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Abstract 
To accelerate the execution of advanced computing tasks, in-memory computing with resistive 
memory provides a promising solution. In this context, networks of memristors could be used as 
parallel computing medium for the solution of complex optimization problems. Lately, the solution 
of the shortest-path problem (SPP) in a two-dimensional plane has been given wide consideration. 
Some still open problems in such computing approach concern the time required for the network to 
reach to a steady state, and the time required to read the final result, stored in the state of a subset of 
memristors that represent the solution. This paper presents a circuit simulation-based performance 
assessment of memristor networks as SPP solvers. A previous methodology was extended to support 
weighted directed graphs. We tried memristor device models with fundamentally different switching 
behavior to check their suitability for such applications and the impact on the timely detection of the 
solution. Furthermore, the requirement of binary vs. analog operation of memristors was evaluated. 
Finally, the memristor network-based computing approach was compared to known algorithmic 
solutions to the SPP over a large set of random graphs of different sizes and topologies. Our results 
contribute to the proper development of bio-inspired memristor network-based SPP solvers. 
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1. Introduction 
 
The emerging technology of resistive switching devices (memristors) [1] has attracted considerable 
attention from academia and industry owing to its potential impact in different domains of electronics 
[2] - [4]. In this context, the overall response of memristors, when they are organized into networks, 
gained an ever-increasing interest after Pershin and Di Ventra demonstrated that this could lead to a 
new analog computing approach which they named “memcomputing” [5], [6]. Several potential 
applications proposed for memristor networks include memory, logic, and signal processing tasks [7] 
– [9]. They were particularly found promising candidates as computing medium for the solution of 
complex optimization problems in a massively parallel fashion [10]. Moreover, the result of the 
computation is recorded into the resistive states of the memristors, which infers in-memory 
computations [11]. 
 
Building upon Pershin and Di Ventra’s initial idea, inspired by biological processes [12], the maze-
solving and more generally the problem of computing the shortest-path (SPP) in a two-dimensional 
plane, using memristor networks, have been given wide consideration lately [13] – [16]. Following 
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this approach, any graph is represented by a network of memristors where the vertices (nodes) of the 
graph are electrical junctions interconnected by memristive configurations. The shortest path 
computation emerges from the polarity-dependent dynamical evolution of the resistive states of the 
memristors without any supervision. However, some still open problems in such computing approach 
concern: (i) the time required for the network to reach to a steady state. This depends on the properties 
of the applied signal, the network topology, and the switching properties of the memristors. There are 
memristors that switch rapidly in a binary fashion, while others change their state in an analog 
manner. (ii) The time required to read the result, stored in the state of a subset of memristors that 
represent the solution. A case study of the performance of memristor networks as SPP solvers w.r.t. 
the memristor device properties and the graph topological features, is still missing. 
 
This paper extends the preliminary results presented in [17] to fill this gap with a circuit simulation 
(LTSPICE)-based performance assessment of memristor networks as SPP solvers. A previous 
methodology [15] was here extended to support mapping of weighted directed graphs onto networks 
of memristors. Moreover, we tested the validity of a previously proposed criterion in [18] for the 
detection of a solution to an SPP and also tried memristor models with fundamentally different 
switching behavior, to check their suitability for such massively parallel computing applications that 
involve the interconnection of a large number of memristors. Furthermore, the preliminary evaluation 
of the impact of fast resistive switching response on the final outcome of the computation led us to 
explore further the requirement for binary vs. analog operation of memristors. Eventually, the 
performance of the memristor-network based SPP solver was compared to known algorithmic 
solutions to the SPP executed over a set of large random graphs. The presented simulation results 
confirm the advantages of such a circuit-based approach and thus contribute to the proper 
development of bio-inspired memristor network-based parallel SPP solvers. 
 
 

2. Computing Platform Description 
 
- 2.1 Memristor Grid & Simulation Setup 
The operation of such computing platform consists in three stages: initialization, computation, and 
reading of the result. The memristor device configurations representing the graph edges usually 
consist in two bipolar memristors with opposite polarity connected in parallel (commonly described 
as anti-parallel connection), so that the graph edges are (i) independent of the polarity of the flowing 
current and (ii) electrically equivalent (all edges are undirected and have the same weight, i.e. the 
same composite resistance, which is the equivalent resistance of the parallel memristors) [15]. 
 
