[1].

The spectrum of matrix P, plotted in Figure 20, seems much more reasonable than
in the example of section 5.2.2. Choosing m = 10 is consistent with the fact of keeping
enough information but not discarding too much of it, since the eigenvalues Λj, j > 10
are considerably smaller than the first eigenvalues of the spectrum.

Figure 20: Plot in log-scale of [P] spectrum.

And finally, to solve the reduced ISDE, with the Störmer-Verlet algorithm, the
parameters considered are shown in Table 4. M0 denotes the number of steps between
picking two points of the Markov Chain. l0 denotes the number of steps omitted at the
beginning of the Markov Chain.

40

M0 10

l0 10

∆t 0.156

f0 1.5

nMC 50

Table 4: Parameters of the MCMC of the problem in R20.

The convergence of the Störmer-Verlet is achieved at the 10th step, as seen in Figure
21.

m1(K) =
1

K

K∑
i=1

xi1 (77)

m11(K) =
1

K

K∑
i=1

xi11 (78)

Figure 21: Graphs of Equations (77) top left and (78) top right and their autocovari-
ances. The x-axis denotes the number of steps.

The convergence of the newton method seems to be exponential. To get more
accuracy much more iteration would be needed. The initial condition of the Newton
method is already considerably small, and it is just reduced to the order of 1e-3. In
the error plot, in Figure , the error describes an exponential, and in the log-scale plot,
it has a straight line tendency.

41

Although the proposed constraints might seem easy, for this problem they may
be more complicated than expected, specially when it comes to calculate the new
realizations and their associated gradient and hessian.

This might be one of the determining aspects for the Newton method convergence.

Figure 22: Plot of the error function in natural and logarithmic scale.

In Figure 23 it can be seen the distribution of the initial data set and the new
realizations, which are consistent with the constraints expressed in Equation (76).

The diffusion maps reduction seems to keep the dispersion probability distribution
of the initial data set. And the reduction from 300 7→ 10 keeps enough information for
the convergence of the algorithm.

42

Figure 23: Histogram of the first component of X and Xc, both of the initial data set
(X) and the new realizations consistent with the constrains (X c).

6.3 Application 2

The second application consists of the same problem as in Application 1, however, in
this second application some constraints are given.

In this case the dimensions shown in Table 2 are slightly different. In this case
d = 9 and N = 1120. Where the input parameters of f : Rd → R mean:

1. The reaction rate constant of the anode.

2. The reaction rate constant of the cathode.

3. The diffusion coefficient of the cathode.

4. The diffusion coefficient of the anode.

5. The diffusion coefficient of the electrolyte.

6. The electrical conductivity of the anode.

7. The electrical conductivity of the electrolyte.

8. The electrical conductivity of the cathode.

9. The temperature at which the simulation is running.

Also, to the matrix shown in Table 2, f (Bi
AB)k, the output of the reciprocal matrix

of the input matrix of f (Ai
B)k. In this way, the initial data set has the shape shown

in Table 5.

43

AT (d rows × N columns)

BT (d rows × N columns)

f(A)1 . . . f(A)k . . . f(A)N

f(B)1 . . . f(B)k . . . f(B)N

f (A1
B)1 . . . f (A1

B)k . . . f (A1
B)N

...
...

...

f (Ai
B)1 . . . f (Ai

B)k . . . f (Ai
B)N

...
...

...

(1 ≤ i ≤ d)

(1 ≤ k ≤ N)

f
(
Ad
B

)
1

. . . f
(
Ad
B

)
k
. . . f

(
Ad
B

)
N

f (B1
A)1 . . . f (B1

A)k . . . f (B1
A)N

...
...

...

f (Bi
A)1 . . . f (Bi

A)k . . . f (Bi
A)N

...
...

...

(1 ≤ i ≤ d)

(1 ≤ k ≤ N)

f
(
Bd
A

)
1

. . . f
(
Bd
A

)
k
. . . f

(
Bd
A

)
N

Table 5: Structure of the N initial points in R4d+2

The constraints given are some means imposed in some components, that should
physically follow:

∫
Rn

x6

x8

 p̂(X)(x)dx =

155

51

 (79)

After computing the PCA with a tolerance of 1e− 3, the new dimension is ν = 19.
Figure 24 shows the error assumed if taken ν = #eigenvalue in the PCA.

The parameters that define the diffusion maps basis are:

• ε = 10.

• m = 21

• Kernel function: the same function defined in section 4.8.

44

Figure 24: Graph in log-scale of the error in the PCA.

And finally, to solve the reduced ISDE, with the Störmer-Verlet algorithm, the
parameters considered are:

M0* 10

∆t 0.177

f0 1.5

nMC 200

Table 6: Parameters of the MCMC.

*M0 denotes the number of steps between picking two points of the Markov Chain.
As a result and having the parameters defined previously, the new number of real-

izations M = N × nMC = 1120× 200 = 224000. This number is more than enough to
calculate the integrals using Monte Carlo methods, as depicted in Equations (70) to
(73).

The final convergence, the convergence of the Newton method, seems to reach a
good precision in fewer steps than in the previous section. In Figure 25 it can be seen
the error function in both normal and log-scale.

In the graph it cannot be seen an exponential behavior as much as in the previous
example, however, the precision in the 5th decimal is achieved in fewer steps.

In Figure 26, it can be seen that the 5th component of random variable Xc is
centerede in 155 as shown in Equation (79).

45

Figure 25: Graph of the error in the Newton method.

Figure 26: Histogram of A5, the fifth row of A, centered in 155.

46

7 Results of the applications

Even though the algorithm puts together many steps, it seems to converge with relative
accuracy. Although it is slow, in these cases it seems to converge exponentially. Newton
method in convex problem converges quadratically, but the fact of calculating both the
gradient and the hessian matrix empirically modify this convergence.

For some applications this accuracy may be enough, but other would require much
more digits of accuracy.

The accuracy mainly depends on how the subset Sν is detected. All the other
steps are able to achieve big precision already. In this way, the characterization of the
different parameters that determine the diffusion maps basis gain special importance
when it comes to accuracy.

47

8 Future works

The next steps would be doing a deeper research on the adjustment of the parameters
to obtain better convergences in these kind of problems. There are other papers, by
Soize and Ghanem, in which other ways of calculating some of the parameters are
presented.

The study of the characterization of the diffusion maps basis is also a section of the
algorithm to deepening more. Specially to understand its behavior in certain problems,
specially in low dimensional problems.

It would also be convenient test the algorithm with an artificial intelligence algo-
rithm. Generate more data for a machine learning model and study the accuracy of
the predictions.

This algorithm can be applied to any sort of probability distributions and as men-
tioned before, the constraints are not just restricted to moments of components. This
leads to an endless list of applications that may need more realizations to conclude
some results.

48

9 Conclusion

In this paper several aspects of the PLoM with constraints have been analyzed. It
combines many different procedures to achieve the final goal, the realization of new
data realizations that follow certain restrictions. And all this steps have to come
together to converge.

At practice it seems that the algorithm converges exponentially, but if the con-
straints aren’t consistent with the initial data set, the algorithm will diverge.

The initial conditions are not limited to any particular distributions, and the con-
straints are not just restricted to moments.

To achieve a better accuracy in the iteration algorithm it is very important the
adjustment of the parameters and the identification of subset Sν .

49

List of Figures

1 Monte Carlo integration and its importance of the number of realizations
to compute the integrals. 8

2 Graphical scheme of the first reductions. 15
3 Big picture of the method proposed. 19
4 ISDE reduction. 23
5 ×Times faster C respect to Python in these two functions for ν = 10. . 26
6 ×Times faster C respect to Python in these two functions for ν = 100. 27
7 Convergence of the algorithm knowing the analytical solution of every

iteration. 28
8 Convergence of the algorithm solving the ISDE with the MCMC at every

iteration. 29
9 Comparison between relative and absolute noise. 30
10 Graphs of Equations (65) top left and (66) top right and their autoco-

variances. The x-axis denotes the number of steps. 31
11 Plot of the sorted eigenvalues of matrix [P] in ν = 2. 32
12 Histogram of the first of the two components after the first iteration of

problem in R2 without diffusion maps. 32
13 Final histogram of the first component of problem in R2 without diffusion

maps. 33
14 Sketch of the battery with anode (red), cathode (light blue), electrolyte

separator (dark blue), surrounding electrolyte (green and yellow). . . . 36
15 Plot of the components f(A) and f(B) of the initial data set. 37
16 Sorted plot in log-scale of the eigenvalues of matrix [P]. 37
17 Histogram of the component f(A), both the initial data set and the new