The computing platform is initialized with all memristors in the high resistive state (HRS, OFF state, 
or ROFF). Finding the shortest path between any two nodes of the circuit requires connecting them to 
a voltage source and ground, respectively. More current flows through the shortest branch in the 
network which is the more conductive path; i.e. it is composed of the lowest number of connected 
memristive edges. Depending on the polarity of the voltage drop at their terminals, in each anti-
parallel connection of memristors only the device which is forward-biased will switch to a low 
resistive state (LRS, ON state, or RON) (see Fig. 1h). As a consequence, the composite resistance will 
change from a high (ROFF||ROFF) to a low (ROFF||RON) value, where operator || means parallel 
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connection of resistances. The system explores all paths simultaneously in parallel and the memristors 
in the shortest branch are the first to complete the change of state towards RON, thus marking the sub-
set of edges that altogether compose the solution to the problem, if any. This difference in the 
composite resistance in the memristive edges that form the SPP solution makes possible reading out 
the result of computation. However, the devices forming the final SPP solution will not necessarily 
switch their state simultaneously. Generally, the time required for the network to reach to a solution 
depends on the applied voltage, the network topology, and the properties of the employed memristors. 
 

 

 

Fig. 1 (a, b) Example of a directed graph mapped to a memristive network. (c, d) The solution to the SPP marked with 
memristive components shown in red color. (e) The input voltage applied to the SRC and the ground applied to the DST 
node. (f, g) Mapping correspondence for directed and undirected graph edges according to [15]. (h) Polarity-independent 
switching of antiparallel memristors emulating an undirected edge of a graph. 
 
Fig. 1(a,b) show a directed graph example mapped onto a memristor network, whereas Fig. 1(c-e) 
show the operational details of the computing medium. Fig. 1(f-h) show the mapping of graph edges 
to the electrically equivalent memristive connections and the way that anti-parallel memristors enable 
the desired polarity-independent switching in undirected graph edges. When only directed edges are 
present in a graph, then a single memristor is enough to represent every edge. On the contrary, when 
both directed and undirected edges are present in a graph, then we use a resistor of value equal to 
ROFF in parallel with a memristor to emulate the directed edges, while anti-parallel memristors are 
used for the undirected edges. This way, since all connections are of equal (unitary) weight in the 
graph, they are initially electrically equivalent with composite resistance equal to ROFF||ROFF (being 
the result of either two parallel memristors or a memristor and a resistor). 
 
In the context of this work, a Matlab© script was prepared for the configurable creation of different 
graph examples based on a fixed square grid topology with randomly removed edges, as shown in 
Fig. 2(a). The script accepts information such as the source/destination nodes, the applied voltage, 
the memristor model to be used and the values for its parameters, the total simulation time, and also 
some properties of the target graph to be created, concerning the edge weights and their orientation. 
The memristor network corresponding to the graph is finally described in a netlist that we simulate 
using the LTSPICE© circuit simulation tool. Once the simulation is over, the results are processed in 
Matlab© to visualize the final network state and information relevant to the evolution of the 
computation, such as the total conductance of the network (see in Fig. 2(b)). 
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Sticky Note
algun comentario sobre el porqué y valores de esta resistencia. Hasta ahora no se ha mencionado y parece arbitaria



4 
C. Fernandez, I. Vourkas, and A. Rubio, UTFSM, UPC 

 
Fig. 2(a) shows a visualization of the tested graph and, at the same time, of the network state in a 
simulation scenario for the shortest path computation between SRC (bottom left) and DST (top right) 
nodes in the grid. For such simulation, we used the threshold-type switching model of a bipolar 
voltage-controlled memristor proposed in [19] (see description in section 3). Likewise we showed in 
Fig. 1(e), a ramped voltage is applied to the SRC node as the length of the shortest path is not known 
in advance, thus the minimum required voltage amplitude is unknown either. The composite 
resistance of every link is shown using a linear color scale and the network evolution follows the 
directed connectivity of the graph. The numbers next to every link indicate the weight and direction; 
the latter is shown as “xy” for nodes x and y only for directed edges, along with the integer weight 
indicator shown in parenthesis. In spite of the complexity of the route, the network gradually 
converges to the SPP solution and the low-resistance path is visually observed, contrasting with the 
rest of the edges which are still in a much higher composite resistance. By observing Fig. 2(a), it can 
be noticed that the direction of edges is correctly considered (see e.g. 2322) as well as the edge 
weight, since memristors found in alternative connections with a higher total weight remain in HRS, 
as expected. 
 