realizations. 38
18 Histogram of the component f(A1

B), both the initial data set and the
new realizations. 38

19 Plot of x[0] and x[1]. 40
20 Plot in log-scale of [P] spectrum. 40
21 Graphs of Equations (77) top left and (78) top right and their autoco-

variances. The x-axis denotes the number of steps. 41
22 Plot of the error function in natural and logarithmic scale. 42
23 Histogram of the first component of X and Xc, both of the initial data

set (X) and the new realizations consistent with the constrains (X c). . 43
24 Graph in log-scale of the error in the PCA. 45
25 Graph of the error in the Newton method. 46
26 Histogram of A5, the fifth row of A, centered in 155. 46

50

List of Tables

1 Useful notations for understanding better the paper. 9
2 Structure of the N initial points in R3d+2 36
3 Parameters of the MCMC. 37
4 Parameters of the MCMC of the problem in R20. 41
5 Structure of the N initial points in R4d+2 44
6 Parameters of the MCMC. 45

51

References

[1] Soize C and Ghanem R. Physics-constrained non-gaussian probabilistic learning on
manifolds., 2020.

[2] Soize C. The Fokker-Planck Equation for Stochastic Dynamical Systems and its
Explicit Steady State Solutions. Singapore: World Scientific Publishing, 1994.

[3] Christian Soize and Roger Ghanem. Probabilistic learning on manifolds, 2020.

[4] Ofir Lindenbaum, Arie Yeredor, Moshe Salhov, and Amir Averbuch. Multiview
diffusion maps, 2015.

[5] Coifman R; Lafon S; Lee A; et al. Geometric diffusions as a tool for harmonic
analysis and structure definition of data: diffusion maps., 2005.

[6] C. Soize. Uncertainty Quantification: An Accelerated Course with Advanced Appli-
cations in Computational Engineering. New York, NY:Springer; 2017, 2017.

[7] Ivano Azzini Francesca Campolongo Marco Ratto Stefano Tarantola An-
drea Saltelli, Paola Annoni. Variance based sensitivity analysis of model output.
design and estimator for the total sensitivity index., 2010.

52

Appendix A Störmer-Verlet

The Störmer-Verlet is the chosen discretization to solve the reduced ISDE, Equation
(53) and (54). The algorithm is presented in Equation (80). The method is fully
explained in the work of Soize and Ghanem [1].

The following equations describe the steps of the method:[
Z`+ 1

2

]
= [Z`] + ∆t

2
[Y`]

[Y`+1] = 1−β
1+β

[Y`] + ∆t
1+β

[
L`+ 1

2

]
+
√
f0

1+β

[
∆Wwien

`+1

]
[Z`+1] =

[
Z`+ 1

2

]
+ ∆t

2
[Y`+1]

(80)

where,

[Z`] = [Zλ′ (t`)] , [Y`] = [Yλ′ (t`)] , and
[
Wwien

`

]
=
[
Wwien

λ′ (t`)
]

(81)[
L`+ 1

2

]
=
[
Lλ′
([
Z`+ 1

2

])]
=
[
Lλ′
([
Z`+ 1

2

]
[g]T

)]
[a] (82)

[
∆Wwien

`+1

]
=
[
∆Wwien

`+1

]
[a] (83)

which holds:
E
{[

∆Wwien
`+1

]
αj

[
∆Wwien

`+1

]
a′j′

}
= ∆tδαa′δjj′ (84)

53

	Introduction
	Description of the problem
	Methodology of the solution
	Summary of the algorithm
	PCA
	KDE
	Reformulation of the optimization problem
	Optimization using Lagrange multipliers
	Reformulation introducing a random vector H and reconstruction of the optimization problem
	Definition of a convex function for calculating sol
	Nonlinear ISDE for the generator of random variable H
	Diffusion-maps basis
	Computing the additional realizations of Hc

	Major issues of the algorithm
	Comment regarding the code
	Convergence of the algorithm and diffusion maps accuracy
	Convergence of the MCMC generator of the ISDE
	Diffusion maps

	Applications
	Application 1
	Example of the PLoM with constraints
	Application 2

	Results of the applications
	Future works
	Conclusion
	Appendices
	Störmer-Verlet