 
(a) 

 
(b) 

Fig. 2 (a) Visualization of the simulation results for a SPP computation from node 1 (SRC) to 36 (DST) in a random graph 
mapped on a 6×6 grid, while applying a voltage ramp from 0 to 100V in 1ms, using the memristor model of [19] with [RON, 
ROFF] = [2, 200]KΩ (see description in section 3). (b) Evolution of the input current through the network with time, the 
global conductance of the network, and the second time derivative of the input current. The network state in (a) corresponds 
to the exact moment when the SPP solution was detected. 
 
- 2.2 Preliminary Performance Screening & Shortest Path Detection 
A higher voltage ramp speed (VRS) of the applied voltage ramp leads to faster computations since 
the minimum required voltage to produce a result is reached faster. Note that only a certain range of 
input voltage will lead to a successful computation of the shortest path. According to [18], the optimal 
input voltage is proportional to the length of the shortest path, thus being independent of the size of 
the graph. The increase in the conductance of the memristive edges belonging to the shortest path 
causes an increase in the global conductance of the network. A useful means to detect a solution to 
the SPP corresponds to observing a sudden drop in the second time derivative of the current [18]. 
This can be seen in the bottom graph shown in Fig. 2(b). Once this drop is detected, the input is 
removed and the result is read out. Starting from the SRC node, the conductance of each connecting 
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edge is measured. The next node on the shortest path is the one connected to the current node through 
the most conductive memristive edge. This process is repeated until the DST node is reached. 
Therefore, reading the solution implies probing only a fraction of the total edges in the memristive 
network. This notwithstanding, reading correctly the solution requires the measured edge belonging 
to the shortest path to be notably more conductive than the rest of the adjacent edges, otherwise the 
reading process might erroneously follow degenerate/partially formed paths. 
 
It is worth mentioning that this detection method based on observing the second time derivative of 
the current, works well only for the very first discovered path(s). Note that in memristor network-
based SPP computations [13]-[15], while the shortest solution(s) is(are) the first to emerge, other 
existing solution paths which are longer than the first, might be revealed later while the input voltage 
is still increasing. Fig. 3 shows such a case where an SPP solution was found in Fig. 3(a) once the 
drop in the second time derivative of the current was detected. However, later in the same simulation 
another solution was found as shown in Fig. 3(b), which concerns a longer path than the first one. We 
notice that the change in the current derivative curve is not as intense as in the first case. This makes 
more difficult the choice of a proper threshold value for the current derivative such that, any drop 
below that value will indicate correctly the detection of a new solution. 
 

 
(a) 

 
(b) 

Fig. 3 Visualization of the simulation results for an SPP computation at two different moments with (b) being a posterior 
phase of the same simulation shown in (a). The problem concerns a path from node 1 to 49 in a random directed graph on 
a 7×7 grid, while applying a voltage ramp from 0 to 100V in 1ms. Memristors were simulated using the memristor model 
of [19] with [RON, ROFF] = [2, 200]KΩ (see description in section 3). The time when a solution was detected is shown at the 
top. At the bottom, the evolution of the 2nd time derivative of the current is shown. 
 
This is equally important not only to void missing existing solutions but also to avoid the erroneous 
detection of incomplete paths that are not solutions to the SPP but might cause misread fluctuations 
in the current derivative curve. We show such an example in Fig. 4 where we simulated a directed 
graph without any connection between the SRC and DST nodes. A low-resistive path is partially 
formed connecting SRC with node 33. However, because of the direction of the three edges 
connecting nodes 33 and DST, namely 3433, 3534 and DST35, the respective memristors in 
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these connections correctly remain in HRS. Nevertheless, in the current derivative curve we observe 
large fluctuations occurring during the computation which could be potentially misunderstood 
indicating the detection of an SPP solution while there isn´t any path connecting SRC and DST. 
Everything considered, our simulation results on random graphs highlight that a proper selection of a 
threshold value for the second time derivative of the current is necessary to make more effective such 
an, otherwise useful, detection criterion in memristor network-based SPP computations. 
 

 
Fig. 4 Visualization of the simulation results after 0.001s for an SPP computation concerning the search of a path from node 
1 to 36 in a random directed graph defined on a 6×6 grid, while applying a voltage ramp rising from 0 to 100V in 1ms. 
Memristors were simulated using the memristor model of [19] with [RON, ROFF] = [2, 200]KΩ (see description in section 3). 
At the bottom, the evolution of the 2nd time derivative of the current is shown. 

 
 

3. Memristor Device Models under Consideration 
 
The development of compact device models contributed significantly to the progress of research in 
memristor technology [20], [21], being adequate to capture the experimentally observed resistive 
switching behavior and to demonstrate functionality/applicability of memristors in potential 
applications. One of the objectives of this study concerns revealing the desired properties of the 
memristor devices to be used in such massively parallel computing circuits. This, in turn, at simulation 
level corresponds to finding the desired device properties while probing with different device models. 
In previous sections, all the simulation results were based on the behavioral threshold-type model of 
a voltage-controlled bipolar memristor proposed by Pershin et al. in [19]. We selected such a 
threshold-based model because the existence of switching thresholds is a very important common 
feature of most memristor device types. However, in this section we describe in more details four 
selected models with fundamentally different switching behavior, widely used in the recent literature, 
which we later explore further to evaluate their impact on the overall performance of the memristor 
network in SPP computations. 
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The first model to describe is the behavioral threshold-type model used so far in this work [19], which 
has a voltage-dependent switching rate, and is described by the following equations: 
 

   tvxti mm  1  (1) 

 

          ONmOFFmm RxvxRvvfx    (2) 

 

     ||||5.0 tmtmmm vvvvvvf     (3) 

 
vm(t) and im(t) denote the voltage and current across the memristor, respectively, whereas x ≡ Rm is 
the state variable which corresponds to the resistance/memristance of the device. vt defines the SET 
(Rm  RON) and RESET (Rm  ROFF) threshold voltages, which here are assumed both equal to |vt| 
without loss of generality. RON and ROFF are the limiting values of Rm. The θ-functions in (2) are step 
functions which limit Rm between RON and ROFF. Parameters α and β (α << β) define the rate of change 
or Rm at the regions where |vm| < vt and |vm| > vt, respectively; i.e. these coefficients define the slope 
of the curve given by (3) below and above the threshold |vt| for SET/RESET operations. By slightly 
modifying (3) we can define asymmetric thresholds vt,SET ≠ vt,RESET and different switching rates for 
the SET and RESET (βSET ≠ βRESET) processes. According to (3), the switching rate depends linearly 
only on the voltage drop vm and it remains constant for a constant vm. This model also allows defining 
directly the RON and ROFF values by updating the corresponding parameters. 
 
Another model of interest for this work is the linear model, first proposed by Hewlett-Packard in 2008 
[22] and later developed in SPICE by Biolek et al. [23], which has a current-dependent switching 
rate. This model has a normalized state variable x whose value varies in the range [0, 1] and it is 
described by the following equations:  
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We included the state-dependent Ohm´s Law shown in (1) again in (4), just to highlight that this is a 
current-controlled model, whereas (1) referred to a voltage-controlled model. Moreover, we observe 
that here the memristance Rm is a function of the state variable as given in (5) and the switching rate, 
given by (6), is proportional to the current flowing through the memristor im and depends on some 
device-specific material/geometrical properties such as the dopant mobility μv and the width of the 
metal-oxide structure D. In (6) we also incorporated a window function f(‧), which is a multiplicative 
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factor whose role is to slow down the change of a state variable as it approaches a boundary value, in 
fact aiming to model nonlinear dopant drift phenomena (read further in [24] about the role of window 
functions in memristor modeling). This model also allows defining directly the RON and ROFF values 
by updating the corresponding parameters. In previous relevant works on memristor network-based 
SPP computations [13], the simulations were based on current-controlled memristors and the authors 
observed a self-reinforcement of the shortest path solution with time. In fact, the least resistive path 
distinguished faster by attracting more and more current. However, this reinforcement is true only if 
the memristance change rate is proportional to the current through the device, as is the case with the 
linear HP model, but it does not apply to voltage-controlled memristors. So, this is the main reason 
why this model was included in this study. 
 
Furthermore, we examined another threshold-type model with a voltage-dependent switching rate, 
which was proposed by Knowm Inc. to model behavior of their commercial devices [25]. It is a semi-
empirical model known as the “mean metastable switch” memristor model and it describes a 
memristor as a collection of metastable switches (MSS) where each switch can be in either one or the 
other state. By MSS we refer to an idealized two-state element that switches probabilistically between 
its two states as a function of applied voltage and temperature (for all the model equations see further 
in [26]). The model uses a state-dependent Ohm´s Law like in (1) and computes the device 
conductance using an equation similar to (5) but in terms of conductances GON and GOFF, via a 
dimensionless state variable x whose value varies in [0, 1]. Most importantly, the switching-rate of 
the state variable x is given by the following equation: 
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where τ is a time constant and β = q/kT. Likewise in (2) and (3), we observe again in (7) the role of 
the voltage thresholds in the overall switching behavior, defined here as VON/VOFF for SET/RESET, 
respectively. However, the dependency of dx/dt both on the state variable and on the applied voltage 
in a nonlinear manner, makes this an interesting alternative approach to explore, compared to the 
much simpler model described by (1)-(3). This model also allows defining directly the RON and ROFF 
values by updating the corresponding parameters. 
 
The last model included in this comparison was the model proposed by Yakopcic et al. in [27], which 
belongs to the category of hyperbolic sine models and was developed based on a more general 
understanding of memristor dynamics. According to [27], the hyperbolic sinusoid function can be 
used to approximate quite well the i-v relationship of metal-insulator-metal (MIM) memristive 
structures. Therefore, it was found reasonable to explore this kind of expressions in several modeling 
works as detailed in [20], given that memristor devices are commonly fabricated in a MIM structure. 
The generalized i-v relationship for this memristor model is shown in (8): 
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The state variable x takes values between 0 and 1 and directly impacts the conductivity of the device. 
However, defining directly the RON and ROFF limiting values is not possible since there are not such 
parameters in the model. There is a unique parameter b used independent of the voltage polarity, but 
two different amplitude parameters α1 and α2 that make possible tuning conductivity differently 
during SET and RESET. The change in the state variable x is based on two different functions, 
namely, g(‧) and f(‧), as shown in (9), where the η = ± 1 is a parameter used to determine the direction 
of the dynamic state variable motion relative to the voltage polarity. 
 

)()( xfvgx m    (9) 

 
The function g(‧), that is given by (10), imposes SET/RESET voltage thresholds on the memristor 
model with the possibility of having asymmetric values: VON for SET with positive voltages and VOFF 
for RESET with negative voltages. The parameters AON and AOFF determine how quickly the state of 
the device changes once the aforementioned threshold voltages have been exceeded. 
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The other function used to model the state variable dynamics is f(‧) and it is a window function that 
was included based on similar assumptions as mentioned previously in (6) (for all the model equations 
see further in [27]). All in all, this model is a threshold-type switching model of a voltage-controlled 
memristor but has an increased complexity and richer dynamics compared to the rest of threshold-
type models mentioned previously, and it has been successfully applied to match characterization 
data from several different materials and device structures [20]. For all these reasons, it was included 
in this study. 
 

 
Fig. 5 Simulation of the SET process of a memristor from 1.1MΩ to 1KΩ, under a ramped applied voltage which rises from 
0V to 5V in 1s. Simulation used the model of Pershin [19] with parameters α = 0, β = 0.0001e12, vt = 0.7V; the linear model 
by HP (Biolek) [23] with parameters D = 12nm, μv = 40e-15 m2s-1V-1, p=5; the Knowm Inc. model [25] with parameters 
τ=0.003, T=298.5, VON= VOFF = 0.7V; and the model of Yakopcic [27] with parameters a1 = 0.002, a2 = 0.002, b = 0.45, VON 
= VOFF = 0.7V, and AON = AOFF = 10000. 
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For a fairer comparison, the values of the parameters of the models were selected in such a way so 
that all of them had the same SET/RESET voltage thresholds ±0.7V (when applicable), showed a 
similar switching time under the same applied voltage, and exhibited the same resistance window 
between 1KΩ and 1,1MΩ. In our case, such a resistance range was commonly selected for all models 
considering the default range exhibited in the model by Yakopcic et al. [27] which is the most difficult 
to adjust, since it has not RON and ROFF parameters. Fig. 5 shows Rm-t and im-t curves for all the 
considered models during the application of a voltage ramp that rises from 0 to 5V in 1s. We observe 
that the threshold-type models share similar characteristics in their behavior, with a small difference 
in their switching time. However, the linear current-controlled memristor model (Biolek) takes longer 
to complete the SET switching, which is reinforced by the flowing current; i.e. the larger the current, 
the faster the switching rate. Making this model faster requires changing parameter k in (6) which 
depends on device-specific material/geometrical properties which we rather kept at their default 
values suggested in [23]. On the other hand, slowing down the switching process of the other three 
models is easier but it could impact the performance of the network as we comment in the following 
sections. Moreover, we observe the nonlinear LRS state of the Yakopcic model owing to (8), 
compared to the Ohmic LRS of the rest of the models which we mentioned previously in this section. 
 
 

4. Impact of Device Properties in Memristor Network-based SPP Computations 
 
In all simulation scenarios, the edges of the randomly generated graphs have integer weights, which 
we represent in the circuit by connecting in series multiple instances of the same memristive 
configuration shown in Fig. 1(f, g). Thus, an undirected edge with weight = 3 corresponds to 3 pairs 
of anti-parallel memristors, connected in series. This way, the minimum required voltage to force the 
forward polarized memristors of that branch to switch to RON is 3× higher than the voltage required 
for a branch of weight = 1, owing to the voltage divider effect while also assuming identical 
memristors in both branches. Likewise, a directed edge with weight = 2 corresponds to two pairs of 
parallel memristor-resistor connected in series, where the polarity of memristors is in line with the 
edge direction, as shown in Fig. 1(f). According to [15], weighted edges could be emulated by 
combining memristors with different SET/RESET voltage thresholds. However, such approach is not 
universal as it would apply only to threshold-based models/devices. On the contrary, the proposed 
here approach to represent weighted edges is simple and straightforward to implement, as well as 
universal, and it was proved effective in several simulation scenarios with all the considered models. 
 
Unlike mentioned in [18], in this work we demonstrate that not all types of switching behavior are 
equally suitable for such network-based massively parallel computations. Our simulation-based study 
highlighted that the improper selection of the target memristor devices (as reflected by the respective 
properties of the device models) could have a negative effect on the computation time, on the 
detection of a solution, as well as on the final read-out process of the devices on the shortest path. 
We simulated several cases and Fig. 6 summarizes the general tendencies, highlighting the influence 
of the used model in the detection of the solution using the approach based on the second time 
derivative of the current. It should be noted that a solution was always found regardless of the model 
we used. Moreover, memristor variability was not considered in our simulations, but it is generally 
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considered an asset in this context, as it inherently helps the network to choose one shortest path when 
several equivalent solutions are present [15], [18]. Note that all models led to the formation of the 
unique solution, which in this case includes two equivalent alternative paths connecting node 43 with 
57. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 6 Visualization of the simulation results for an SPP computation from node 1 to 100, in a random undirected graph 
on a 10×10 grid under the application of a voltage ramp that rises from 0 to 130V in 0.5s, using (a) the model of Pershin 
[19], (b) the linear HP model [23], (c) the model of Knowm Inc. [25], and (d) the model of Yakopcic [27], with the 
same parameters mentioned for Fig. 5. The time when a solution was detected is shown at the top. At the bottom, the 
evolution of the 2nd time derivative of the current is shown. The color scale for the memristance is the same as in 
previous similar figures. 
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Comparing the performance of voltage-controlled threshold type models with the linear current-
controlled model, we notice in the latter that some partially formed low-resistive paths emerged, as 
shown in Fig. 6(b), which generally complicate the read-out phase. For voltage-controlled models, 
we noticed there is a trade-off between the applied VRS and the switching speed of memristors. 
Generally, if the memristors switch too fast their state, or if they are sufficiently slow, then partially 
formed low-resistive paths could emerge. In either case, modifying the applied VRS can compensate 
towards a better performance; e.g. apply a higher/lower VRS for slower/faster memristors. Another 
important issue concerns the timely detection of the solutions found during computations, where the 
form of the current time derivative curve could affect significantly. In the case of the Knowm Inc. 
model, we notice in Fig. 6(c) that fluctuations in the current time derivative reach only small values, 
compared to what can be observed for the rest of the models. Therefore, likewise we mentioned in 
section 2.2, a proper selection of a threshold value for the second time derivative of the current is 
necessary to make more effective the detection criterion. As far as computation time is concerned, 
the two models where the switching speed depends exponentially on the applied voltage result the 
fastest ones, as expected. Similar tendencies were observed in several more simulated graphs (not 
shown here to avoid redundancy), which led us to the conclusion that (i) faster memristors are more 
beneficial in terms of computation time and precision, and (ii) threshold-type switching is better than 
linear switching. 
 
Given that the threshold-type voltage-controlled models which demonstrated superior performance 
so far, switch their state sufficiently fast to assume they behave in a binary manner, we studied further 
the requirement of the analog nature of memristors for this computing application. Our objective was 
to figure out whether filamentary memristors that switch in a binary fashion between the HRS and 
LRS states could be more appropriate. To this end, we modified the model of Pershin [19] so that, 
once the voltage drop on the device terminals exceeds the threshold voltage, it switches instantly to 
the opposite boundary resistive state. We then compared the performance of the network using binary 
switching devices vs. the original threshold type memristor model which used so far. 
 
As it can be observed in the simulation results shown in Fig. 7, concerning a weighted directed graph 
with graph weights varying between 1 and 4, even though fast switching is generally desired, the 
analog nature of memristors is still important for such computing tasks. As expected, binary switching 
leads to much faster computations. Moreover, when binary switching devices are concerned, the 
detection of a solution using the second time derivative of the current, works fine. However, we 
observed in several cases that the final network state always had many edges that were not part of the 
SPP solution but still had changed to low resistance. For instance, Fig. 7(a, c) show the network 
performance when the original memristor model was used, where we observe again a unique correct 
solution to the SPP, respecting both edge directions and their weights. On the other hand, Fig. 7(b, d) 
correspond to the binary resistive switch model, where we observe the much faster response at the 
top of the figure. However, several nonshortest paths appeared. Branches with small differences in 
the total weight switch ON altogether simultaneously because the instant voltage drop they 
momentarily receive is enough to immediately change all the involved devices, thus creating 
erroneous solutions to the SPP or, sometimes, simply giving a bunch of partially formed paths that 
complicate the read-out phase. 
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5. Comparison with Conventional Algorithmic Solutions to the SPP 
 
In conventional digital computers, complicated tasks such as solving a linear system or solving a 
differential equation require a large number of computing steps and an extensive use of memory. 
However, to accelerate the execution of such advanced tasks, in-memory computing with resistive 
memory provides a promising solution, owing to the compact multi-level data storage and the 
physical computation realized in memory. For instance, it was recently shown in [28], [29] that 
matrix-vector multiplication can be performed with O(1) complexity using a crossbar resistive 
memory where the matrix values have been mapped linearly to the conductance of the memristive 
cross-points, thus proving a significant speed-up over the polynomial time complexity of classical 
digital computers. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 7 Visualization of the simulation results for aν SPP computation from node 1 to 36, in a random weighted directed 
graph on a 6×6 grid, during the application of a voltage ramp that rises from 0 to 100V in 1ms, using (a) the model of 
Pershin [19] with parameters [RON, ROFF] = [2, 200]KΩ, α = 0, β = 0.001e12, and vt = 1V; (b) the binary resistive switch 
model with the same threshold value and resistive range. (c) and (d) provide the time evolution of the composite 
memristance of all graph edges, corresponding to (a) and (b), respectively. 
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Likewise, memristor network-based processing could enable massively parallel analog computing 
hardware for the accelerated solution of complex optimization problems [30]. In this context, it was 
recently proven that the computation time correlates strongly with the length of the shortest path in 
the graph, and that this scaling does not depend on the topology of the graph [18]. This is a great 
advantage of such computing platform, while known algorithmic methods typically scale with the 
size of the graph (number of nodes + number of edges). We performed several simulations with large 
random weighted directed graphs where we modified the shortest path length (measured in number 
of edges), comparing the memristor network performance obtained through circuit simulations in 
LTSPICE, with that of the Breadth First Search (BFS) and the Dijkstra algorithms, readily available 
in Matlab©. The results are summarized in Fig. 8 where we show the required computation time 

 

(a) 

 

(b) 

Fig. 8 (a) Comparison between the avg. SPP computation time required by the memristor-network simulated in 
LTSPICE (using the model of Pershin [19] with the same parameters mentioned in Fig. 7), and two SPP algorithms 
implemented in Matlab©, for random weighted directed graphs of variable shortest path length defined in a ###×### 
grid. The inset shows enlarged the bottom-left part of the plot. Dashed lines correspond to fitting curves to the BFS and 
Dijkstra data, whereas memristor network data for solution lengths > 70 are result of extrapolation. (b) Evolution of the 
avg. minimum input voltage required by the memristor network versus the length of the shortest path, for 32 different 
path lengths in a large number of random graphs defined in a ###×### grid. 
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against the shortest path length. The inset presents enlarged the bottom-left part of the plot. We 
observe clearly the linear dependence of the computation time of the memristor network on the 
solution length. BFS and Dijkstra algorithms were executed 1000 times for each solution length and 
the average time was computed, so as to minimize dependency of results on the actual workload of 
the computer at the moment the simulations were carried out. We simulated cases with maximum 
solution length longer than 500 in weighted directed graphs mapped in a ###×### grid. For circuit 
simulations, the computation time considered was the simulated time and not the real duration of the 
simulations, as the latter depends on the LTSPICE engine; after all, the objective is to compare the 
time a real memristor network would take to realize the computation. 
 
Our results prove that the memristor network-based approach could be particularly efficient for large 
graphs with small shortest paths. The complexity of BFS is O(E+N) (N = number of nodes, E = 
number of edges) whereas that of Dijkstra is in our case O(E*logN). On the contrary, complexity of 
the memristor network solution is O(ESP), where ESP concerns the subset of the total edges which 
belong to the shortest path. Consequently, the memristor network based approach is asymptotically 
more efficient assuming that ESP << E. 
 
This notwithstanding, the shortest path length is not known a priori, thus a ramped input voltage is 
necessary until the minimum required amplitude is reached to get a solution. This method, however, 
implies an idle time interval at the beginning of the computation while the rising input voltage is still 
low. Certainly, the total computation time required by the memristor network could be drastically 
improved by reducing this idle time. Fig. 8(b) demonstrates the correlation obtained from several 
simulations between the required input voltage amplitude and the length of the shortest path (which 
is in line with results in [18]). Given this information, if the solution length is approximately known, 
then adding an offset to the input ramped voltage according to an “expected” shortest path length will 
help reaching faster the required amplitude and thus to reduce the total computation time, making 
memristor-network based computations further competitive to conventional algorithmic solutions. 
 
 

6. Conclusions 
 
This work assessed the performance of memristor-network based graph solvers, particularly focusing 
on the shortest path computation in weighted directed graphs. Conclusions concern the desired 
memristor device behavior and the impact on computation time, the viability of a previously proposed 
criterion for the detection of a solution, as well as on the precise read-out of the devices on the shortest 
path. The impact of analog vs binary switching was evaluated. The memristor-network based 
computations are completed in a really short time, owing to the physical computing with Ohm’s and 
Kirchhoff’s laws. Our simulation results using μs-switching memristors, proved that the memristor 
networks are advantageous over conventional algorithmic solutions, thus strongly supporting 
resistive computing as a promising approach for the accelerated solution of complex optimization 
problems, as well as data analysis and machine learning. 
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